Helsinki University of Technology Laboratory for Theoretical Computer Science
Research Reports 104

Teknillisen korkeakoulun tietojenkasittelyteorian laboratorion tutkimusraportti 104
Espoo 2006 HUT-TCS-A104

AUTOMATA AND LINEAR TEMPORAL LOGIC: TRANSLATIONS
WITH TRANSITION-BASED ACCEPTANCE

Heikki Tauriainen

A

TEKNILLINEN KORKEAKOULU

TEKNISKA HOGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITAT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science
Research Reports 104
Teknillisen korkeakoulun tietojenkasittelyteorian laboratorion tutkimusraportti 104

Espoo 2006 HUT-TCS-A104

AUTOMATA AND LINEAR TEMPORAL LOGIC: TRANSLATIONS
WITH TRANSITION-BASED ACCEPTANCE

Heikki Tauriainen

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of
the Department of Computer Science and Engineering, for public examination and debate in Auditorium
T2 at Helsinki University of Technology (Espoo, Finland) on the 27th of October, 2006, at 12 o’clock
noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu
Tietotekniikan osasto
Tietojenkasittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science
P.0.Box 5400

FI-02015 TKK, FINLAND

Tel. +358 9 451 1

Fax. +358 9 451 3369

E-mail: lab@tcs.tkk.fi

URL: http://www.tcs.tkk.fi/

(© Heikki Tauriainen

ISBN 951-22-8343-3
ISSN 1457-7615

Electronic Edition
September 2006

ABSTRACT: Automata theory provides powerful tools for designing and im-
plementing decision procedures for temporal logics and their applications to
the automatic verification of systems against their logical specifications. Im-
plementing these decision procedures by making use of automata built from
the systems and their specifications with translation procedures is challenging
in practice due to the tendency of the automata to grow easily unmanageably
large as the size of the systems or the logical specifications increases.

This thesis develops the theory of translating propositional linear time
temporal logic (LTL) into nondeterministic automata via self-loop alternat-
ing automata. Unlike nondeterministic automata, self-loop alternating au-
tomata are expressively equivalent to LT'L and allow a conceptually simple
translation of LTL specifications into automata using a set of rules for build-
ing automata incrementally from smaller components. The use of general-
ized transition-based acceptance for automata throughout all constructions
gives rise to new optimized translation rules and facilitates designing heuris-
tics for the minimization of automata by making use of language contain-
ment tests combined with structural analysis of automata. The generalized
definition also supports the translation of self-loop alternating automata into
nondeterministic automata by essentially applying the standard subset con-
struction; this construction can be further simplified and optimized when
working with automata built from LTL formulas. The translation rules can
also be used to identify a syntactic subclass of LT'L for which the exponential
increase caused by the subset construction in the number of states of the au-
tomaton can always be avoided; consequently, the satishability problem for
this subclass, which is shown to extend related subclasses known from the
literature, is NP-complete. Additionally, the emptiness of generalized non-
deterministic automata is shown to be testable without giving up generalized
transition-based acceptance by using a new variant of the well-known nested
depth-first search algorithm with improved worst-case resource requirements.

KEYWORDS: linear time temporal logic, alternating automata, nonde-
terministic automata, transition-based acceptance, minimization, nondeter-
minization, emptiness checking, nested depth-first search

TIIVISTELMA: Automaattiteorian avulla voidaan suunnitella ja toteuttaa
temporaalilogiikkojen ratkaisumenetelmii sekd ndiden menetelmien sovel-
lutuksia logiikoilla jérjestelmisti esitettyjen oikeellisuusvaatimusten tietoko-
neavusteiseen verifiointiin. Kiytinnossi ndiden ratkaisumenetelmien toteut-
taminen kiintimilli jirjestelmiit ja niiden oikeellisuusvaatimukset automaa-
teiksi on kuitenkin haasteellista, sillii niiisti automaateista tulee jirjestelmien
tai loogisten vaatimusten koon kasvaessa helposti niin suuria, ettei niitid endi
voida kisitelld.

