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Abstract—Max-min fair bandwidth allocation is a meaningful ~ clearly encompasses fairness in single-hop flows. The focus
objective whenever the level of user satisfaction cannot be clearly of this work is on fairness at the MAC layer.
expressed as a function of the allocated bandwidth. In this work, Existing work on MAC layer max-min fairess can be clas-
we address the issue of approximating max-min fairness in a ified into tw ¢ ies. The first fers to sinale-ch |
wireless network without the requirement for network-wide node  S"'€d INtO (WO categories. The nirst one refers {o single-channe
coordination and we present a low-overhead greedy distributed Systems with connection-less multiple access, where fairness
algorithm for reaching this goal. The algorithm is based on properties are sought through a random access scheme. In
distributed computation of a maximum weighted matching based [1], a framework for implementing fairness by maximizing
on appropriately defined flow weights and subsequent scheduling the sum of user utility functions is proposed, which gives

of link flows in an effort to provide max-min rates to them. An . I . h .
inherent feature of our approach is its immunity to topology rise to ghstrlbuted conten'qon r_esolutloq methods to ach|ev§
changes as well as to flow traffic variations. Our method is shown the desired rates. Max-min fairness arises as an asymptotic
to outperform significantly the centralized (yet, conservative) case of a special utility function. Another work along the
algorithm of max-min fair rate computation in general topologies same lines appeared in [2], where max-min fair rates can
in terms of total resulting throughput, minimum shares and node e achieved by appropriate flow weights based on adaptation
resource utilization. . . . ..
of back-off timer. However, the algorithm requires a priori
computation of max-min fair rates in order to find the flow

. INTRODUCTION weights. More recently, the work in [3] shows that max-

The emerging diverse suite of applications and the incredBn fair rates can be attained in the context of Aloha with
ing user demand for obtaining premium service quality whéPpropriate adjustment of the access probability of nodes in a
using them in wireless links has led to novel perspectiv&suibumd fashion. Although these distributed access methods
in user satisfaction. Although the classical concept of qualif§auire minimal ﬁc}ordmanon between n:)desl,l_tljey suffer from
of service (QoS) provisioning based on explicit statement SEVEre bandwidth loss due to unavoidable collisions. Moreover,

QoS requirements by each user is well suited for sessiAlNess is guaranteed only in a probabilistic sense and is
based situations with continuous information flow, it requird@eaningful only for large enough time scales. _
connection admission control and resource allocation tech-1 N Second category of studies comprises connection-
niques and it involves additional signaling burden. Thus q)[nented multiple access methods, where fairness is solicited
may turn out to be problematic in the presence of mobilit\ﬂy'th conflict-free link scheduling mgthods. The authors in [4]
and wireless medium dynamics. Alternatively, sessions cifroduced the concept of max-min fair rate allocation and
specify their satisfaction (utility) as a function of the allocaterovide a scheduling policy for achieving max-min fair rate al-
bandwidth. However, the definition of proper utility functionéocatlon for S'”Q'e'h"p Session flows and_ t|me-s!otte(_j systems.
is not feasible in general. In such cases where users do RGC" N0de assigns service tokens to adjacent links in a round-
specify their resource requirements, an intuitive objective is {gPin fashion and the weight of a link is the minimum of the

split the available resource equally to all sessions. Wheneverared tokens at the two end nodes. At each slot, the set of links

user cannot utilize a portion of its allocated resource beca(lgt form the maximum weighted matching of the network
of a constraint, this should also be distributed among oth@aPh are scheduled for transmission. This step renders the
sessions. This objective is captured by max-min fairness. approach centralized. A distributed slot assignment algorithm

Max-min rate fairness can be provided at the medium accég I approximates max-min fair bandwidth sharing is presented
control (MAC) or the network layer. At the MAC layer in[5]. The algorithm is based on local adjustments of link rates
fairess properties need to be ensured on a link basis naljr*c%geallocating time slots subject to conflict constraints in an

for single-hop flows. At the network layer, fair rates must trt o trSICk the correstpondmg (_jls:crlt_)ute? flullt_jhalgorl{tr:]rz
be provided to end-to-end, multi-hop session flows and th al provably converges to max-min fair rates. 1he methods
of this class require some amount of node coordination, yet

