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Abstract— Max-min fair bandwidth allocation is a meaningful
objective whenever the level of user satisfaction cannot be clearly
expressed as a function of the allocated bandwidth. In this work,
we address the issue of approximating max-min fairness in a
wireless network without the requirement for network-wide node
coordination and we present a low-overhead greedy distributed
algorithm for reaching this goal. The algorithm is based on
distributed computation of a maximum weighted matching based
on appropriately defined flow weights and subsequent scheduling
of link flows in an effort to provide max-min rates to them. An
inherent feature of our approach is its immunity to topology
changes as well as to flow traffic variations. Our method is shown
to outperform significantly the centralized (yet, conservative)
algorithm of max-min fair rate computation in general topologies
in terms of total resulting throughput, minimum shares and node
resource utilization.

I. I NTRODUCTION

The emerging diverse suite of applications and the increas-
ing user demand for obtaining premium service quality when
using them in wireless links has led to novel perspectives
in user satisfaction. Although the classical concept of quality
of service (QoS) provisioning based on explicit statement of
QoS requirements by each user is well suited for session-
based situations with continuous information flow, it requires
connection admission control and resource allocation tech-
niques and it involves additional signaling burden. Thus, it
may turn out to be problematic in the presence of mobility
and wireless medium dynamics. Alternatively, sessions can
specify their satisfaction (utility) as a function of the allocated
bandwidth. However, the definition of proper utility functions
is not feasible in general. In such cases where users do not
specify their resource requirements, an intuitive objective is to
split the available resource equally to all sessions. Whenever a
user cannot utilize a portion of its allocated resource because
of a constraint, this should also be distributed among other
sessions. This objective is captured by max-min fairness.

Max-min rate fairness can be provided at the medium access
control (MAC) or the network layer. At the MAC layer,
fairness properties need to be ensured on a link basis, namely
for single-hop flows. At the network layer, fair rates must
be provided to end-to-end, multi-hop session flows and this
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clearly encompasses fairness in single-hop flows. The focus
of this work is on fairness at the MAC layer.

Existing work on MAC layer max-min fairness can be clas-
sified into two categories. The first one refers to single-channel
systems with connection-less multiple access, where fairness
properties are sought through a random access scheme. In
[1], a framework for implementing fairness by maximizing
the sum of user utility functions is proposed, which gives
rise to distributed contention resolution methods to achieve
the desired rates. Max-min fairness arises as an asymptotic
case of a special utility function. Another work along the
same lines appeared in [2], where max-min fair rates can
be achieved by appropriate flow weights based on adaptation
of back-off timer. However, the algorithm requires a priori
computation of max-min fair rates in order to find the flow
weights. More recently, the work in [3] shows that max-
min fair rates can be attained in the context of Aloha with
appropriate adjustment of the access probability of nodes in a
distributed fashion. Although these distributed access methods
require minimal coordination between nodes, they suffer from
severe bandwidth loss due to unavoidable collisions. Moreover,
fairness is guaranteed only in a probabilistic sense and is
meaningful only for large enough time scales.

The second category of studies comprises connection-
oriented multiple access methods, where fairness is solicited
with conflict-free link scheduling methods. The authors in [4]
introduced the concept of max-min fair rate allocation and
provide a scheduling policy for achieving max-min fair rate al-
location for single-hop session flows and time-slotted systems.
Each node assigns service tokens to adjacent links in a round-
robin fashion and the weight of a link is the minimum of the
stored tokens at the two end nodes. At each slot, the set of links
that form the maximum weighted matching of the network
graph are scheduled for transmission. This step renders the
approach centralized. A distributed slot assignment algorithm
that approximates max-min fair bandwidth sharing is presented
in [5]. The algorithm is based on local adjustments of link rates
by reallocating time slots subject to conflict constraints in an
effort to track the corresponding distributed fluid algorithm
that provably converges to max-min fair rates. The methods
of this class require some amount of node coordination, yet
they guarantee collision-free access to resources.

Clearly, it would be desirable to devise a method that com-



bines conflict-free scheduling with minimal node coordination
and achieves a good approximation of max-min fair rates.
The method should ideally rely on readily available local
information and should involve minimal signaling load in
the network. This is precisely the subject of this paper. We
present a low-complexity, low-overhead distributed algorithm
for approximating max-min fair rates in a wireless network
of general topology. Our algorithm is based on distributed
computation of maximum weighted matching of the network
graph with appropriately defined link weights. Apart from
its simplicity and its low complexity, the algorithm does not
require a time frame (albeit, it needs slot synchronization
among nodes) and it can be applicable in the presence of
arbitrary topology or channel quality variations and flow traffic
demand changes.

