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Abstract 
Bifidobacterium longum and Streptomyces peucetius are two totally different bacterial 
species with respect to environmental conditions and process objective. These were used as 
model organisms in this study. The objective of the B. longum process was to produce 
viable biomass suitable for use as food additive. The objective of the S. peucetius process 
was to produce a medically significant compound toxic to the organism. This study 
presents the process optimization for both model organisms by the use of experiment 
designs. The critical down-stream processing stage concerning B. longum, freeze-drying, 
was also optimized using response surface methods. Yeast extract and glucose 
concentrations together with L-cysteine-HCl·H2O concentration were found most effective 
concerning B. longum ATCC 15707 growth. The first two were optimized with temperature 
using a CCC experiment design. Optimal growth and glucose consumption was achieved 
with temperatures as high as 40oC, a glucose concentration of 20 g l-1 and yeast extract 
concentration of 35 g l-1. With a mixture design, soy peptone, beef extract, bacto peptone 
and tryptone were identified as growth favoring medium components for S. peucetius var. 
caesius N47. A CCF experiment design was constructed for the optimization of 
environmental conditions concerning S. peucetius growth, glucose consumption and ε-
rhodomycinone production. Raising the cultivation temperature to 35oC favored growth and 
glucose consumption, but 30oC was found best for ε-rhodomycinone production. At the 
optimal temperature, a high aeration control setpoint and a high pH value yielded the best 
results for all responses. The survival of B. longum ATCC 15707 during freeze-drying was 
found highly temperature dependant. With a proper temperature control strategy during the 
freeze-drying process over 160% better product activity was achieved with a 50% shorter 
drying time compared to constant temperature freeze-drying. Kinetic cultivation parameters 
concerning S. peucetius were investigated using both batch and continuous cultivation data. 
Coefficients for substrate consumption (YXS 0.536 g g-1 and mS 0.54 mg g-1 h-1) and product 
formation (YPX 12.99 mg g-1 and mP 1.20 mg g-1 h-1) were calculated from chemostat 
results, and a µmax value of slightly over 0.10 h-1 was observed. These parameters were used 
in the kinetic modeling of the cultivation. A best overall fit from the kinetic modeling was 
obtained when the logistic equation was used for the modeling of growth. Metabolic flux 
analysis (MFA) was applied to the chemostat data. This implied that ε-rhodomycinone 
production is almost linearly dependant on the citric acid cycle (TCA) rate. The kinetic 
modeling approach gave relatively good simulation results, but could not be used for 
prediction. This was, however, successfully done using neural networks. 
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Kiviharju, Kristiina. Bakteeriprosessien mallinnus ja optimointi. Espoo 2006, Teknillinen 
korkeakoulu. 
 
Asiasanat: aineenvaihduntavuoanalyysi, Bifidobacterium longum, ε-rodomysinoni, kasva-
tus, kemostaatti, keskuskomposiittikoesuunnitelma, mallinnus, neuroverkko, optimointi, 
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Tiivistelmä 
Bifidobacterium longum ja Streptomyces peucetius ovat ympäristövaatimuksiltaan ja pro-
sessitavoitteiltaan kaksi täysin erilaista bakteeria, joita käytettiin tutkimuksen malliorganis-
meina. B. longum prosessin tavoitteena oli tuottaa elintarvikelisäaineeksi kelpaavaa elävää 
biomassaa. S. peucetius prosessin tavoite oli tuottaa lääketieteellisesti merkittävää ainetta, 
joka on myrkyllinen organismille itselleen. Tässä työssä optimoitiin molempien malliorga-
nismien kasvatusprosessi koesuunnitelmien avulla. B. longum -bakteerin säilytyksen kan-
nalta merkittävin prosessivaihe, kylmäkuivaus, optimoitiin myös vastepintamallitusta apuna 
käyttäen. Hiivauutteen, glukoosin ja L-kysteiini-HCl·H2O:n pitoisuudet kasvatusalustassa 
vaikuttivat eniten B. longum ATCC 15707 -bakteerikannan kasvuun. Näistä kaksi ensim-
mäistä optimoitiin lämpötilan kanssa CCC koesuunnitelman avulla. Kasvu ja glukoosin ku-
lutus olivat optimaalisia jopa 40 oC lämpötilassa, 20 g l-1 glukoosipitoisuudella ja 35 g l-1 
hiivauutepitoisuudella. Soijapeptoni, lihauute, baktopeptoni ja tryptoni olivat seoskoesuun-
nitelman mukaan parhaiten S. peucetius var. caesius N47 -bakteerin kasvua edistäviä alus-
takomponentteja. S. peucetius -bakteerin kasvu, glukoosin kulutus ja ε-rodomysinonin tuot-
to optimoitiin ympäristömuuttujien suhteen CCF-koesuunnitelman avulla. Korkeammat 
kasvatuslämpötilat nopeuttivat kasvua ja glukoosin kulutusta, mutta 30 oC oli paras lämpö-
tila ε-rodomysinonin tuottoon. Optimilämpötilassa sekä korkea ilmastus että pH paransivat 
kaikkia mitattuja parametreja. B. longum ATCC 15707 -bakteerin selviytyminen kylmäkui-
vauksesta oli tutkimuksen mukaan erittäin lämpötilariippuvaista. Sopivaa lämpötilan säätö-
strategiaa käyttämällä saatiin 160 % parempi tuoteaktiivisuus 50 % lyhyemmässä ajassa 
kuin vakiolämpötilassa suoritetulla kuivauksella. S. peucetius -bakteerin kineettiset kasvu-
parametrit selvitettiin panos- ja jatkuvatoimisista kasvatuksista saadun datan avulla. Jatku-
vatoimisten kasvatusten avulla selvitettiin substraatin kulutuksen (YXS 0,536 g g-1 ja mS 
0,54 mg g-1 h-1) ja tuotteen muodostuksen (YPX 12,99 mg g-1 ja mP 1,20 mg g-1 h-1) vakiot 
sekä µmax, joka oli hiukan yli 0,10 h-1. Näitä parametreja käytettiin panoskasvatusten kineet-
tiseen mallinnukseen. Paras mallinnustulos kineettisillä malleilla saatiin logistista kasvuyh-
tälöä käyttämällä. Jatkuvatoimisten kasvatusten dataan kokeiltiin myös aineenvaihdunta-
vuoanalyysiä (MFA). Tämän perusteella ε-rodomysinonin tuotto riippuu lähes lineaarisesti 
sitraattisyklin (TCA) nopeudesta. Kineettisellä mallinnuksella päästiin melko hyviin simu-
lointituloksiin, mutta menetelmää ei voinut käyttää mielivaltaisen panoksen ennustamiseen. 
Tämä saavutettiin kuitenkin neuroverkkomallinnuksen avulla. 
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PPP pentose phosphate pathway 
Q2 coefficient of model prediction 
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1 Introduction 
 

Bacteria have been used for the benefit of man for thousands of years. Applications vary 

from dairy to the production of useful compounds and purification processes. The last 100 

years have brought mathematical methods closer to the subject. Models are being built to 

describe both the reactor and the reaction. Nowadays even the microbial metabolism, 

signaling and control are being modeled as computing power increases. 

 

The literature part of this work introduces the methods and organisms used in the 

experimental part. Statistical methods and experiment design are covered briefly with the 

critical coefficients relevant in the interpretation of the results. Process modeling is 

reviewed with regard to metabolic flux analysis (MFA), unstructured kinetic models and 

neural network models. The model organisms Bifidobacterium longum and Streptomyces 

peucetius var. caesius are introduced, and the work related to the methods used in this study 

and both genera are briefly reviewed. 

 

The experimental part of this work deals with the use of different screening and 

optimization methods, namely the mixture design, factorial designs and central composite 

designs combined with statistical analysis and response surface methods. This part of the 

work includes both model organisms. The different modeling aspects of the work concern 

S. peucetius, which is the less studied and more complicated modeling subject. The 

modeling task is approached through continuous cultivation studies combined with MFA, 

and batch cultivation studies combined with unstructured kinetic models and neural 

network models. 

 

1.1 Statistical methods in experiment design and evaluation 
 

Statistical process parameter evaluation, experiment design and process optimization have 

been successfully used in many areas of research. Microbial processes are biological, and 
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thus can contain relatively large amounts of natural variation. The reaction networks 

associated with the use of microbes are complex, and many things can have effects on 

different parts of the networks. Cross effects are possible, even probable, when this amount 

of complexity is in question. Rational experiment design and statistical evaluation of the 

results can increase knowledge on the reliability of the information obtained during an 

experiment set. Furthermore, the amount of experiments required for reliable process 

optimization can be reduced using experiment design. 

 

1.1.1 Mixture design 
One of the first concerns in microbial processes is the rapid definition of a suitable 

cultivation medium. There are usually many different components to choose from, and a 

quick and reliable screen can come in handy. Mixture designs are a popular simplex 

optimization technique for the evaluation of the effects of different medium components, 

especially in the pharmaceutical industry (Gabrielsson et al., 2002). The principle is to keep 

the sum of component proportions as 100%. Thus the component concentrations cannot be 

independently changed (Gabrielsson et al., 2002). The most common are the simplex lattice 

and simplex centroid designs (Montgomery, 1997). 

 

1.1.2 Factorial design 
A good way to evaluate the relative effects of multiple variables is a factorial design. A 

general two-level factorial design is a 2k design (Montgomery, 1997). As the number of 

factors k increases, the number of experiments required for the complete analysis of the 

design increases rapidly. With 8 factors (28 design) the total number of experiments is 256. 

