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alternative method to approximate the flow throughput under balanced fairness in arbitrary networks.
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model can capture, e.g., location-dependent features of flows.
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P.O.BOX 1000, FIN-02015 TKK
http://www.tkk.fi/
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Vastaväittäjä Professori Sem Borst (Eindhovenin teknillinen korkeakoulu, Alankomaat)
Valvoja Professori Jorma Virtamo (Teknillinen Korkeakoulu)
Tiivistelmä

Langattomien verkkojen suorituskyky riippuu olennaisesti radiokanavan ominaisuuksista. Tässä väitöskir-
jassa tutkitaan menetelmiä, joilla verkkojen suorituskykyä pystytään parantamaan. Toisaalta tutkitaan
myös menetelmiä, jotka mahdollistavat verkkojen suorituskyvyn analysoimisen.

Väitöskirjan ensimmäisessä osassa esitetään algoritmeja ryhmälähetysten reititykseen ja max-min-reiluun
linkkien vuoronjakoon langattomissa monihyppyisissä verkoissa. Ryhmälähetysten reititysongelmassa
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että lähetyskustannusten summa minimoituu. Esitämme kolme tehokasta reititysalgoritmia tiettyi-
hin ryhmälähetysongelman erikoistapauksiin. Ensimmäisessä algoritmissa oletamme lähetyskustan-
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se voidaan toteuttaa hajautetusti. Kolmas algoritmi on sovellettavissa tilanteissa, joissa verkon sol-
mut voivat säätää lähetyssädettään ja tavoitteena on minimoida lähetyspuun tehonkulutus. Max-min-
reilussa linkkien vuoronjako-ongelmassa pyritään jakamaan lähetysvuoroja verkossa oleville voille siten,
että voiden pitkän aikavälin siirtonopeudet toteuttavat kyseisen reiluuskriteerin. Esitämme vähän kontrol-
liliikennettä vaativan, hajautetun algoritmin ongelman ratkaisemiseksi.

Väitöskirjan toinen osa koostuu ns. elastisen dataliikenteen vuotason suorituskykyanalyysistä langat-
tomissa verkoissa. Verkko on mallinnettu dynaamisessa tilassa, missä voita (esim. tiedostonsiirtoja) saa-
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1 INTRODUCTION

1.1 Wireless networks

Wireless networks are telephone or computer networks that use radio as
their carrier on the physical layer [WP]. In most well-known wireless net-
works only the last link utilizes wireless technology to provide mobile access
to the core network for users. Examples of such systems include, e.g., GSM
[3GP] and WLAN [Sta05] networks.

Recently, another paradigm of wireless networking has also attracted
considerable attention. In wireless multihop networks datagrams are trans-
ferred over multiple wireless links to their destinations. Such networks are
applied in situations where there is no existing infrastructure and the com-
munication platform needs to be established within a short time and/or with
low costs. Examples of such networks are mobile ad hoc networks [IET],
sensor networks [ASSC02], and mesh networks [AW05].

A wireless link has essentially two advantages over a cabled link: it al-
lows at least limited mobility on the part of the end points and avoids the
infrastructure costs and effort required for cabling between the terminals.
However, radio transmissions are also subject to many constraints which
severely limit the performance of the communication. For example:

• Scarcity of radio bandwidth. Bandwidth availability is controlled by
regulatory authorities. Suitable bandwidths are also limited from the
application point of view; high frequencies cause strong signal ab-
sorption, which significantly reduces the communication range and
potential application environments. On the other hand, low frequen-
cies suffer from low link capacities.

• Shared nature of radio bandwidth. Simultaneous transmissions on
the same frequency band may interfere with each other, thus reduc-
ing the available data rates or completely preventing successful re-
ception.

• Irregularities in radio bandwidth. The received signal depends on
various propagation effects, such as fading and multipath propagation,
which cause fluctuations in the quality of the radio link.

• Limited capabilities of the network devices. There are application-
dependent limits to the cost, size, and weight of a (mobile) network
terminal and to the accompanying battery unit, which have a direct
effect on the transmission/reception capabilities of the device.

Despite the challenges of the radio resource, there is a constant need for
higher data rates in wireless networks. The evolution of handsets and termi-
nals has made new applications possible and the convergence of network-
ing technologies is leading towards a situation where the resource-intensive
applications of wireline networks can be accessed via wireless links. On
top of increasing data volumes in wireless networks, the density of different
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wireless terminals is also growing. This results in decreased transmission
resources per terminal as the bandwidth resource remains constant.

Although multiple-antenna technology and programmable radios may
make possible significant improvements to the current wireless link rates in
the future, the performance of a wireless network depends fundamentally
on the co-ordination of the radio resource usage. It is important to gain
an understanding on the effects of the wireless medium on network perfor-
mance. It is important to develop methods for the efficient utilization of
the radio bandwidth.

1.2 A networking perspective

Teletraffic theory studies quantitatively the three-way relationship between
the communications system, the offered traffic and the performance. In
this thesis we adopt a networking perspective on wireless networks, espe-
cially wireless multihop networks. We study how a group of devices with
given individual properties can be efficiently co-ordinated so as to utilize
the shared transmission medium in a task the performance of which can
only be measured on the network level.

We consider a wireless network as an optimization problem: we set a
performance goal for a given network service which depends on the actions
of individual network nodes. These actions form the set of variables of
the problem. The actions are constrained by radio interference. We are
interested in what the optimized performance is and, on the other hand, by
which actions the optimized performance is achieved.

Radio channel interference, however, is a challenging constraint. The
vast majority of optimization problems arising in wireless networks are ex-
tremely complex, which makes accurate solutions, if not impossible, at least
impractical to reach. Correspondingly, algorithm development, e.g., in
routing or scheduling, for wireless networks often resorts to heuristic algo-
rithms. Similarly, in deriving performance measures for complex wireless
networks only approximations of the performance may be available.

In this thesis we model wireless networks and propose methods for solv-
ing some of the central optimization problems of a wireless network. The
presentation can be divided into two parts. The first part focuses on the
development of efficient algorithms for routing and scheduling in wireless
multihop networks. The second part is devoted to analyzing the perfor-
mance of wireless networks.

1.3 Algorithm development for wireless multihop networks

Irrespective of the technology of the network devices, the network level per-
formance, such as the available bandwidth or the delay experienced on a
given route, depends on the co-ordination of several nodes participating in
the transfer. The co-ordination is a difficult task because of the interfer-
ence effects which create interdependencies among different concurrent
activities in the network.

Assuming that the underlying technology is given, most of the impor-
tant network level performance problems typically come down to resolving
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two particular questions: which nodes transmit (the question of routing)
and when the nodes transmit (the question of scheduling). These some-
times interrelated tasks are dealt with in the following two chapters. Later
in the thesis, in Chapter 4, we refine our approach to the question of what
data are being transmitted in a given transmission. This refined viewpoint
introduces the question of resource sharing, which makes it possible to an-
alyze performance on the flow level, as the users experience it.

Optimizing the network level performance by routing and scheduling
can usually be formulated as a form of a standard integer programming
problem. However, the problems tend to become computationally in-
tractable with a large number of variables and this approach is generally
not feasible for practical network operations. Gathering the relevant data,
solving the optimization problem, and, finally, disseminating control com-
mands back to the network is too time-consuming for most control prob-
lems in wireless multihop networks. Furthermore, the associated commu-
nication costs may degrade the network performance to such an extent that
the optimization process becomes counterproductive as a whole. Thus, in
most practical scenarios, optimization should be carried out by simple and
preferably distributed algorithms, even though the results remain subopti-
mal.

Algorithm development is also challenged by the rich variety in the po-
tential applications of wireless multihop networks. The communications
needs of different environments cannot be efficiently satisfied by any sin-
gle algorithm. Routing and scheduling algorithms need to be tailored for
different applications. For example, mesh networks are static and can be
partially pre-designed, which allows many performance optimization tasks
related to routing and scheduling to be carried out offline in the design
phase. On the other hand, a mobile ad hoc network of, e.g., quickly ma-
neuvering military vehicles prevents almost any form of optimization as the
network topology changes with node mobility, active interference and node
malfunction or even destruction. In extreme cases routing and scheduling
are based on simple protocols such as flooding and unsynchronized ran-
dom access protocols, which leave little room for performance optimiza-
tion. Between these extreme scenarios we have a region of features such as
moderate mobility, unreliable terminals or limited processing power, all of
which have their characteristic performance problems. It is quite clear that
no single algorithm can meet all these challenges.

In this thesis we develop efficient algorithms for two different problems
of wireless multihop networks. First, we consider the routing of messages
from one source to several destinations. In this case, the optimization prob-
lem is as follows. Each transmission has a cost and an attempt is made to
minimize the sum of the costs in delivering a message from a source node
to all of the destination nodes.

Second, we study the problem of the max-min fair scheduling of single-
link flows in a synchronized slotted-time wireless network. In this problem
we maximize the bandwidth of all links, with the constraints that the long-
term bandwidth shares are approximately max-min fair and that in any time
slot a node may only participate in one transmission, either as a transmitter
or as a receiver. The maximization is carried out by selecting the set of
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transmitting flows in each time slot appropriately based on transmission
history.

Both these problems are approached by means of simple high-perform-
ance heuristic algorithms, accounting also for the distributed nature of
wireless multihop networks. In particular, the multicast algorithms devel-
oped in this thesis are of great practical importance because of the perfor-
mance, simplicity, and adaptivity of the algorithms.

1.4 Analyzing the performance of wireless networks

The performance analysis of wireless (multihop) networks constitutes the
second part of the thesis. Analytical performance analysis provides a cost-
effective means for network dimensioning and understanding the relation-
ship between the system, traffic, and performance. Compared to the al-
ternative methods of prototyping and process simulation, analytic perfor-
mance analysis makes possible quick results and also provides insights into
the behavior of the system. The difficulties of the method arise in the mod-
eling phase; how can a model to be constructed which describes the given
performance measure adequately but still remains tractable?

In the contemporary IP-networks, such as the Internet, the vast majority
of the traffic is controlled by the TCP-protocol. A TCP-flow typically com-
prises the transfer of a document, file or message. The transmission can use
all the bandwidth that is available but can also adapt the transmission speed
to share the bandwidth with other concurrent flows. We refer to this kind of
traffic as elastic traffic. In this thesis we particularly study the performance
of communications networks under elastic traffic conditions.

The performance of elastic traffic is observed on the flow level. In a typi-
cal example, a user transferring a file experiences the network performance
in the duration of the transfer. In order to model the performance experi-
enced by such a user, we need to characterize the network resources and
model how other traffic present in the system interacts with the transfer,
i.e. how much contention there is about the resources and how the con-
tention is resolved by resource allocation. However, one must also account
for the dynamic nature of the flows. As flows come and go, the resource
allocation is also subject to change, which has a fundamental effect on the
performance experienced by the flows.

We utilize the concept of balanced fairness [BP03] for the flow-level
performance analysis of wireless multihop networks. Balanced fairness is a
recently-proposed resource allocation scheme which is especially suitable
when analyzing the flow-level performance of communications networks.
Balanced fairness considerably simplifies the solution process of the prob-
lem, even making explicit formulas possible in certain cases. The perfor-
mance of the system under balanced fairness is insensitive to traffic details
beyond the traffic intensity. Third, the performance under balanced fair-
ness can be used to approximate that of other fair sharing schemes such as
proportional fairness and max-min fairness, which are generally intractable
in dynamic settings.

We devise novel methods for the efficient computation and approxima-
tion of practically interesting performance metrics such as flow throughput.
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We also give a formulation of balanced fairness in those cases where the
flows are indexed by a continuous variable. We believe that the proposed
computational tools and approximation scheme for balanced fairness are
important contributions not only in the context of wireless networks but in
the performance analysis of communications networks in general.

1.5 Outline of the thesis

The rest of the thesis consists of three independent, yet closely related,
chapters. Chapter 2 summarizes the work published in Publication 1, Pub-
lication 2, and Publication 3. We describe the multicasting problem in
wireless multihop networks and present state-of-the-art multicast routing al-
gorithms for three different instances of the problem. In Chapter 3 we
present the results of Publication 4. The chapter describes the max-min
fair link scheduling problem and introduces a distributed scheduling algo-
rithm that approximates max-min fair resource sharing. Chapter 4 presents
recent developments in the performance analysis of wireless networks un-
der dynamic elastic traffic. In particular, we study the resource allocation
concept known as balanced fairness. We develop novel computational and
approximate methods for balanced fairness and apply this concept to wire-
less networks. The publications associated with this chapter are Publica-
tions 5, 6, 7, and Publication 8. Finally, Chapter 5 concludes the thesis
with a detailed list of the author’s own contributions to the reported publi-
cations.
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2 ROUTING OF MULTICAST MESSAGES IN WIRELESS MULTIHOP
NETWORKS

We describe the multicasting problem in wireless multihop networks and
present state-of-the-art multicast routing algorithms for three different in-
stances of the problem.

2.1 Introduction

The multicast tree problem in a wireless multihop network is defined as
follows: Find a sequence of transmissions which delivers a message from a
given source node to one or more destination nodes so that the sum of the
transmission costs is as small as possible.

We describe the advantages of multicast routing in wireless multihop
networks and introduce the wireless multicast tree problem in a general
form. Our contribution consists of three novel multicast routing algorithms
providing state-of-the-art solutions to certain common instances of the prob-
lem.

Section 2.6 presents an efficient solution to the problem in networks
with simple radios. We assume that each transmission of a node is received
by all of its neighbors. Thus each node has only one transmission cost. The
algorithm attempts to minimize the total cost of the multicast tree.

Section 2.7 assumes a similar model to the above and provides a dis-
tributed solution to minimize the number of transmitting nodes in the mul-
ticast tree (i.e., a special case in the domain of the algorithm in Section 2.6,
where all the transmission costs are equal).

The third algorithm in Section 2.8 addresses the situation where each
node can additionally choose the neighborhood that receives the transmis-
sion. We assume that for any two given alternative neighborhoods, one
with the lower transmission cost is included in the neighborhood with the
higher transmission cost. This situation arises, e.g., if the nodes may in-
crease their transmission power to reach more nodes and the transmission
costs are related to the power.

2.2 Motivation

Ad hoc networks are typically deployed by a group of people (or vehicles,
computers etc.) that has set out to complete a task in an environment where
no existing network infrastructure is available. These tasks, such as emer-
gency rescue operations, battlefield missions, or shared desktop meetings,
are likely to contain applications (walkie-talkie, live video streams, surveil-
lance data) where a considerable amount of data is delivered to several
destinations at the same time.

In mesh networks, where wireless stations interconnect to form an ac-
cess network, software delivery or streaming services create a similar need.

ALGORITHMS AND PERFORMANCE EVALUATION METHODS FOR WIRELESS NETWORKS 13



Efficient query delivery or reporting to several sink nodes simultaneously
lengthen the list for a sensor network, where smaller messages can also
challenge the communication capability of the network. This one-to-many
communications scenario is referred to as multicasting.

In ad hoc networks multicasting has two different interpretations. The
group communication viewpoint typically presents multicast communica-
tion as a two-directional mailing list. In this context the existing studies (cf.
overview in [HDL+02, GM04]) address primarily the problems related to
distributed group membership maintenance, i.e. how to add and remove
members of the multicast group.