This joint research was supported by the EuroNGI Network of Excellencg?ey guara.ntee coII|S|on-free access tQ resources.
EC. Clearly, it would be desirable to devise a method that com-



bines conflict-free scheduling with minimal node coordinatiooommunication link. We assume that there exist only primary
and achieves a good approximation of max-min fair ratescheduling conflicts, so that the same node cannot transmit
The method should ideally rely on readily available locar receive simultaneously in more than one link. Under this
information and should involve minimal signaling load irassumption, the set of active flows in the network at a specific
the network. This is precisely the subject of this paper. Wene instant must constitute a matching of the network flow
present a low-complexity, low-overhead distributed algorithigraph. In presence of secondary conflicts, i.e. when receiving
for approximating max-min fair rates in a wireless networkodes are interrupted if they hear more than one transmission
of general topology. Our algorithm is based on distributezimultaneously, the problem changes considerably. We do not
computation of maximum weighted matching of the networtddress the issue in this paper. The work in [9] presents a
graph with appropriately defined link weights. Apart fromdistributed algorithm for constructing a fixed-length TDMA-
its simplicity and its low complexity, the algorithm does nobased link schedule under a certain fairness metric and sec-
require a time frame (albeit, it needs slot synchronizatimndary conflicts.
among nodes) and it can be applicable in the presence of single physical layer transmission rate corresponding to
arbitrary topology or channel quality variations and flow traffia certain modulation level and/or coding rate is used for every
demand changes. flow, so that time shares are mapped to bandwidth shares.
The computation of maximum weighted matching als®@ur model is quite generic as it incorporates the cases of:
arises as the maximum throughput policy in scheduling {i) arbitrary, time-varying packet arrival rates of flows and
switches with packets queued in the switch input (e.g. [6fherefore time-varying bandwidth requirements of flows, and
where link weights represent the number of packets waiting {i¢) arbitrary, time-varying topology changes, due to inherent
be transmitted. Several variations to the basic approach haedatility of the wireless networks.
also been proposed (see [7],[8] and references therein). Be-
ing designed for input-queued switches, these algorithms are
suited for bipartite graphs and are not amenable to distributed_et each flow transmit at most one packet in each slot.
implementation, since they imply inter-port communicatioAssociate each flowy, j =1, ..., J with a weightw; = C"7,
and involve steps that require centralized coordination sustiiere C > J is an arbitrary number and; is the number
as node sorting. of time slots that have elapsed since flgwtransmitted a
The rest of the paper is organized as follows. Section packet. When a packet of floyvarrives to an empty queue and
includes the model and our assumptions. In section Il weaits to be transmitted, them; = 1, while if flow j has no
present a centralized greedy algorithm that constitutes the bgsiskets to transmit, them; = 0. Scheduling conflicts reflect
of our approach and in section IV we describe the proposiderference constraints and determine eligible sets of flows
algorithm. Section V provides numerical results and sectidhat are allowed to transmit in the same slot. Consider the

IIl. A SIMPLE CENTRALIZED GREEDY ALGORITHM

VI concludes our study. collection of eligible flow sets in slatand letZ(¢) denote the
set of indices with each indexcorresponding to one such set
Il. SySTEM MODEL I;. This index set in turn depends on the presence of packets at

We consider a time-slotted system with control and dathe transmitter as well as on link availability that is affected by
time slots, wherel, control mini-slots precede one data slottopology variations. Each eligible set of flowisis referred to
The duration of a mini-slot is much smaller than that of a dags matching set of flows, since it is a matching of the network
slot. A general, non-bipartite network topology graph= flow graph.

(V, E) is assumed, with vertices representing wireless nodesThe algorithm employed by a centralized greedy scheduler
and links between pairs of nodes showing node connectivity. as follows. In an attempt to approximate max-min fair
Let NV be the number of nodes in the network. Network-wideates, the algorithm selects the matching set of flows with

slot synchronization is assumed. the maximum total weight for transmission at each time slot,
We adopt the term "flow class” to distinguish among flowsamely it selects the set

that traverse different links. Two or more flows belong in »

the same flow class if they run on the same link. There L= afgg%)(ij(f)) @

exist J flows in the network. Each flow that traverses a link gels

is represented by a directed edge from the link end-nodeWe now underline some important properties.

