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Abstract— We propose a simple nearly-optimal heuristic algo-
rithm for multicast tree construction in static ad hoc networks.
The objective is to deliver a data packet from a source node to a
set of destination nodes with a sequence of transmissions so that
the sum of given transmission-related costs is minimized. Also a
brute-force enumeration method is described to obtain optimal
solutions to the problem in unit cost case. Performance of the
algorithms is compared against existing methods by simulations.

I. INTRODUCTION

Consider a wireless multihop network of simple wireless
nodes which communicate with their neighbors with omni-
directional transmissions. In each transmission all the neigh-
bors of the transmitting node receive the same data packet
simultaneously. As packets are relayed towards their destina-
tions over multiple hops, each relay transmission is assumed
to have a cost. Our problem is to find a minimum cost
multicast tree, i.e. a set of transmissions, which can be used to
forward a packet from a given source node to every node in a
given destination set so that the sum of transmission costs is
minimized. We refer to this problem as the wireless multicast
tree problem, WMTP for short.

Multicast trees enable cost optimization of one-to-many
communications in static or slowly varying ad hoc networks,
sensor networks and multihop extensions of base station-
based wireless networks. The costs may represent factors
related to e.g. incurred load, energy consumption, queuing or
processing delay, security, reliability or detectability. Using a
suitable routing tree, the corresponding data transfer has often
substantially lower costs compared to the two alternatives,
sequential unicast transmissions or flooding. The advantages
of multicast routing become increasingly evident if either the
transferred data are large or the resources are scarce.

In this paper we treat WMTP as a packet forwarding
problem, but equivalently the same algorithms can be applied
in building multicast trees over any directed graph where
the costs are related to nodes rather than links. Trees can
be constructed on operational time scales to route certain
transmission or off-line, e.g. to provide solutions to multicast
routing subproblems in cross-layer optimization schemes of
wireless networks. Example applications are control traffic
delivery in sensor networks, distribution of multimedia stream
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from a gateway to wireless clients and radar information dis-
semination in a military network. The multicast tree approach
is limited to fairly static networks and applications where the
cost information can be kept up-to-date. In highly dynamic
networks resource optimization is hardly possible and one-
to-many communications require less subtle means such as
flooding variants.

A well-known and important instance of WMTP is the
broadcast problem in ad hoc networks. In the broadcast
problem a node attempts to send a message to all nodes in the
network so that the number of retransmissions is minimized. In
this case, the destination set consists of all nodes but the source
and all the transmission costs are identical. This problem can
be seen as (constrained) minimum connected dominating set
problem which remains NP-hard even in unit disk graphs [1],
a fact which is a strong motivation for development of simple
heuristics for the broadcast problem and for WMTP in general.

Indeed, the broadcast problem has been studied widely in ad
hoc networks, see [16] for an extensive overview, but general
multicast trees have received much less attention. In [11] an
efficient distributed algorithm for unit weight WMTP was
proposed. The main contribution of the present work is to
introduce even more efficient, yet centralized, tree construction
method which adapt itself also to the general weighted WMTP
where the transmission costs (node weights) may be arbitrary.
The proposed novel greedy algorithm adds nodes to the
multicast tree one-by-one so that the sum of shortest paths
to receivers is maximally decreased. This simple, but rather
coarse idea is shown to be versatile and perform extremely
well compared to the other intuitive methods adapted from
wireline networks, where the corresponding problem is solved
using Steiner tree heuristics [13]. We give also an efficient
enumeration method that can be used to find optimal solutions
in the unit weight case.

The organization of the rest of the paper is as follows.
Section II states the network model and problem definition.
Section III gives an overview on multicast tree construction
algorithms in ad hoc networks. Section IV presents the pro-
posed algorithms. Section V gives a detailed description of the
existing multicast algorithms against which the performance
of the contributions are evaluated in Section VI. Section VII
concludes the paper.

II. NETWORK MODEL

We study a multihop network where nodes communicate
with their neighbors using wireless links. The following as-
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sumptions are made:
• Neighborhood of a node is the set of nodes which can

receive a packet transmitted by the node. Any packet
transmitted by a node are received by all its neighbors.

• Each node may have an arbitrary packet transmission
cost, no other cost are involved. We use the term (node)
weight interchangeably with the term cost.

• Neighborhoods and transmission costs are assumed to
remain fixed in the routing time scale.