The other interpretation of multicasting, the approach we adopt in this
thesis, treats multicasting as an efficient one-directional delivery tree in the
network, the sole purpose of which is to minimize the transmission costs of
the delivery of the message from a source to several destinations.

Multicast trees make possible cost optimization of one-to-many com-
munications in static or slowly varying ad hoc networks, mesh networks,
sensor networks, and multihop extensions of base station-based wireless net-
works. The costs may represent factors related to, e.g., the load incurred,
energy consumption, queuing or processing delay, security, reliability, or
detectability. Using a suitable routing tree, the corresponding data transfer
typically has substantially lower costs as compared to the two alternatives,
sequential unicast transmissions or flooding. The advantages of multicast
routing become increasingly evident if either the transferred data are large
or the resources are scarce.

Trees can be constructed on operational time scales to a route certain
message (or to find a path) or off-line, e.g., to provide solutions to multicast
routing subproblems in cross-layer optimization schemes. For example, it
is possible to explicitly maximize the lifetime of a network (cf. [CT00a,
CT00b]) that uses multicast communications [Vae01].

The use of multicast trees is recognized as an important consideration
in traditional fixed networks [Ram96]. The key difference between the mul-
ticast tree problems in wireless and traditional wireline networks further
underlines the advantage of multicast trees in the wireless setting: in each
transmission all the neighbors of the transmitting node receive the same
data packet simultaneously; cf. Figure 2.1. Compared to the alternative of
sequential unicast transmissions, all but one of the neighboring nodes re-
ceive the packet “free of charge”. This is the multicast advantage of wireless
networks. Note that the advantage applies only to multicast routing: unicast
routing in wireless multihop networks is optimized using standard routing
algorithms [BG92].

Before exploring the literature in detail, we state our general network
model and define the wireless multicast tree problem, WMTP for short.

2.3 Wireless multicast tree problem

Assume a multihop network where nodes communicate with each other us-
ing (possibly) one-directional wireless links. In order to describe the prob-
lem unambiguously, we define the concepts of neighborhood and transmis-
sion tree.
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i
j

Figure 2.1: Transmission from i to j reaches all nodes within the range in
this simplified model. There is only one transmission-related cost, but all
the neighboring nodes receive the message.

Each node may have a selection of transmission parameters available.
The parameters may be related to, e.g., transmission power, antenna pat-
tern, or to coding and modulation. For each different parameter combina-
tion there is a neighborhood, which is defined as follows:

Definition 2.1 A neighborhood of a node is a set of nodes that receive a
message successfully transmitted by the node with certain transmission pa-
rameters. Each neighborhood may have a different cost.

Note that a node may have several neighborhoods with different costs, but
each neighborhood belongs to only one node which we refer to as the cor-
responding node of the neighborhood. A transmission tree is a sequence of
transmissions (neighborhoods) that originate from a source node.

Definition 2.2 A transmission tree is a set of neighborhoods such that each
neighborhood either has a parent in the transmission tree or is the source
node. A neighbourhood “A” is a parent of neighborhood “B” if the corre-
sponding node of “B” belongs to “A” and there is a recursive sequence of
parents from “A” to the source node.

This is just a restatement of the fact that a node must have received a mes-
sage before it can forward it. Finally, we may define WMTP as follows.

Definition 2.3 (Wireless multicast tree problem) INPUT: the neighbor-
hood costs of all nodes, the source node and a set of destination nodes.
OUTPUT: A minimum cost transmission tree, which originates from the
source node in such a way that all destination nodes belong to at least one
neighborhood in the tree.

This neighborhood relation sets rather loose constraints on the network and
can be efficiently used to model the effects of transmission parameters. The
simplest model of a wireless multihop is a unit disk graph. In this case each
node has only one neighborhood: the nodes within the unit disk centered
at the node. The definition of WMTP here is more general than in Publi-
cation 1.
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Although the general definition of the problem is feasible for almost
any model of a network, the solution methods of the problem differ consid-
erably. In this thesis we consider three common types of WMTP with the
following modeling assumptions:

I only one neighborhood per node. Transmission costs may be arbi-
trary.

II special case of Type I, with all the transmission costs equal.

III arbitrary number of neighborhoods per node. Transmission costs may
be arbitrary, but with an additional constraint: we assume that any
neighborhood of a node contains all the lower-cost neighborhoods of
the same node.

The type I model reflects a situation where the nodes use simple radios
with fixed transmission parameters or only one transmission cost can be
maintained per node. Most of the ad hoc network routing protocols [IET]
assume this model.

Assuming fixed transmission parameters, WMTP also has a simple graph
theoretical interpretation: we attempt to find a minimum weight tree (in a
directed graph) which is rooted in a given source vertex and contains a
set of destination vertices. The weights are associated with vertices rather
than edges and only non-leaf tree vertices are accounted for in the total
weight of the tree. In other words, we seek a minimum-weight connected
set of nodes, which originates from the source node and dominates all the
receiver nodes.

The type II model corresponds to the scenario of minimizing the num-
ber of transmissions in the tree. This is often a good rule of thumb in min-
imizing the load and delay of the multicast operation, especially in cases
where the network dynamics prevent the use of more refined cost informa-
tion.

The type III model arises in the context of minimum power multicast-
ing [WNE00]. In short, the objective is to find the minimum power trans-
mission tree in a scenario where a node may adjust its transmission range
d freely with a power cost proportional to dα, where α > 2. High-power
transmissions can deliver the message to a large number of nodes, making
possible more direct routes towards the destinations but at extremely high
cost.

An important special case of WMTP, irrespective of the network model,
is the broadcast problem in which all nodes except the source belong to the
destination set. In the type II model a node attempts to send a message to
all the nodes in the network so that the number of retransmissions is mini-
mized. This problem can be seen as a minimum connected dominating set
problem (with the requirement that the source belongs to the set), which
remains NP-hard even in unit disk graphs [AWF02], a fact which is a strong
motivation for development of simple heuristics for the broadcast problem
and for WMTP in general. In type III model the problem becomes even
more difficult. In a wireline network the situation corresponds to the mini-
mum spanning tree problem which can be solved in polynomial time using,
e.g., Prim’s algorithm [Pri57].
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Note that the models discussed here do not assume the unit disk model,
although it is used in simulations in Publication 1 and Publication 2. Nodes
do not have to be identical and, for example, the antennas may have direc-
tional beams. Most of the analytical results in the field assume the unit disk
model for tractability.

2.4 Review of existing research

In fixed networks the minimum-cost multicast tree problem is usually solved
using Steiner tree heuristics [Ram96]. The wireline multicasting costs are
related to links whereas the wireless multicasting costs occur at the nodes.
This difference follows from the fact that several nodes may receive a sin-
gle transmission simultaneously. It also renders the wireline multicast tree
heuristics inefficient in wireless multihop networks, which thus constitutes
an independent research field.

A widely-used model for wireless multihop networks is that each node
has only one set of neighbors which receive all the transmissions by the
node and the transmission costs are equal, i.e. the type II model. In this
setting the broadcast problem, i.e. minimizing the number of transmissions
to deliver the message to all nodes, has received a lot of attention in ad hoc
networks; see [WC02] for an extensive overview and comparative study.
More theoretical approaches to the broadcast problem can be found, e.g.,
in [SSZ02, LK00, AWF02, GPM03].

Despite the vast interest in the broadcast scenario, there are few refer-
ences to the efficient multicast algorithms. The multicast routing research
into wireless multihop networks has been very active [HDL+02, GM04],
but the focus has been on the protocol aspects of multicasting. In one
of the very few studies of efficient multicast algorithms (WMTP type I
model), [GK98], the authors introduce two heuristic algorithms. Despite
the proven worst-case approximation guarantees in unit disk graphs, the al-
gorithms leave much room for improvement in practical applications. Prac-
tical approaches to the problem were suggested in [GM03] (type I model)
and [CN02] (type II model), where the idea is to construct a virtual mesh
that connects the multicast group members by means of unicast tunnels
and to compute a source-based delivery tree on the mesh. Obviously, this
approach lacks efficiency.

A closely-related problem from graph theory, the node-weighted Steiner
tree, is addressed in [KR95] and [GK99]. The main difference between
this problem and the corresponding instance of WMTP (type I) is that in
WMTP we seek a connected set of nodes that dominates the receivers,
rather than containing them.

The type III model originates from the minimum-energy broadcasting
and multicasting problem in ad hoc networks. The problem was introduced
by Wieselthier et al. in a series of papers [WNE99, WNE00, WNE01].

The main focus of the work was on broadcasting. In [WNE00], the au-
thors developed an algorithm called Broadcast Incremental Power (BIP).
In BIP a spanning tree is constructed as in the well-known Prim’s algo-
rithm, with the difference that each step considers finding the minimum
incremental cost that is needed to connect the next node to the evolving
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spanning tree. After the spanning tree is constructed, redundant transmis-
sion are eliminated in BIP by means of a separate algorithm. For the type
III multicast problem the authors proposed MIP (Multicast Incremental
Power), which simply prunes a broadcast tree constructed by BIP so that
the only leaves are the receiving terminals.

The minimum-energy broadcasting problem has been an active topic
since its introduction. In [ČHE02] the broadcasting problem is proven to
be NP-hard. In [EG01] the authors show that even finding the minimum
spanning tree is NP hard in the type III model. The BIP algorithm was
further studied in [WaLF01], where the authors derived analytical perfor-
mance bounds for the algorithm, showing that the graph theoretical ap-
proximation ratio of BIP is between 13

3 and 12. Applying Prim’s algorithm
directly to generate a link-based minimum spanning tree to approximate
the broadcast tree, as also suggested in [WNE00], has an approximation
ratio between 6 and 6.33 [Nav05]. The analytical results in the field as-
sume the unit disk model for tractability. Algorithms with improved per-
formance have been suggested in [ČHE02, Yua05] and in [CSS03] the
authors present an algorithm that is based on local distance information
only. Although many variants of the original broadcast problem formula-
tion have been presented in the literature, the multicast tree construction
has not been addressed since MIP.

2.5 Contributions

The contributions in Publication 1 are an efficient algorithm for type I
problems (cf. Section 2.6) and an exact enumeration algorithm for the type
II model, which significantly extends the size of the problems that can be
solved exactly by enumeration. Publication 2 presents a fully-distributed
solution for type II problems (cf. Section 2.7). Both the presented algo-
rithms show excellent efficiency and are shown to outperform the existing
or obvious approaches.

Publication 3 was motivated by the apparent lack of multicast algo-
rithms in the field. It presents an algorithm designed to produce efficient
trees in a type III model (presented in Section 2.8) for small receiver groups
and suggests an simulated annealing (cf. [KGV83]) formulation to improve
any given tree.

The following sections describe our proposed routing algorithms in de-
tail.

2.6 Multicast algorithm for type I model

The algorithm described next is reported and analyzed in Publication 1.
In the algorithm the multicast tree is constructed incrementally, starting
from the source and adding new transmitting nodes so that the shortest
path distances to non-covered destinations are maximally decreased.

Assumptions of the algorithm:

• Type I network model.

• Shortest-path matrix (where the element with the index (i, j) states
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Figure 2.2: Example: Minimize the number of transmission needed to
connect SOURCE to REC A and REC B. All node weights equal one,
whence the shortest paths are defined in terms of hop count. Let S be the
sum of minimum distances between transmitting nodes and non-covered
receivers. To start, mark SOURCE as covered and initialize S (see top
left figure). In the iteration step, compute dS, the decrement in S if the
node was added to the transmitting nodes, for each covered node. Mark the
node with maximum dS as transmitting and mark all its idle neighbors as
covered. Iteration step is repeated until all receivers are covered. After the
selection of the second transmitting node (see bottom left figure) REC A is
covered and S contains only the distance to REC B.

the cost of shortest path from node i to node j) which is available in
terms of transmission costs.

We may use the term node weight interchangeably with the term transmis-
sion cost. The node weight information is fully contained in the shortest-
path matrix.

During the algorithm each node belongs to one of the following three
sets: covered nodes, transmitting nodes, or idle nodes. The set of covered
nodes contains all the non-transmitting nodes which have the data packet,
i.e. which are neighbors of a transmitting node closer to the source. Idle
nodes are not part of the multicast operation.

The algorithm is described as follows. Initialize all nodes “idle” and set
the source node as “covered” as it is the origin of the message. The multicast
tree construction proceeds with iteration rounds until all destinations have
received the message. In each iteration round we select one node from the
covered nodes, mark it as transmitting and mark all of its idle neighbors
as covered. The selection is carried out in such a way that the sum of the
minimum distances from the transmitting nodes to each of the non-covered
multicast receivers is maximally decreased. The iteration stops as soon as
all multicast receivers are covered. Figure 2.2 illustrates the algorithm.

Let D be the all-pairs shortest path matrix. Let Di denote the i:th row
of the matrix. The set of nodes that are already covered, but not transmit-
ting, is denoted by K while the set transmitting nodes is denoted by M .
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The set of multicast receivers that are not covered is denoted by T . Let c(i)
be the shortest distance from any of the nodes in M to node i and denote
the vector of c(i)s by c. Finally, let dS(i) be the decrement in the sum of
shortest path costs from M to T (i.e. in

∑
i∈T c(i)) if node i was added to

M . Using this notation, Algorithm 1 presents a pseudocode implementa-
tion of the proposed algorithm. In the algorithm (·)+ and min are applied

Algorithm 1 Centralized multicast tree construction
K ← {s}, M ← ∅
c← Ds

while T �= ∅ do
dS(i)←

∑
j∈T (c(j)−Di(j))+, ∀ i ∈ K

n← arg maxi∈K dS(i)
M ←M ∪ {n}
K ← (K ∪N(n))\M
T ← T \N(n)
c(T )← min(c(T ), Dn(T ))

end while
Output M

component-wise. In each round we select the node which maximally re-
duces the sum of the shortest distances. In a network with N nodes and
R multicast receivers, the worst-case complexity of the algorithm in this
straightforward implementation is O(N2R), since the selection of the next
node has complexity O(NR) and the outer loop will be repeated at most
N − 2 times. Naturally, the shortest path information needs to be gathered
separately.

2.7 Distributed algorithm for type II model

Algorithm 1 requires full topology information (the shortest path matrix) for
routing decisions, which requires centralized operation. Distributed imple-
mentations of the algorithm pose a significant challenge. However, if we
are interested only in minimizing the number of transmissions in the tree,
i.e. all the transmission costs are equal, the following distributed algorithm
can be applied efficiently. The algorithm is reported and analyzed in Pub-
lication 2.

Assumptions of the algorithm:

• Type II model.

• Each node knows the lowest hop counts from itself to the destina-
tions. This information is typically available in the unicast routing
tables.

• Each node knows the lowest hop counts from their neighbors to the
destinations. This information can be communicated locally.

The main difference to the assumptions in Section 2.6 is that the node does
not have to know, e.g., mutual distances of the destination nodes. Thus, the
algorithm may rely on the underlying unicast routing information.
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Figure 2.3: Node 1 has to find a multicast tree to the destinations A,B,C
and D. A split algorithm at node 1 assigns node 2 to find a multicast tree
(path) to B and node 3 to find a multicast tree to A and D. C was found
directly from the neighbor list.