(the transmitter) to the other node (the receiver). AssociatedProperty 1: A flow j that has not been active in the ldst

with a network topology graph is the network flow grapislots has absolute priority in being scheduled in the current

Gy = (Vy, Ly) with the same nodes as in the topology grap$lot over all flows which have been active at least once during

(Vy = V) and edges between each pair of nodes with eatite lastk slots.

edge corresponding to a distinct flow between those nodes. Wéroperty 2: The greedy scheduling approach guarantees a

focus only on single-hop flows in this work. A flow is said taminimum transmission rate df/.J for each flow.

be active in a link if it transmits a packet on that link. Property 3: The scheduler converges to a finite sequence
We consider nodes that possess a single transceiver, thfamatching sets of flows which forms an edge cover of the

is, one hardware unit that can be used to set up a distimettwork flow graph.



min fair shares.
Flow | Slots | Shares
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It should be stressed however that the greedy scheduler does
not necessarily attain max-min fair rates. For instance, in the
following case with 6 flows and 5 flow matching sets, each
corresponding to a row of matrix,

Fig. 1. lllustrative flow graph.

The first property follows from the following line of thoughts. 1 8 (1) (1) (1) (1)
In a certain slot, the minimum weight of a flow that has not

received service in the ladt slots is C**! and this occurs 010001
in the case that the queue was emptied when it last received 8 ? (1) (1) é 8

service. On the other hand, consider a matching set of flows
I that includes only flows that have been served at least orthe greedy approach would select, e.g., rawa 3 and repeat

in the lastk slots. The weight of/ is upper bounded asthis pattern, thus yielding rate vect%r(2,1,1,1,1,2). The
e CM < JCF < C*. Thus, the flow that has not max-min fair schedule would use sequence, 3,4, 5 and at-
received service in the last slots is granted priority. The tain rate vector%(2,2,2,2,2,2). Such situations are expected
second property follows as a consequence of the first omie to the greedy nature of the scheduling rule that does not
since in a round of/ at most slots, at least one new link willconsider future effects of a decision. In the counterexample
be served. Thus, each every flow will receive service at leatiove, after using set 3, the algorithm is not aware of the fact
every J slots and hence the minimum rate for a flowljsJ. that sets 4 and 5 together would yield fairer rates than 1, since
The third property follows readily: since; € {0,...,J}, the latter appears to be the instantaneously best choice.
there exists only a finite number of different weight vectors.

At some point after a sequence of slots, the system reachesld. DISTRIBUTED SCHEDULING OF SINGLEHOP FLOWS

vector it has acquired previously and it keeps repeating thisThe pest known solution to the maximum weighted match-
schedule (given that possible ties in selecting the matchingg problem in general graphs is of complexi€y(N.J +
flow sets are broken in a similar fashion or in a round robig2 log N) [10]. Several approximations have also been de-
manner). Since all flows are covered, the sequence of matchy@goped for the problem that aim either at linear complexity
flow sets forms an edge cover. However, it should be ”Otﬂ‘il],[lz]), or at allowing for distributed implementation [13].
that this periodic nature is ensured in the absence of topolagywever, these approaches are not amenable to a distributed
or traffic demand variations. implementation of scheduling in wireless networks or involve
Intuitively, the algorithm serves the flows by attempting tgignificant burden of control messages. The centralized greedy
allocate as many links as possible in the same slot, whiigethod in which the edge with the largest weight is sequen-
strict priority is given to flows that are behind others inially inserted in the matching and all conflicting edges are
bandwidth sharing. We illustrate the algorithm in the followingemoved has complexity o(.Jlog N) (provided that the
topology, borrowed from [4]. There exist four flows and eacbdges are sorted a priori). The algorithm results in a matching
flow is associated with a different link (flow class). If twowhich has provably a weight of at ledst2 times the optimum.
links share an end node, the corresponding flows cannot be\ set of mini-slots preceding each data slot will serve the
active in the same slot. The collection of eligible matchingurpose of control information exchange in our approach.
sets of flows for scheduling at a certain time instant iSince control messages themselves are subject to collisions,
T = {{1},{2},{3},{4},{1,3},{1,4}}. Assume that all flows the control overhead is essentially the number of mini-slots
have packets to transmit in all time slots. Furthermore, opequired to exchange coordination information in a distributed
new packet of each flow arrives at the flow transmitter nodgd conflict-free manner. The proposed algorithm attempts to
at each slot. identify a matching with maximum (or at least, as large as
Starting with initial valuesn; = 1 for each flow, the possible) weight in a distributed fashion by using the notion
algorithm selects the matching set of flows with the maximaf the greedy scheduler.
total weight in each time slot. The evolution of the set weights The key idea is to give priority to flows (edges) with larger
is depicted in the following table, where bold letters denote theeight. Each node is aware of;, the number of timeslots
matching flow set that is scheduled in each slot. The algorithetapsed since last transmission of flgwfor each flow that
results in such a scheduling sequence, that flows receive mearresponds to an adjacent edge in the flow graph. This