Note that the neighborhood relation do not need to be recip-
rocal and the nodes do not have to be identical. Neighborhood
relation is used to model the effects of transmission parameters
such as power, coding and modulation of the nodes.

WMTP can be defined formally as follows. We attempt to
find a minimum weight tree (in a directed graph) which is
rooted at a given source vertex and contains a set of destination
vertices. The weights are associated to vertices rather than
edges and only non-leaf tree vertices are accounted for the total
weight of the tree. In other words we seek a minimum weight
connected set of nodes, which originates from the source node
and dominates all the receiver nodes.

We are inclined to treat the unit weight case and the general
weighted case of WMTP separately, because existing reference
results are limited to the former scenario.

III. OVERVIEW ON MULTICAST ROUTING ALGORITHMS IN

AD HOC NETWORKS

Most of the novel routing challenges brought forth by
wireless and infrastructureless technology can be addressed
by simple conversions to shortest path problems. These chal-
lenges, often energy or reliability concerns, are reflected to
link/node costs after which standard shortest path algorithms
can be used to find optimal unicast routing.

Optimal multicast routing, however, can generally be ob-
tained only through explicit enumeration. This is the case even
in the wireline networks, which corresponds to the Steiner
tree problem. Consequently, simple sub-optimal heuristics are
usually required for decisions taking place in the time scales
of routing. An overview and elegant implementation of a class
of practical (and most common) approximation algorithms to
the wireline multicast routing is given in [13]. Unfortunately,
the proposed algorithms as such lack efficiency in wireless
multihop networks and, thus, novel methods are needed.

The topic of the present paper, the wireless counterpart
of the Steiner tree problem, WMTP, has not been treated
extensively in the literature. One of the very few references to
the present problem, [6], introduces two heuristic algorithms
for the unit weight case. Despite the proven worst case
approximation guarantees, the algorithms leave much room
for improvement in practical applications. A simple distributed
algorithm based on unicast routing information for the unit
weight case was given in [11], but the generalization of the
method to the weighted case is not straightforward. Practical
approaches to the problem were also suggested in [4], [3],
where the idea is to construct a virtual mesh that connects the
multicast group members by unicast tunnels and compute a

source based delivery tree on the mesh. This approach lacks
efficiency.

Although the multicast tree problem is not that widely
studied in ad hoc networks, its special case of broadcasting
has received a significant amount of interest. Broadcasting
is applied widely in the networks for information discovery
and update. Frequently occurring broadcasts can constitute
a significant share of the network load and, accordingly,
development of efficient broadcasting methods is of utmost
importance. In [16] the authors present an extensive overview
and comparison study on the practical broadcasting methods
proposed for ad hoc networks. More theoretical approaches to
the broadcast problem can be found, e.g., in [14], [10], [1],
[5]. Naturally, the algorithms proposed in this paper can also
be used to determine efficient broadcast trees.

A closely related problem from graph theory, the node
weighted Steiner tree, is addressed in [9] and [7]. The main
difference of this problem to WMTP is that in WMTP we seek
a connected set of nodes that dominates the receivers rather
than contains them.

Another related line of thought addresses multicast tree
construction within a different network model. Assume that the
nodes can adjust their transmission power to avoid unnecessary
energy usage. In this setting each node has a (typically
discrete) set of operating modes each of which corresponds
to a certain cost and a certain subset of neighbors that are
reached. In this scenario the multicast tree assigns both the
nodes and their power level e.g. to minimize the energy
consumption [15], [12]. In the present work we do not consider
this problem. Instead, we assume that the set of neighbors is
fixed for each node.

IV. NOVEL ALGORITHMS FOR MULTICASTING IN AD HOC

NETWORKS

A. Exact solution for the unit weight case

We outline here an enumeration method that can be used to
find optimal tree sizes for unit weight WMTP, i.e to minimize
the number of transmissions in the multicast tree.

Even the unit weight multicast tree problem is generally
rather tedious to solve. An important observation is that al-
though the set of possible trees that originate from a multicast
source and consist of i transmissions is typically large, the
set of maximal covers spanned by the sets of i connected
transmissions (one of which is the source) may be relatively
small. By a cover we refer to the set of nodes which hear the
transmission from any of the transmitting node.