Tissd viitoskirjassa kehitetdidn lineaarisen ajan temporaalilogiikan (LTL)
epideterministisiksi automaateiksi kidntimisen teoriaa kiyttdmilld kddnnok-
sen apuna vain yhden tilan silmukoita sisiltivid alternoivia automaatteja, joil-
la — toisin kuin epiddeterministisilli automaateilla — on sama ilmaisuvoima
kuin lineaarisen ajan temporaalilogiikalla. Titid logiikkaa voidaan kddntiid
niiksi automaateiksi soveltaen yksinkertaisia sdént6jd automaattien yhdisti-
miseksi vaiheittain keskendin yhi suuremmiksi automaateiksi. Kéyttimalld
yleistettyd siirtymipohjaista hyviksyvyyden miiritelmid automaateille kai-
kissa kiinnoksen vaiheissa voidaan niiin muodostettuja automaatteja sieven-
tdd uusin tavoin kiyttien apuna automaattien hyviksymien kielten vilisii si-
siltyvyyssuhteita sekd automaattien rakenteellisia ominaisuuksia. Yleistetyn
médritelmin ansiosta vain yhden tilan silmukoita sisiltivit alternoivat au-
tomaatit voidaan myos kidntidi edelleen epideterministisiksi automaateiksi
soveltamalla yleisesti tunnettua osajoukkokonstruktiota lihes sellaisenaan.
Tdmai konstruktio voidaan edelleen tehdi yksinkertaisemmin ja tehokkaam-
min LTT-kaavoista muodostetuille automaateille. Automaattikddnnoksessi
kiytettivien sddntojen avulla voidaan myos erottaa lineaarisen ajan tempo-
raalilogiikan syntaktinen osajoukko, jonka kaavat on mahdollista kidntia epi-
deterministisiksi automaateiksi ilman, etti automaattien tilojen mairi kas-
vaa osajoukkokonstruktion tavoin eksponentiaalisesti. Tisti tuloksesta seu-
raa, ettd kyseisen LTL:n osajoukon toteutuvuusongelma on NP-tiydellinen.
Osajoukko on samankaltaisia kirjallisuudessa aiemmin esiteltyji osajoukko-
ja aidosti laajempi. Viitoskirjassa esitetdin myos, kuinka epiddeterministisen
automaatin hyviksymin kielen tyhjyys voidaan tarkastaa luopumatta yleis-
tetysti siirtymédpohjaisesta hyviksyvyyden maéiritelméstd kiyttien algoritmia,
joka on uusi, huonoimman tapauksen vaatimuksiltaan tehokkaampi muun-
nos tunnetusta sisikkiisestd syvyyshakualgoritmista.

AVAINSANAT: lineaarisen ajan temporaalilogiikka, alternoivat automaatit,
epideterministiset automaatit, siirtymépohjainen hyviksyvyys, automaattien
sieventiminen, epddeterminisointi, tyhjyystarkastus, sisikkidinen syvyyshaku

CONTENTS

Preface xi
1 Introduction 1
2 Definitions and Basic Results 11
2.1 Mathematical Concepts and Notation 11
2.1.1 Sequences L. 11
2.1.2 w-Regular Expressions 12
2.2 Propositional Linear Time Temporal Logic 13
221 Syntax. 14
222 Semantics. 14
2.2.3 Positive Normal Form 16
2.3 Alternating Automata L 18
23.1 BasicConcepts, 20
2.3.2 Properties of Runs of Alternating Automata 27
233 Semi-Runs, 31
234 Seltloop Alternating Automata 35
3 Basic Automaton Translation 40
3.1 TranslationRules 41
3.1.1 Simple Observations 45

3.2 Sizes of Components in an Automaton Built from an LTL
Formula 50
3.2.1 Numberof States 50
3.2.2 Number of Transitions 52
3.2.3 Number of Acceptance Conditions 54
3.3 Correctness of the Translation 54
34 Reverse Translation 59
4 Nondeterminization of Self-loop Alternating Automata 68
41 UniformRunso 69
4.2 Nondeterminization Construction 74
4.2.1 Universal Subset Construction 75