The computation of maximum weighted matching also
arises as the maximum throughput policy in scheduling in
switches with packets queued in the switch input (e.g. [6]),
where link weights represent the number of packets waiting to
be transmitted. Several variations to the basic approach have
also been proposed (see [7],[8] and references therein). Be-
ing designed for input-queued switches, these algorithms are
suited for bipartite graphs and are not amenable to distributed
implementation, since they imply inter-port communication
and involve steps that require centralized coordination such
as node sorting.

The rest of the paper is organized as follows. Section II
includes the model and our assumptions. In section III we
present a centralized greedy algorithm that constitutes the basis
of our approach and in section IV we describe the proposed
algorithm. Section V provides numerical results and section
VI concludes our study.

II. SYSTEM MODEL

We consider a time-slotted system with control and data
time slots, whereL control mini-slots precede one data slot.
The duration of a mini-slot is much smaller than that of a data
slot. A general, non-bipartite network topology graphG =
(V, E) is assumed, with vertices representing wireless nodes
and links between pairs of nodes showing node connectivity.
Let N be the number of nodes in the network. Network-wide
slot synchronization is assumed.

We adopt the term ”flow class” to distinguish among flows
that traverse different links. Two or more flows belong in
the same flow class if they run on the same link. There
exist J flows in the network. Each flow that traverses a link
is represented by a directed edge from the link end-node
(the transmitter) to the other node (the receiver). Associated
with a network topology graph is the network flow graph
Gf = (Vf , Lf) with the same nodes as in the topology graph
(Vf = V ) and edges between each pair of nodes with each
edge corresponding to a distinct flow between those nodes. We
focus only on single-hop flows in this work. A flow is said to
be active in a link if it transmits a packet on that link.

We consider nodes that possess a single transceiver, that
is, one hardware unit that can be used to set up a distinct

communication link. We assume that there exist only primary
scheduling conflicts, so that the same node cannot transmit
or receive simultaneously in more than one link. Under this
assumption, the set of active flows in the network at a specific
time instant must constitute a matching of the network flow
graph. In presence of secondary conflicts, i.e. when receiving
nodes are interrupted if they hear more than one transmission
simultaneously, the problem changes considerably. We do not
address the issue in this paper. The work in [9] presents a
distributed algorithm for constructing a fixed-length TDMA-
based link schedule under a certain fairness metric and sec-
ondary conflicts.

A single physical layer transmission rate corresponding to
a certain modulation level and/or coding rate is used for every
flow, so that time shares are mapped to bandwidth shares.
Our model is quite generic as it incorporates the cases of:
(i) arbitrary, time-varying packet arrival rates of flows and
therefore time-varying bandwidth requirements of flows, and
(ii) arbitrary, time-varying topology changes, due to inherent
volatility of the wireless networks.

III. A SIMPLE CENTRALIZED GREEDY ALGORITHM

Let each flow transmit at most one packet in each slot.
Associate each flowj, j = 1, . . . , J with a weightwj = Cnj ,
whereC > J is an arbitrary number andnj is the number
of time slots that have elapsed since flowj transmitted a
packet. When a packet of flowj arrives to an empty queue and
waits to be transmitted, thennj = 1, while if flow j has no
packets to transmit, thenwj = 0. Scheduling conflicts reflect
interference constraints and determine eligible sets of flows
that are allowed to transmit in the same slot. Consider the
collection of eligible flow sets in slott and letI(t) denote the
set of indices with each indexi corresponding to one such set
Ii. This index set in turn depends on the presence of packets at
the transmitter as well as on link availability that is affected by
topology variations. Each eligible set of flowsIi is referred to
as matching set of flows, since it is a matching of the network
flow graph.

The algorithm employed by a centralized greedy scheduler
is as follows. In an attempt to approximate max-min fair
rates, the algorithm selects the matching set of flows with
the maximum total weight for transmission at each time slot,
namely it selects the set

i∗ = arg max
i∈I(t)

(
∑
j∈Ii

wj(t)) (1)

We now underline some important properties.
Property 1: A flow j that has not been active in the lastk

slots has absolute priority in being scheduled in the current
slot over all flows which have been active at least once during
the lastk slots.

