
Efficient multicast tree algorithm for ad hoc
networks

Aleksi Penttinen
Networking Laboratory, Helsinki University of Technology

P.O.BOX 3000, FIN-02015 HUT, Finland
Aleksi.Penttinen@hut.fi

Abstract— We propose an efficient heuristic algorithm for
multicast tree construction in ad hoc networks. The objective
is to connect a source node to a set of destination nodes with a
sequence of transmissions so that the number of transmissions
is minimized. The algorithm utilizes shortest path information,
which can be obtained from unicast routing tables for fully
distributed implementation. In addition to multicast routing, the
algorithm is applicable to stateless multicast forwarding for small
multicast groups.

I. I NTRODUCTION

The source based multicast tree problem arises in the
context of delivering large files or multimedia streams in a
network from a source to several destinations simultaneously.
Using a suitable routing tree, the resulting data transfer has
a substantially lower bandwidth cost compared to the two
alternatives, sequential unicast transmissions or flooding.

Multicasting in ad hoc networks differs from the traditional
case of fixed networks because the nodes may use omni-
directional transmissions; all the neighbors of a transmitting
node receive the same information in a single transmission.
Therefore, the objective of the multicast tree problem (MTP)
in ad hoc networks is defined here as to minimize the number
of transmissions in the multicast tree.

Two important special cases of MTP, namely the problems
with one destination (unicast) and all destinations (broadcast),
have previously been treated separately in the literature. In
graph theory these are known as the shortest path (SP) problem
and the minimum connected dominating set (MCDS) problem,
respectively. While the shortest path between any two nodes
can be found in polynomial time by well-known algorithms
such as Dijkstra’s [2], finding the minimum connected domi-
nating set remains NP-hard even in unit disk graphs [3].

Research on both broadcasting protocols and MCDS heuris-
tics in ad hoc networks has been very active, because broad-
casting is applied widely in the networks for information
discovery and update. In [4] the authors present an extensive
overview and comparison study on the broadcasting methods
proposed for ad hoc networks.

Somewhat surprisingly, the general MTP has received much
less attention than its special case. Instead of efficiency the
focus of the multicast research has been on maintaining large
dynamic multicast groups in mobile environments for which
many protocols have been proposed, cf. [5]. On the other hand,

multicast trees have been brought forward to minimize energy
consumption in energy-constrained networks [6], [7].

In this paper we address the multicast tree problem and
present a highly efficient multicast tree construction method
for ad hoc networks. The algorithm is amenable for distributed
implementation as each node participating in the multicast
tree can decide its next hop downstream nodes in its branch
independently of the other tree nodes based on unicast routing
information. The crux of the method is in this distributed
process of selecting the next hop forwarding node(s) so that the
overall number of transmissions is minimized in the multicast
tree. The algorithm gives a shortest hop path in the unicast
case, is highly efficient for multiple receivers, and outperforms
even specialized algorithms in the broadcast case.

II. M ULTICAST TREE ALGORITHM

In this section we describe in detail the distributed method
to construct efficient trees from a source to any number of
receivers, including the unicast and broadcast cases. Central-
ized operation of the algorithm is similar to the distributed,
except that all the required information can be found from the
all-pairs shortest path matrix.

A. Forwarding nodes and splitting

The multicast tree is generated by a series of consecutive but
independent routing decisions. The algorithm starts from the
multicast source and proceeds as follows. When a node needs
to find a route to a set of destinations, it divides the routing
problem, the destination set, into independent subproblems
each of which is resolved by a neighboring node, as if it
itself was the source of the subset problem. In other words,
each node decides independently the next hop neighbor(s) in
the tree, i.e. the forwarding nodes and their destination sets,
based on its own destination set. We call this operation as
split. Figure 1 illustrates the idea. Our key contribution in this
paper is the following heuristic split algorithm which has been
found to perform well in practice.

B. A split algorithm

Assume that each node participating in the multicast, as a
source or relay, knows the (exact or estimated) shortest hop
distances between itself and the destinations, and between its
neighbors and the destinations.

3

1

2

B

"C"
AD

ABCD

Fig. 1. Node 1 has to find a multicast tree to the destinations A,B,C and D.
A split algorithm at node 1 assigns node 2 to find a multicast tree (path) to
B and node 3 to find a multicast tree to A and D. C was found directly from
the neighbor list.

This information might be obtained along with the unicast
routing updates or by exchanging unicast information among
neighboring nodes, which naturally implies some additional
overhead. The required hop distances can be exchanged either
pro-actively maintaining the all-pairs shortest path matrix at
each node, or in on-demand fashion for the tree nodes and
selected set of destinations. However, no flooding is required.