4.2.2 Number of States and Transitions in a Nondetermin-
istic Automaton oL 79
4.2.3 Number of Acceptance Conditions 80
4.3 Automata with Acceptance Synchronized Runs 83
4.3.1 Acceptance Synchronicity 84
4.3.2 A Simplified Nondeterminization Construction . . . 85

4.3.3 Sufhicient Conditions for Acceptance Synchronization 86
4.3.4 Application to Translation of LTTL into Nondetermin-

istic Automatao 91

44 Languages Accepted by Subautomata of a Nondeterministic
Automatono 93
4.5 On-the-Fly Optimizations to Nondeterminization 94

CONTENTS vii

4.5.1 Detecting Redundant States Using Syntactic Impli-

cations 95
4.5.2 Merging Syntactically Language-F.quivalent States . . 97
4.6 The Subclass LTLN® 103
4.6.1 Completion to Nondeterministic Automata 103
4.6.2 Closure Properties of Translation Rules 105
4.6.3 Defnition of the Subclass 107
4.6.4 Relationships between Syntactic Subclasses of LTL . 108
4.6.5 ARemark on Satishability 114
5 Refining the Basic Translation Rules 117
5.1 Simple Optimizations 117
5.1.1 Subformulas with Commutative Main Connectives . 117
5.1.2 Transition Guard Simplification 117

5.2 Language Containment Checking between Self-loop Alter-
nating Automata Lo 118
5.3 Rule Preprocessing Using Language Containment 122
54 The AConnective 123
5.5 Binary Temporal Connectives 136
56 Discussion. Lo 146
5.6.1 Translation Example Revisited 146

5.6.2 Comparison of the Basic and the Refined Translation
Ruleso oo o 147
5.6.3 Extension of the Subclass LTLNP 151
6 Removing Redundant Transitions 156
6.1 Redundant Transitions and Language Containment 157

6.2 Detecting Redundant Initial Transitions by Transition Sub-
stitution 159
6.2.1 Redundant Transitions and Runs of an Automaton . . 159
6.2.2 ‘Transition Substitution 160

6.2.3 Substitutability and Redundant Initial Transitions of
Self-loop Automata L. 161

6.24 Reducing Language Containment Between Intersec-
tions of Languages to Language Emptiness 167

6.2.5 Compatibility with Nondeterminization of Automata
Built from LTL Formulas 168
6.2.6 FExamples 172
7 A High-Level Refined Translation Procedure 182
8§ Language Emptiness Checking for Nondeterministic Automata 185
8.1 Terminology 186
8.2 Degeneralization 187
8.3 Emptiness Checking Algorithm 190
8.3.1 Resource Requirements 194
8.3.2 Correctness of the Algorithm 196

8.3.3 Compatibility with Enhancements of Classic Nested
Depth-First Search 205

viii CONTENTS

9 Conclusion 209

Bibliography 215

CONTENTS ix

CONTENTS

PREFACE

CONTENTS

This report is the result of my postgraduate studies at the Laboratory for The-
oretical Computer Science of Helsinki University of Technology. I wish to
thank my advisor, Docent Keijo Heljanko, who originally introduced me into
the theory of model checking. Without the many discussions with him my
apprehension of many concepts and techniques about this subject would be
much poorer. I continue to be amazed by his wealth of ideas and his insight
to see the correctness or falsehood of ideas outright without the need to jump
into details, which can always be filled in if necessary. Indeed, countless re-
sults in this work owe their inclusion directly to his insight. His comments
on the numerous drafts of this constantly expanding work (and the time he
sacrificed in reviewing it) are much appreciated.