For example, a random 50-node network on a unit square
with the node transmission range 0.286 gives us the following
statistics: There are 80688 different 6-node directed trees that
originate from a certain node, but the number of different
covers spanned by these transmissions is only 802. Moreover,
of these only 24 are maximal in the sense that they are not
subsets of any other cover. If the set of destinations is not a
subset of any of these 24 covers, we may proceed with the
search by enumerating all the 7-node maximal covers, which
are easily obtained from the maximal 6-node covers.
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We outline here an enumeration algorithm for finding the
minimum multicast tree size. Let T be the set of destinations,
C a cover (i.e. set of nodes), and Si the set of maximal
covers spanned by i connected nodes (including the source).
Furthermore, let N(n) be the set of neighbors of the node n
and let s be the multicast source. Starting with S0 = {{s}}
repeat the recursion step summarized as Algorithm 1.

Algorithm 1 Optimal multicast tree recursion step
for each C ∈ Si do

for each n ∈ C do
cover ← C ∪N(n)
if � C ∈ Si+1, cover ⊆ C then

if T ⊆ C then
Output (i + 1). STOP.

end if
Si+1 ← Si+1\{C ∈ Si+1|C ⊆ cover}
Si+1 ← Si+1 ∪ {cover}

end if
end for

end for

The algorithm can be conveniently implemented if the
covers C are represented using, e.g. binary arrays. To find an
optimal multicast tree one must additionally keep track of the
nodes associated to the covers. From the nodes associated to
an optimal cover one can form a multicast tree by any traversal
method starting from the source. Although the algorithm could
be used directly for finding optimal multicast trees for routing
in small networks, it is sensitive to the multicast tree size and
the computation time increases quickly after certain limits have
been achieved.

B. Heuristic solution to the weighted case

Assume that the all-pairs shortest path information is avail-
able in terms of given node weights. The node weight informa-
tion is fully contained in the path lengths and we may propose
the following greedy algorithm for general WMTP.

During the algorithm each node belongs to one of the
following three sets: covered nodes, transmitting nodes or
idle nodes. The set of covered nodes contains all the non-
transmitting nodes who have the data packet, i.e. which are
neighbors of a transmitting node closer to the source. Idle
nodes are not part of the multicast operation.

The novel idea is very straightforward. Initialize all nodes
“idle” and set the source node as “covered” as it has the data
packet. We construct the multicast tree then iteratively. In each
iteration round we select one node from the covered nodes,
mark it as transmitting and mark all of its idle neighbors as
covered. The selection is carried out so that the sum of the
minimum distances from the transmitting nodes to each of the
non-covered multicast receivers is maximally decreased. The
iteration stops as soon as all multicast receivers are covered.

Figure 1 illustrates the algorithm. The practical performance
of the algorithm is illustrated in the next section.
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Fig. 1. Example: Minimize the number of transmission needed to connect
SOURCE to REC A and REC B. All node weights are unity, thus the shortest
paths are given in terms of hop count. Let S be the sum of minimum distances
between transmitting nodes and non-covered receivers. To start, mark source
as covered and initialize S (see top left figure). In the iteration step, compute
dS, the decrement in S if the node was added to the transmitting nodes,
for each covered node. Mark the node with maximum dS as transmitting
and mark all its idle neighbors as covered. Iteration step is repeated until all
receivers are covered. After the selection of the second transmitting node (see
bottom left figure) REC A is covered and S contains only the distance to
REC B.

Let D be the all-pairs shortest path matrix. Let Di denote
the i:th row of the matrix. The pseudocode implementation of
the algorithm is described in Algorithm 2.

Algorithm 2 Centralized multicast tree construction
K ← {s}, M ← ∅
c← Ds

while T �= ∅ do
n← arg maxi∈K(c(T )−Di(T ))+ · 1
M ←M ∪ {n}
K ← (K ∪N(n))\M
T ← T\N(n)
c(T )← min(c(T ),Dn(T ))

end while
Output M

In the algorithm (·)+ and min are taken component-wise
from the vectors. The set K represents already covered, but
not transmitting, nodes. In each round we select the node
which maximally reduces the sum of shortest distances. The
worst case complexity of the algorithm in this straightforward
implementation is O(N2T ), since selection of the next node
has complexity O(NT ) and the outer loop will be repeated
at most N − 2 times. Naturally the shortest path information
needs to be gathered separately.

C. Practical remarks

The requirement for all-pairs shortest path information
renders the proposed algorithm centralized. Shortest path
information may be obtained by standard algorithms [2] or
from unicast routing tables. The required information is a
minor concern if the multicast trees are constructed for off-line
use, e.g. as a part of cross-layer optimization tasks. However,
the requirement limits the applicability of the algorithm in
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Fig. 2. Worst case example.

on-line routing decisions to fairly static networks with fairly
static costs. Wherever global cost information can be kept
up-to-date, the algorithm allows generation of highly efficient
multicast trees. If the cost information cannot be maintained
at all, cost effective multicasting is hardly possible by any
approach and one has to resort to flooding variants.