The algorithm consists of independent split operations at nodes to con-
struct the tree. When a node needs to send a message to a set of destina-
tions, it divides the routing problem, the destination set, into independent
subproblems each of which is resolved by a selected neighboring node, as
if it itself was the source of the subset problem. In other words, each node
decides independently the next hop neighbor(s) in the tree, i.e. the forward-
ing nodes and their destination sets, based on its own destination set. We
call this operation split. Figure 2.3 illustrates the idea.

The implementation of the split operation is a key factor with regard to
the performance of the algorithm. Consider the split operation 〈i, T 〉 in
which node i is given the task of forwarding data/finding a route to the set
of destinations (a.k.a. multicast receivers) T . Let Ni be the set of neighbors
of node i.

The split algorithm at i consists of finding a set of next hop forward-
ing nodes and dividing the multicast receivers among them. During the
algorithm the destinations receive assignments, either permanent or non-
permanent, to neighboring nodes of i (which become forwarding nodes).
Once made, a permanent assignment remains fixed, but a non-permanent
assignment can later be replaced (only) by a permanent one.

Since a transmission of i reaches all the neighboring receivers they are
first removed from T . Then the algorithm repeats the following split step
until all receivers in T have non-permanent assignments or T becomes
empty: Let Bj(T ) ⊆ T denote the set of remaining receivers, which can
be reached from node j ∈ Ni with one less hop than from i. In other
words Bj(T ) is the set of receivers to which a shortest path from i goes via
j. Select a forwarding node m = argmaxj∈Ni |Bj(T )|, i.e. the neighbor j
for which the number of elements in the set Bj(T ) is the largest.

The assignment works as follows. The nodes (destinations) in Bm(T )
are assigned permanently to m and removed from T . After that any receiver
j in T for which the distance from m to j is equal to the distance between
i to j are assigned non-permanently to m without removal from T .

Now only the receivers for which the hop distance would have been
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increased if routed through m remain in T without an assignment. In case
such nodes exist, we repeat the split step until all receivers in T have non-
permanent assignments to a forwarding node or T becomes empty. As a
result we have generated a set of split problems with forwarding nodes and
their assigned destinations.

Note that the existing non-permanent assignments at the end of the
split algorithm mean that the distances to the corresponding receivers are
not decreased in this split. This is intentional and also important, otherwise
the resulting tree would be only a shortest path tree, yet optimized. Follow-
ing the procedure, the non-permanent assignments remain with the nodes
which are responsible for a larger number of destinations, but only if no
other forwarding node is on a shortest path to the corresponding multicast
receiver.

Obviously, if there is only one multicast destination, the split algorithm
selects the next hop node from one of the neighboring nodes on a shortest
path to the destination. In practice, this elementary subproblem is readily
solved by the underlying unicast routing.

The above algorithm for the split operation is summarized in a pseudo-
code implementation in Algorithm 2. In this implementation the non-
permanent assignments overlapping with permanent ones are removed in
a separate loop.

Algorithm 2 Split operation, input: 〈i, T 〉; forwarding node i, set of re-
ceivers T

A, M, F0 ← ∅
T ← T \Ni

/* Di(j) denotes the distance between i and j */
B0

j (T )← {t ∈ T | (Di(t)−Dj(t)) = 0}, j ∈ Ni

B1
j (T )← {t ∈ T | (Di(t)−Dj(t)) = 1}, j ∈ Ni

while T \F0 �= ∅ do
m← arg maxj∈Ni |B1

j (T )|
/* add to beginning */
M ← 〈m, B1

m(T ) ∪ (B0
m(T )\F0)〉 ∪M

F0 ← F0 ∪B0
m(T )

T ← T \B1
m(T )

end while
/* remove redundant non-permanent assignments */
for each 〈m, Tm〉 ∈M do

Tm ← Tm\A
A← A ∪ Tm

end for
Output M /* <node, destination list> - pairs */

The main difference of this algorithm to the centralized one presented
in Section 2.6 is in the selection next forwarding nodes. Whereas in the
centralized algorithm the selection of the next node to be added to the tree
is global, the distributed algorithm forces each node to decide the local tree
structure independently of other tree nodes.
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2.8 Algorithm for multicasting in type III model

Minimum energy multicasting problem is addressed in Publication 3. The
article presents an algorithm designed to produce efficient trees in the type
III model for small receiver groups and suggests an simulated annealing
(cf. [KGV83]) formulation to improve any given tree. Here we present the
suggested algorithm.

Assumptions of the algorithm:

• Type III model

• Neighborhood costs of the nodes are given.

Let cij be the cost of node i transmitting to its neighborhood j. For con-
creteness, we adopt the minimum energy multicasting setting, where the
neighborhood j is associated to node j; cij is the required transmission
power for node i to transmit directly to node j. Correspondingly, the neigh-
borhood j consists of all nodes which are reached with less transmission
power than cij . All-pairs shortest path matrix can be computed from the
neighborhood costs by standard means.

The proposed algorithm (referred to as Incremental Shortest Path Tree
(ISPT) in Publication 3), starts with an initial tree and then grafts the re-
ceivers one by one to the tree using direct paths in a selected order. It is
shown in Publication 3 that the algorithm is especially suitable in cases
where the number of multicast receivers is fairly small. The three phases,
tree initialization, grafting and sweep are presented next in detail.

The initial tree, trunk, is defined here to be a subtree which originates
from the multicast source. In this presentation we choose the initial tree
as the shortest path from the source to the most “distant” destination. The
initial tree could also be a path from the source to some special node (cf.
rendezvous point in PIM-SM for IP multicast) or simply the source node
itself.

Starting with initial tree as the current tree, the multicast tree is then
constructed incrementally by repeating the following grafting step: For
each destination not yet in the current tree, determine the path from the
tree to the destination which yields the smallest incremental path cost. In-
cremental path cost refers to the additional cost required to implement the
path from the existing tree. For example, in the initial tree the source node
s transmits, e.g., to neighborhood 2 with the cost cs2. Now the incremen-
tal cost of node s to reach the node 5 (in its neighborhood 5) is simply
cs5 − cs2. The incremental path cost of a path from node s via 5 to k is
cs5 − cs2 + D5(k), where D5(k) is the shortest path cost from 5 to k.

Having now one possible path for each destination, select the path
which has the smallest cost (an intuitive, yet arbitrary choice for grafting
order) and attach it to the tree to produce the current tree for the next iter-
ation, see Figure 2.4 for illustration of the algorithm.

In addition to the above described model, the shortest incremental
paths can be found by applying the Dijkstra’s shortest path algorithm to
a modified network. The modified network is the original network with the
neighborhood costs in which all the nodes of the current tree are reduced
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Figure 2.4: Example: Initial tree is the shortest path from the source to
the furthermost receiver. The grafting is repeated iteratively by attaching a
path connecting the tree to a receiver, for which the incremental path cost
is lowest. Algorithm stops after all the receivers are connected.

to one node. The links from this node to its neighbors are determined ac-
cording to the shortest incremental costs from the tree.

The worst case complexity of the multicast algorithm in a network with
N nodes is O(N3), which corresponds to the spanning tree problem in
a fully connected network. However, the computational complexity of the
algorithm is roughly the product of the number of nodes in the tree, average
number of neighboring nodes and number of receivers.

By different selections of the initial tree and the grafting order the al-
gorithm can be applied to produce different efficient tree structures. After
grafting, the resulting tree can be further improved by removing unneces-
sary transmissions. This operation is called the sweep [WNE00, Yua05].
Description of our sweep algorithm is included in the following summary
of the whole approach.

The multicast algorithm is summarized in Algorithm 3 with the follow-
ing notation. Let si be the state of node i which tells the current neighbor-
hood assignment of node i. si = 0 denotes that the node is not transmitting.
During the algorithm the transmission tree M is the set of nodes for which
si �= 0. Let k stand for the source node and set the destination distance list
to ln = Dk(n), ∀n ∈ T , where T is the set of multicast destinations.
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Algorithm 3 Type III algorithm operation
Tree initialization: e.g. M ← shortest path to the receiver
{argmaxn ln}.
while there is a multicast receiver not in any of the neighborhoods of M
do

grafting, see Algorithm 4
end while
remove unnecessary transmissions by a sweep operation see Algorithm 5

Algorithm 4 Grafting algorithm
for each transmitting tree node i, for which the state si has changed do

for each neighbor j of i do
for each remaining destination n do

if (cij − cisi )+ + Dj(n) < ln then
set ln = (cij − cisi)+ + Dj(k)
associate ln to (i, j, n)

end if
end for

end for
end for
pick (i, j, n) for which ln is smallest (or use selected grafting order)
increase the state of node i to cij

add the route j → k to the tree M , i.e. update the corresponding states.

Algorithm 5 Sweep operation
repeat

list all the nodes V in breadth-first-search from the source node
for each transmitting node i ∈M in the BFS-list do

select j = argmaxj∈M cij which does not yet have a predecessor
set si = j
set i to be the predecessor of neighbors {k|cik ≤ cij}

end for
until no changes in S (or use, e.g., two iterations)

2.9 Summary and conclusions

We have described the advantages of multicast routing in wireless multi-
hop networks and introduced the wireless multicast tree problem in a gen-
eral form. The contribution of this thesis consists of three novel multicast
routing algorithms providing state-of-the-art solutions to certain common
instances of the problem.

The WMTP optimization approach is limited to networks and applica-
tions where the cost information can be kept up-to-date. In highly dynamic
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scenarios resource optimization is hardly possible and one-to-many com-
munications require less refined means, such as flooding variants [LK00].

In the discussion we treated WMTP as a message forwarding problem,
but the same algorithms can also be applied in building multicast trees
(virtual tree paths) over any directed graph where the costs are related to
nodes rather than links.

Although the contributions presented here provide efficient solutions to
the problem instances they are designed for, we identify several interesting
open questions for future study:

• Efficient split algorithm to allow distributed multicast operations in
the type I model.

• Efficient enumeration algorithm to compute optimal trees in the type
I model.

• Analysis of the algorithms when the shortest path information is ap-
proximative or contains errors.

• Delay studies of multicast trees under different interference models.

• Efficient algorithm for general WMTP.
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3 MAX-MIN FAIR LINK SCHEDULING

This chapter describes the max-min fair link scheduling problem in a wire-
less multihop network and introduces a distributed low-overhead schedul-
ing algorithm that approximates max-min fair resource sharing. An inher-
ent feature of the approach is its immunity to topology changes as well as to
flow traffic variations.

3.1 Motivation

Although the traditional concept of quality of service (QoS) provisioning
based on an explicit statement of QoS requirements by each user is well
suited for session-based situations with continuous information flow, it re-
quires connection admission control and resource allocation techniques
and involves an additional signaling burden. Thus, such provisioning may
turn out to be problematic in the presence of mobility and wireless medium
dynamics. Alternatively, sessions can specify their satisfaction (utility) as a
function of the allocated bandwidth. However, defining user satisfaction
in terms of a utility function is not generally feasible. In those cases where
users do not specify their resource requirements, an intuitive objective is
to split the available resource equally to all sessions. Whenever users can-
not utilize a portion of their allocated resource because of some constraint,
the unused resources should also be distributed among other sessions. This
objective is captured by max-min fairness.

Max-min rate fairness can be provided at the medium access control
(MAC) or the network layer. At the MAC layer, fairness properties need
to be ensured on a link basis, namely for single-hop flows. At the network
layer, fair rates must be provided for end-to-end, multi-hop session flows
and this clearly encompasses fairness in single-hop flows. The focus of this
work is on fairness at the MAC layer.

In [TS02] Tassiulas and Sarkar introduce the problem of max-min fair
link scheduling. The problem is to schedule one-link flows in a conflict-
free manner so that the flows attain max-min fair rates. Scheduling has
the constraint that no node can simultaneously take part in more than one
transmission at any given time.

The approach proposed in [TS02], however, is centralized. Further-
more, the approach utilizes certain sufficient conditions for schedulabil-
ity to compute max-min fair rates. As the given conditions are not neces-
sary for general networks, the fair rates typically fail to utilize available ca-
pacity efficiently. Clearly, it would be desirable to devise a method that
combines conflict-free scheduling with minimal node coordination and
achieves a good approximation of max-min fair rates without wasting capac-
ity. The method should ideally rely on readily-available local information
and should involve minimal signaling load in the network.

We present a low-complexity, low-overhead distributed algorithm for
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approximating max-min fair rates in a wireless network of general topol-
ogy. Our algorithm is based on the distributed computation of maximum
weighted matching of the network graph with appropriately defined link
weights. Apart from its simplicity and its low complexity, the algorithm does
not require a time frame (however, it needs slot synchronization among
nodes) and it can be applicable in the presence of arbitrary topology or
channel quality variations and flow traffic demand changes.

3.2 Review of existing research

Existing work on MAC layer max-min fairness can be classified into two
categories. The first one refers to single-channel systems with connection-
less multiple access, where fairness properties are sought through a random
access scheme. In [NKGB00], a framework for implementing fairness by
maximizing the sum of user utility functions is proposed; this gives rise to
distributed contention resolution methods in order to achieve the desired
rates. Max-min fairness arises as an asymptotic case of a special utility func-
tion. Another work along the same lines appeared in [LLB00], where max-
min fair rates can be achieved using appropriate the flow weights based
on adaptation of a back-off timer. However, the algorithm requires the a
priori computation of max-min fair rates in order to find the flow weights.
More recently, the work in [WK04] shows that max-min fair rates can be
attained in the context of Aloha with appropriate adjustment of the access
probability of nodes in a distributed fashion. Although these distributed
access methods require minimal coordination between nodes, they suffer
from severe bandwidth loss as a result of unavoidable collisions. Moreover,
fairness is guaranteed only in a probabilistic sense and is meaningful only
for large-enough time scales.

The second category of studies comprises connection-oriented multiple
access methods, where fairness is solicited with conflict-free link scheduling
methods. The authors in [TS02] introduced the concept of max-min fair
rate allocation and provide a scheduling policy for achieving max-min fair
rate allocation for single-hop session flows and time-slotted systems. Each
node assigns service tokens to adjacent links in a round-robin fashion and
the weight of a link is the minimum of the stored tokens at the two end
nodes. At each slot, the set of links that form the maximum weighted match-
ing of the network graph are scheduled for transmission. This step makes
the approach centralized. A distributed slot assignment algorithm that ap-
proximates max-min fair bandwidth sharing is presented in [Sal04]. The
algorithm is based on local adjustments of link rates by reallocating time
slots subject to conflict constraints in an effort to track the corresponding
distributed fluid algorithm, which provably converges to max-min fair rates.
The methods of this class require some amount of node coordination, but
they guarantee collision-free access to resources.

3.3 Problem statement

We consider a time-slotted system with control and data time slots, where
a number of control mini-slots precede one data slot. The duration of a
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mini-slot is much smaller than that of a data slot. A general, non-bipartite
network topology graph G = (V, E) is assumed, with vertices representing
wireless nodes and links between pairs of nodes showing node connectivity.
Let N be the number of nodes in the network. Network-wide slot synchro-
nization is assumed.