[am thankful also to my supervisor, Prof. Ilkka Niemeli, for his patience
and support throughout my postgraduate studies and for letting me be a
member of his research group at the Laboratory of Theoretical Computer
Science. [thank also Prof. Emeritus Leo Ojala for guiding me in the first
steps of my postgraduate studies, in particular, through his challenging and
educational seminars. I am grateful also to my colleagues Dr. Sc. (Tech.)
Tommi Junttila and Dr. Sc. (Tech.) Timo Latvala for conversations and co-
operation, Alexandre Duret-Lutz for discussions on explicit state language
emptiness checking algorithms and transition-based acceptance, and to Prof.
Orna Kupferman and Dr. Stephan Merz for their thorough pre-examination
reviews of this work. Finally, I wish to express my deepest thanks to my par-
ents, without whose tireless support and friendship I would not have had the
strength to finish this effort.

This work was supported financially by Helsinki Graduate School in Com-
puter Science and Engineering (HeCSE), Academy of Finland (Project
numbers 47754, 53695 and 211025), Finnish Funding Agency for Technol-
ogy and Innovation (TEKES), Department of Computer Science and En-
gineering at Helsinki University of Technology, and a personal grant from
Nokia Foundation. I wish to thank these institutions for making my full-time
postgraduate studies possible.

Xi

1 INTRODUCTION

Automata on infinite objects link the theory of reasoning about the correct-
ness of finite-state reactive and concurrent systems to the design of concrete
decision procedures for checking the satishability or validity of specifications
given in formal logic, and for the automatic verification of systems against
such specifications [Clarke and Emerson 1982a,b; Queille and Sifakis 1982;
Lichtenstein and Pnueli 1985] (a task commonly known as model checking).
The logical specifications define constraints on the computations of the sys-
tem, which are seen as infinite trees or sequences of finite sets of truth-valued
assertions that record the internal state of the system at discrete consecutive
instants of time. The connection between automata and logic arises from
the classic interpretation of automata as acceptors of sequences (words) or
trees, which are in this case identified with word or tree models of formulas
in the logic. For example, testing whether a system meets its specification
can be decided by checking that no computation of the system is accepted
by a finite automaton that distinguishes exactly those computations that do
not satisfy the specification from all possible computations [Vardi and Wolper
1986]. Such an automaton can be obtained automatically from the logical
specification by using a translation procedure for the logic. This general
approach to verification has led to the introduction of a wide variety of au-
tomata and corresponding translation and verification procedures designed
for capturing the expressive power of many linear and branching time logics
(see, for example, [Wolper et al. 1983; Vardi and Wolper 1986; Muller et al.
1988; Emerson and Jutla 1991; Emerson et al. 1993, 2001; Bernholtz et al.
1994; Vardi and Wolper 1994; Vardi 1996; Kupferman et al. 2000, 20017]).

The automatic analysis of structures built from formal descriptions of sys-
tems is challenging in practice, because the construction of the structures is
extremely sensitive to combinatorial explosion (known as the state space ex-
plosion problem; see, for example, the survey by Valmari [1998]). This same
problem concerns also the translation of specifications into automata, and its
severity depends on the expressiveness of the chosen specification logic. The
increasing computational complexity of working with increasingly expressive
(but still decidable) logics is reflected in automata translation procedures as
combinatorial explosion, the worst-case complexity of which can range from
polynomial to nonelementary in the length of the logical specification. The
struggle against the combinatorial explosion, which limits the size and scope
of specifications that can be realistically handled within the resources avail-
able in practice, has presented a need for translation procedures that aim to
avoid the worst case behavior in as many cases as possible.

This work focuses on automata translation and verification procedures
for specifications given as formulas of classic future-time propositional linear
time temporal logic (LTL) using special classes of alternating automata on
infinite words with generalized transition-based acceptance throughout all
constructions. The classic automata-theoretic verification procedure for LT'L
can be seen as a series of translations as shown in Fig. 1.1. The connection
between automata and LTL, this verification procedure, and the concepts
used in it are briefly introduced below.