To save usually scarce experimental resources, fractional factorial designs are often used, 

when the number of experiments exceeds the resources available. The amount of data 

attainable from the experiment set is naturally reduced, when fractioning is applied 

(Montgomery, 1997). To study the main effects of 8 factors, a 28-4 design is adequate, 

requiring only 16 experiments. The resolution of the fractional factorial design tells about 

aliasing in the design (Montgomery, 1997). This means whether or not certain effects are 

hidden under others in the design. A resolution IV design ( 482 −
IV ) is such that no main effect 

is aliased with another main effect or a two-factor interaction. The results of fractional 
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factorial designs are evaluated as effect direction and significance. Full factorial design 

results can be evaluated as response surfaces. 

 

1.1.3 Central composite designs 
When critical process parameters are found, they can be further optimized using central 

composite designs. Central composite designs are popular types of designs for fitting 

second order models (Montgomery, 1997). The Box-Benkhen design (CCB) is a good 

example of spherical designs, and the central composite face-centered (CCF) and central 

composite circumscribed (CCC) of cuboidial designs. The CCF and CCC theory is 

presented in Figure 1. In a face-centered design 2 center points are enough for the validity 

of the model, but 3 are often used in order to get a good estimate of the error. Variable 

transformations are often done to obtain linearity of both factors and responses 

(Montgomery, 1997). For example studying temperature effects on biological systems often 

requires a transformation to T-1 because of the nature of the kinetic reactions related 

(Watier et al., 1996). For the same reason rates as responses often require logarithmic 

transformation. The results of central composite designs are evaluated as response surfaces. 

 

 
Figure 1. CCC (on the left) and CCF (on the right) experiment design theory with 2 

variables. The dots represent experiment points and the squares the modeling area. 
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1.1.4 Model evaluation 
When evaluating the results, it is critical to understand how useful the data is and how good 

the obtained model is. First, the raw data is evaluated in order to find crude experimental 

errors. Then, the model for the data and responses is calculated (Gabrielsson et al., 2002). 

This is usually done by fitting a regression model to the experiment design. There are 

several ways to evaluate the calculated model, the three coefficients introduced here being 

the most popular ones. One of the most used statistical coefficients is the P value. This 

probability to 0-hypothesis tells what the probability is that there is no model-explained 

variation in the results (Montgomery, 1997). The P value is used for the evaluation of 

model significance. A very significant model has a P value below 0.001, a significant 

model below 0.01 and an almost significant model below 0.05. The proportion of 

variability in the data is shown by the coefficient of determination (R2), which measures the 

variance explained by the model (Gabrielsson et al., 2002). The coefficient of model 

prediction (Q2) explains the amount of variance predicted by the model (Gabrielsson et al., 

2002; Montgomery, 1997). Good values for R2 are 0.8-0.9 and for Q2 over 0.5 (Gabrielsson 

et al., 2002), and their difference 0.2-0.3 (Eriksson et al., 2000). The calculated model is 

used for evaluation of the results as a response surface plot, where the model is plotted 

against two or three of the most significant variables (Gabrielsson et al., 2002). 

 

 

1.2 Bioprocess modeling and control 
 

Modeling of biological processes has always been somewhat challenging. The easiest 

modeling concepts presume ideal mixing, which is rarely, if ever, achieved. The asepticity 

requirements make measurements from the reactor non-trivial. Cellular processes, mass 

transfer and control aspects make the modeling task appear even more daunting, and thus it 

should carefully be considered, what really needs to be modeled given the specific problem. 

Different tools have been developed in recent years for different modeling needs. Some 

concentrate on the reactor, some on reaction kinetics (Eungdamrong and Iyengar, 2004), 

and some on system biology: metabolomics, proteomics and genomics (Goesmann et al., 
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2003; Klein et al., 2002; Lemerle et al., 2005). Here, brief overviews on metabolic 

modeling, kinetic process models and neural network models are given. 

 

1.2.1 Metabolic flux analysis (MFA) 
Metabolic flux analysis (MFA) takes into account all cellular reactions from transport to 

intracellular reactions. Transport is considered to be the transfer reactions of extracellular 

metabolites through cell wall and membrane structures into the cell as well as the transport 

through intracellular membrane structures. Intracellular reactions include anabolic and 

catabolic reactions and secondary metabolism. Macromolecules like DNA, RNA, proteins 

and biomass associated carbohydrates are produced via anabolic reactions. Catabolic 

reactions produce ATP and NADPH, which are the energy currency of cells. The major 

catabolic pathways are the Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PPP) 

pathway, and the citric acid cycle (TCA). In addition to ATP production, the TCA is 

responsible for the production of biomass building blocks consumed by the anabolic 

reactions (Nielsen and Villadsen, 1994). 

 

Generally, flux analysis considers the reaction stoichiometry in matrix form. A good 

description on constructing the network and matrix is given by Granström (2002). 

Extracellular components are the easiest to measure, and the number of measurements 

made vs. the properties of the stoichiometric matrix is an important factor when examining 

the metabolic network. If the rank (number of linearly independent rows or columns) of the 

stoichiometric matrix is smaller than the matrix dimensions, the network is redundant. In 

addition, if the number of the measured reaction rates is smaller than the degrees of 

freedom in the network, the system is underdetermined. Underdetermined systems are 

analyzed using flux optimization. If the rank of the stoichiometric matrix is one of the 

matrix dimensions, the network is non-redundant. In addition, if the number of measured 

reaction rates exceeds the degrees of freedom in the network, the system is overdetermined. 

Exactly determined and overdetermined networks are analyzed using flux balancing. In 

overdetermined systems, the extra information obtained in the excess measurements can be 

used in gross measurement error detection or improvement of result accuracy (Nielsen and 

Villadsen, 1994). 
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1.2.2 Kinetic models 
Generally, kinetic models are experimentally derived mathematical formulas that fit the 

cultivation data reasonably well. The easiest kinetic modeling technique is the application 

of an unstructured kinetic model. The kinetics can be linear or non-linear, single-phase or 

multiphase (Eungdamrong and Iyengar, 2004; Mitchell et al., 2004). Linear kinetic models 

include constant rate and first order kinetics. Non-linear kinetic models comprise 

exponential, logistic, second order and other defined functions (Eungdamrong and Iyengar, 

2004; Maurer and Rittmann, 2004; Mitchell et al., 2004). 

 

The most popular defined kinetic model function has undoubtedly been the Monod model, 

which contains two parameters that define the relation of growth and substrate 

consumption. Contois and Moser presented modifications to the Monod model. The 

Contois theory was based on a possible growth inhibition by biomass itself, which has later 

been doubted (Nielsen and Villadsen, 1994). Altogether different formulas were presented 

by Teissier and Blackman. The logistic expression has also been successfully used in 

growth estimations. The Monod model has also been extended to substrate and product 

inhibitions (Nielsen and Villadsen, 1994). These, however, have more parameters and 

require more computing power to fit appropriately. 

 

Complex rate law models have been used in the simulation of entire metabolic pathways 

(Curto et al., 1995). Kinetic models have even been applied to the cultivation lag and death 

phases as well as to particle interactions (Mitchell et al., 2004; Swinnen et al., 2004), but 

these are starting to resemble structured models. Temperature and pH correlations have 

been introduced to the kinetic parameters (Maurer and Rittmann, 2004; Mitchell et al., 

2004; Nielsen and Villadsen, 1994).  

 

1.2.3 Neural networks 
Modeling and simulation can also be conducted with no prior knowledge of the process 

variable dependencies by using artificial neural networks (Eerikäinen et al., 1994). An 

example of this direct approach is presented in Figure 2. Artificial neural networks are good 
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in non-linear problems and are trained iteratively from known input/output vector pairs. 

Neural networks are typically applied in estimation and multi-step prediction problems, but 

can also be used as controllers, either directly or as a parameter adjuster for a conventional 

controller. In biotechnological processes, neural networks can be applied as soft sensors to 

predict the cell concentration in batch fermentations (Linko et al., 1994) or as on-line 

variable estimators for e.g. viscosity and penicillin concentrations in penicillin production 

(Arauzo-Bravo et al., 2004).  

 

 
Figure 2. Example of a neural network. Two input layer neurons are connected to 4 hidden 

layer neurons, which are connected to one output layer neuron. The hidden layer performs 

the calculations according to the transformation function and weights. 

 

One of the most widely used neural networks is the fully connected feed-forward network. 

The network is composed of nodes arranged into three layers, where every neuron is 

connected to each neuron in the next forward layer. Input layer neurons perform no 

computations, but only transmit the coded (normalized) values to each connected neuron in 

the hidden layer. Every input and output node corresponds to a measured input or output. 

Hidden and output layer neurons have a non-linear transfer function.  

 

Prior to use, the network needs to be trained. Here is a short review of the widely used back 

propagation training algorithm (Rumelhart et al., 1986; Werbos, 1974). The method is an 
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iterative gradient algorithm, which was designed to minimize the mean square error 

between the actual output of a multilayer feed-forward network and the desired output. The 

training procedure is highly repetitive. Example input/output vector pairs are introduced to 

the network several times, and the neuron weight factors are updated by back propagation 

after each introduction. The algorithm is briefly described in the following stages.  

 

1) Initialize all weights to small random values.  

2) Present normalized input values.  