determines the weight of the edgg. Due to the fact that end-node chooses the same flow. Each node can have at most
each node locally selects the flow with the largest weight, vame attached edge i and thus)M is a matching. In addition,
can employ asv; any increasing function of; and thus we during an iteration loop, a maximum-weight edge will be
can assume that; = n; in the sequel. Note however that inselected by one of its end-nodes. This increases the weight
the centralized algorithm described in section lll, it is cruciaf the edge and the other end-node will have to select one of
for w; to be an exponential function ef;, since that ensuresits incident maximum-weight edges which have been already
the strict global priority for the flows with larget;. selected. Hence, at least one such edge will be included in the
The algorithm consists ofR iteration rounds. In each matching. This proves property 2 and has direct implications
round, each node selects the largest-weight incident flow aiodl property 3: since at least one maximum weight edge
broadcasts its decision to its neighbors. This procedure takesncluded in matching, at least two connected nodes are
place for each node in a control mini-slot. The neighbors thegmoved from graphG; in each iteration loop. AftetV/2
receive this information eliminate all other candidate floweration rounds, no connected nodes can remaif¥ in
destined to or originated from the node that made the decisionThe first and second property imply that the algorithm can
If both end-nodes of a flow select the same flow, this flow ise executed with different values @@ to produce feasible
added to the matching set of flows. Otherwise, if a node leanmmtchings. This is a system parameter that captures a trade-
that the other end-node of its selected edge has picked anotifebetween complexity and efficiency of the matching. The
(i.e., heavier) flow, the node becomes idle. The next iterati@econd property is also important, since it provides a bound to
round is then performed only by the idle nodes. The procedute maximumn; within the greedy scheduler and guarantees
is referred to as Algorithm 1 and its pseudo-algorithm is @ minimum bandwidth, thus enforcing the most important
follows. underlying principle of max-min fairness.

Algorithm 1 Distributed matching algorithm, input graphA. Implementation issues

Gy = (Vy, Ey) and weightsw,, e € Ey Each iteration of algorithm 1 requires that each node broad-

1: M — 0 /* matching */ cast its selection of incident edge to its neighbors so that no
2. p < a random permutation of numbefs, ..., N}. collisions occur. A straightforward way of realizing this is via
3: /* iteration loop */ information exchange in a control frame &f mini-slots, in
4. fori=1to R do which each node is assigned a unique mini-slot. The order of
5 G} Gy slots in the frame should preferably be randomized each time,
6: forn'=1toN do e.g. by using a sequence of pseudo-random numbers that can
7 N < Pn/ be stored or computed in each node. For= 1, only one
8: Sy, < set of edges i, connected to node. frame of N mini-slots is needed, but iR > 1, every other
9 if S, # () then frame will be used by idle nodes to advertise their availability
10: en < argmaxees, W . 11€s are broken randomly. to neighbors. Thus, total control overhead2st — 1) N mini-
1L we, + =0.1 slots per data slot. As will become obvious from experimental
12: G} — en U(G}\Sh). results, R = 1 suffices so that a satisfactory minimum rate
13: if e, was already selected by its other end-node ensured and? = 2 is usually enough to achieve maximal
then matchings and high total rate. It should also be stressed that
14: M — MUe, the amount of overhead is independent of the number of flows.
15: Remove the end nodes ef, and the attached  The algorithm requires that all nodes update the coumtgrs
links from G. for each attached flow. This implies that new arriving flows
16: end if need to be advertised to the receiver nodes separately. If a
17: end if flow runs out of packets, this information can simply be piggy-
18: end for backed onto the last data packet. Furthermore, nodes need to
19: end for know the length of the control frame in each time slot. This
may cause some delay for nodes that appear in the network
The algorithm possesses the following properties: for the first time, since update in the control frame lenght will
Property 1: After each iteration round, the resulting assignpe required for nodes entering and nodes leaving the network.
ment is a matching (but not necessarily maximal). The updated length of the control frame must be somehow

Property 2: At least one link with the maximum weight distributed to the whole network before it can be used.
from the remaining ones is included in the matching after
each iteration.