Consider the split operation〈i, T 〉 in which nodei is given
the task of forwarding data/finding a route to the set of
destinations (aka multicast receivers)T . Let Ni be the set
of neighbors of nodei.

The split algorithm ati consists of finding a set of next hop
forwarding nodes and divide the multicast receivers among
them. During the algorithm the destinations receive assign-
ments, either permanent or non-permanent, to neighboring
nodes ofi (which thus become forwarding nodes). Once made,
a permanent assignment remains fixed, but any non-permanent
assignment can be replaced (only) by a permanent one.

Since a transmission ofi reaches all the neighboring
receivers they are first removed fromT . Then the algo-
rithm repeats the following split step until all receivers inT
have non-permanent assignments orT becomes empty: Let
Bj(T) ⊆ T denote the set of remaining receivers, which can
be reached from nodej ∈ Ni with one less hop than from
i. In other wordsBj(T) is the set of receivers to which a
shortest path fromi goes viaj. Select a forwarding node
m = argmaxj∈Ni |Bj(T)|, i.e. the neighborj for which the
number of elements in the setBj(T) is the largest.

The assignment works as follows. The nodes (destinations)
in Bm(T) are assigned permanently tom and removed from
T . After that any receiverj remaining inT for which the
distance fromm to j is equal to the distance betweeni to j
are assigned non-permanently tom without removal fromT .

Now only the receivers for which the hop distance would
have been increased if routed throughm remain inT without
an assignment. In case such nodes exist, we repeat the split
step until all receivers inT have non-permanent assignments
to a forwarding node orT becomes empty. As a result we
have generated a set of split problems with forwarding nodes
and their assigned destinations.

Note that the existing non-permanent assignments at the
end of the split algorithm mean that the distances to the
corresponding receivers are not decreased in this split. This
is intentional, otherwise the resulting tree would be only a
shortest path tree, yet optimized. Following the procedure,
the non-permanent assignments remain with the nodes which
are responsible for a larger number of destinations, but only
if no other forwarding node is on a shortest path to the
corresponding multicast receiver.

Obviously, if there is only one multicast destination, the
split algorithm selects the next hop node from one of the
neighboring nodes on a shortest path to the destination. In
practice, this part of routing could also be left to the underlying
unicast protocol.

The algorithm is summarized in a pseudo-code implementa-
tion in Algorithm 1. In this implementation the non-permanent
assignments overlapping with permanent ones are removed in
a separate loop.

Algorithm 1 Split operation, input:〈i, T 〉; forwarding nodei,
set of receiversT

A, M, F0 ← ∅
T ← T \Ni

/* Di(j) denotes the distance betweeni andj */
B0

j (T)← {t ∈ T | (Di(t)−Dj(t)) = 0}, j ∈ Ni

B1
j (T)← {t ∈ T | (Di(t)−Dj(t)) = 1}, j ∈ Ni

while T \F0 6= ∅ do
m← argmaxj∈Ni |B1

j (T)|
/* add to beginning */
M ← 〈m, B1

m(T) ∪ (B0
m(T)\F0)〉 ∪M

F0 ← F0 ∪B0
m(T)

T ← T \B1
m(T)

end while
/* remove redundant non-permanent assignments */
for each〈m, Tm〉 ∈M do

Tm ← Tm\A
A← A ∪ Tm

end for
OutputM /* <node, destination list> - pairs */

III. SIMULATIONS

We study the performance of the proposed algorithm in a
series of network scenarios. For each scenario, defined by the
triple (n, Rmax, m), wheren is number of nodes,Rmax is the
transmission range andm is the number of multicast receivers,
the results are averaged over 500 instances of random networks
in unit square. In the simulations we measure the total number
of transmissions and compare the results to the optimum
solutions obtained by the exact solution obtained by exhaustive
enumeration.

Figure 2 shows a comparison between the proposed algo-
rithm and the a concatenation of shortest paths from the source
to the receivers (shortest path tree), whenRmax = 0.286.
Parameter valuesm = 1 andm = 49 correspond to the unicast
and broadcast cases, respectively.

10 20 30 40 50
of receivers

2

4

6

8

10

12

14

16

#
o
f

t
r
a
n
s
m
i
s
s
i
o
n
s

Fig. 2. Multicast efficiency withRmax = 0.286 andn = 50. Shortest path
tree (star), proposed algorithm (square) and optimal tree (diamond).