3) Calculate actual outputs from inputs used.  

4) Calculate global and local errors between desired and actual output values.  

5) Calculate delta weight values recursively from output local errors.  

6) Update all weights by adding delta weights to the corresponding previous weights.  

7) Repeat by going to step 2 until global error reaches the desired level.  

 

A more detailed description of the back propagation method was introduced by Werbos 

(1974).  

 

1.3 Bifidobacteria 
 

Bifidobacteria were first discovered in 1899 (Ballongue, 1998; Leahy et al., 2005) and they 

were initially considered lactic acid bacteria (Axelsson, 1998). The first reference to 

Bifidobacterium was made in 1924 (Ballongue, 1998; Leahy et al., 2005). Until the 1960’s 

there was still uncertainty about the correct classification of this species, as the distinction 

was made by morphological characterization. Bifidobacteria were confused with 

Actinomycetaceae, Arthrobacter, Corynebacterium, Lactobacillus, and Propionibacterium 

(Axelsson, 1998; Ballongue, 1998). The discovery of the key enzyme in the 

Bifidobacterium metabolic pathway, fructose-6-phosphate phosphoketolase (F6PPK), in 

1967, gave a clear distinction of the species and finally differentiated it from others in the 

Bergey’s Manual of 1974 (Ballongue, 1998). Bifidobacteria have a typical glucose 

metabolism using F6PPK, transaldolase and transketolase, producing mainly L+lactic acid 
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and acetic acid (Ballongue, 1998; Fandi et al., 2001; Hartemink et al., 1996; Wolin et al., 

1998). 

 

Bifidobacteria are gram-positive, anaerobic bacteria (Hartemink et al., 1996) that are 

commonly found in the colon of mammals. Of the 34 known species 13 are isolated from 

humans (Leahy et al., 2005). 3-6% of the human colon microflora and 25% of cultivable 

human colon microflora consist of Bifidobacterium species (Hopkins et al., 1998; Leahy et 

al., 2005). Predominant strains in humans are B. breve and B. infantis in infants and B. 

adolescentis and B. longum in adults (Ballongue, 1998; Hopkins et al., 1998). The bacterial 

morphology varies depending on the culture medium; they are mainly rods, but can be 

round, branched or pleomorphic (Ballongue, 1998; Hartemink et al., 1996). 

 

Probiotic activities of Bifidobacterium species were first demonstrated in 1958 (Ballongue, 

1998). Since then, a number of probiotic mechanisms have been proposed and thus they are 

commercially used as probiotics e.g. in dairy products (Perrin et al., 2000). Only one strain, 

B. dentium, has been found pathogenic (Ballongue, 1998). Bifidobacteria as probiotics 

affect the eco-physiology of the large intestinal microbiota and they also interact directly 

with the host metabolism. The bacteria are able to adhere to the colon and may influence 

the composition and function of the mucosa. This colonization of the adhesive sites 

prevents the colonization of pathogens and thus increases host resistance to colon infections 

(Ballongue, 1998, Desjardins et al., 1990, Hartemink et al., 1996). Nutritional effects 

caused by bifidobacteria include the production of vitamins and lactic acid (Ballongue, 

1998; Leahy et al., 2005). Effects on lactose intolerance, hypercholesterolemia, use of 

nitrates and bile acids are considered metabolic effects of bifidobacteria in the colon 

(Ballongue, 1998; Hartemink et al., 1996; Leahy et al., 2005). Bifidobacteria are also 

shown to have anticarcinogenic and antimutagenic activity (Hartemink et al., 1996; Leder 

et al., 1999). 

 

1.3.1 B. longum 
B. longum was first found in 1963 (Reuter, 1963). It is present in the colon of all human age 

groups (Ballongue, 1998). Its closest relative is B. infantis. The distinction of different 
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Bifidobacterium species can be made by their ability to ferment different sugars. B. longum 

is the only Bifidobacterium strain capable of fermenting melezitose and arabinose 

(Ballongue, 1998). The strain is fairly easy to cultivate, and it has been used a lot in clinical 

testing. Actually most of the health effect studies have been made on B. longum 

(Ballongue, 1998) and B. animalis (Picard et al., 2005).  

 

B. longum has been found to stimulate the immune system in various studies (Picard et al., 

2005). It is able to secrete proteins that inhibit the adhesion of potential pathogens (Lievin 

et al., 2000) and even give the host organism resistance to lethal bacteria, such as E. coli 

O157 (Ishibashi and Yamazaki, 2001) and Salmonella typhimurium (Leahy et al., 2005). B. 

longum was found to inhibit carcinogen damage to DNA (Leahy et al., 2005) and colon 

cancer induction in rats (Gallaher and Khil, 1999; Picard et al., 2005). It has also been 

found effective against liver tumors (Ballongue, 1998), aberrant crypt foci (Leahy et al., 

2005) and antibiotic associated diarrhea (Leahy et al., 2005; Picard et al., 2005).  

 

1.3.2 Freeze-drying 
Freeze-drying is a popular, gentle method for the formulation of probiotic bacteria 

preparations. In freeze-drying, water is removed from a solid surface by direct transfer from 

solid to gaseous state, when the vapor pressure and surface temperature are below the triple 

point (Karel, 1975). This drying method has a totally different effect on the dried material 

than other drying methods, as no liquid phase is present in the process. Mass transfer occurs 

when the water molecules travel from the material to the condensing chamber (temperature 

below -50oC). Heat transfer is required to keep the material temperature high enough for 

this mass transfer to occur at sufficient rate.  

 

The effects of storage time and temperature, as well as different additives on product 

activity have been studied (Champagne et al., 1996; Foschino et al., 1995). It has been 

found that sugars, such as lactose and sucrose, are effective cryoprotectants as well as some 

larger molecules, such as gelatin (Champagne et al., 1996; Mattila-Sandholm et al., 2002). 

Lactobacilli have shown good survival ratios during freeze-drying: up to 80% viabilities 

have been obtained (Palmfeldt and Hahn-Hägerdal, 2000). Bifidobacteria, on the other 
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hand, have been rather sensitive to freeze-drying with survival ratios of around 10% 

(Maitrot et al., 1997). The use of cryoprotectants should be considered relative to the 

purpose of the product, e.g. lactose should be avoided when the product is used as a 

supplement in food for the lactose intolerant. Heat programming (temperature gradients 

during the drying phase) has been found efficient for the drying of food products, mainly in 

reducing drying times (Lombraña and Diaz, 1987). 

 

1.3.3 Experiment designs with Bifidobacterium species 
First pH controlled fermentations and kinetic models of bifidobacteria were reported in 

1989 (Desjardins et al., 1990). Studies on cultivation optimization have been such that a 

single factor is optimized at a time (Mahalakshmi and Murthy, 2000). Temperature and pH 

effects on B. bifidum growth were studied in whey-based media. Galacto-oligosaccharide 

production with B. infantis was optimized using a CCC design for 4 variables: time, 

temperature, cell and lactose concentrations (Roy et al., 2002).  

 

1.4 Streptomycetes 
 

Streptomycetes are aerobic, pigmented bacteria that form mycelia during submerged 

cultivations (Figure 3). They are known producers of industrial enzymes and medically 

important compounds, e.g. antibiotics, polyketides, tetracyclines and antitumor agents. The 

amount of known products has grown dramatically over the decades, and the market in 

2001 was over $30 billion (Demain, 2002). The first antibiotic produced by a 

streptomycete, streptothricin, was found in 1942 (Watve et al., 2001). In 1995, 55% of the 

12 000 secondary metabolites with antibiotic activity were produced by streptomycetes 

(Weber et al., 2003). By the year 2000, around 3000 antibiotics produced by 

streptomycetes had been found, and no end to the quest could be seen (Watve et al., 2001). 

The most common commercial products are streptomycin, tetracycline, erythromycin, 

nystatin and chloramphenicol. Anthracycline antitumor agents with worldwide clinical use 

are daunomycin, doxorubicin, idarubicin, epirubicin, pirarubicin, zorubicin and 

aclacinomycin A. They inhibit the proliferation of cancerous cells by affecting the control 
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of cell division. They are widely used in the treatments of leukemia, tumors (especially 

breast and ovary) and HIV induced Kaposi’s sarcoma. 

 

 
Figure 3. A microscopic image of Streptomyces peucetius var. caesius N47. This is a 

Gram-stained slide of a fully grown inoculum, magnification 100 x. 

 

1.4.1 Streptomyces peucetius 
Streptomyces peucetius is a streptomycete that was isolated from a soil sample in 1957 

(Grein, 1987). The species is capable of producing the anthracycline antibiotics 

aclacinomycin, carminomycin, daunorubicin and doxorubicin. However, it produces a 

higher proportion of daunorubicin than other daunorubicin producing streptomycetes (Huk 

and Blumauerán, 1989). Young colonies are typically yellow-pink, turning later to yellow-

red and to red-brown as the colonies grow older (Arcamone et al., 1969). The aerial mass 

can be white or red, and the colors of different colonies can vary significantly (Arcamone et 

al., 1969). The color depends on the medium and the product, the intermediate ε-

rhodomycinone gives a dark red-violet color to cultivations (Arcamone et al., 1969; Huk 

and Blumauerán, 1989). A mixture of daunorubicin and doxorubicin is currently produced 

for medical use by Swedish Orphan. 
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The anthracycline antibiotic biosynthesis route of S. peucetius has largely been studied 

from the precursors malonyl-CoA and propionyl-CoA (Bao et al., 1999; Paulick et al., 

1976), to aklanonic acid, aklaviketone, ε-rhodomycinone, carminomycin and daunorubicin 

(Dickens et al.,1995; Lomovskaya et al., 1998; Lomovskaya et al., 1999; Madduri and 

Hutchinson, 1995b; Stutzman-Engwall and Hutchinson, 1989). The pathway is presented in 

Figure 4. Streptomyces antibiotic regulatory proteins have also been identified and studied 

(Madduri and Hutchinson, 1995a; Sheldon et al., 2002; Wietzorrek and Bibb, 1997). The 

most important regulator proteins DnrO, DnrN and DnrI, located in two gene locuses, 

dnrR1 and dnrR2, are inducers of the antibiotic biosynthesis proteins. 