1. INTRODUCTION 1

(simplification) (simplification) (simplification) system
(N (N (D

<« <« <« N
LTL spec- _, alternating , nondeterministic _, verifi-
ification wtml/, automaton cation

Fig. 1.1: The verification procedure for LTL as a series of translations

Background and Related Work

Logic, automata on infinite objects, and the LTL verification procedure.
The connection between logics and automata on infinite objects was first
used in the 1960s by Biichi [1962] and Rabin [1969] to prove decidabil-
ity results for monadic second-order theories of one and many successors,
respectively (see, for example, [Thomas 1990], for a survey of the classic re-
sults). In the 1980s, these automata were used to obtain decision procedures
for modal and temporal logics of programs. Streett [1981, 1982] applied
automata to the decision problem of extended propositional dynamic logic;
Wolper et al. [1983] and Vardi and Wolper [1994] used automata-theoretic
techniques for deciding linear time temporal logics based on the extended
temporal logic of Wolper [1981, 1983]; and Emerson and Sistla [1984a,b]
proposed an automata-theoretic decision procedure for the branching time
temporal logic CTL* introduced by Emerson and Halpern [1983, 1986].
As a special case of their own construction for translating extended tempo-
ral logic into automata [Wolper et al. 1983; Vardi and Wolper 1994], Vardi
and Wolper [1986] proposed also an explicit decision and verification proce-
dure for propositional linear time temporal logic [Pnueli 1977; Gabbay et al.
1980; Pnueli 1981], which supports reasoning about the properties of non-
terminating, nonbranching computation paths in a system using invariants,
future-time assertions, and qualitative causality and fairness constraints on
the occurrence of certain states in the computations. The automata-theoretic
verification procedure for this logic (Fig. 1.1) works by translating formulas
in the logic in one or more intermediate steps into nondeterministic finite
w-automata, i.e., nondeterministic automata on infinite words, whose accep-
tance is determined, for instance, by a set of designated states that an automa-
ton should visit infinitely often when reacting to its input (a concept known as
Biichi acceptance after Biichi [1962]). The automata built from formulas are
then composed with finite models of systems to compare the behavior of the
systems against the logical specifications. The automata-theoretic approach
to LTL model checking stimulated active research on techniques for trans-
lating LTL and related linear time logics ethciently into nondeterministic
automata [Wolper et al. 1983; Michel 1985; Vardi and Wolper 1986; de Jong
1992; Vardi and Wolper 1994; Gerth et al. 1995; Couvreur 1999; Daniele
etal. 1999; Somenzi and Bloem 2000; Geilen 2001; Schneider 2001; Wolper
2001; Giannakopoulou and Lerda 2002; Thirioux 2002; Latvala 2003; Seba-
stiani and Tonetta 2003].

Language emptiness checking and on-the-fly verification. 'The last step
in the verification procedure for LT'L in Fig. 1.1 corresponds to checking the
set intersection of the computations (i.e., the “language”) of a given system

1. INTRODUCTION

with computations that violate a given LTL specification for emptiness by
analyzing an automaton obtained by combining the system with a nondeter-
ministic automaton built from the LTL specification. The same technique
applies to testing the satishability of the logical specification itself, in which
case the emptiness analysis is simply done on an automaton built from the
specification.