There exist J flows in the network. Each flow that traverses a link is
represented by a directed edge from the link end-node (the transmitter) to
the other node (the receiver). Associated with a network topology graph
is the network flow graph Gf = (Vf , Lf), with the same nodes as in the
topology graph (Vf = V ) and edges between each pair of nodes, with each
edge corresponding to a distinct flow between those nodes. Note that there
may be any number of flows on the same link. We focus only on single-hop
flows in this work. A flow is said to be active on a link if it transmits a packet
on that link.

We consider nodes that possess a single transceiver, that is, one hard-
ware unit that can be used to set up a distinct communication link. We
assume that there exist only primary scheduling conflicts, so that the same
node cannot transmit or receive simultaneously on more than one link.
Given this assumption, the set of active flows in the network at a specific
time instant must constitute a matching of the network flow graph. In
the presence of secondary conflicts, i.e. when receiving nodes are inter-
rupted if they hear more than one transmission simultaneously, the prob-
lem changes considerably. We do not address the issue in this thesis. The
work in [CL87] presents a distributed algorithm for constructing a fixed-
length TDMA-based link schedule under a certain fairness metric and sec-
ondary conflicts.

A single physical layer transmission rate corresponding to a certain mod-
ulation level and/or coding rate is used for every flow, so that time shares
are mapped to bandwidth shares. Our model is quite generic as it incorpo-
rates the cases of: (i) arbitrary, time-varying packet arrival rates of flows and
therefore time-varying bandwidth requirements of flows, and (ii) arbitrary,
time-varying topology changes, due to inherent volatility of the wireless net-
works.

3.4 Outline of the algorithm

Greedy scheduler
Let each flow transmit at most one packet in each slot. Associate each flow
j, j = 1, . . . , J with a weight wj = Cnj , where C > J is an arbitrary
number and nj is the number of time slots that have elapsed since flow j
transmitted a packet. When a packet of flow j arrives to an empty queue and
waits to be transmitted, then nj = 1. If flow j has no packets to transmit,
we set wj = 0. Scheduling conflicts reflect interference constraints and
determine eligible sets of flows that are allowed to transmit in the same slot.
Consider the collection of eligible flow sets in slot t and let I(t) denote the
set of indices, with each index i corresponding to one such set Ii. This index
set in turn depends on the presence of packets at the transmitter as well as
on link availability that is affected by topology variations. Each eligible set
of flows Ii is referred to as matching set of flows, since it is a matching of
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the network flow graph.
The algorithm employed by a centralized greedy scheduler is as follows.

In an attempt to approximate max-min fair rates, the algorithm selects the
matching set of flows with the maximum total weight for transmission at
each time slot, namely it selects the set

i∗ = arg max
i∈I(t)

(
∑
j∈Ii

wj(t)). (3.1)

For performance of the greedy scheduler refer to Publication 4.
The best known solution to the maximum weighted matching problem

in general graphs is of complexity O(NJ + N2 log N) [Gab90]. Several
approximations have also been developed for the problem that aim either
at linear complexity ([DH03],[Pre99]), or at allowing for distributed imple-
mentation [WW03]. The centralized greedy method in which the edge
with the largest weight is sequentially inserted in the matching and all con-
flicting edges are removed has complexity of O(J log N) (provided that the
edges are sorted a priori). The algorithm results in a matching which has
provably a weight of at least 1/2 times the optimum. However, these ap-
proaches are not amenable to a distributed implementation of scheduling
in wireless networks or involve significant burden of control messages.

The computation of maximum weighted matching also arises as the
maximum throughput policy in scheduling in switches with packets queued
in the switch input (e.g. [MAW96]), where link weights represent the num-
ber of packets waiting to be transmitted. Several variations to the basic
approach have also been proposed (see [McK99],[TT03] and references
therein). Being designed for input-queued switches, these algorithms are
suited for bipartite graphs and are not amenable to distributed implemen-
tation, since they imply inter-port communication and involve steps that
require centralized coordination such as node sorting.

Implementation of weighted matching algorithm for max-min fairness
We propose a distributed greedy algorithm for max-min fair link schedul-
ing, which is parameterized to allow controlling the trade-off between the
scheduling overhead and utilization rate.

A set of mini-slots preceding each data slot will serve the purpose of
control information exchange in our approach. Since control messages
themselves are subject to collisions, the control overhead is essentially the
number of mini-slots required to exchange coordination information in a
distributed and conflict-free manner. The proposed algorithm attempts to
identify a matching with maximum (or at least, as large as possible) weight
in a distributed fashion by using the notion of the greedy scheduler.

The key idea is to give priority to flows (edges) with larger weight. Each
node is aware of nj , the number of timeslots elapsed since last transmission
of flow j, for each flow that corresponds to an adjacent edge in the flow
graph. This determines the weight of the edge, wj . Due to the fact that
each node locally selects the flow with the largest weight, we can employ as
the weight wj any increasing function of nj and thus we can assume that
wj = nj in the sequel.
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The algorithm consists of R iteration rounds. In each round, each node
selects the largest-weight incident flow and broadcasts its decision to its
neighbors. This procedure takes place for each node in a control mini-slot.
The neighbors that receive this information eliminate all other candidate
flows destined to or originated from the node that made the decision. If
both end-nodes of a flow select the same flow, this flow is added to the
matching set of flows. Otherwise, if a node learns that the other end-node
of its selected edge has picked another flow (which has a higher weight),
the node becomes idle. The next iteration round is then performed only by
the idle nodes. The parameter R controls the tradeoff between the number
of required mini-slots and the maximality of the resulting matching. If R
is small, some of the nodes may be unnecessarily barred from transmitting
and if R is large the algorithm requires a lot of control overhead. The pro-
cedure is referred to as Algorithm 6 and its pseudo-algorithm is as follows.

Algorithm 6 Distributed matching algorithm, input graph Gf = (Vf , Ef )
and weights we, e ∈ Ef

1: M ← ∅ /* matching */
2: p← a random permutation of numbers {1, . . . , N}.
3: /* iteration loop */
4: for i = 1 to R do
5: G′

f ← Gf

6: for n′ = 1 to N do
7: n← pn′

8: Sn ← set of edges in G′
f connected to node n.

9: if Sn �= ∅ then
10: en ← arg maxe∈Sn we . Ties are broken randomly.
11: wen+ = 0.1
12: G′

f ← en ∪ (G′
f\Sn).

13: if en was already selected by its other end-node then
14: M ←M ∪ en

15: Remove the end nodes of en and the attached links from G.
16: end if
17: end if
18: end for
19: end for

3.5 Summary and conclusions

We studied the problem of approximating max-min fair rates in a wireless
network without explicit node coordination and we present a greedy, low-
complexity scheduling algorithm that serves this purpose. In Publication 4
we show that the algorithm outperforms a centralized algorithm of provid-
ing max-min fair rates, which in general topologies is based on sufficient
conditions for schedulability. The proposed greedy scheduling provides
only approximate max-min fair rates, but it is immune to topology or flow
traffic variations and its overhead does not depend on the number of links
or flows. When flow traffic demands and wireless link availabilities remain
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unchanged, the schedule is periodic. However, even in the presence of vari-
ations, the scheduled flows are continuously adjusted on-the-fly in order to
maintain fairness.

There exist several directions for future study. The approach constitutes
a first step towards the goal of fair scheduling in the presence of limited,
local knowledge about system status. In that sense, it can be extended to
more general resource models, such as that of orthogonal frequency di-
vision multiplexing (OFDM), which comprises two-dimensional resource
allocation.
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4 PERFORMANCE ANALYSIS OF ELASTIC TRAFFIC IN WIRELESS
NETWORKS

This chapter reviews the concept of balanced fairness in the flow-level per-
formance analysis of communications networks. We discuss how the con-
cept can be applied to wireless networks and devise novel methods for the
efficient computation and approximation of practically interesting perfor-
mance metrics, such as flow throughput. We give a formulation of balance
fairness in those cases where the flows are indexed by a continuous variable.

4.1 Introduction

Performance analysis of elastic traffic in wireless networks studies the net-
work as observed by flows, i.e. file transfers. The analysis requires knowl-
edge of network transmission resources and a resource allocation policy,
and it needs to account for the dynamic nature of the flows. In other words,
we need to know at what rates traffic can be transferred in different parts
of the network, how the rates are shared among contending flows, and how
the allocation behaves in time as flows come and go.

In a wireless network, the key element affecting the performance is in-
terference. As a result of interference, typically only a fraction of the links
can be active simultaneously at any given instant. Such a set of links (which
can operate concurrently with rates > 0) is called a transmission mode.
When different modes are switched on a fast time scale, the resulting net-
work appears at flow level as a virtual network with links with capacities (in
bits/s) which depend on the selection of modes and their respective time
shares, i.e. on link scheduling. In wireless networks scheduling may thus
be used to transfer network capacity from one part of the network to an-
other, within certain limits.

Resource allocation policy is needed to resolve situations where two or
more flows share the same resource, e.g., a link. Resource allocation has
a fundamental effect on flow performance. For example, to maximize the
total throughput in the network the optimal allocation policy would give a
strict priority to flows which consume the least resources. In certain cases,
this leads to a situation where flows with relatively high resource costs, e.g.,
flows traversing several links, end up with zero allocated bandwidth. In-
deed, the fairness of bandwidth sharing has been recognized as an impor-
tant consideration and several fairness concepts have been introduced and
analyzed; cf. [MW00, MR02]. In wireless networks, resource allocation
must be determined jointly with scheduling.

As flows come and go, the resource allocation changes with each arrival
and departure. Naturally, any changes in the allocation during a flow life-
time have direct implications for flow-level performance. This creates an
additional challenge for resource allocation and flow-level modeling. Al-
though resource allocation could be made optimal in the sense of a utility
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function for any given fixed set of flows, this does not necessarily guarantee
that the system converges to a steady state that is optimal in the dynamic
scenario [BP03]. The analysis of the dynamic setting is generally difficult,
even for the simplest network topologies [FdLFL+01].

A new bandwidth sharing concept called balanced fairness (BF) has re-
cently been introduced by Bonald and Proutière [BP03, BP02, BP04]. This
is a very interesting notion, for two reasons. First, it leads to network perfor-
mance which does not depend on any other traffic characteristics except for
the traffic intensities on different paths. In other words, the performance
under BF is insensitive. Second, systems with BF resource sharing are con-
siderably simpler to analyze in the dynamic setting. For many simple sys-
tems, BF permits an explicit analysis.

Simulation studies have shown that in many cases the performance of
a network under BF is similar to that under other fair allocation schemes,
such as proportional fairness and max-min fairness [BMPV06]. BF there-
fore provides a useful approximation tool for evaluating network perfor-
mance. However, BF itself does not represent a solution to a utility op-
timization problem or guarantee the Pareto efficient use of the resources.

In this chapter we review the basics of balanced fairness and wireless
network modeling. We show how balanced fairness can be applied to flow-
level performance analysis in a wireless network. The resulting joint prob-
lem of resource allocation and scheduling easily becomes computationally
heavy. We devise an efficient computational scheme to minimize the per-
state computations required for performance analysis. As an alternative
performance analysis tool, we suggest approximating the flow throughput
under BF. In this approximative scheme, we first determine the through-
put at zero load and find the capacity limit, and additionally compute the
throughput derivatives at zero load and at the capacity limit. These re-
sults are then utilized to interpolate the throughput curve over the load
range. This method can be applied to wireless and non-wireless scenarios
of arbitrary sizes. Finally, we give a formulation of balanced fairness in a
case where flows are indexed by a continuous variable. This construction
makes possible the modeling of, e.g., location dependent features of flows.
Throughout the section several examples are explicitly worked out to illus-
trate the proposed schemes.

The organization of the rest of the chapter is as follows. Section 4.2 goes
through the definition of balanced fairness. Section 4.3 surveys the related
literature. Section 4.4 summarizes the primary contributions of the present
work before delving into the details in the following sections. The model-
ing of wireless networks and the computational aspects of balanced fairness
in the context, i.e. the contents of Publication 5 and Publication 6, are
discussed in Sections 4.5 and 4.7. The results are then applied in an exam-
ple from Publication 7, presented in Section 4.8, which also introduces a
novel performance analysis method, referred to as value extrapolation. Sec-
tion 4.9 presents a method for approximating the throughput performance
of more complex systems and Section 4.10 gives a formulation of balanced
fairness with continuous class indices. These last two sections are extracted
from the work reported in Publication 8. Finally the chapter is concluded
in Section 4.11.
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4.2 Balanced fairness

The performance, measured, for instance, in terms of the average transfer
time for a document of a given size, clearly depends on the dynamic be-
havior of the system and on how the bandwidth is shared between different
flows. Therefore, it is necessary to study the system in a dynamic setting
where new flows arrive at the network, are transferred across the network,
and, upon completion, depart from the system.

The notion of balanced fairness was introduced by Bonald and Proutière
in the context of wireline networks [BP03]. Under dynamic resource allo-
cation defined by balanced fairness the dynamic flow-level model of a com-
munications network becomes significantly easier to analyze. Furthermore,
the performance of the system is then insensitive to traffic details, such as
flow size distributions.

In this section we present the balanced fairness concept. For the most
part, we follow the presentation in Publication 8 and define balanced fair-
ness in the usual form for a finite set of discrete flow classes.

Assumptions
The traffic is modeled as flows which are categorized into flow classes. A
flow class represents a set of similar flows in terms of network resource us-
age. In a wireline network, for instance, a flow class could be characterized
by a set of links representing a path in the network. Each flow class receives
dynamically allocated rates, which are constrained by the system, which is
basically modeled as a set of inequalities. We model the flow as a continu-
ous end-to-end stream of data and assume that any change on the rate of the
stream takes place immediately throughout the network. In other words, at
any flow arrival or departure the resource allocation is instantaneously up-
dated everywhere in the network to correspond the new situation.

Denote the number of different flow classes by N . Let xi be the number
of class-i flows in progress and denote the network state by x = (x1, . . . , xN ).

Class-i flows arrive stochastically and have finite, random sizes. Flows
are part of sessions which consist of random number of flows possibly sep-
arated by phase type distributed think times. We assume only that the ses-
sions arrive according to Poisson process – the flow process itself can have
almost arbitrary structure, for example including correlations of successive
flows, cf. [BP03, FBP+01].

The model is parameterized by the traffic intensities of each flow class.
The traffic intensity of class-i flows is defined as the product of the flow
arrival rate λi and the mean flow size (in bit/s),

ρi =
λi

µi
.

We denote by ρ = (ρ1, . . . , ρN ) the vector of traffic intensities.
In state x class-i flows are allocated the total rate of φi(x) bit/s, with the

convention φi(x) = 0 if xi = 0. The flows in each class share evenly the
rate allocated to the class. We denote by φ(x) = (φ1(x), . . . , φN (x)) the
vector of allocated rates.

In all states x, the allocation vector must belong to some coordinate
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convex capacity set C that represents the physical constraints of the network.
In many practically interesting examples, the capacity set is a polytope, that
is

C = {φ , φA ≤ C}, (4.1)

for some N × L-dimensional non-negative matrix A and L-dimensional
positive vector C [BMPV06]. For wired networks with single-path routing
for instance, the vector C gives the capacities of the L network links and
the matrix A is the incidence matrix, that is the i, l-entry of A is equal to 1
if class-i flows go through link l and equal to zero otherwise.