Property 3: The number of iteration® = N/2 guarantees  The primary objective of the simulations is to evaluate the
a maximal matching. performance of the proposed algorithm in terms of different

The first property is obvious from the algorithm. During aperformance metrics and to compare it with some existing
iteration round, each node selects at most one of its incideqpproaches. It would also be desirable to quantify the inher-
flows, which is then included in séi/, provided that the other ent trade-off between control overhead and performance. We

V. SIMULATION RESULTS



choose to compare our distributed approach (which we refer TOTAL ALLOCATED RATE OF FLOWS IN THE NETWORK
to as GS for greedy scheduler) to a centralized algorithm to ™ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
compute max-min fair rates and we refer to this algorithm
as MMF. This algorithm provides max-min fair flow rates
for non-bipartite graphs under the admittedly conservative
constraint that the sum of rates should not excegsl for
each node [14], [5]. Note that this constraint is a sufficient
but not necessary condition to guarantee the feasibility of a
rate allocation. MMF does not itself produce a schedule but
max-min fair rates that can be achieved by scheduling. 6
For the simulations we have used random networks with
N =10,15,20,25,30 on a unit square with a transmission range  *
of 0.3. For each value ofV, results are averaged ové60
network scenarios, in which each node shares two links with 20— %% % 2 2 =
its neighbors, one for each direction and each link carries one pumberernodes. N
flow. The average numbers of flows for the different network , ,
sizes areJ = 18.9, 46.2, 82.2, 127.0, 185.5, respectively. We E(':%ezd-ul;‘;ﬂlgﬁtﬁ;f's"gﬁdv';‘,;ﬁﬂgs"‘c‘)’f“g?r of nodes in the network for different
run Algorithm 1 in GS for(R = 1, 2, 3) iteration rounds over
1000 time slots.
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Total rate of flows
©

Figure 2 depicts the total achievable flow rate as a function . MINIMUM FLOW RATE IN THE NETWORK

of number of nodes in the network. This essentially amounts
to average number of active links per slot. It can be observed oad]
that for R = 2, our algorithm outperforms the MMF one by a
factor of at leas5% and this performance benefit increases o
with increasing number of nodes. Similar trends are observed
in figure 3, which shows the minimum flow rates in the
network. Our approach again outperforms MMF and performs
well in terms of providing large enough minimum bandwidth
shares to flows, thus enforcing the notion of max-min fairness.
Another interesting issue here is that our algorithm exhibits
good performance regardless of the valueRpfvhich implies 004
that it can be implemented by using oy mini-slots. Finally,

figure 4 shows the average node resource utilization factor. In- °% 22 5 15 20 22 22 2 2 @
this case, it can be seen th& = 2 is essential in order oo

to guarantee a clear performance benefit over MMF. This is . _
anticipated, since MMF uses the explicit constraint2g L % S?Agmﬁ% 1?&;{?;;5" ersus rumber of nodes in the network for
on node utilization factors for ensuring feasibility of rate
allocation. The most important feature of our approach is
that it does not restrain resource utilization by posing the
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aforementioned constraint. Instead, nodes locally control the = gg R1 b
feasibility of a rate vector by imposing flow preferences. As a  °®[| = Wi D 3

result, resources are utilized ab®d% more efficiently than 0s
in the classical centralized algorithm.
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VI. DISCUSSION
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We study the problem of approximating max-min fair rates
in a wireless network without explicit node coordination and
we present a greedy, low-complexity scheduling algorithm
that serves this purpose. It was also shown to outperform a oss
centralized (yet, conservative) algorithm of providing max-
min fair rates in general topologies. The scheduling discipline
is immune to topology or flow traffic variations method and  °*%% 1= 1 1 lﬁ ) z‘fo . 5‘2 2 26 2 %0
it involves overhead that does not depend on the number '
of links or flows. When flow traffic demands and wireless. I .

. I . . . ig. 4. Average node utilization factor versus number of nodes in the network
link ava|Iab|I|t|es.rema|n unchanged, thg sphedule is periodigy gifferent scheduling algorithms and values of R.
However, even in the presence of variations, the scheduled
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Node utilization factor
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