Instead of running the steps in the verification procedure sequentially one
after another, the verification procedure can be implemented using on-the-
fly translation and emptiness checking algorithms [Courcoubetis et al. 1991,
1992; Gerth et al. 1995; Couvreur 1999; Hammer et al. 2005], which allow
running several steps of the procedure in an interleaved fashion without the
need to finish all previous phases of the procedure before proceeding to the
next one. This interleaving of the verification steps is often essential in prac-
tice in trying to find a violation of the given logical specification as quickly as
possible without generating and storing all intermediate results, which may
have prohibitively high resource requirements in the worst case. The state
space explosion problem has encouraged active research, in particular, on
efficient on-the-fly search algorithms for checking the set of words accepted
by a nondeterministic w-automaton for emptiness. Although this problem
is in principle straightforward to solve using standard algorithms for detect-
ing cycles in a directed graph, much effort has nevertheless been put on
optimizing the performance of these algorithms and reducing their memory
usage in practical applications. The two main lines of state-of-the-art explicit
state emptiness checking algorithms for w-automata using Biichi acceptance
can be divided into algorithms that analyze the maximal strongly connected
components of automata [Couvreur 1999; Couvreur et al. 2005; Gelden-
huys and Valmari 2004, 2005; Hammer et al. 2005] —usually, by extending
and optimizing the well-known algorithm of Tarjan [1971, 1972]—and al-
gorithms based on the nested depth-first search introduced by Courcoubetis
etal. [1991, 1992] (see, for example, [Godefroid and Holzmann 1993; Holz-
mann et al. 1997; Bosnacki 2002, 2003; Gastin et al. 2004; Tauriainen 2004,
2006; Schwoon and Esparza 2005; Couvreur et al. 2005]).

Alternating automata. A useful observation on understanding the connec-
tion between logics and automata was made by Muller et al. [1988], who
showed temporal logics to be naturally translatable into subclasses of alter-
nating automata [Kozen 1976; Chandra and Stockmeyer 1976; Brzozowski
and Leiss 1980; Chandra et al. 1981] instead of the combinatorially more
complex nondeterministic automata. Alternation combines the nondeter-
ministic (existential) choice for the “next” state of an automaton with uni-
versal choice to allow an automaton to enter possibly several “next” states
at once while reading its input by spawning copies of itself that work inde-
pendently on the rest of the input. Muller et al. [1988] demonstrated their
approach with a translation from a branching time version of the extended
temporal logic of Wolper [1981, 1983] to weak alternating automata [Muller
et al. 1986, 1992]. As opposed to constructions for translating logics directly
into nondeterministic automata, the size of which may be exponential in the
length of the logical specifications, the opportunity to mix existential and
universal choice in automata gives rise to translation procedures which yield

1. INTRODUCTION 3

automata that have linear size in the length of the specifications. This con-
nection between logic and alternating automata led to the introduction of
another line of translation procedures from LTL and its extensions into au-
tomata [Isli 1994, 1996; Vardi 1994; Rohde 1997; Manna and Sipma 2000;
Gastin and Oddoux 2001, 2003; Fritz 2003; Tauriainen 2003; Hammer et al.
2005].

The seemingly obvious advantage of using alternating automata in place
of nondeterministic automata to avoid combinatorial explosion in verifica-
tion comes with a cost, however, since the extra succinctness in represen-
tation prevents working with alternating automata using the same algorith-
mic techniques that apply, for example, to language emptiness checking for
nondeterministic automata. This difficulty is traditionally overcome by first
translating alternating automata into nondeterministic ones by applying one
of the nondeterminization constructions proposed in the literature for alter-
nating automata on infinite words [Miyano and Hayashi 1984a,b; Lindsay
1988; Isli 1994, 1996; Rohde 1997; Gastin and Oddoux 2001; Fritz 2003;
Hammer et al. 2005; Fritz 2005] or trees [Muller et al. 1986, 1992; Emer-
son and Jutla 1991; Muller and Schupp 1995]. Even though the exponential
worst-case combinatorial cost of nondeterminization appears to void any ad-
vantages gained by translating LTL first into alternating automata, alternating
automata have nevertheless been argued to provide useful additional insight
into translation procedures from LTL into automata [Vardi 1995]. For ex-
ample, even though nondeterministic automata are in general strictly more
expressive than LTL, direct translation procedures from LTL into automata
do not usually concern themselves with any special properties of the con-
structed automata, missing a possible correspondence between LTL and a
subclass of nondeterministic automata. On the other hand, similarly to the
equally expressive formalisms such as the first-order theory of linear order
(whose expressiveness coincides further with star-free w-languages [Thomas
1979], and counter-free w-automata [Thomas 1981]), LTL has been shown
[Rohde 1997; Léding and Thomas 2000] to be expressively equivalent to a
simple subclass of alternating automata known as very weak [Isli 1994, 1996;
Rohde 1997; Gastin and Oddoux 2001], linear [Loding and Thomas 2000],
or linear weak [Merz and Sezgin 2003; Hammer et al. 2005] alternating au-
tomata. This strong correspondence between logic and automata allows to
optimize constructions for this special class of automata with techniques that
do not necessarily apply to the strictly more expressive nondeterministic or
alternating w-automata, whose expressiveness matches that of the monadic
second-order theory of linear order, or, equivalently, regular w-languages,