 

 
Figure 4. Biosynthesis route of anthracycline antibiotics dauno- and doxorubicin by S. 

peucetius. 

 

1.4.2 S. peucetius var. caesius 
S. peucetius var. caesius is a producer of doxorubicin (Arcamone et al., 1969), which is 

used as an antitumor agent. The strain, like other S. peucetius variants (Huk and 



 

 22

Blumauerán, 1989), was originally formed by chemical mutation from the parent strain 

(Arcamone et al., 1969), which led to the enhanced production of a certain anthracycline 

compound, in this case, doxorubicin. The strain is capable of producing doxorubicin from 

different carbon sources including mannose, cellobiose, lactose, fructose, maltose and 

starch (Guzmán et al., 2005). The biosynthesis is quite similar to the daunorubicin 

biosynthesis (Figure 4), only proceeding a little further. The medicinal properties of 

doxorubicin are similar to those of daunorubicin, only generally more effective (Lown, 

1993). Three major marketers of doxorubicin in Finland are Pfizer, Schering-Plough and 

Leiras. 

 

1.4.3 Experiment designs with Streptomyces species 
Central composite designs have been successfully used with other actinomycetes and other 

products. Glutamic acid and phosphate concentrations were optimized using a CCC 

experiment design for the production of a hybrid antibiotic with S. lividans TK21 (Sarra et 

al., 1993). Transglutaminase production with Streptoverticillium cinnamoneum was 

optimized with respect to casein and glycerol concentrations in the production medium 

using a CCC experiment design (Junqua et al., 1997). The effects of pH and temperature on 

cellulase-free xylanase production of Streptomyces sp. Ab106 were studied using a CCB 

design (Techapun et al., 2002a). Aeration and agitation rates were optimized for the same 

using a CCF design (Techapun et al., 2003). The use of mixture designs in actinomycete 

process optimizations has been less popular. The effects of five different nutrient 

components on the cellulase-free xylanase production were studied using a mixture design 

(Techapun et al., 2002b). Growth effects were not evaluated in this study. 

 

1.4.4 MFA of streptomycetes 
MFA has been made with different streptomycetes: S. clavuligerus (Kirk et al., 2000), S. 

coelicolor (Kim et al., 2004), S. lividans (Avignone Rossa et al., 2002), S. noursei (Jonsbu 

et al., 2001) and S. tenebrarius (Borodina et al., 2005a). These studies were made using 

either continuous (Avignone Rossa et al., 2002; Kirk et al., 2000) or batch (Borodina et al., 

2005a; Jonsbu et al., 2001; Kim et al., 2004) cultivation data. The scope was mostly to 
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estimate fluxes through the central carbon metabolism pathways: EMP, ED, PPP, the 

shikimate pathway, TCA and anaplerotic reactions. The results are reviewed in Table 1. 

 

Table 1. MFA results from studies on different streptomycetes. 

Organism Observed pathway effects when shifting 
from growth to production 

Reference 

S. clavuligerus PPP ↑  
urea cycle ↑  

Kirk et al., 2000 

S. coelicolor PPP ↑  
EMP ↑  
TCA ↓  
shikimate pathway ↑  

Kim et al., 2004 

S. lividans PPP ↓  
EMP ↑ 

Avignone Rossa et al., 2002 

S. noursei PPP ↓  
TCA ↑ 

Jonsbu et al., 2001 

S. tenebrarius ED ↓  
PPP ↑  
EMP ↑ 

Borodina et al., 2005a 

 

1.4.5 Modeling of Streptomyces production processes 
The attempt to model Streptomyces production processes began in the 1970’s. Various 

strategies have been used in this complex area ranging from simple kinetic approaches to 

compartment models, population models and hybrid models. A modified Monod model, 

with both carbon and nitrogen form of the equation, and an expression for cell death, was 

used on S. erythreus cultivation and erythromycin production (Ettler and Votruba, 1980). 

Monod kinetics was also used in the simulation of biomass, DNA, RNA, proteins and 

glucose with different Streptomyces species (King, 1997). The model was developed using 

S. tendae, and further expanded by process phase time constants to other streptomycetes 

(King and Büdenbender, 1997). Another study used the logistic approach in biomass 

estimation and Luedeking-Piret-type equations for everything else (Elibol and Mavituna, 

1999). A fed-batch process for aceto-isovaleryl tylosin production by S. thermotolerans 

was modeled using a substrate and product inhibition model inconsistent with the typical 

growth kinetics (Huang et al., 2001). Compartment modeling was applied to nourseothricin 

production by S. noursei for the purpose of optimizing the fed-batch production process 

(Peissker et al., 1984). In addition to these, some models have been published in Chinese in 

the recent years. 
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2 Aims of the study 
 

B. longum and S. peucetius are two totally different bacterial species with respect to 

environmental conditions and process objective. These were used as model organisms in 

this study. The objective of the B. longum process was to produce viable biomass suitable 

for use as food additive. The objective of the S. peucetius process was to produce a 

medically significant compound toxic to the organism. 

 

The aims of the study were: 

 

• to find suitable complex medium components for the cultivation of S. 

peucetius, 

• to determine critical parameters for the cultivation of B. longum, 

• to optimize the critical cultivation parameters concerning B. longum growth, 

• to optimize environmental conditions for an efficient ε-rhodomycinone 

production process with S. peucetius, 

• to find a strategy for the efficient freeze-drying of B. longum, 

• to obtain information on the steady state chemostat characteristics of S. 

peucetius, 

• to test the effects of environmental changes on ε-rhodomycinone production 

using a steady state continuous cultivation of S. peucetius, 

• to analyze intracellular fluxes from the continuous cultivation experiments 

and 

• to construct a predictive batch process model for S. peucetius using kinetic 

equations and neural networks 
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3 Materials and methods 
 

3.1 Bacterial strains 
 

Bifidobacterium longum ATCC 15707 and Streptomyces peucetius var. caesius N47 were 

used as model organisms. Both were stored as frozen working stocks at -80oC. B. longum 

inoculums were prepared in 15 ml test tubes containing MRS supplemented with L-

cysteine-HCl⋅H2O (1 g l-1, MRSC) at 37oC. S. peucetius inoculums were prepared in 250 ml 

shake flasks at 30oC and 330 rpm. The 50 ml inoculum medium contained in g l-1 glucose 

20, starch 20, soy peptone or Pharmamedia 5, yeast extract 2.5, NaCl 3, CaCO3 3, KH2PO4 

1 and MgSO4 0.49, as well as the following trace elements in mg l-1: FeSO4 1.1, MnCl2 2.2, 

CuCl2 0.8 and ZnSO4 3.9. 

 

3.2 Bioreactor cultivations 
 

Reactor types used were Biostat Q (1.0 l) and Biostat MD (2.0 l) (B. Braun Biotech 

International, Germany) with MFCS-program (versions 1.1 and 2.1, B. Braun) to monitor 

the cultivations. Off-gas analysis was made by VG Prima 600 (VG Gas Analysis Systems 

Ltd., Middlewich, Cheshire, UK) and Omnistar GSD 301 O gas analysis system (Pfeiffer 

Vacuum, Assler, Germany). 

 

3.3 Freeze-drying 
 

A Christ Alpha 2-4 laboratory scale freeze-dryer (Martin Christ Gefriertrocknungsanlagen 

GmbH, Germany) was used with a Polystat cc3 programmable bath (Peter Huber 

Kältemaschinenbau GmbH, Germany). Temperature controlled experiments were made to 

determine the effects of drying time and temperature on freeze-drying. Temperature 

programming experiments were conducted in order to reduce the drying time and improve 
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the product activity. Frozen 1 ml aliquots from an overnight batch cultivation were used in 

the experiments. 

 

3.4 Analytical methods 
 

3.4.1 Cell mass analysis 
B. longum cell mass was evaluated with optical density (OD) measurements. S. peucetius 

cell mass was analyzed by filtration of 1-5 ml samples with a pre-incubated 0.2 µm 

hydrophilic polypropylene membrane. The maximum specific growth rate (µmax) was 

determined from the slope of the natural logarithms of 3 successive measurements at the 

steepest growth phase.  

 

3.4.2 Cell viability analysis 
S. peucetius cell viabilities were analyzed from diluted samples as colony forming units 

(cfu) on nutrient agar plates incubated at 30oC for 7 days. µmax was determined from the 

logarithmic values. The freeze-dried B. longum product was weighed and resuspended in 10 

ml saline. The viability was determined anaerobically on MRSC agar plates at 37oC.  