20 40 60 80 100
of nodes

2.5

5

7.5

10

12.5

15

17.5

20

#
o
f
t
r
a
n
s
m
i
s
s
i
o
n
s

Fig. 3. Broadcast efficiency and redundancy withRmax = 0.286. CDOM
[8] (star), proposed algorithm (square), and optimal MCDS (diamond)

In the broadcast case, when all the nodes belong to the mul-
ticast group, we compare the performance of the algorithm to
the optimum and to CDOM, which is a (centralized) heuristic
method to approximate MCDS with a constant performance
ratio bound of 10 in unit disk graphs [8]. In [3] the authors
claim that it can be actually shown to be 8, which is the best
known to our knowledge. The required maximal independent
sets in CDOM are selected in a greedy fashion.

The broadcast performance of the algorithm is visualized in
Figure 3, where the number of nodes is varied betweenn = 15
(avg. node degree 3.3) andn = 110 (avg. node degree 21.4).

The results show the high performance of the algorithm
in the multicast cases. Even in the broadcast case as it
approximates MCDS significantly better than the specialized
algorithm CDOM, which exhibits almost exactly the same
performance as a closely related heuristics in [9] (not shown
in the figure). All of the discussed methods clearly outperform
flooding which would requiren transmissions.

Note that in the broadcast scenarios the network parameters
conform to those used in the comparison study [4] (and Figure

3 therein). There the authors reported that the best ad hoc
broadcast method in their tests, AHBP, used 18% of the nodes
to rebroadcast in the 110 node network. As seen in Figure
3, our algorithm uses less than 12 transmissions for the tree
which means that it requires 10% of the nodes to rebroadcast
the original transmission, whereas the optimum is 7%.

IV. CONCLUSIONS

We have presented and analyzed a multicast tree algorithm
that utilizes shortest path information to generate highly effi-
cient multicast and broadcast trees in ad hoc networks.

The algorithm can be applied to multicast routing and, for
small receiver groups, to stateless multicast forwarding due
to its fully distributed nature. In the applications the shortest
path information is obtained from the unicast routing tables.
Accordingly, the main disadvantage of the method may be
the increased signaling load as the nodes have to exchange
(at least partial) routing distance tables with their neighbors if
the distances cannot be obtained directly from unicast routing
updates. Furthermore, the efficiency of the algorithm depends
on the validity of the route length information, which sets some
constraints to the applicability of the algorithm in mobile and
dynamic networks.

As the goal of the present work was to describe the tree
construction algorithm and evaluate its performance, many
implementation related questions remain still open for further
study. For example, co-operation with unicast routing pro-
tocols in information updates and the effect of incomplete
or inaccurate unicast information on multicast performance
require some further attention.

ACKNOWLEDGMENTS

This work was funded by Finnish Defence Forces Technical
Research Center and Graduate School in Electronics, Telecom-
munications and Automation (GETA).

REFERENCES

[1] S. Ramanathan, “Multicast tree generation in networks with asymmetric
links,” IEEE/ACM Transactions on Networking, vol. 4, no. 4, Aug. 1996.

[2] D. Bertsekas and R. Gallager,Data Networks, 2nd ed. Prentice Hall,
1992.

[3] K. M. Alzoubi, P.-J. Wan, and O. Frieder, “Distributed heuristics for
connected dominating sets in wireless ad hoc networks,”Journal of
Communications and Networks, vol. 4, no. 1, Mar. 2002.

[4] B. Williams and T. Camp, “Comparison of broadcasting techniques for
mobile ad hoc networks,” inProc. of MobiHoc’02, June 2002, pp. 194–
205.

[5] Z. J. Haas, J. Deng, B. Liang, P. Papadimitatos, and S. Sajama, “Wireless
ad hoc networks,” inEncyclopedia of Telecommunications, J. Proakis, Ed.
John Wiley, Dec. 2002.

[6] J. Wieselthier, G. Nguyen, and A. Ephremides, “Energy-efficient broad-
cast and multicast trees in wireless networks,”Mobile Networks and
Applications, vol. 7, no. 6, pp. 481–492, Dec. 2002.

[7] A. Penttinen and J. Virtamo, “Improving multicast tree construction in
static ad hoc networks,” inProceedings of IEEE LCN 2003. IEEE, oct.
2003, pp. 762–765.

[8] M. Marathe, H. Breu, H. Hunt III, S. Ravi, and D. Rosenkrantz, “Simple
heuristics for unit disk graphs,”Networks, vol. 25, pp. 59–68, 1995.

[9] R. Gandhi, S. Parthasarathy, and A. Mishra, “Minimizing
broadcast latency and redundancy in ad hoc networks,” inProc.
of MobiHoc’03, June 2003, pp. 222–232, corrected version:
http://crab.rutgers.edu/∼rajivg/pubs.html.

	Copyright: © 2004 IEEE. Reprinted with permission from Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2004), pages 519-521, October 2004.