Property 2: The greedy scheduling approach guarantees a
minimum transmission rate of1/J for each flow.

Property 3: The scheduler converges to a finite sequence
of matching sets of flows which forms an edge cover of the
network flow graph.
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Fig. 1. Illustrative flow graph.

The first property follows from the following line of thoughts.
In a certain slot, the minimum weight of a flow that has not
received service in the lastk slots is Ck+1 and this occurs
in the case that the queue was emptied when it last received
service. On the other hand, consider a matching set of flows
I that includes only flows that have been served at least once
in the last k slots. The weight ofI is upper bounded as∑

j∈I Cnj < JCk < Ck+1. Thus, the flow that has not
received service in the lastk slots is granted priority. The
second property follows as a consequence of the first one,
since in a round ofJ at most slots, at least one new link will
be served. Thus, each every flow will receive service at least
everyJ slots and hence the minimum rate for a flow is1/J .
The third property follows readily: sincenj ∈ {0, . . . , J},
there exists only a finite number of different weight vectors.
At some point after a sequence of slots, the system reaches a
vector it has acquired previously and it keeps repeating this
schedule (given that possible ties in selecting the matching
flow sets are broken in a similar fashion or in a round robin
manner). Since all flows are covered, the sequence of matching
flow sets forms an edge cover. However, it should be noted
that this periodic nature is ensured in the absence of topology
or traffic demand variations.

Intuitively, the algorithm serves the flows by attempting to
allocate as many links as possible in the same slot, while
strict priority is given to flows that are behind others in
bandwidth sharing. We illustrate the algorithm in the following
topology, borrowed from [4]. There exist four flows and each
flow is associated with a different link (flow class). If two
links share an end node, the corresponding flows cannot be
active in the same slot. The collection of eligible matching
sets of flows for scheduling at a certain time instant is
I = {{1}, {2}, {3}, {4}, {1, 3}, {1, 4}}. Assume that all flows
have packets to transmit in all time slots. Furthermore, one
new packet of each flow arrives at the flow transmitter node
at each slot.

Starting with initial valuesnj = 1 for each flow, the
algorithm selects the matching set of flows with the maximal
total weight in each time slot. The evolution of the set weights
is depicted in the following table, where bold letters denote the
matching flow set that is scheduled in each slot. The algorithm
results in such a scheduling sequence, that flows receive max-

min fair shares.

Flow Slots Shares
1 C C C C2 C C 2

3
2 C C2 C3 C C2 C3 1

3
3 C C C2 C3 C C2 1

3
4 C C2 C C2 C3 C 1

3

︸ ︷︷ ︸
repeats

It should be stressed however that the greedy scheduler does
not necessarily attain max-min fair rates. For instance, in the
following case with 6 flows and 5 flow matching sets, each
corresponding to a row of matrix,

1 0 0 0 1 1
1 0 1 1 0 0
0 1 0 0 0 1
0 0 0 1 1 0
0 1 1 0 0 0

the greedy approach would select, e.g., rows1, 2, 3 and repeat
this pattern, thus yielding rate vector13 (2, 1, 1, 1, 1, 2). The
max-min fair schedule would use sequence1, 2, 3, 4, 5 and at-
tain rate vector15 (2, 2, 2, 2, 2, 2). Such situations are expected
due to the greedy nature of the scheduling rule that does not
consider future effects of a decision. In the counterexample
above, after using set 3, the algorithm is not aware of the fact
that sets 4 and 5 together would yield fairer rates than 1, since
the latter appears to be the instantaneously best choice.

IV. D ISTRIBUTED SCHEDULING OF SINGLE-HOP FLOWS

The best known solution to the maximum weighted match-
ing problem in general graphs is of complexityO(NJ +
N2 log N) [10]. Several approximations have also been de-
veloped for the problem that aim either at linear complexity
([11],[12]), or at allowing for distributed implementation [13].
However, these approaches are not amenable to a distributed
implementation of scheduling in wireless networks or involve
significant burden of control messages. The centralized greedy
method in which the edge with the largest weight is sequen-
tially inserted in the matching and all conflicting edges are
removed has complexity ofO(J log N) (provided that the
edges are sorted a priori). The algorithm results in a matching
which has provably a weight of at least1/2 times the optimum.