 

3.4.3 Glucose analysis 
Glucose was analyzed from cell free samples by YSI 2700 Select (Yellow Springs 

Instrument Inc., U.S.A.). The maximum glucose consumption rate (rG) was calculated using 

the measured concentrations and sampling times. The relative glucose consumption time 

(tG) was calculated from the measured initial glucose concentration and the end time of 

base consumption during the cultivation. 

 

3.4.4 ε-rhodomycinone 
Samples for ε-rhodomycinone analysis from S. peucetius cultivations were analyzed with 

two different methods. The first method comprised extraction with dichloromethane 

(DCM). 500 µl sample was thoroughly mixed with 200 µl phosphate buffer (pH 7) and 200 
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µl methanol.  ε-rhodomycinone was extracted twice from this solution by addition, mixing 

and separation of 500 µl DCM. The DCM was evaporated from the samples at room 

temperature. The second method was developed for the accurate analysis of total ε-

rhodomycinone produced. 1 ml sample was treated with 200 µl 1.2 M borate-phosphoric 

acid buffer (pH 2.0) and centrifuged in a glass test tube. The product was extracted from the 

cells by treating the precipitate with methanol. The methanol was evaporated from the 

samples at room temperature. 

 

3.4.5 HPLC 
Dry ε-rhodomycinone samples were dissolved in 1 ml 3.8% trifluoroacetic acid (TFA) and 

24% acetonitrile (ACN) and analyzed with high performance liquid chromatography 

(HPLC, Waters, Milford, MA, USA). An XTerra RP18 column (Waters) was used at 30oC 

with a UV detector (λ = 254 nm). A 16 min linear elution gradient was applied to the 

eluents 0.05% TFA (from 76 to 1%) and ACN (from 24 to 99%). 

 

Acetate, α-ketoglutarate, citrate, ethanol, formate, fumarate, lactate, pyruvate and succinate 

were analyzed from culture supernatants using an Aminex HPX-87H column (Bio-Rad 

Laboratories, USA) at 65oC with 5 mM H2SO4 as the mobile phase. A pre-column of the 

same type was included in the system. 

 

3.5 Experiment designs 
 

Different experiment designs were used for different objectives. With B. longum a 

reasonably simple and cost-effective medium was already known, but no information could 

be found on component level significances or optimal amounts. A suitable starting ground 

was thus a fractional factorial estimation of the most significant variables having an effect 

on growth. With S. peucetius nothing was known at the beginning, so the process needed to 

start with medium development and proceed with the optimization of environmental 

conditions. The freeze-drying of B. longum was a complex process with little room for 

experiment design variables. Thus the two objects for optimization were time and 
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temperature with response surface methods. All experiment designs were made and 

evaluated using Modde 4.0 (Umetri, Umeå, Sweden). 

 

3.5.1 Mixture design 
A mixture design was constructed in order to investigate the effects of 10 complex medium 

components on the cultivation of S. peucetius. The components containing no particulate 

matter were bacto peptone, beef extract, cotton seed extract, Pharmamedia extract, malt 

extract, nutrient broth, soy peptone, tryptone, yeast extract and YM broth. The experiment 

design is shown in Table 2. The cultivations were performed in Bioscreen C (Labsystems, 

Helsinki, Finland) using a cultivation volume of 400 µl. All experiments contained a total 

of 10 g l-1 complex medium components. The Bioscreen C analyzer measured the 

cultivation optical densities (OD, λ = 600 nm) at 30 min intervals. Lag-phase length (Lag), 

µmax and absorbance change during growth phase (dExp) were determined and calculated 

from the Bioscreen results, and used as model responses. 

 

3.5.2 Fractional factorial design 
The estimation of critical parameters in the cultivation of B. longum was conducted using a 

fractional factorial design. Typical cultivation medium components used with lactic acid 

bacteria were chosen as factors (yeast extract, glucose, Tween 80, MgSO4 and phosphates) 

as well as pH and propionic acid. pH is a common environmental factor and to our 

knowledge its significance in the neutral zone on bifidobacterial cultivations has not been 

reported. Propionic acid has been proposed to stimulate the growth of bifidobacteria 

(Hartemink et al., 1996). A 28-4 fractional factorial design was constructed in order to 

evaluate the significance of pH, and the amounts of yeast extract, glucose, L-cysteine-

HCl⋅H2O, Tween 80, propionic acid, MgSO4 and phosphates in the medium, in B. longum 

cultivations. The experiment design is presented in Table 2. The cultivation volume was 

400 ml and the temperature was controlled at 37oC. µmax and tG were used as responses. 
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3.5.3 Full factorial design 
A two level full factorial screening design was constructed for the investigation of 

temperature programming in the freeze-drying of B. longum. The experiment design is 

shown in Table 2. The log(a) values obtained in the activity analysis of the drying product 

were used as responses. 

 

3.5.4 CCF 
A CCF experiment design was constructed for the investigation of temperature, pH and DO 

on cell growth, glucose consumption and ε-rhodomycinone formation during the growth 

phase of S. peucetius. The design is shown in Table 2. Another CCF design was 

constructed for the investigation of temperature, pH and stirring rate on ε-rhodomycinone 

production after the growth phase. This design is also shown in Table 2. A temperature 

transformation to K-1 was used in both models to obtain linearity concerning temperature 

effects. 

 

The growth phase experiments were conducted in Biostat MD reactors with 1.0 l working 

volume. After a 40-80 h growth phase the medium was transferred to two production phase 

reactors. The production phase experiments were made in two parallel Biostat Q reactors 

with 400 ml working volumes, one with and another without aeration. Every production 

phase was continued for 88 h. Samples were taken every 8 hours from both growth and 

production phase. µmax, ln(rG) and ln(re) were used as responses in the growth phase study. 

The maximum ε-rhodomycinone formation rate was calculated from the aerated (p+) and 

non-aerated (p’-) production batch and used as production model response. 

 

The effects of time (t) and temperature (T) on the freeze-drying of B. longum were studied 

using a CCF design. The center point was analyzed only once. The experiment design is 

shown in Table 2. Again, log(a) was used as the model response. 
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Table 2. Experiment designs used in the study.  
Exp. S. peucetius mixture design a B. longum fractional factorial design b 

 SP TR CE YE NB BE ME BP YM FM pH YE 
(g l-1)

T80  
(g l-1) 

Cy  
(g l-1) 

Glu 
(g l-1)

Mg 
(g l-1)

PA 
(mM)

PO4 
(g l-1)

1 1 0 0 0 0 0 0 0 0 0 6.2 15 0.5 0.5 10 0.2 0 4
2 0 1 0 0 0 0 0 0 0 0 7.0 15 0.5 0.5 10 0.5 25 8 
3 0 0 1 0 0 0 0 0 0 0 6.2 30 0.5 0.5 15 0.2 25 8 
4 0 0 0 1 0 0 0 0 0 0 7.0 30 0.5 0.5 15 0.5 0 4 
5 0 0 0 0 1 0 0 0 0 0 6.2 15 1 0.5 15 0.5 25 4 
6 0 0 0 0 0 1 0 0 0 0 7.0 15 1 0.5 15 0.2 0 8 
7 0 0 0 0 0 0 1 0 0 0 6.2 30 1 0.5 10 0.5 0 8 
8 0 0 0 0 0 0 0 1 0 0 7.0 30 1 0.5 10 0.2 25 4 
9 0 0 0 0 0 0 0 0 1 0 6.2 15 0.5 1 15 0.5 0 8 

10 0 0 0 0 0 0 0 0 0 1 7.0 15 0.5 1 15 0.2 25 4 
11 0.14 0 0.14 0.14 0.02 0.14 0.14 0.14 0 0.14 6.2 30 0.5 1 10 0.5 25 4 
12 0.14 0.14 0 0.14 0.02 0.14 0.14 0.14 0 0.14 7.0 30 0.5 1 10 0.2 0 8 
13 0.14 0.14 0.14 0 0 0.14 0.14 0.14 0.02 0.14 6.2 15 1 1 10 0.2 25 8 
14 0.14 0.14 0.14 0.14 0.02 0.14 0.14 0 0 0.14 7.0 15 1 1 10 0.5 0 4 
15 0 0.14 0.14 0.14 0 0.14 0.14 0.14 0.02 0.14 6.2 30 1 1 15 0.2 0 4 
16 0.14 0.14 0.14 0.14 0 0 0.14 0.14 0.02 0.14 7.0 30 1 1 15 0.5 25 8 
17 0.14 0.14 0.14 0.14 0 0.14 0 0.14 0.02 0.14         
18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1         
19 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1         
20 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1         

 B. longum full 
factorial design c 

B. longum CCC design d S. peucetius CCF design e S. peucetius  
CCF design f 

B. longum  
CCF design g 

 t1 (h) t2 (h) t3 (h) T (oC) CG  
(g l-1) 

CY  
(g l-1) 

pH T  
(oC) 

DO (%) pH T (oC) stir 
(rpm)

t (h) T (oC) 

1 2 2 4 36 10 20 6 25 0 6 25 100 20 -10
2 10 2 4 36 10 40 8 25 0 8 25 100 60 -10 
3 2 10 4 36 20 20 6 35 0 6 35 100 20 25 
4 10 10 4 36 20 40 8 35 0 8 35 100 60 25 
5 2 2 12 40 10 20 6 25 30 6 25 400 20 0 
6 10 2 12 40 10 40 8 25 30 8 25 400 60 0 
7 2 10 12 40 20 20 6 35 30 6 35 400 40 -10 
8 10 10 12 40 20 40 8 35 30 8 35 400 40 25 
9 10 6 8 38 15 15 6 30 15 6 30 250 40 0 