The average performance of the algorithm is excellent, but
some rare particular instances may cause the algorithm to
perform badly. Consider, for example, a situation depicted in
Figure 2. There are two receivers, path metric is the hop count,
receivers are two hops from each other and the shortest hop
paths from the source to the receivers (paths A and B) are
node-disjoint and of the same length d >> 2.

In principle, it is possible that the proposed algorithm would
result in a tree which is the concatenation of paths A and B
instead of the optimal – path A or B and the two hop path
separating the receivers. This happens if the transmitting nodes
are selected in turns, so that every second node belongs to
path A and the ones in between to path B. This is a feasible
(yet unlikely) selection order for the algorithm; the reward of
selecting a node from either of the paths is 1 and remains
so unless other path is selected twice in a row. The problem
can be easily avoided by breaking the ties in the cost function
appropriately, e.g. by artificially decreasing the all distances
to a receiver by a small ε > 0 every time a transmitting node
decreases the shortest distance to this receiver.

V. EXISTING ALGORITHMS

Almost all existing algorithms for WMTP are limited to
special cases of the problem. Only the methods adapted from
fixed networks can be used for the general weighted WMTP.
In this section we describe the algorithms that are compared
against the proposed algorithm in Section VI.

There are three commonly used heuristic algorithms for the
Steiner tree problem [13]. Pruned Dijkstra (PD) method finds
the shortest paths to each node, i.e. a shortest path tree, and
then prunes the tree by iteratively removing all leaf nodes
which are not multicast receivers. Minimum-Cost Path (MCP)
method entails incrementally adding multicast receivers to
the multicast tree. In each round a receiver closest to the
existing tree (which is initially the source node) is grafted to
the multicast tree using the path corresponding the shortest
distance. The third heuristic algorithm, Distance Network
Heuristic, comprises of constructing a minimum spanning tree

on the distance network spanned by the receiver nodes and
then replacing the spanning tree edges by the corresponding
minimum cost paths in the original graph. Finally the multicast
tree is constructed by pruning all non-receiver leaf nodes.

These algorithms are easy to adopt in the wireless environ-
ment to obtain results for comparison in the general weighted
multicast problem. We consider the pruned Dijkstra method
because of its simplicity and minimum cost path heuristic
because of its efficiency. Pruned Dijkstra method remains
unmodified in ad hoc networks and is simply the concatenation
of shortest paths to the receivers. Minimum cost path is easy
to change to consider paths from covered nodes instead of tree
nodes. This way we avoid counting the transmission cost of
any node more than once.

If we limit our study to the unit weight case of WMTP,
very good multicast trees can be obtained by the distributed
algorithm in [11] (DMT), which utilizes similar ideas as the
proposed algorithm, but is localized. This localization carries a
cost in efficiency as the nodes have to fix also which next hop
nodes forward to which receivers. The algorithm proposed by
Guha et al. [6] constructs first a small dominating set and then
connects it using an edge weighted Steiner tree approximation
algorithm. It can be proven that this algorithm has an approx-
imation factor O(H(∆)), where ∆ is the maximum degree of
a node in the network, and H() is the harmonic function. Also
optimal cases can be considered with the enumeration method
presented earlier in Section IV-A.

Further by limiting the study to consider only the unit
weight broadcast we arrive at the minimum connected domi-
nating set problem for which many heuristics exist [16]. How-
ever, the simple greedy algorithm presented below (Algorithm
3) is often much more efficient in practice, especially in unit
disk graphs [8]. The downside of this simple method is that
it cannot be directly generalized to the multicast case. On the
other hand the proposed algorithm can be seen to fulfill this
role; it differs from Algorithm 3 only by the selection of the
next transmitting node.

Algorithm 3 Greedy algorithm for MCDS

M ← {s}
while T �= ∅ do

n← arg maxi∈N(M) |N(n) ∩ T |
M ←M ∪ {n}
T ← T\N(n)

end while
Output M .