A set of mini-slots preceding each data slot will serve the
purpose of control information exchange in our approach.
Since control messages themselves are subject to collisions,
the control overhead is essentially the number of mini-slots
required to exchange coordination information in a distributed
and conflict-free manner. The proposed algorithm attempts to
identify a matching with maximum (or at least, as large as
possible) weight in a distributed fashion by using the notion
of the greedy scheduler.

The key idea is to give priority to flows (edges) with larger
weight. Each node is aware ofnj , the number of timeslots
elapsed since last transmission of flowj, for each flow that
corresponds to an adjacent edge in the flow graph. This



determines the weight of the edgewj . Due to the fact that
each node locally selects the flow with the largest weight, we
can employ aswj any increasing function ofnj and thus we
can assume thatwj = nj in the sequel. Note however that in
the centralized algorithm described in section III, it is crucial
for wj to be an exponential function ofnj , since that ensures
the strict global priority for the flows with largernj .

The algorithm consists ofR iteration rounds. In each
round, each node selects the largest-weight incident flow and
broadcasts its decision to its neighbors. This procedure takes
place for each node in a control mini-slot. The neighbors that
receive this information eliminate all other candidate flows
destined to or originated from the node that made the decision.
If both end-nodes of a flow select the same flow, this flow is
added to the matching set of flows. Otherwise, if a node learns
that the other end-node of its selected edge has picked another
(i.e., heavier) flow, the node becomes idle. The next iteration
round is then performed only by the idle nodes. The procedure
is referred to as Algorithm 1 and its pseudo-algorithm is as
follows.

Algorithm 1 Distributed matching algorithm, input graph
Gf = (Vf , Ef ) and weightswe, e ∈ Ef

1: M ← ∅ /* matching */
2: p← a random permutation of numbers{1, . . . , N}.
3: /* iteration loop */
4: for i = 1 to R do
5: G′

f ← Gf

6: for n′ = 1 to N do
7: n← pn′

8: Sn ← set of edges inG′
f connected to noden.

9: if Sn 6= ∅ then
10: en ← arg maxe∈Sn we . Ties are broken randomly.
11: wen+ = 0.1
12: G′

f ← en ∪ (G′
f\Sn).

13: if en was already selected by its other end-node
then

14: M ←M ∪ en

15: Remove the end nodes ofen and the attached
links from G.

16: end if
17: end if
18: end for
19: end for

The algorithm possesses the following properties:
Property 1: After each iteration round, the resulting assign-

ment is a matching (but not necessarily maximal).
Property 2: At least one link with the maximum weight

from the remaining ones is included in the matching after
each iteration.

Property 3: The number of iterationsR = N/2 guarantees
a maximal matching.

The first property is obvious from the algorithm. During an
iteration round, each node selects at most one of its incident
flows, which is then included in setM , provided that the other

end-node chooses the same flow. Each node can have at most
one attached edge inM and thusM is a matching. In addition,
during an iteration loop, a maximum-weight edge will be
selected by one of its end-nodes. This increases the weight
of the edge and the other end-node will have to select one of
its incident maximum-weight edges which have been already
selected. Hence, at least one such edge will be included in the
matching. This proves property 2 and has direct implications
for property 3: since at least one maximum weight edge
is included in matching, at least two connected nodes are
removed from graphGf in each iteration loop. AfterN/2
iteration rounds, no connected nodes can remain inGf .

The first and second property imply that the algorithm can
be executed with different values ofR to produce feasible
matchings. This is a system parameter that captures a trade-
off between complexity and efficiency of the matching. The
second property is also important, since it provides a bound to
the maximumnj within the greedy scheduler and guarantees
a minimum bandwidth, thus enforcing the most important
underlying principle of max-min fairness.

A. Implementation issues

Each iteration of algorithm 1 requires that each node broad-
cast its selection of incident edge to its neighbors so that no
collisions occur. A straightforward way of realizing this is via
information exchange in a control frame ofN mini-slots, in
which each node is assigned a unique mini-slot. The order of
slots in the frame should preferably be randomized each time,
e.g. by using a sequence of pseudo-random numbers that can
be stored or computed in each node. ForR = 1, only one
frame of N mini-slots is needed, but ifR > 1, every other
frame will be used by idle nodes to advertise their availability
to neighbors. Thus, total control overhead is(2R−1)N mini-
slots per data slot. As will become obvious from experimental
results,R = 1 suffices so that a satisfactory minimum rate
is ensured andR = 2 is usually enough to achieve maximal
matchings and high total rate. It should also be stressed that
the amount of overhead is independent of the number of flows.