10 6 10 8 38 15 45 8 30 15 8 30 250   
11 6 6 4 38 7.5 30 7 25 15 8 25 250   
12 6 6 8 38 22.5 30 7 35 15 7 35 250   
13 6 6 8 35 15 30 7 30 0 7 30 100   
14 6 6 8 41 15 30 7 30 0 7 30 400   
15    38 15 30 7 30 15 7 30 250   
16    38 15 30 7 30 15 7 30 250   
17    38 15 30 7 30 15 7 30 250   

a) Mixture design for complex medium optimization of S. peucetius cultivation. The factors are soy peptone (SP), tryptone (TR), corn 
extract (CE), yeast extract (YE), nutrient broth (NB), beef extract (BE), malt extract (ME), bacto peptone (BP), YM medium (YM) and 
Pharmamedia extract (FM). b) Fractional factorial design (28-4) for the evaluation of critical parameters of the B. longum cultivation. The 
factors are pH, yeast extract (YE), Tween 80 (T80), L-cysteine-HCl monohydrate (Cy), glucose (Glu), MgSO4 (Mg), propionic acid (PA) 
and phosphates (PO4). c) Full factorial experiment design for a temperature program experiment in the freeze-drying of B. longum. The 
factors are time for temperature raise from -10 to 0oC (t1), time for temperature raise from 0 to +10oC (t2) and temperature hold time at 
+10oC (t3). d) CCC design for B. longum growth optimization of temperature (T) and concentrations of glucose (CG) and yeast extract 
(CY). e and f) CCF designs for the optimization of S. peucetius growth and production phase. The growth phase design factors are pH, 
temperature (T) and dissolved oxygen (DO). The production phase design factors are pH, temperature (T) and stirring rate (stir).  
g) CCF design for the preliminary freeze-drying experiment of B. longum. The design factors are time (t) and temperature (T).  
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3.5.5 CCC 
After the estimation of the critical parameters of the B. longum cultivation, a further 

optimization of T, yeast extract (CY) and glucose (CG) concentration was carried out. A 

CCC design with a star distance of 1.5 (Table 2) was used. The cultivation volume in all 

experiments was 500 ml. µmax, ln(rG) and tG were used as responses. 

 

3.6 Modeling 
 

Models were obtained from the literature and compiled in formats compatible with Matlab 

6.0 software (MathWorks, Natick, MA, USA). Some modeling techniques were combined, 

especially in the kinetic modeling section, to yield a thorough process model capable of 

realistic simulation of the experimental batch results. 

 

3.6.1 MFA 
The metabolic model for the MFA of S. peucetius was modified from Borodina et al. 

(2005b). The model was a genome based metabolic network constructed for S. coelicolor 

A3(2). The authors proposed that the model can be used as a general model of Streptomyces 

metabolism. Rare and complex sugars as well as the secondary metabolites were removed 

from the model, and the following reactions for ε-rhodomycinone production were added.  

 

Polyketide synthase: propionyl-CoA + acp + 9 malonyl-CoA → 9 CO2 + 10 CoA + 

NHACP 

Ketoreductase: NHACP + NADH → NAD + NHCACP 

Aromatase: NHCACP → NHAACP 

Cyclase: NHAACP + 2 NADH → 2 NAD + 12-deoxyaklanonic acid + acp 

Oxygenase: 12-deoxyaklanonic acid + O2 → aklanonic acid 

Methylase: aklanonic acid + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + H 

+ aklanonic acid methyl ester 

Cyclase: aklanonic acid methyl ester → aklaviketone 

Ketoreductase: aklaviketone + NADH → NAD + aklavinone 

Hydroxylase: aklavinone → H + ε-rhodomycinone 
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NHACP, NHCACP and NHAACP are acyl carrier protein (acp) bound intermediates of 12-

deoxyaklanonic acid synthesis.  

 

The network contained 77 external and 438 internal metabolites, and 624 reactions, 191 of 

them being reversible. Matlab 6.0 was used in the calculations with the aid of the software 

package FluxAnalyzer 5.2 (Max Planck Institute, Magdeburg, Germany; Klamt et al., 

2002). HPLC, biomass and gas analysis data were used in building the constraints. As the 

network was underdetermined, flux optimization was used in the network analysis. Rates of 

EMP, ED, PPP, TCA and the shikimate pathway were evaluated under different conditions. 

 

3.6.2 Kinetic models 
Different kinetic equations were fitted to the cultivation data and simulated using Matlab 

6.0 software and the software package Simulink 4.0. The equations used for growth 

estimation were Monod (Eq. 1), Teissier (Eq. 2) and Contois (Eq. 3) kinetics as well as the 

logistic equation (Eq. 4). For glucose consumption, a Luedeking-Piret type equation was 

used (Eq. 5) 
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The lag-phase was included in the model with a CO2 trigger of 0.09 g l-1 h-1 and a transition 

term t⋅maxµ  (Swinnen et al., 2004) as a multiplier to slow down the initial increase of µ. 
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Kinetics of product formation was introduced into the best modeling system with the 

following equations (Eq. 6 and Eq. 7). 

 

dt
dPX

dt
dX αµ +=    (6) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

max
max 1

P
PXV

dt
dP   (7) 

 

Parameter fittings were done with an optimizing random search protocol developed for this 

study. The idea of this protocol (modified Monte Carlo method) was to cut down the 

parameter search space by moving its central point toward the best fit and reducing the size 

of the space simultaneously. This was done iteratively, and the iteration loops were 

repeated so that the size of the parameter space was closing the desired parameter accuracy. 

The initial boundaries for this method can be set according to the known constraints, which 

is not the case in many optimization algorithms. 

 

3.6.3 Neural network model 
The neural network models were done using fully connected feed-forward networks, where 

every neuron is connected to each neuron in the next forward layer. Input layer neurons 

perform no computations, but only transmit the normalized values to each connected 

neuron in the hidden layer. Each input and output node is assigned to measured input and 

output variables, respectively. The transfer functions used in the hidden and output layer 

neurons were the logistic sigmoid transfer function and hyperbolic tangent function. The 

back propagation training algorithm (Rumelhart et al., 1986; Werbos, 1974) was used in the 

study with a neural network program developed in our laboratory (Eerikäinen, 1993).  
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4 Results and discussion 
 

4.1 B. longum process optimization (I) 
 

4.1.1 Critical cultivation parameters 
The normalized coefficients for the responses µmax and tG in the fractional factorial design 

are shown in Figure 5. R2 and Q2 were satisfactory for a fractional factorial design with 

both responses, i.e. the values were over 0.8 and 0.2, respectively. The P value showed that 

the model was significant for tG. The most significant effects on both responses were yeast 

extract, cysteine and glucose. Yeast extract and glucose had a significant negative effect on 

tG and cysteine a positive effect on µmax. pH, Tween 80, MgSO4, propionic acid and 

phosphate effects were not significant. Yeast extract and glucose were chosen as 

optimization parameters with temperature.  

 

 
Figure 5. Determination of critical cultivation parameters while growing B. longum. The 

figure shows normalized model coefficients for the variables µmax and tG. 

 

The critical parameter estimation experiments showed that the most significant factor 

improving µmax was L-cysteine (Fig. 5). Cysteine is used in the cultivation of oxygen-

sensitive organisms as a protecting agent, especially when no nitrogen flushing is applied. 
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It is, however, an expensive medium component, and its extensive use should thus be 

carefully considered. Cysteine had no improving effects on tG and its concentration was not 

used as an optimization parameter in the CCC experiments. The potential benefits of 

cysteine to the cultivation depend on the cultivation vessel and agitation type, as these are 

the most important factors that have an effect on the DO in the medium (Kiviharju et al., 

2004). 

 

4.1.2 Optimization of critical parameters 
The response surface of µmax in the optimization experiments is shown in Figure 6. The 

statistic parameters showed that the model was excellent. The most important factor was 

temperature. The best µmax values were obtained with high yeast extract concentration and 

temperature values and low glucose concentration values. 

 

 
Figure 6. Response surfaces of µmax in the optimization of B. longum cultivations at 

different yeast extract concentrations. 

 

The response surface of ln(rG) in the optimization experiments is shown in Figure 7. The 

statistic coefficients for this model were excellent as well. The most important factor was 

glucose concentration. The best ln(rG) values were obtained with high temperature and 

glucose concentration values combined with yeast extract concentrations of 30...35 g l-1. 

 

The response surface of tG in the optimization experiments is shown in Figure 8. The 

statistic parameters showed that this model, as all others in this experiment design, turned 

out excellent. The most important factor was glucose concentration. The smallest tG values 
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were obtained with high glucose concentration and temperature values and yeast extract 

concentrations over 32 g l-1. 

 

 
Figure 7. Response surfaces of ln(rG) in the optimization of B. longum cultivations at 

different temperatures. 

 

 
Figure 8. Response surfaces of tG in the optimization of B. longum cultivations at different 

glucose concentrations. 