Resource allocation
An allocation φ is said to be balanced if for all states x and all classes i, j =
1, . . . , N :

φi(x)φj(x− ei) = φi(x− ej)φj(x), xi > 0, xj > 0, (4.2)

where ei represents the N -dimensional unit vector whose components are
equal to 0 except for component i which is equal to 1. For Poisson flow
arrivals and i.i.d. exponential flow sizes, this balance property is equivalent
to the reversibility of the Markov process describing the evolution of the
network state. The invariant measure of this Markov process is then given
by:

π(x) = Φ(x)ρx1
1 . . . ρxN

N , (4.3)

where Φ(x) is the inverse of the product of allocated rates along any direct
path from state x to state 0, which in view of (4.2) does not depend on the
considered path. This so-called balance function is recursively defined by
Φ(0) = 1, and for all states x such that xi > 0,

Φ(x) =
Φ(x− ei)

φi(x)
, (4.4)

with Φ(x) = 0 if xi < 0 for some i.
We emphasize that all results are valid under non-Markovian assump-

tions. The invariant measure (4.3) is insensitive to all traffic characteristics
except for the vector of traffic intensities ρ provided flows are generated
within sessions as discussed previously.

There is a continuum of allocations that satisfy the balance property
(4.2), but a single allocation such that φ(x) belongs to the boundary of the
capacity set C in every state x �= 0. This unique allocation is balanced
fairness. Under balanced fairness, the invariant measure (4.3) gives a well-
defined state distribution, i.e. the system is stable, provided ρ belongs to the
interior of the capacity set C [BMPV06, BP03]. When the capacity set C is
a polytope (4.1), this is equivalent to the strict component-wise inequality
ρA < C.

We assume that this stability condition is satisfied and denote by π the
equilibrium distribution of the network state:

π(x) =
1

G(ρ)
Φ(x)ρx1

1 . . . ρxN

N , (4.5)
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where G(ρ) is the normalization constant,

G(ρ) =
∑

x

Φ(x)ρx1
1 . . . ρxN

N . (4.6)

Rewriting (4.4) as:

φi(x) =
Φ(x− ei)

Φ(x)
, (4.7)

we deduce that the balance function associated with balanced fairness is
recursively defined by

Φ(x) = min{α :
(Φ(x− e1), . . . , Φ(x− eN ))

α
∈ C}, (4.8)

with the convention Φ(0) = 1 and Φ(x) = 0 for all x /∈ Z
N
+ . Note that

this recursion defines a unique balance function, which in turn defines a
unique allocation in view of (4.7). For a polytope capacity set, there are
L capacity constraints and the recursion takes the following simple form
[BMPV06]:

Φ(x) = max
l=1,...,L

1
Cl

N∑
i=1

Φ(x − ei)Ail. (4.9)

Properties of balanced fairness
For any capacity set C, let:

ai = max{α : αei ∈ C}, i = 1, . . . , N. (4.10)

By the coordinate convexity of C, this is the maximum rate allocated to
class-i flows. Since φ(x) belongs to the border of the capacity set, this is
also the rate allocated to class-i flows when there are no other flows in the
network.

Now consider the capacity set obtained by scaling the i-axis by the factor
1/ai. The associated balance function ϕ(x), referred to as the scale-free
balance function, is given by:

ϕ(x) = Φ(x)ax1
1 · · · axN

N , (4.11)

where Φ(x) denotes the original balance function. The scale-free balance
function satisfies:

∀n ≥ 0, ϕ(nei) = 1, i = 1, . . . , N.

In view of (4.7) and (4.11), we have in all states x �= 0:

φi(x) = ai ×
ϕ(x − ei)

ϕ(x)
.

A key performance metric is the flow throughput, defined as the ratio
of the mean flow size to the mean flow duration. This may be viewed as
the equivalent bandwidth as perceived by users. By Little’s result, the flow
throughput γi of class-i flows is given by

γi =
ρi

E[xi]
.
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In view of (4.5) and (4.6), we have:

E[xi] =
∑

x

xiπ(x) =
ρi

G(ρ)
∂

∂ρi
G(ρ).

We deduce:

γi =
G(ρ)
∂

∂ρi
G(ρ)

. (4.12)

Recalling that ai is the maximum bit rate allocated to class-i flows, we have
γi ≤ ai for all i = 1, . . . , N .

4.3 Research on balanced fairness

An analysis of dynamic flow-level model is generally difficult. Modeling
flow arrivals with a Poisson process and flow sizes with exponential distri-
bution leads to a standard N -dimensional Markov system. Balanced fair-
ness makes this system reversible [Kel79], which gives a recursive definition
for the equilibrium distribution (in contrast to matrix inversion) and even
closed form solutions in the simplest cases.

Balanced fairness has its origins in the article by Massoulié and Roberts
[MR00], where the authors discovered that the Markov model for a simple
linear network under proportional fairness [Kel97] has a reversible equilib-
rium distribution which depends only on traffic intensities. This insensi-
tivity result was then further extended to homogeneous grid networks by
Bonald and Proutière in [BM01].

Bonald and Proutière showed that the insensitivity to service time dis-
tribution is equivalent to reversibility in processor sharing networks [BP02].
This lead to the question, can one define a resource allocation which makes
a general network reversible? To this end, Bonald and Proutière character-
ized in [BP03] the general class of bandwidth allocations having the insen-
sitivity property by applying the properties of Whittle networks ([Ser99]).
Balanced fairness was defined as the largest feasible of such allocations.

Insensitivity of balanced fairness to flow arrival process was motivated in
[BP03] following the lines of the single resource case [FBP+01]. Flows and
the intervening think times are assumed to constitute sessions. The session
structure is described by an open stochastic network, where the processor
sharing nodes represent flows in resources and infinite servers the think
times between the flows. By modeling the flow and think time durations
by phase-type distributions, this construction makes possible practically ar-
bitrary session structure and thus arbitrary flow arrivals within the session.
Yet, the equilibrium distribution of the system is, by the theorems due to
Kelly [Kel79], as if the flows constituted a Poisson process (given that the
sessions arrive according to Poisson process).

In [BP03], the authors showed also that max-min fairness and propor-
tional fairness are generally sensitive except in a few particular scenarios.
The phenomenon has been also studied by means of simulation [Tim03].
Recently, in [BMPV06] the authors pointed out that if the resource require-
ments of the flows do not differ significantly, balanced fairness can be ap-
plied to approximate the throughput performance of the other two fair allo-
cation schemes. In case the requirements do differ from each other (e.g., in
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a wireless network links with bad radio conditions can consume most of the
time slots, if priority is given to smallest bit rates), the performance of bal-
ance fairness and proportional fairness remain fairly similar, while max-min
fairness may lead to much lower throughput. The unified approach to the
network modeling by the polytope model was also presented in [BMPV06].

Balanced fairness was originally proposed in the context of fixed net-
works with fixed routes. The generalization of the concept to wireless net-
works is presented in Publication 5 and the generalization into networks
with traffic splitting was presented in [LV05].

Efficient recursive algorithms are known for certain practically inter-
esting network types, notably for trees [BPRV03, BV04, BV05]. Despite
the advances, analysis under balanced fairness in general remains difficult.
Fortunately, the construction makes possible derivation of some simple per-
formance bounds. Performance of balanced fairness is always better than
transmitting the flows in store and forward fashion, which gives a lower
bound for the throughput performance [BP04]. This store-and-forward
bound was later improved in [Bon06].

4.4 Contributions

Publication 5 is the first extension of balanced fairness outside the fixed net-
work domain. It extends the analysis to cover multihop wireless networks,
where the link capacities depended on scheduling. Under certain condi-
tions on the interference structure it gave two different forms of recursion
for the balance function. These arise from two alternative ways to describe
the capacity set of the network, as will be discussed in Section 4.7.

Publication 6 expands from the results of Publication 4. The paper
explores a wide range of alternative network models of wireless multihop
networks and gives a general recursion framework for the polytope model.
The resulting problems are typically tedious to solve and the focus is put
on computational efficiency. The paper presents an efficient algorithm
to solve the balance function recursion, by combining the recursion with
linear programming duality and the well-known simplex method. Several
examples are explicitly worked out.

Publication 7 presents a simple example of the flow-level performance
analysis, in a scenario where two base stations are used in a coordinated
fashion to serve downloading users on a road between the stations. The
performance of balanced fairness method is compared against other alloca-
tion policies within the traditional Markovian model. Balanced fairness is
shown to outperform other competitors in computational efficiency. The
paper presents also a novel approximation method called value extrapola-
tion. Value extrapolation can be applied to approximate any performance
measure in a Markov system expressed as the expected value of a random
variable which is a function of the system state.

Despite the advances in computational performance analysis presented
in Publication 6, computational complexity remains a difficult issue, es-
pecially when the number of flow classes is large. Publication 8 takes a
different approach to the problem. By determining the throughput and its
derivatives at zero load and at the capacity limit, performance of a networks
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can be interpolated with a reasonable accuracy without the need to solve
the recursion. The approach makes possible an approximate analysis of
practically any system. Publication 8 extends the notion of balanced fair-
ness also to cases where the flows are indexed by a continuous variable. This
situation arises, e.g., in modeling spatial characteristics of the flows.

4.5 Capacity set of wireless multihop networks

Originally, balanced fairness was presented for networks with fixed link ca-
pacities. Publication 5 extends the approach to wireless networks where the
link capacities can be changed in certain limits by scheduling. In this sec-
tion we discuss modeling of wireless networks and, in particular, show how
the capacity set can be defined for wireless networks.

Even when the capacity set C of a system is known to be of the poly-
tope form (4.1), the matrices A and C may be difficult to define. Wireless
multihop networks (with certain exceptions) is a good example of such a
case.

Capacity set of a network can be alternatively described using the in-
stantaneously achievable rate vectors. At any given instant, the network
operates in a single transmission mode τ , which defines the controllable
communication parameters uniquely at the physical and access layers for
each link. For instance, in a wireless network τ may define which links are
active or what modulation schemes and transmission powers are used.

At a short time scale, with a fixed τ , the links of the network can be seen
as fixed bit pipes, the capacities of which arise from the parameters defined
by the mode. Denote the link capacities of mode τ by the 1× L vector rτ ,
where L is the number of links. Without loss of generality we consider only
those rates vectors that are maximal, i.e. rate vectors rτ , only for τ such
that there does not exist another τ ′ with rτ ′ ≥ rτ . Let T denote the set of
transmission modes corresponding to the maximal rate vectors and let R be
a matrix consisting of the rows rτ , τ ∈ T .

As the flow-level operations occur at a longer time scale, also all the
rates obtained by time multiplexing the vectors in T are available to flows.
This provides an alternative method to define the capacity set. For the links
we have the feasible capacity set

Clink = {r : r ≤ tR, teT = 1, t ≥ 0}, (4.13)

where t = (t1, . . . , t|T |) can be interpreted as the schedule with each com-
ponent tτ defining the fraction of time the transmission mode τ is used.
In a wireline network there is only one transmission mode, and R has only
one vector consisting of the fixed link capacities.

The polytope form (4.1) of the capacity set can be found by defining the
convex hull of achievable rates for the links. To this end one enumerates
all the instantaneous rate vectors and, additionally, all their axis projections
(where any number of components of the vector is replaced by zero). For
the resulting set of rate vectors, the facets of the convex hull, each of which
characterizes an inequality constraint, can be found using the gift wrapping
algorithm [Ski97].
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Denote the convex hull of link rates resulting from the above construc-
tion by rD ≤ C. Let A be the routing matrix with ail = 1 if class i uses
link l and zero otherwise. Now the constraints (4.1) defining the capacity
set become simply

C = {φ : φAD ≤ C}.
The gift wrapping algorithm has the complexity O(m�L/2�+1), where

m is the number of the rate vectors (instantaneous + axis projections) and
L is the number of links. Unfortunately, this construction is not generally
feasible. For a trivial example, a wireline network with 10 links consists of
maximal rate vector giving the (fixed) link capacities and 210 − 1 axis pro-
jections. Thus, the complexity of finding the full polytope representation of
the hypercube spanned by the rate vector would be O(260). Although there
is no need to generate the inequalities in such a way in this context, the ex-
ample illustrates the complexity of the approach. This is the motivation for
developing efficient computational schemes directly for the instantaneous
rate vector presentation in Section 4.7. The idea is to combine the facet
enumeration of the capacity set with the balance function recursion. Be-
fore that, however, we discuss how the rate vectors can be found in various
models for wireless networks.

4.6 Modeling wireless networks

When the link capacity set is described using the instantaneous rate vectors
(4.13), the rate matrix R contains all the required information of the lower
layer configurations. Hence, the modeling process comes down to deter-
mining the set of instantaneous rate vectors. Generally, one selects the set
of lower layer parameters to be included in the model and then enumerates
the set of feasible parameter configurations and the associated rate vectors.
Finally, only the maximal vectors are stored. This section discusses exam-
ples on how the rate vectors spanning the capacity set are found within
different network models.

Effects of transmission power
Assume that the link capacities are determined by signal-to-noise and inter-
ference ratios (SIR) at the nodes. Let glk denote the power gain between
links l and k, that is the power gain between transmitter of link k and re-
ceiver of link l. SIR is defined as

SIRl =
gllpl∑

k �=l gklpk + νl
, (4.14)

where νl is the noise power at the receiving end and pl the transmission
power on link l.

Information theoretic bound. One of the most important channel mod-
els in the performance analysis of ad hoc networks is the well-known Shan-
non model, which, combined with the BF-resource sharing, yields the best
possible insensitive performance in the given network scenario.

Shannon capacities [Sha49] give the theoretical limits for the link rates
in an AGWN channel of bandwidth W , which depend explicitly on the
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other active links and noise. In this model the link rates are given by (for a
given transmission power configuration τ )

rl(τ) = W log2 (1 + SIRl) . (4.15)

Although the set of different transmission modes cannot be enumer-
ated as each pl can have a continuous value between 0 and some maxi-
mum transmission power, the spanning rate vectors needed for R use only
the extreme power settings for the links, as noted in [LA03]. Hence, in
the information theoretic model it is sufficient to consider the transmission
modes in which each link is either “off”, or “on”, the latter meaning that
the transmitter is sending with full power. There are 2L − 1 candidates
for the spanning vectors. For these the corresponding link capacities follow
directly from (4.15) and (4.14).

Note that in this model we have assumed that all the links can be active
simultaneously. In practice, hardware and software configurations of the
network nodes may invalidate this assumption. For example, it may not
be possible to transmit and receive simultaneously or to receive multiple
concurrent signals.

Threshold model, STDMA. In the threshold model, a set of links (which
satisfy the possible physical constraints) can operate simultaneously if the
signal to noise ratio is adequate at each receiver. In the simplest case, the
capacity of link l is constant cl when SIRl exceeds a given threshold sl

and zero otherwise. Such models are often used in the context of Spatial-
TDMA (introduced in [NK85]), where the active links in each time slot
must satisfy the above-mentioned condition [BVY03].