The algorithm requires that all nodes update the countersnj

for each attached flow. This implies that new arriving flows
need to be advertised to the receiver nodes separately. If a
flow runs out of packets, this information can simply be piggy-
backed onto the last data packet. Furthermore, nodes need to
know the length of the control frame in each time slot. This
may cause some delay for nodes that appear in the network
for the first time, since update in the control frame lenght will
be required for nodes entering and nodes leaving the network.
The updated length of the control frame must be somehow
distributed to the whole network before it can be used.

V. SIMULATION RESULTS

The primary objective of the simulations is to evaluate the
performance of the proposed algorithm in terms of different
performance metrics and to compare it with some existing
approaches. It would also be desirable to quantify the inher-
ent trade-off between control overhead and performance. We



choose to compare our distributed approach (which we refer
to as GS for greedy scheduler) to a centralized algorithm to
compute max-min fair rates and we refer to this algorithm
as MMF. This algorithm provides max-min fair flow rates
for non-bipartite graphs under the admittedly conservative
constraint that the sum of rates should not exceed2/3 for
each node [14], [5]. Note that this constraint is a sufficient
but not necessary condition to guarantee the feasibility of a
rate allocation. MMF does not itself produce a schedule but
max-min fair rates that can be achieved by scheduling.

For the simulations we have used random networks with
N = 10,15,20,25,30 on a unit square with a transmission range
of 0.3. For each value ofN , results are averaged over100
network scenarios, in which each node shares two links with
its neighbors, one for each direction and each link carries one
flow. The average numbers of flows for the different network
sizes areJ̄ = 18.9, 46.2, 82.2, 127.0, 185.5, respectively. We
run Algorithm 1 in GS for(R = 1, 2, 3) iteration rounds over
1000 time slots.

Figure 2 depicts the total achievable flow rate as a function
of number of nodes in the network. This essentially amounts
to average number of active links per slot. It can be observed
that forR = 2, our algorithm outperforms the MMF one by a
factor of at least25% and this performance benefit increases
with increasing number of nodes. Similar trends are observed
in figure 3, which shows the minimum flow rates in the
network. Our approach again outperforms MMF and performs
well in terms of providing large enough minimum bandwidth
shares to flows, thus enforcing the notion of max-min fairness.
Another interesting issue here is that our algorithm exhibits
good performance regardless of the value ofR, which implies
that it can be implemented by using onlyN mini-slots. Finally,
figure 4 shows the average node resource utilization factor. In
this case, it can be seen thatR = 2 is essential in order
to guarantee a clear performance benefit over MMF. This is
anticipated, since MMF uses the explicit constraint of2/3
on node utilization factors for ensuring feasibility of rate
allocation. The most important feature of our approach is
that it does not restrain resource utilization by posing the
aforementioned constraint. Instead, nodes locally control the
feasibility of a rate vector by imposing flow preferences. As a
result, resources are utilized about30% more efficiently than
in the classical centralized algorithm.

VI. D ISCUSSION

We study the problem of approximating max-min fair rates
in a wireless network without explicit node coordination and
we present a greedy, low-complexity scheduling algorithm
that serves this purpose. It was also shown to outperform a
centralized (yet, conservative) algorithm of providing max-
min fair rates in general topologies. The scheduling discipline
is immune to topology or flow traffic variations method and
it involves overhead that does not depend on the number
of links or flows. When flow traffic demands and wireless
link availabilities remain unchanged, the schedule is periodic.
However, even in the presence of variations, the scheduled
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flows are continuously adjusted on-the-fly in order to maintain
fairness.

There exist several directions for future study. The approach
constitutes a first steps towards the goal of fair scheduling in
the presence of limited, local knowledge about system status.
In that sense, it can be extended to more general resource
models, such as that of orthogonal frequency division mul-
tiplexing (OFDM) that comprises two-dimensional resource
allocation. As another future direction, our approach could also
become the initial step for a cross-layer system perspective if
combined with distributed algorithms for transmission power
adaptation. Then, the impact of fairness provisioning at higher
layers on node energy consumption could be assessed in a fully
distributed network environment.
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