 

The CCC optimization experiments showed that the best cultivation results were obtained 

at 40oC with 35 g l-1 yeast extract and 20 g l-1 glucose (Figs. 6, 7 and 8). In contrast to an 

earlier study (Desjardins et al., 1990) implying product inhibition on growth while using 

substrate concentrations over 10 g l-1, our results showed that a higher substrate 

concentration yielded better growth. This result did not depend on the amount of complex 

medium components. A reason for the controversy might be the fact that pH control was 

applied with a different pH controlling agent, ammonia, which in another study was found 

to inhibit the growth of B. longum (Song et al., 2003). 
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4.1.3 Freeze-drying 
The response surface for log(a) obtained in the constant temperature freeze-drying 

experiments is shown in Figure 9. The obtained model shows that the product activity 

increases as the drying time increases and the temperature decreases. This might be due to 

the partial melting of the product before sufficient evaporation is achieved. The model was 

found almost significant and the R2 and Q2 values satisfactory. The best activity results 

were obtained with temperatures below 0oC and times over 40 h.  

 

 
Figure 9. Response surface of log(a) in time and temperature optimization of the freeze-

drying of B. longum. 

 

The response surfaces of log(a) in the temperature programming experiment are shown in 

Figure 10. The model was found significant and the R2 and Q2 values satisfactory. The 

most important factor was t3. The general result was that increasing t3 and decreasing t1 

increased product activity.  

 

Freeze-drying is a complex process that is affected by the freezing step, apparatus 

conditions and, as presented in this study, the sample environment conditions. Drying times 

over 40 h and temperatures below 0oC yielded the best activity results in the constant 

temperature freeze-drying experiment. When using temperature programs, a 24 h drying 

time resulted in a higher product activity than the constant temperature experiments. This 

implies that temperature programming is an effective way to improve the viability of 
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bacteria in freeze-drying and reduce process time. A 50 h drying time at -10oC would yield 

a logarithmic product activity of 9.57 with the obtained model for constant temperature 

freeze-drying. The 24 h temperature program model with 2 h, 10 h and 12 h phases would 

yield a logarithmic product activity of 9.99. Temperature programming can thus increase 

product activity by over 160% while decreasing drying time over 50%. 

 

 
Figure 10. Response surface of log(a) in the temperature programming experiments of B. 

longum freeze-drying with different phase 2 lengths. 

 

4.2 S. peucetius var. caesius process optimization (II) 
 

4.2.1 Medium component screening 
The cultivation responses Lag, µmax and dExp are shown in Figure 11 as normalized effects 

of the complex medium components. The R2 and P values were satisfactory for Lag and 

dExp. The effects lengthening Lag the most were corn extract, malt extract and yeast 

extract. The biggest stimulating effects concerning the same were found with soy peptone 

and beef extract. The strongest positive effects on µmax were obtained with soy peptone, 

bacto peptone and tryptone. Significant negative effects were obtained with corn extract 

and malt extract. The dExp effects were the best with soy peptone, tryptone, beef extract 

and bacto peptone. Significant negative effects were obtained with corn extract and malt 

extract. 

 

A clear complex medium is not always advantageous for the production of anthracyclines 

with actinomycetes (Macedo et al., 1999). It is, however, a requirement for the efficient 
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monitoring of cultivations with traditional methods e.g. optical density or cell dry weight 

measurements as well as some on-line measurement methods. The goal in the mixture 

design experiments was to rapidly determine the complex medium components for the 

successful cultivation of the organism. The ε-rhodomycinone production with the 

components beneficial for growth was not investigated.  

 

 
Figure 11. Normalized coefficients in the medium component screening of S. peucetius 

cultivation for the responses Lag, µmax and dExp. 

 

4.2.2 Process optimization 
The response surfaces of µmax in the optimization experiments are shown in Figure 12. The 

statistical parameters showed that the model was almost significant. The most significant 

interacting factors on µmax were temperature and DO. In all pH values both high 

temperature and DO values yield the biggest µmax values.  

 

The response surfaces for ln(rG) are shown in Figure 13. The statistical parameters suggest 

that the obtained model was very significant. The most significant interactions on ln(rG) 

were temperature and pH, and temperature and DO. All response surfaces indicate that a 

high value for all factors yields the biggest ln(rG) values.  
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Figure 12. Response surfaces of µmax in the optimization of S. peucetius cultivation at 

different pH values. 

 

 
Figure 13. Response surfaces of ln(rG) in the optimization of S. peucetius cultivation at 

different pH values. 

 

The response surfaces of ln(re) are shown in Figure 14. The statistical parameters suggest 

that the model for ln(re) was more significant than the lack of fit. The most significant 

interacting factors on ln(re) were temperature and pH. The best values were obtained with 

DO 30% and temperatures around 30oC.  

 

The metabolic activities of cells are clearly temperature dependent. This was shown in the 

growth phase experiments, as an increase in temperature increased both µmax and ln(rG). 

Glucose repression of anthracycline formation in S. peucetius var. caesius has been 

reported (Escalante et al., 1999; Segura et al., 1997) as well as a carbon repression on 

nystatin production by S. noursei (Jonsbu et al., 2002). The cultivation experiments in 

temperatures below 30oC showed a glucose consumption behavior similar to the reported 
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repression cultivations (Escalante et al., 1999); glucose consumption in the 25oC 

cultivations ceased at around 8 g l-1, since in the higher temperature cultivations all glucose 

was consumed.  

 

 
Figure 14. Response surfaces of ln(re) in the optimization of S. peucetius cultivation at 

different DO values. 

 

DO control increased all growth phase responses µmax, ln(rG) and ln(re). It has been reported 

that DO control can have a positive effect on antibiotic production by streptomycetes 

(Rollins et al., 1988), which is supported by our results in the growth phase experiments 

(Figure 14); the average production level increased when the DO was increased. 

 

The p+ showed a product decay rate rather than a product formation rate. The statistical 

parameters implied that the model was a bad representation of the data. The results were 

also evaluated using a modified CCF design with pH and temperature changes and stirring 

rate as design factors. The R2 and Q2 values were better for p’-, although still not good. The 

P value, on the other hand, showed that the model for both responses was more significant 

than its lack of fit. Better productivities were obtained in the non-aerated production phase 

and the response surface for pH and temperature change with stirring rate 400 rpm is shown 

in Figure 15. The highest productivities were obtained with the biggest positive changes in 

pH and decreasing temperatures. 

 

The production phase results were rather complicated to interpret, as the start point differed 

in medium composition (substrate and metabolite amounts) and viable cell counts. Aerated 
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production phase conditions seemed to destroy the ε-rhodomycinone faster than non-

aerated production conditions. Increasing the stirring rate increases the oxygen transfer to 

the cultivation medium, and this can increase metabolic activities in the cells aiding product 

decay. The modified model showed that aeration in the production phase coupled with a pH 

decrease resulted in rapid ε-rhodomycinone decay in the medium. In non-aerated 

production phases a pH change resulted in better productivity than in experiments without 

pH change.  

 

 
Figure 15. Response surface of ε-rhodomycinone production at 400 rpm stirring rate in the 

optimization of S. peucetius ε-rhodomycinone production. The variables are pH change and 

temperature change. 

 

A pH increase with a temperature decrease seemed most beneficial for p'- (Figure 15). This 

implies that dynamic control strategies in the batch production of ε-rhodomycinone can 

increase overall process productivity. A suitable control strategy could be an initial 40 h 

batch phase at pH 6.5, temperature 33oC and DO control at 30%, and a subsequent 20 h 

dynamic phase with pH increase to 7.5, temperature decrease to 30oC and an aeration 

decrease to zero. The production can be completed with a batch phase in these constant 

environmental conditions. A control strategy using a gradual temperature decrease has also 

been proposed for S. hygroscopicus producing rapamycin (Chen et al., 1999). The effects 

of environmental changes on the bacterial metabolism were further studied using dynamic 

phase continuous cultivations (4.3.2 and 4.3.3). 
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4.3 S. peucetius var. caesius chemostat experiments (III) 
 

4.3.1 Steady state 
Production rates of biomass (QX) and ε-rhodomycinone (Qεr) and consumption rate of 

glucose (QG) are shown in Figure 16. Yield coefficients and maintenance coefficients were 

evaluated from the graphs of substrate consumption and product formation vs. dilution rate 

(D). The coefficients for substrate consumption were YXS 0.536 g g-1 and mS 0.54 mg g-1  

h-1, and for product formation YPX 12.99 mg g-1 and mP 1.20 mg g-1 h-1. A µmax value of 

0.10 h-1 could be observed (Fig. 16). 

 

A calculated µmax value with a different medium for these environmental conditions was 

0.058 h-1, obtained from a model from the optimization study (4.2.2). The yield coefficient 

YXS is reported to be 0.5 g g-1 for aerobic bacteria (Doran, 1995). Our result 0.53 g g-1 

corresponds to this rather well. Other studies have reported yield coefficients for 

Streptomyces species in carbon limited conditions ranging from 0.43 to 0.63 g g-1 (Hilliger 

et al., 1978; Inoue et al., 1982; Melzoch et al., 1997).  

 

The maximum specific production rate of ε-rhodomycinone in batch cultivations has been 

around 0.32 mg g-1 h-1. In this study, a maximum specific production rate of 0.66 mg g-1 h-1 

was obtained, and an even higher, 1.20 mg g-1 h-1 maintenance associated specific 

production rate was estimated from the results. Similar results have been reported with 

other streptomycetes and other products, while comparing batch and continuous cultivation 

data. 
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Figure 16. Steady state biomass production (□), specific glucose consumption (▲) and 

specific ε-rhodomycinone production (+) rates in S. peucetius continuous cultivations. 