One may distinguish two cases in the threshold model, the ones with
and without power control, as, e.g., in [JX04]. In both cases one starts the
construction of R by enumerating all combinations of active links as in the
Shannon model. Denote the set of link combinations by T ′.

If the links use fixed power, pl = pmax, l for all active links l, R is
constructed as follows. For each τ ′ ∈ T ′ check whether all SIRl ≥ sl when
the active links use their respective maximum powers. If the condition
holds, the rate vector is included in R.

If power control is assumed, pl ∈ [0, pmax, l], nodes can adjust their
transmission powers to minimum acceptable levels to avoid causing unnec-
essary interference ([Som02]). In this case, for each, τ ′ ∈ T ′ check whether
there exists a feasible power vector that attains SIRl = sl for all l ∈ τ ′, that
is, whether the corresponding set of linear equations has a feasible solution.
If the condition holds, the rate vector is included in R.

The model is also easily extended by introducing several thresholds for
different rates. This model can be adapted to approximate closely any dis-
crete rate system.

Modeling MAC with a binary constraint model
In some scenarios the link activity is constrained by physical limitations or
access control protocols. Such constraints can often be accounted for using
a pairwise link constraint model. In a common MAC-layer model two links
can be simultaneously active either with some predefined capacities or not
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at all. This reflects the situation that the channel is locally reserved for one
link among competing transmissions. On the other hand, if the attenuation
(power gain) in the SIR formula (4.14) is a very steep function of distance,
the threshold model can be approximated by the pairwise model.

In the literature, the pairwise link constraint models appear frequently
with some differences in how the link constraints are defined. An elemen-
tary access model sets the following constraints to the links in the network.
A node may not transmit and receive simultaneously and it cannot transmit
or receive more than one packet at a time. In other words, all the links
connected to a given node belong to different transmission modes. This is
often used as an access model with the assumption that other transmissions
in the vicinity of the node can operate without conflict using locally distinct
frequencies ([HS88, TS02]).

A more detailed MAC model would entail that no two links can be
simultaneously active if either of the receiving ends is interfered by the
other transmission. In the model presented in [Ari84, NK85] a transmission
can prevent reception everywhere within the transmission range, whereas
in the widely applied protocol model by Gupta and Kumar [GK00] the
interference depends on the locations of the transmitting node so that the
closest (with a selected margin) transmission can be successfully received.

Obtaining the rate vectors in the constraint model. Assume that the
constraints are defined for link pairs only. Such pairwise constraints can
conveniently be handled using a link graph, cf. the flow contention graphs
in [HB01, LLB00], conflict graph in [JPPQ05] or the compatibility matrix
in [NK85].

Given a network and a set of flows with their routes, the correspond-
ing link graph is constructed as follows: each directed link in the network
(that is in use in the scenario) is mapped to a vertex and an edge connects
two link graph vertices if the corresponding links cannot be active simul-
taneously. Conversely, an independent set on the link graph corresponds
to a set of links that can be active simultaneously. Thus, the feasible trans-
mission modes are obtained by enumerating the independent sets (cf., e.g,
[BK73]) of the link graph and the corresponding rate vectors R result from
associating the pre-defined capacities to the links in the independent sets.

This model can also be used in conjunction with the power control
models to eliminate the infeasible parameter configurations. To generate
the rate vectors in this hybrid case, one reduces the set of all combinations
of active links into the set of feasible combinations of active links (where,
e.g., active links do not share a node) by stating the feasibility constraints
in the link graph and enumerating the independent sets. Then the corre-
sponding link rates in the feasible combinations are determined using the
SIR-based models.

Interference graph example
The following example of interference modeling is presented in Publica-
tion 5. We assume a six-node network with three flow classes and five active
unidirectional links of unit capacity, as shown in Fig. 4.1. The interferences
shown in the link graph result from the protocol model [GK00] and the link
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CLASS 2
CLASS 1

CLASS 3

Figure 4.1: Flows, link graph, maximal independent sets and cliques of the
interference graph example.

graph has four maximal independent sets and two maximal cliques. There
are two alternative ways for defining the capacity set of the system. The first
approach defines the spanning rate vectors of the capacity set. The capacity
set of the system is given by (4.13) with

R =




1 0 0 0 0
0 0 0 1 0
0 1 1 0 0
0 0 1 0 1


 ,

where R is the matrix consisting of the transmission modes (independent
sets in the link graph). Routing matrix A maps the capacity constraints of
the links to that of flows. In this case,

A =


 1 0 0 1 1

0 1 0 1 0
0 0 1 0 0


 .

We note that in this example the link graph is triangulated (i.e. it con-
tains no induced cycles other than triangles) and thus a perfect graph (cf.
[Die00]). Publication 5 shows that in this case one obtains the inequality
form of the capacity set by identifying the sets of mutually contending trans-
missions, i.e. sets of transmissions contending for a common time slot. Such
transmissions constitute a clique in the corresponding link graph. Each
clique q imposes a necessary condition on the bandwidth allocation, which
is also sufficient in the perfect graph case. The most stringent set of con-
ditions is set by the maximal cliques, i.e. cliques that are not a subset of
another clique. Thus, we have the necessary conditions for a feasible band-
width allocation

∑
l∈q

3∑
i=1

φi(x)Ail ≤ 1 , ∀q ∈ Q , (4.16)
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where Q denotes the set of all maximal cliques. The maximal cliques can
be enumerated, e.g., by an algorithm from [BK73].

Equations (4.16) define thus the capacity set in form (4.1) with

A =


 3 2

2 1
0 1


 , C =

(
1 1

)
.

4.7 Computational aspects of balanced fairness in wireless multihop networks

In this section we adapt the concept of balanced fairness to wireless net-
works. We define the general form of recursion for capacity sets which are
characterized by the instantaneous rate vectors. The recursion step takes
the form of LP problem, the solution of which can be facilitated by utilizing
the corresponding results from previously computed states.

If the capacity set is defined as the convex hull of available link rates,
we may rewrite the recursion step (4.8) as the following LP problem:

Φ(x)−1 = max
t,β

β,

tR ≥ βΘ(x),
teT = 1,
t ≥ 0,

(4.17)

where β = 1/α and Θ(x) = {Φ(x− e1), . . . , Φ(x− eN)}A. Here A is the
routing matrix.

By dividing the constraints by β and changing the variable as t/β → q,
we get rid of the parameter β and can write the problem more compactly

Φ(x) = minq qeT,
qR ≥ Θ(x),

q ≥ 0.
(4.18)

Each component of the vector q represents here the duration an ex-
tremal rate vector (a given transmission mode) is used. One may imagine
the vector Θ(x) in the space spanned by the link capacities and the LP
problem is now to express Θ with the help of rate vectors R using the min-
imal total time.

Publication 6 suggests an efficient computational algorithm for the prob-
lem. The important observation is that only Θ(x) in (4.18) depends on the
state of the system. Therefore, we suggest to apply the LP duality [BSS93]
to devise an efficient computational method to solve the balance function.

The dual problem of (4.18) is given by

Φ(x) = maxy Θ(x)yT,
yRT ≤ e,

y ≥ 0.
(4.19)

The dual problem has the same optimum value as (4.18), see ([BSS93]),
but its advantage is that the constraints do not depend on Θ(x). Hence, an
optimal solution y∗ to the problem in state x is also a feasible solution for
the dual problem in any other state x′.

ALGORITHMS AND PERFORMANCE EVALUATION METHODS FOR WIRELESS NETWORKS 45



This leads us to propose integrating the recursion and the solution of
the LP problem into a single problem. The idea of the approach is to
calculate the new value of the balance function in the recursion by using a
stored solution of (4.19) in some previously calculated state. If the solution
is not optimal, we can update it by the standard simplex iterations (cf., e.g.,
[BSS93]) until the optimum is found.

Compared to the standard simplex method applied to the primal prob-
lem (4.18), this approach has two significant advantages.

• We need to find only one starting feasible solution for the whole
recursion. In contrast, solving the LP problem by standard means
would first require finding a feasible starting solution at each state.

• Given that the iteration is started from the optimal solution for a state
which is close (possibly adjacent) to the current one, the simplex iter-
ation converges in a very small number of steps to the optimum. The
number of iterations the simplex method would require to converge
to the optimum from a arbitrary feasible solution could be large.

Although the algorithm can be elegantly described using the simplex
and the dual problem, it is often more efficient to apply the dual simplex
algorithm ([Tah97]) directly to the primal problem (4.18), which is then
supplemented with slack variables.

In the dual simplex algorithm we store the optimal bases (sets of rate
vectors defining the solution) of the primal solutions instead of the solu-
tions themselves. By duality, the bases satisfy optimality conditions but are
not necessarily feasible. A dual simplex iteration first checks whether the
current basis is feasible (and thus optimal), i.e. whether the corresponding
facet of the capacity set is penetrated by the direction Θ(x), and if not,
replaces one of the rate vectors in the basis by another thus defining a
neighboring facet. Thus the algorithm searches the intersection point by
“crawling” towards the point facet by facet on the surface of the capacity
set. Publication 6 discusses additional computational aspects related to the
formulation.

Although the computational difficulty of the recursion is generally dom-
inated by the number of states instead of the per-state effort, significantly
more complex systems to be analyzed numerically by the presented algo-
rithm.

4.8 Analysis of a case study

We present the system described in Publication 7 here as an example of
the modeling process involved in the balanced fairness approach. We com-
pare the system performance under balanced fairness with two alternative
resource allocation schemes: maximum throughput and max-min fairness.
To facilitate the analysis under the alternative schemes we develop a novel
approximation scheme referred to as value extrapolation.

System description
Two base stations, A and B, are used in a co-ordinated fashion to serve
elastic traffic, or file downloads, destined to users located on a road between
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Figure 4.2: Example system with two base stations. Areas A1 and A2 are
served by the station A and areas B1 and B2 are served by the station B. If
both the stations are active simultaneously the maximum rate at A2 or B2
decreases from R1 to R2 due to interference.

the base stations, cf. Figure 4.2. The base station nearest to the user is
always used for connection. Link adaptation is modeled as follows. Close
to the base stations (in areas A1 and B1) the total downlink rate is always
R1 irrespective of the state of the other station. Further away (in areas A2
and B2) the capacity remains at R1 only if the other station is not active
simultaneously, otherwise the rate decreases to R2 due to interference.

We describe the system state by the vector x = (x1, x2, x3, x4), giving
the number of active flows in each area A1, A2, B2, B1, respectively. We use
the term flow class interchangeably with the term area. The state space of
the system is given by S = {x1, x2, x3, x4 | xi ≥ 0, ∀i}. In computations
we use a truncated state space which is denoted by S′.

As the system state evolves dynamically, we need to fix a policy defining
how the network resources are used in any given state. In each state of the
system, a policy defines a rate allocation which corresponds to a rate vector
φ(x) = (φ1(x), φ2(x), φ3(x), φ4(x)) giving the total rate for each class.
The total rate is shared evenly among the flows which belong to a same
class by time sharing.

The set of feasible allocations is determined as follows. Let R be the
matrix comprising of row vectors each of which specifies an instantaneous
transmission mode under the constraints described above:

R =




R1 0 0 R1

0 R2 R2 0
R1 0 R2 0
0 R2 0 R1

0 R1 0 0
0 0 R1 0




. (4.20)

For example, the first row of R represents the mode where both base sta-
tions serve the flows in the nearest class (areas A1 and B1 are being served),
the second row represents the mode where both the stations are active and
serve the traffic in the center-most areas. The policy rate vector φ can take
the form of any row of R and, additionally, any convex combination of the
rows. These are available through time multiplexing, which is assumed to
take place on a fast time scale compared to flow durations.

The alternative definition of the capacity set can be found by enumer-
ating the bounding facets of the convex hull of available rates. The feasible
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rate vectors φ(x) are constrained by φ(x)A ≤ C, where,

C =
(

1 1 1 1
)
.

Assuming that 1
2R1 < R2 < R1,

A =




1
R1

0
R2

R2
1

R1 −R2

R2
1

1
R1

0
1

R1

R1 −R2

R1R2

0
1

R1

R1 −R2

R1R2

1
R1

0
1

R1

R1 −R2

R2
1

R2

R2
1




.

In the case that 0 < R2 < 1
2R1 the same matrix applies with the exception

a33 = a24 =
1

R1
.

Value extrapolation
In order to compare the system performance under balanced fairness to
that under max-min fairness and maximum throughput policy we assume
that the system behaves like a Markov system, i.e. the flows arrive according
to a Poisson process and the flow sizes are exponentially distributed. To
facilitate the analysis of the other operational policies, we introduce a novel
approximation scheme referred to as value extrapolation.

The idea of the value extrapolation is to consider the system in the MDP
(Markov Decision Processes) setting, cf., e.g., [Tij94, Dzi97], and to solve
the expected value of a performance measure from the Howard equations
written for a truncated state space. Instead of a simple truncation, the rel-
ative values of states just outside the truncated state space are estimated
using a polynomial extrapolation based on the states inside. This leads to a
closed system and, unless the system is heavily loaded, allows one to obtain
accurate results with remarkably small truncated state spaces. Here we give
a formal definition of the method.

A policy ω specifies a feasible capacity allocation in each state. When a
policy ω is given, the state transition intensities qx,y(ω) are known. Assume
now that the performance measure is described as a revenue rate rx(ω)
at state x and that we are interested in the expected performance of the
system as it evolves in time, i.e. the mean revenue rate r(ω). Although this
measure can be determined using the steady state probabilities as

r(ω) =
∑

x

rx(ω)π(x),

the probabilities are computationally tedious to obtain, as discussed above.
An alternative characterization of r(ω) provides a way to approximate r(ω)
with significantly higher accuracy.

48 ALGORITHMS AND PERFORMANCE EVALUATION METHODS FOR WIRELESS NETWORKS



Let vx(ω) be the relative value of state x, i.e. the expected difference in
cumulative revenue over infinite time horizon when starting from state x
rather than from equilibrium:

vx(ω) = E

[∫ ∞

0

(rX(t)(ω)− r(ω)) dt

 X(0) = x

]
,

where X(t) is the state process. With a given policy and performance mea-
sure, the steady state average revenue rate can be determined by solving the
so-called Howard equations [Tij94],

rx(ω)− r(ω) +
∑
y∈S

qx,y(ω)(vy(ω)− vx(ω)) = 0, ∀x. (4.21)

In the truncated state space there are |S′| equations and |S′|+ 1 variables.
The expected state values are fixed only up to an additive constant, because
only the differences vy(ω) − vx(ω) occur in the equations; hence we may
set, e.g., v0(ω) = 0. Note that the mean revenue rate r(ω), our perfor-
mance measure, is one of the unknown variables solved from this group of
equations.

The idea of the value extrapolation method is to calculate r(ω) in a
truncated state space, which essentially means that we assume something
on the behavior of the relative values outside the truncated state space.
The simplest truncation to some set S′ is to set qx,y = 0 ∀x ∈ S′, y /∈ S′.
Regarding to the relative values of the states, this corresponds to setting
v(. . . , N + 1, . . .) = v(. . . , N, . . .) in the Howard equations, where N is
the maximum number of flows in the truncated state space.