VI. SIMULATION STUDIES

In this section we compare the performance of the algorithm
to other available proposals discussed in the previous section.
Analytical analysis of the algorithm is of minor value as the
performance bounds are dominated by pathological cases such
as discussed in Section IV-C. In practical considerations the
average performance is much more important than perfor-
mance bounds unless they can be made very tight. Despite
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the pathological cases, the algorithm succeeds to produce
highly efficient multicast trees on average, outperforming
others alternatives by a clear margin.

To illustrate the practical performance of multicast tree
algorithms, we carry out an extensive numerical study in three
special scenarios; unit weight broadcast, unit weight multicast
and weighted multicast. These scenarios are treated separately
because the set of existing algorithms available in scenarios
differ.

In the experiments we consider simulation cases which
are parameterized by the vector (n,Rmax,m,w). n is the
number of nodes, which are placed randomly (from an uniform
distribution) in an unit square. We model the network as unit
disk graph, where Rmax is the transmission range, i.e. two
nodes are neighbors of each other if their mutual distance is
less than Rmax. We have fixed Rmax = 0.286 (in the unit
square) in all studies to allow direct comparisons to [16]. The
size of the set of multicast receivers is denoted by m. The
source and receiver nodes are selected randomly among the n
nodes. Finally, w is the vector of node weights or costs.

For each different case or parameter combination we have
generated 200 random instances of the multicast problem,
where both the node locations and the selection of source and
receiver nodes are randomized. Each instance is then solved
using all the methods in comparison. The results shown in the
figures are averages over the 200 instances.

A. Unit weight broadcast

To study the broadcast scenario, we consider random net-
works of varying sizes, n = 20, ..., 70, and minimize the
number of transmissions (i.e. wi = 1, ∀i) in a source based
broadcast tree (m = n−1). The algorithms we consider are PD
and (modified) MCP [13], DMT [11], Algorithm 3, Algorithm
2, algorithm by Guha et al. [6] (Note that [6] provides
also specialized algorithms for this connected dominating set
scenario, but we consider an algorithm that is suitable for
general multicast) and optimal obtained by enumeration as
stated in Section IV-A. Figure 3 shows that the proposed
algorithm performs equally well as the specialized Algorithm
3 in this scenario.

B. Unit weight multicast

We consider networks with n = 50 nodes and vary the num-
ber of multicast receivers, m = 7, . . . , 49. Weights are again
constant (wi = 1, ∀i). With m = 49 we have the broadcast
scenario analyzed above. The algorithms in consideration are
PD, MCP, DMT Guha and optimal. Figure 4 shows the obvious
benefits of the proposed algorithm. It clearly outperforms all
the other alternatives in the multicast case. Despite the proven
performance guarantee of the algorithm by Guha et al. its
practical performance is not very good.

C. General weighted multicast

For general weighted multicast problems only applicable
algorithms in comparison are PD and MCP. Similarly to the
unit weight case, we consider networks with n = 50 and m =
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7, . . . , 49, but now each node is given a random integer weight,
wi ∈ {1, ..., 100}. Again the proposed algorithm outperforms
clearly the alternatives, as shown in Figure 5.

VII. CONCLUSION

Whereas broadcast trees and connected dominating sets
have been studied thoroughly in the context of wireless
multihop networks, its generalized version, the multicast tree
problem has received little attention. Furthermore, even the
broadcast case cannot be handled efficiently if the nodes are
associated with a transmission cost, or a weight, other than
unity.

Despite the apparent lack of results in the area, WMTP is
a central problem in wireless networks. Minimum cost trees
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are required both for optimizing the performance of a single
multicast transmission as well as for solving subproblems of
larger scale optimization tasks considering e.g. load balancing
or network lifetime.

In this paper we have introduced and experimentally ana-
lyzed a simple multicast tree algorithm that can be used to
find nearly minimum cost multicast trees. The benefits of the
algorithm are indeed its simplicity, efficiency and adaptivity
to generalized weighted problems.

The downside of the proposed algorithm is that it relies
on the availability of valid all-pairs shortest path information,
which makes it non-suitable in applications where mainte-
nance of the information is impossible or expensive. The
maintenance costs depends on the dynamics and the size of
the network and on the nature of the cost information.

Further work is required to develop distributed algorithms
for general weighted WMTP. Distributed operation can be
easily implemented by separating WMTP in each tree node
into subproblems which are then passed forward to next hop
tree nodes for solving. Based only on local information, each

node needs to decide jointly the next hop forwarding neighbors
in the multicast tree and their respective subsets of multicast
receivers. The exact mechanism how to implement this effi-
ciently in the weighted case remains to be determined.
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