 

4.3.2 Kinetic experiments 
Different environmental perturbations were conducted on a steady state chemostat of S. 

peucetius. QG decreased after a temperature decrease step (33 to 30oC) and remained at the 
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decreased level (97% of the original flux) during the experiment. QX decreased at first, but 

regained the level prior to the change in 4 h. pH elevation (6.5 to 7.5) had no effect on QG. 

QX, on the other hand decreased to 84% of the original flux. QG remained constant also 

throughout the airflow reduction experiment (0.7 to 0.1 vvm). QX increased to 115% 

compared to the original value. 

 

4.3.3 Flux analysis 
Optimization results from the flux analysis are shown in Figure 17. Flows are presented as 

percentage of glucose feed. The flux analysis showed increasing PPP, TCA and shikimate 

pathway flux, and decreasing EMP and ED with decreasing µ, partly signifying transition 

from growth phase to production phase.  
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Figure 17. Metabolic fluxes of S. peucetius as a function of µ: PPP (◊), ED (▲), shikimate 

pathway (●), EMP (■) and TCA (+) as flux-% of the glucose feed flux. 

 

Studies on other Streptomyces species have shown quite variable flux characteristics 

depending on growth vs. production. Similar behavior of PPP has been reported with S. 

tenebrarius (Borodina et al., 2005a) and S. coelicolor (Kim et al., 2004). Similar TCA 

behavior has been reported with S. noursei (Jonsbu et al., 2001). The S. coelicolor model 

described the production of a growth-dependent antibiotic, which was formed through the 

shikimate pathway. Thus the shikimate pathway also increased in the study as the organism 

favored production over growth (Kim et al., 2004). The decrease of ED activity was also 

reported with S. tenebrarius (Borodina et al., 2005a). When examining the metabolic fluxes 
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with respect to the proportion of ε-rhodomycinone produced from glucose, it was found 

that all estimated fluxes exhibited a second order function with R2 values over 0.98 (results 

not shown). This is an interesting phenomenon, which could ultimately lead to a metabolic 

flux driven production model. 

 

The kinetic experiments implied that metabolic pathways undergo changes when 

environmental changes are applied. According to the TCA, the best effect on ε-

rhodomycinone production was the pH change. In batch cultivations without pH control 

this elevation of pH occurs naturally. The pH increase gave a clearer result than the 

temperature decrease thus partly reinforcing the hypothesis presented in the optimization 

study (4.2.2). Studies on the combined effect, as well as other types of kinetic tests are still 

necessary for the validation of this hypothesis.  

 

The use of MFA in the type of kinetic experiments conducted in this study is probably not 

the best way to observe the effects. MFA assumes steady state and thus a pseudo steady 

state assumption is made in every analysis point of the kinetic experiments. It is, however, 

at the moment the only possible way with reaction networks as big as the ones used in 

metabolic network studies. Better estimations of the fluxes can surely be obtained with 

kinetic models of all the reactions involved, but the amount of information required to do 

this is too vast for this decade. 

 

4.4 S. peucetius var. caesius process modeling (IV) 
 

4.4.1 Unstructured kinetic models 
The cultivation growth phase was considered separately with respect to glucose and 

biomass values. YXS and mS were defined in the parameter optimization as 0.536 g g-1 and 

0.54 mg g-1 h-1, respectively, based on data obtained from continuous cultivation 

experiments (4.3.1). The best biomass simulation results were obtained with the logistic 

and Contois models. Both the Monod and Teissier models tended to yield initial 

underestimates, which later on turned to overestimates of the biomass values. The best 
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glucose fits were obtained with the logistic and Teissier models. The Contois model 

overestimates residual glucose, whereas the Monod model underestimates it.  

 

The shape of the Monod model for the modeling of S. peucetius var. caesius N47 growth 

was found unsuitable, a result contradicting with the model by King (1997). The 

fundamental assumptions of the model seem wrong according to our results, even though 

the proposed modeling concept was good. The same trend in model simulations compared 

to real data was also seen in the results obtained by King (1997), although no 

considerations were made on the shape issue. The logistic model, found most suitable in 

this study, was also used in a study modeling S. coelicolor growth with good results (Elibol 

and Mavituna, 1999). 

 

The logistic model was chosen for use in the further investigation of the process. Lag phase 

and product formation were included according to equations 6 and 7. The results are shown 

in Figure 18. The model gave a reasonably good estimate of the measured variables. 

 

Simulations of the kinetic process model worked out rather well. The model explanations 

were good, but there seems to be unexplained variation in the output, which cannot be 

accounted for by glucose and CO2 data. Therefore, the kinetic model, however useful in 

simulations, cannot be used in the prediction of biomass and ε-rhodomycinone 

concentrations during arbitrary batch cultivations. 

 

4.4.2 Neural networks 
Different network configurations were tested in the estimations of biomass and ε-

rhodomycinone concentrations. Data for the biomass estimation with environmental and 

process variables was taken from 15 cultivations in the optimization study (4.2.2). Figure 

19 shows the neural network estimation of X with a 6-8-2 network as a function of growth 

time, S, DO, pH, T and respiration quotient (RQ).  
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Figure 18. Biomass, glucose and ε-rhodomycinone in S. peucetius var. caesius N47 

cultivation and simulation with the logistic model. The R2 of the best fit was 0.953. 

 

A recursive network was built to estimate the ε-rhodomycinone concentrations as functions 

of growth time, S, pH, T-1, RQ and ln(X) (Figure 20). In these experiments, ε-

rhodomycinone concentrations were measured only from the last sample at the end of the 

cultivation. This made it extra difficult for the product estimation. In principle, if these two 
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networks are used together, one can estimate both the biomass and ε-rhodomycinone 

concentrations from other more easily measurable variables during the cultivations. 

 

 

Figure 19. On the left: Neural network for the estimation of biomass (X) and biomass 

viability (log(CFU)) with a 6-8-2 network from S. peucetius var. caesius N47 cultivations 

as functions of growth time, glucose concentration (S), dissolved oxygen (DO), pH, 

temperature (T) and respiration quotient (RQ). Input nodes are presented in red, hidden 

layer nodes in cyan and output nodes in green. On the right: Model validation of X with 

two cultivations not shown in the training procedure. The R2 was 0.983. 

 

  
Figure 20. On the left: Neural network for the estimation of ε-rhodomycinone with a 

recursive 8-3-1 network from S. peucetius var. caesius N47 cultivations as functions of 

growth time, glucose concentration (S), pH, temperature (T-1), respiratory quotient (RQ) 

and biomass (X). After network training the R2 was 0.988. Input nodes are presented in red, 
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hidden layer nodes in cyan and output nodes in green. On the right: Model validation with 

three cultivations not used in the training procedure gave the R2 value of 0.903. 

 

The effective use of neural networks in modeling and simulation requires lots of data. The 

lack of product concentration values between start and end points in the optimization study 

cultivations used as training data caused inaccuracy in the estimation results. To enhance 

the estimation performance, the profiles of product formation from a couple of experiments 

would have been beneficial. Direct measurement of biomass from a particle containing 

complex medium is very difficult, but could be estimated with a neural network in a rather 

straightforward manner. The model can be used for capturing the dynamics of the 

mechanistic model for the cultivation process e.g. in model predictive bioprocess control 

(Mjalli and Al-Asheh, 2005). In this study, the neural networks gave more accurate data 

simulation patterns than the kinetic models, and were able to predict biomass and product 

concentrations from arbitrary batch cultivations, which is something that could not be done 

using kinetic models. 

 

 

5 Conclusions 
 

The modeling and optimization of bacterial processes has never been straight forward, as 

the nature of live biological materials makes the tasks non-trivial. In this study, good 

experiences were achieved with the use of experiment designs on both bacterial species. 

This raises possibilities for designing a straight forward procedure for the future in the 

optimization of bacterial processes. The possibilities are in shortened process development 

times and initially more optimal production processes. 

 

The continuous cultivation technique combined with kinetic modeling reduces the need for 

model parameter search in the attempt to simulate batch cultivations. All the models tested 

and developed here could be tried out with bifidobacteria, which has also been successfully 

cultivated in the continuous mode. The streptomycete control strategy implied by the 
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optimization study could not be verified in the environmental perturbation experiments on 

the continuous cultivation, and further experiments are recommended for theory validation. 

 

The results of the MFA could ultimately lead to a new concept of a process control model, 

but there is still work to be done in view of the measurements, e.g. HPLC and related 

methods. The amount of degrees of freedom in the MFA model requires so many 

measurements that the current laboratory capacity could not fulfill the requirement for the 

amount of accurately measured compounds necessary for true flux calculation and analysis. 

The results presented in this study were only the results of flux optimization according to a 

relatively small number of results accurately obtainable. These, however, showed a good 

possibility for application in a process control model based on MFA. Naturally, further 

research would be necessary for the development of this model. 

 

The unstructured kinetic model worked well in simulating the cultivations of a complexly 

growing organism, but essentially lacked sufficient predictive power. The neural network, 

on the other hand, could predict both biomass and product formation, although two 

networks were required for the task, with over 90% data fitting. A further scope of study on 

process modeling could be the combination of kinetic models with neural networks, namely 

in parameter estimation, as this step is the most critical one concerning a predictive 

simulation model. A good, predictive simulation model could help in designing a functional 

dynamic control strategy with minimal laboratory testing times and thus at reduced cost. 

The model could also be used in predicting process outcome during production for 

monitoring purposes and early detection of bad batches.  
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