The truncation can be done more intelligently if the relative values of
the states behave smoothly outside the truncated state space. More accurate
results are achieved if the outside values are extrapolated using the values
inside the region. First order polynomial extrapolation is

v(. . . , N + 1, . . .) = 2v(. . . , N, . . .)− v(. . . , N − 1, . . .),

and the second order extrapolation is

v(. . . , N+1, . . .) = 3v(. . . , N, . . .)−3v(. . . , N−1, . . .)+v(. . . , N−2, . . .).

A strong motivation for this procedure is that the value extrapolation
leads to exact results in certain simple cases. Consider for example an
M/M/1-queue, with a policy that allows free entry to the system and with a
cost (negative of the revenue) reflecting the total time in the system (which
by Little’s result is proportional to the mean queue length). The cost rate
in a given state is then simply the number of customers in that state, i.e.
the state index itself. Let arrival rate be λ, service rate µ and denote ρ = λ

µ .
Now the Howard equations can be written as

i− r + λ(vi+1 − vi) + µ(vi−1 − vi) = 0, ∀i > 0.

The equations are clearly solved by

r =
ρ

1− ρ
, vi+1 − vi =

i + 1
µ− λ

,
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from which by setting v0 = 0, we get

vi =
1
2

i(i + 1)
µ− λ

.

The behavior of the relative value is a simple quadratic polynomial of the
state variable. Thus, extrapolating the relative value with the second order
extrapolation yields exact value for r(ω) no matter how small the truncated
space is. It can be reasoned that for any system with cost related to the
time in system, the relative values of states are at least asymptotically (i.e.
for higher states) quadratic functions of the state occupancy and therefore
one can expect the second order extrapolation to work reasonably well.

The advantage of value extrapolation is that even a few states in the
truncated state space may be enough to get relatively accurate estimates
for the performance measure. The downside is that the Howard equations
need to be solved. The efficiency of value extrapolation is demonstrated in
an example in Publication 7.

Performance of the system
As an example we study the mean number of flows in the system without
detailed class separation. The detailed analysis can be found from Publica-
tion 7. Note that in this analysis we assume Poisson arrivals and exponential
flow sizes.

We compare the following operating policies:

• Static policy. The scheduling is fixed so that each class receives equal
and constant rate irrespective of the number of flows in the classes.

• Maximum throughput policy. We solve the optimal policy for each
state in minimizing the mean flow duration from the Howard equa-
tions by a method called the policy iteration [Tij94].

• Max-min fair policy. In each state we allocate the bandwidth to flows
according to the max-min fair criterion: A rate allocation is max-min
fair if and only if any flow rate cannot be increased at the expense of
any higher rate.

• Balanced fairness. As described in previous section.

Figure 4.3 illustrates the mean number of active flows with different
system loads. The MDP policy has the best performance but the dynamic
policies are all almost equal. The static policy of allocating equal band-
width to all the classes regardless of the system state is significantly worse
than the dynamic policies.

This example illustrates clearly the advantages of balanced fairness. The
computational effort is significantly lighter compared to the analysis with
other policies. With BF one has to go the state space through only once
and no matrix inversion is needed. Value extrapolation facilitates the anal-
ysis of other policies. We observe also that BF seems to be a reasonable
approximation of the performance of the system in the dynamic setting.
We reiterate that the results under BF remain insensitive to traffic details
unlike under other policies.
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Figure 4.3: Mean number of active flows with parameters R1 = 5 and
R2 = 1

4.9 Approximative methods in balanced fairness

While straightforward in principle, the numerical evaluation of practically
interesting performance metrics like per-flow throughput is feasible for lim-
ited state spaces only, besides some specific networks where the results are
explicit. Publication 8 takes another approach to the performance analysis,
which will be presented in this section. We study the behavior of balanced
fairness in light and heavy traffic regimes and show how the corresponding
performance results can be used to approximate the flow throughput over
the whole load range. The results apply to any network, with a state space
of arbitrary dimension.

The organization of this section is as follows. First we show how the
flow throughput and its derivative on low loads can be determined from
the balance function. Then the corresponding analysis is carried out at the
capacity limit of the system. We separate the cases when the capacity set
is (a) a polytope and (b) arbitrary smooth boundary. Finally the light and
heavy traffic regimes are combined in an interpolation scheme.

Flow throughput under light traffic
The light traffic regime (when ρ → 0) can be seen as an empty system to
which a single flow of studied class arrives. By (4.10), the throughput of the
flow is ai, but how does the throughput behave when we start increasing
the load in given proportions?

To this end we determine the derivative of the throughput at zero load.
We use the recursion (4.8) to calculate the normalization constant (4.6)
up to the second order (i.e., only the states up to occupation

∑
i xi = 2

are taken into account). Using the scale-free balance function ϕ(x) dis-
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cussed in Section 4.2, recalling that ϕ(0) = ϕ(ei) = 1, and introducing
the shorthand notation ϕij = ϕ(ei + ej), we have

G(ρ) = 1 +
∑

i

ρi

ai
+
∑
i≥j

ϕij
ρiρj

aiaj
+ . . . , (4.22)

where ϕii = 1 and, in view of (4.8),

ϕij = min{α :
aiei + ajej

α
∈ C} ∀i �= j. (4.23)

The parameter ϕij can be described as the contraction factor needed to
bring an ai × aj rectangle inside C, as depicted in Figure 4.4. Since C is
convex, we have 1 ≤ ϕij ≤ 2 for all i, j.

In the case of a polytope capacity set (4.1), expressions (4.10) and (4.23)
take the forms


ai = min

l=1,...,L

Cl

Ail
,

ϕij = max
l=1,...,L

aiAil + ajAjl

Cl
∀i �= j.

(4.24)

ai

�i

�j

ai/ i, j�

aj/ i, j�

aj

Figure 4.4: The contraction factor ϕij .

In order to study the behavior of the flow throughput we define a load
line with a given traffic profile p = (p1, . . . , pN), with |p| = 1. By this
we mean the set of all ρ ∈ C such that the proportions of the loads in
different classes are given by p. Let ρ̂ be the end point of the load line
on the boundary of C. Then the load line consists of points rρ̂, where
r ∈ [0, 1]. We wish to characterize the function γi(r) on a given load line.
Using (4.12) and (4.22) we easily find


γi(0) = ai,

γ′
i(0) = −

(
ρ̂i + ai

∑
j �=i

ρ̂j
ϕij − 1

aj

)
.

(4.25)

It is worth noting that in order to calculate this derivative what is essentially
only needed are the values of the ϕij and these can easily be found by the
pairwise consideration of (4.23) as illustrated in Figure 4.4.
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Flow throughput under heavy traffic: polytope capacity set
A polytope capacity set (4.1) arises when flows are contending for L re-
sources with respective capacities C1, . . . , CL, and each unit of bandwidth
allocated to class-i flows requires Ail units of capacity from resource l. As
shown in [BMPV06], this model describes a rich variety of communication
networks.

Let ρ̂ be a load vector on the boundary of the capacity set and denote
by 
̂ = ρ̂A the corresponding resource demand vector. Note that 
̂l = Cl

for all l in some non-empty set L of resource indices (otherwise, ρ̂ would
not be on the boundary of the capacity set). As in the light traffic analysis,
we denote by γi(r) the class-i flow throughput on the load line rρ̂, where
r ∈ [0, 1]. We are interested in the derivative γ′

i(1) for those classes i such
that γi(1) = 0.

A single saturated resource. If L reduces to a single resource l, we have
γi(1) = 0 if and only if class-i flows use resource l, that is if Ail > 0. For
these classes, the heavy traffic regime is then determined by that resource
only, in the sense that:

γi(r) ∼
Cl

Ail
(1 − r), (4.26)

when r → 1, from which we deduce:

γ′
i(1) = − Cl

Ail
.

This is the result one would obtain if there were no other resource con-
straint than l. Note that the derivative depends on the direction ρ̂ through
the saturated constraint l only.

The asymptotic result (4.26) is a consequence of the following general
bounds [BP04]:

max
k=1,...,L

Aik

Ck − 
k
≤ γ−1

i ≤
L∑

k=1

Aik

Ck − 
k
. (4.27)

Recall that γ−1
i corresponds to the ratio of the mean duration to the mean

size for class-i flows. The left-hand side inequality means that the mean
flow duration is higher than if there were no other resource constraint than
k, for all k = 1, . . . , L; the presence of other resources makes data transfers
longer. The right-hand side inequality means that the mean flow duration
is less than the sum of the mean flow durations due to each individual
resource constraint. We refer to this inequality as the store-and-forward
bound since it was originally derived in [BP04] in the context of wired
networks with single-path routing: the mean flow duration increases when
flows are successively transmitted, in a store-and-forward way, on each link
of their path in the network. While the bounds (4.27) are proved in [BP04]
in the particular case where the elements of the matrix A are equal to 0 or
1, the same inequalities are satisfied for a general matrix A. The proof is
essentially the same as in [BP04].
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The resource demand vector is equal to r
̂ as a function of r, where
r ∈ [0, 1]. If L reduces to a single resource l, it follows from (4.27) that

Ail

Cl(1− r)
≤ γ−1

i ≤ Ail

Cl(1 − r)
+
∑
k �=l

Aik

Ck − r
̂k
.

where we used the fact that 
̂l = Cl. The asymptotic result (4.26) then
follows from the fact that 
̂k �= Ck for all k �= l.

Several saturated resources. When the set L consists of more than one
resource, we have γi(1) = 0 if and only if class-i flows use at least one
resource in L, that is if Ail > 0 for some l ∈ L. While the asymptotic
values of the bounds (4.27) do not coincide, it is conjectured that the heavy
traffic regime is given by the store-and-forward bound, namely

γi(r) ∼
1− r∑

l∈L Ail/Cl
,

from which we deduce:

γ′
i(1) = − 1∑

l∈L Ail/Cl
. (4.28)

This is suggested by the result of Schweitzer [Sch79] who proved that the
throughputs in multiclass closed networks with a large number of customers,
which correspond to the store-and-forward model in heavy traffic, are given
by the proportional fair allocation and the results of Massoulié [Mas05]
showing the asymptotic equivalence of proportional fairness and balanced
fairness. A check with the examples presented in [BV04, BMPV06] con-
firms that the heavy traffic regime is indeed given by expression (4.28).

Again, the derivative (4.28) depends on the direction ρ̂ through the set
of saturated constraints L only, i.e. the derivatives have constant values on
any given facet of the polytope, similarly on any given edge between two
facets, etc. In particular, the flow throughput is not a continuous function
of the load vector ρ̂: in approaching the boundary of the capacity set, the
flow throughput behaves differently depending on how many constraints
are saturated at ρ̂. Thus the directional derivative of the flow throughput
has discontinuities at edges of the boundary where two or more facets of the
polytope meet.

Flow throughput under heavy traffic: capacity set with a smooth bound-
ary
When the capacity set is constrained by a smooth surface instead of a poly-
tope, virtually no exact results are known. Since on a facet of a polytope the
directional derivative depends only on the facet plane itself and any smooth
surface can locally be approximated by its tangent plane, it is tempting to
think that the directional derivative of the throughput at any point ρ̂ on the
boundary is determined as soon as the tangent plane at ρ̂ is known. This
thinking, however, is fallacious. The difficulty becomes obvious if one tries
to approximate the boundary by a polytope and considers the limit when

54 ALGORITHMS AND PERFORMANCE EVALUATION METHODS FOR WIRELESS NETWORKS



the polytope becomes denser. Depending on whether ρ̂ is on a facet of the
approximating polytope or at an edge of two or more facets, one gets a dif-
ferent result. There seems to be no simple way to resolve this ambiguity in
the limit process.

There is, however, a special system with curved boundary that yields
to exact analysis, viz. the case where the boundary of the capacity set is
a N -dimensional Lα-ellipsoid. In Publication 8 we derive the directional
derivative of throughput at the capacity limit for the corresponding scale-
free Lα-sphere. Here we present the result in the general case of an ellip-
soid, obtained by the scaling transformation, cf. Section 4.2.

The Lα-ellipsoid is defined by the surface(
φ1

a1

)α

+ · · ·+
(

φN

aN

)α

= 1, α > 1,

where the ai, i = 1, . . . , N , are positive scaling constants and α parame-
terizes the curvature. The asymptotic throughput is obtained by rescaling
from the results in the Appendix of Publication 8,

γi =
2 ai

(N + 1)α− (N − 1)
1− (( ρ1

a1
)α + · · ·+ ( ρN

aN
)α)

( ρi

ai
)α−1

. (4.29)

Now consider the directional derivative of γi along the load line defined by
the traffic profile (p1, . . . , pN ), i.e.,

ρ̂i =

(
pα

i

( p1
a1

)α + · · ·+ ( pN

aN
)α

)1/α

.

Substituting ρ = rρ̂ into expression (4.29) and forming the derivative with
respect to r yields

γ′
i(1) = − 2 αai

(N + 1)α− (N − 1)

(
( p1

a1
)α + · · ·+ ( pN

aN
)α

( pi

ai
)α

)α−1
α

. (4.30)

When N = 2, the result is useful as any smooth curve at a given point can
be approximated up to second order by an Lα-ellipsoid, so that the two first
derivatives match to those of the original curve, cf. Publication 8. In systems
with smooth capacity set and N > 2, further research is required to find
alternative methods of determining the derivative of the flow throughput at
the capacity limit.

Approximating throughput by interpolation
In this section we demonstrate how the above light and heavy traffic results
can be used to find an approximate throughput function along given load
line, ρ = rρ̂, r ∈ [0, 1].

There are two steps in our approach. First, we find the low-load through-
put γi(0) and its derivative γ′

i(0) using (4.25) and the derivative at capacity
limit γ′

i(1) using (4.28), when the capacity set is a polytope. If the capac-
ity set has a smooth boundary, the heavy traffic regime requires a different
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Figure 4.5: An access network with tree topology.

treatment. One can attempt to approximate the boundary with a system for
which the derivative is known. In case N = 2, a good approximation is
obtained by fitting the parameters a1,a2 and α of the Lα-ellipsoid so that
ρ̂ is on the ellipsoid and that the first and second derivatives of the ellip-
soid surface match those of the boundary of the original capacity set. Then
(4.30) yields the throughput derivative.

In the second step, having found γi(0), γ′
i(0) and γ′

i(1), we fit a rational
expression of the form

γ̃i(r) = γi(0)(1 − r)
1 + c r

1 + d r
, (4.31)

where c and d are free parameters, to give the right derivatives γ′
i(0) and

γ′
i(1). The form of this function is motivated by the observation that in

all explicitly solvable cases with a polytope capacity set, e.g., trees [BV04],
the throughput is given by a rational expression where the degree of the
numerator is higher by one than that of the denominator.

Tree network example. As an example consider an access network of tree
topology depicted in Figure 4.5. The network consists of 10 links and 9
flow classes (numbered according to the corresponding access link; class 3
does not exist). The capacity set is a polytope; the corresponding capacity
vector C and incidence matrix A follow similarly as in previous examples.

C = (16, 3, 12, 4, 2, 3, 6, 3, 2, 3),

A =




1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0 1 0
1 0 1 0 0 0 1 0 0 1




.

We wish to study the class-10 throughput along the load line with equal
traffic loads. The link that first becomes saturated is link 3. This happens
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Figure 4.6: Approximate and exact class-10 throughput of the tree network
with equal loads (upper and lower curves, respectively).

at ρ̂i = 12
7 for all i. A mechanical calculation using Eqs. (4.24) and (4.25)

then yields γ10(0) = 3 and γ′
10(0) = − 141

64 .
At the capacity limit with ρ̂i = 12

7 for all i, link 3 solely is saturated.
Then (4.28) immediately gives γ′

10(1) = −12. The same fitting proce-
dure as before yields the rational approximation shown in Figure 4.6 (up-
per curve). The lower curve represents the exact result that is available for
all tree networks [BV04] but with a heavier computational procedure. The
approximation is good, though there is a slight deviation in the heavy traffic
regime.

The reason for this deviation is basically the fact that even though link
3 only is saturated at the capacity limit, also link 1 is close to saturation:
its load is 9 · 12

7 ≈ 15.4 while its capacity is C1 = 16. In other words,
the considered load line ends on a facet of the polytope at a point that is
close to an edge. In such cases the directional derivative at the capacity
limit is not a very good descriptor of the overall behavior of the throughput
curve. Though the derivative given by (4.28) is correct at the very end of
the curve, the curve bends rather sharply and soon, with a load slightly
below the capacity limit, the derivative is closer to a value predicted by
(4.28) assuming all the constraints active at the edge to be saturated. In the
present example, if we do assume that also link 1 was saturated, then (4.28)
gives γ′

10(1) = −1/( 1
12 + 1

16 ) = − 48
7 . Using this value in the fitting renders

the match with the exact curve almost perfect (not shown in the figure).

4.10 Balanced fairness with continuous class indices

In this section we formulate the concept of balanced fairness for networks
with an infinite number of flow classes. We then give the low load expan-
sion for the flow throughput, allowing us to calculate derivatives at zero
load to any desired order.
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General formulation
We consider here the balanced fairness concept in systems where the flow
classes are indexed by a continuous variable x ∈ A ⊆ R

d. Flows are as-
sumed to arrive according to a Poisson process with the arrival density λ(x)
and to have the mean size 1/µ(x); the load density is denoted ρ(x) =
λ(x)/µ(x). Whereas in the discrete case the state of the system is spec-
ified by a vector where an entry for each class gives the number of flows
in that class, in the continuous index case we have to go to ‘sparse matrix
notation’ and instead describe the locations of the flows present in the sys-
tem. So the system state is specified by set of indices of the active flows
ξ = {x1, . . . , xn}, where n is any non-negative integer. The set of all pos-
sible states is denoted by Ξ. Note that ξ is an unordered set of indices, i.e.
any permutation of the indices in the set ξ gives just another, equivalent
label for the same state. We also assume that λ(x) has no atoms, whence
the probability that any two arriving flows have exactly the same index is
zero, so we can restrict ourselves to states where no two indices are equal.

As in the discrete case, the balance requirement is satisfied if the service
rates are of the form

φ(x, ξ) =
Φ(ξ\{x})

Φ(ξ)
, ∀x ∈ R

d, x ∈ ξ, ξ ∈ Ξ,

in which Φ(·) is an arbitrary function. In this case the state probability
density function reads

f(ξ) =
1
G

Φ(ξ)
∏
xi∈ξ

ρ(xi),

where G is the normalization constant.
Balanced fairness refers to the balanced allocation where the resource

usage is as efficient as possible. Let Cξ be the capacity set for the constella-
tion ξ. Analogously with the discrete case, cf. (4.8), the balance function is
defined recursively,

Φ(ξ) = min{α :
(Φ(ξ \ {x1}), . . . , Φ(ξ \ {xn}))

α
∈ Cξ},

that is, we remove the active flows in any order until we reach Φ(∅), which
can be fixed arbitrarily, e.g., Φ(∅) = 1. The system is stable if and only if
(ρ(xi), . . . , ρ(xn)) ∈ int(Cξ) for all ξ ∈ Ξ.

If the capacity set is a polytope, cf. (4.1), for all ξ, we may write

Φ(ξ) = max
l=1,...,Lξ

1

Cξ
l

n∑
i=1

Φ(ξ \ {xi})Aξ
il, (4.32)

where Cξ is a vector of length Lξ and Aξ is an n×Lξ matrix, both defined
for the constellation ξ.

Typically, determination of Aξ for all ξ is cumbersome and in numer-
ical evaluation of the recursion (4.32) one uses an alternative formulation
along the lines of (4.18). Applying this alternative representation, the bal-
ance function Φ(ξ) is evaluated recursively as follows:
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1. Enumerate all m possible rate vectors for the constellation ξ. These
vectors form the rows of the m×n rate matrix Rξ. Only the spanning
rate vectors need to be included, but it is not necessary to eliminate
any non-spanning vectors.

2. Denote Θ = (Φ(ξ \ {x1}), . . . , Φ(ξ \ {xn})), e = (1, . . . , 1) and
y = (y1, . . . , ym). Now the value of the balance function is obtained
from the LP problem

Φ(ξ) = min
y

e · yT,

yRξ ≥ Θ,

y ≥ 0.

Low load expansion
The normalization constant can be written as a series in terms of multiple
integrals with progressively larger number of active flows,

G = 1 +
∫

x∈A
Φ(x)ρ(x)dx +

+
1
2!

∫
x∈A

∫
y∈A

Φ(x, y)ρ(x)ρ(y)dxdy + . . . .

(4.33)

Here and hereafter, the concise notation Φ(x1, . . . , xn) def= Φ({x1, . . . , xn})
is adapted. The factorial in (4.33) compensates for the fact that in an n-fold
integral over the full range each state (unordered set of indices) appears n!
times. Hereafter, we suppress the integration limits with the understanding
that all the integrals are over the full range.

The throughput γ(x) is defined in the usual way,

γ(x) = lim
dx→0

ρ(x)
E [X(x, x + dx)] /dx

,

where X(x, x+ dx) is the number of flows in the interval (x, x+ dx). The
expectation of this occupancy can be identified from the normalization
constant by noting that the multiplier of dx in an n-fold integral gives the
unnormalized probability density of having n flows in the system, one of
them about point x, and that a given dx can be found at n places in an
n-fold integral. Thus we get,

γ(x) = 1+
R

Φ(y)ρ(y)dy+ 1
2!

RR
Φ(y,z)ρ(y)ρ(z)dydz+...

Φ(x)+
R

Φ(x,y)ρ(y)dy+ 1
2!

RR
Φ(x,y,z)ρ(y)ρ(z)dydz+...

. (4.34)

In general, calculating the throughput exactly from (4.34) is difficult.
However, it provides a means to expand the throughput in terms of the load
parameter. As in the discrete case we define the scale-free balance function
ϕ(x1, . . . , xn) = a(x1) · · · a(xn)Φ(x1, . . . , xn), where a(x) is the alloca-
tion for a sole flow with index x. Denoting 
(x) = ρ(x)/a(x) we expand
the expression to the second order, which is sufficient for, e.g., computation

ALGORITHMS AND PERFORMANCE EVALUATION METHODS FOR WIRELESS NETWORKS 59



of the two first derivatives at ρ(x)→ 0,

γ(x)
a(x) = 1−

∫
(ϕ(x, y) − 1)
(y)dy

− 1
2

∫∫
(ϕ(x, y, z)− ϕ(y, z))
(y)
(z)dydz

+
∫

ϕ(x, y)
(y)dy
∫

(ϕ(x, y)− 1)
(y)dy + . . . .

(4.35)

The throughput analysis of systems with continuous class index is gen-
erally more difficult than in the discrete class case. The light load behavior
is determined by the above equations and the throughput can be evaluated
from (4.34) to any desired order by applying, e.g., the Monte Carlo method
to the multiple integrals.

This is itself an important achievement, since for instance a straight-
forward process simulation (in time) of the system does not easily work for
determining γ(x), because in the simulation no samples are obtained with
the flow index exactly equaling x. In the heavy load regime, however, less
is known. We can determine the stability limit where the throughput goes
to zero but the directional derivative of the throughput at this limit is not
known (this problem is left for future work).

Example: a two-cell network
As an example we study a two-cell network in linear configuration illus-
trated in Figure 4.7. Mobiles are located on the segment between the two
base stations. The total load ρ is assumed to be distributed uniformly along
the unit distance between the base stations.

0 1

x

a(x)

b(x)

Figure 4.7: Linear two-cell system.

The system has three active transmission modes: either base station 1
is active, base station 2 is active, or both of them are active. Assuming a
continuous link adaptation we have an infinity of flow classes indexed by
the location x ∈ (0, 1). Each flow is served by the closest base station.
Now a(x), the maximum feasible rate of a mobile at point x, is achieved
when only the closest base station is active. When both the base stations
are active we denote the rate by b(x) with b(x) < a(x). For later use we
give a special notation x∗ for the point in (0, 1/2) where a(x∗) = 2 b(x∗).
If a(1/2) < 2 b(1/2), i.e. the equality is satisfied nowhere in the interval,
we define x∗ = 1/2.

We use the Shannon capacity formula with the standard signal attenu-
ation behavior

a(x) = log2

(
1 + x−α

ν

)
,

b(x) = log2

(
1 + x−α

ν+(1−x)−α

)
,
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where α is the attenuation exponent and ν is the normalized noise power
(normalized by the signal power at distance 1). The above formulae hold
for x ∈ [0, 1/2]. Values for x ∈ [1/2, 1] are obtained by symmetry, a(x) =
a(1− x) and b(x) = b(1− x).

By the results of [BBP05] we know that the capacity of the system is:

C =
(∫ x∗

0

1
b(x)

dx + 2
∫ 1/2

x∗

1
a(x)

dx
)−1

,

in the sense that the network is stable if and only if ρ < C. To further
analyze the system we consider the derivative at x when ρ→ 0. We denote
it by γ′(x), though the derivative is taken with respect to ρ (and not x). It
follows from (4.35) that:

γ′(x) = −a(x)
∫ 1

0

ϕ(x, y) − 1
a(y)

dy. (4.36)

To compute ϕ(x, y) we need to construct the capacity set Cξ separately
for all flow pairs (x, y). Without loss of generality we may assume that
x ∈ (0, 1/2). Then the numerator of the integrand can be split into three
different cases (cf. Figure 4.8):

ϕ(x, y) − 1 =

=




1, y ≤ 1/2,

min
(

1,
a(x)
b(x)

(1− b(y)
a(y)

)
)

, 1/2 < y ≤ 1− x,

min
(

1,
a(y)
b(y)

(1− b(x)
a(x)

)
)

, 1− x < y ≤ 1,

which allows numerical evaluation of (4.36).

0 x 1-x 1½

�x �x �x

�y �y �y

Figure 4.8: Balanced fair allocation for two flows at x (fixed) and y (three
different regions).

As mentioned above, the derivative of the throughput at the capacity
limit is a difficult problem, but we may still fix the two parameters of an
interpolating function of the form (4.31) if we match also the second order
derivative at load ρ → 0. The second derivative can be found analogously
to the first order case starting from (4.35). For brevity, the details are omit-
ted. Figure 4.9 shows the resulting approximative throughput curves for
the whole load range for flows located at points x = 0.1, 0.3, 0.5, with the
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assumed system parameters α = 3 and ν = 1. The figure presents also the
numerical evaluation of (4.34) when the integrals both in the numerator
and denominator were calculated up to 3rd, 5th and 8th order by Monte
Carlo integration (numerical evaluation of the balance function in the LP
form). This shows that a direct calculation of the throughput from the low
load expansion is possible up to about one half of the maximum load, and
it also suggests that the interpolation approximation is accurate.

1 2 3 4 5 6 7

2

4

6

8

10
γ
(x

)

ρ

Figure 4.9: Flow throughput at points x = 0.1, 0.3, 0.5. Fitted rational
functions are represented by thick lines. The results of numerical evalua-
tion of (4.34) with integrals up to 3rd, 5th and 8th order are also shown.

4.11 Summary and conclusions

The present work has developed the concept of balanced fairness in two
directions. First, we have presented ways in which flow-level performance
analysis can be carried out in wireless networks. Second, we have intro-
duced several computational methods, which allow larger systems to be
analyzed. These include the following:

1. By suitably combining solving of the balance function recursion and
the related LP problem, we efficiently minimize the per-state compu-
tations in numerical evaluation of the balance function. This method
is feasible for all systems in which the link capacity set is given in
terms of the instantaneous rate vectors.

2. By utilizing the values and derivatives of flow throughput at zero load
and at the capacity limit, we can approximately evaluate almost any
system along a given load line.

3. The introduction of continuous class indices makes possible the in-
clusion of, e.g., spatial characteristics of flows in the model.

4. If the link graph representing interference is a perfect graph, we may
enumerate the cliques of the link graph to obtain the basic polytope
form of the balance function recursion. This greatly facilitates the
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computation of the recursion. Although the clique constraints are
not sufficient for all systems, the constraints may be utilized as an
approximation giving an upper bound for the performance.

Balanced fairness has emerged as an efficient performance analysis tool
for communications networks. Whereas the existing work on balanced fair-
ness has mainly considered fixed networks and solutions in simple exam-
ples, the focus of the work presented in this chapter has been especially on
the large-scale application of BF. We have participated in the development
of the concept by extending the analysis outside the wireline network do-
main and addressed the problems that arise when the system is no longer
amenable to a closed-form solution.

We have provided a general computational framework for analysis of
any wireless multihop network under balanced fairness resource sharing.
Despite the unavoidable state space explosion, we have significantly ex-
panded the reach of numerical performance analysis, both in problem size
and achievable accuracy. Further development of computational schemes
in the context, along with many problems related to routing and schedul-
ing, depends on evolution of wireless network models. The capacity set
of a given wireless system may be difficult to determine in the inequality
form. On the other hand, the number of different instantaneous rate vec-
tors is typically huge, which makes also the LP formulation difficult. The
question is whether one can devise a model that adequately captures the ef-
fects of radio interference, but for which the capacity set can be determined
without excessive computational effort.

The proposed approach of interpolating the throughput performance
is an important step in analyzing the flow throughput in systems of arbi-
trary size. Along with the improved bounds for BF presented in [Bon06]
the approximation scheme represents the current state-of-the-art flow-level
analysis methods for general networks. In this context we have identified
three tasks for further research. The capacity limit derivative remains to be
derived for systems with a smooth capacity set (with N > 2) and for systems
with continuous class indices. The third, and theoretically most impor-
tant, task is to provide a formal proof of the conjecture of the asymptotic,
heavy load behaviour being defined by the store-and-forward bound. This
is closely related to the plausible conjecture on asymptotic equivalence of
balanced fairness, proportional fairness and store-and-forward.
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[Mas05] Laurent Massoulié. Structural property of proportional fair-
ness: stability and insensitivity. Annals of applied probability,
2005. Submitted.

[MAW96] Nick McKeown, Venkath Anantharam, and Jean Warland.
Achieving 100% throughput in an input-queued switch. In
Proceedings of IEEE INFOCOM, pages 296–302, March
1996.

[McK99] Nick McKeown. The iSLIP scheduling algorithm for input-
queued switches. IEEE/ACM Trans. Netw., 7(2):188–201,
April 1999.
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