both in the nondeterministic [Biichi 1962; McNaughton 1966] and the al-
ternating case [Miyano and Hayashi 1984a,b; Lindsay 1988].

Generalized transition-based acceptance. In practice, the implementa-
tion of the verification procedure shown in Fig. 1.1 involves many decisions,
such as choosing definitions to be used for the underlying automata. To max-
imize the efficiency of an implementation, the chosen definitions should
facilitate expressing the automata succinctly (say, using as few states as possi-
ble) while still allowing efficient manipulation of the automata. Even simple
changes in the definitions are known to affect the opportunities for mini-

1. INTRODUCTION

mizing the number of states in the automata: examples include the choice
between single or multiple initial states, and various generalizations of the
notion of acceptance. For example, instead of specifying acceptance in an
automaton using a single set of designated “accepting” states that the au-
tomaton should visit infinitely often, many automata translation procedures
for LTL define acceptance using a family of state sets, all of which should
be visited infinitely often to make the automaton accept its input. This no-
tion of generalized Biichi acceptance was originally introduced to facilitate
the expression of simple liveness requirements— previously studied, e.g., in
branching time temporal logic verification [Clarke et al. 1983, 1986]—on
the behavior of systems modeled as synchronizing automata [Aggarwal et al.
1990]. Gerth et al. [1995] later used generalized acceptance as a concep-
tual aid in their translation procedure from LTL into nondeterministic au-
tomata for matching syntactic properties of LI'L. formulas directly with sets
of accepting states. Unlike previous constructions, which defined automata
as tableaux of the worst-case exponential size, the on-the-fly construction of
Gerth et al. [1995], which can itself be seen to be based on earlier work on
tableau methods for branching [Ben-Ari et al. 1981, 1983; Clarke and Emer-
son 1982a,b] and linear time [Wolper 1981, 1983; Manna and Wolper 1982,
1984; Wolper 1985] logics, provided an explicit procedure for constructing
only the actually relevant part of an automaton. This feature of the construc-
tion made it a popular source of many related translation procedures, from
direct improvements to the explicit tableau construction [Daniele et al. 1999;
Somenzi and Bloem 2000; Wolper 2001; Giannakopoulou and Lerda 2002;
Thirioux 2002; Sebastiani and Tonetta 2003] to translations geared towards a
symbolic representation of the automata [Couvreur 1999; Schneider 2001].

The multiple sets of accepting states also have a direct impact on the suc-
cinctness of the representation of automata, even though the additional sets
do not add to the expressive power of the automata [Emerson and Sistla
1984a,b; Courcoubetis et al. 1991, 1992]. Although still more succinct rep-
resentations are possible through further generalizations of acceptance with
no change in the expressiveness of the automata (see, for example, [Thomas
1997], for a survey of various classic notions of acceptance), such alternative
notions have been only rarely used in the context of translating LTL into

automata [Michel 1985; de Jong 1992].

Acceptance can also be generalized by associating it with the transitions
instead of the states of an automaton [Couvreur 1999; Gastin and Oddoux
2001; Giannakopoulou and Lerda 2002; Thirioux 2002; Tauriainen 2003].
As in the case of moving from one to many acceptance sets, this simple
change in the notion of acceptance does not add to the expressiveness of the
automata due to the interreducibility of state-based and transition-based ac-
ceptance (see, for example, Chapter 1 of the textbook [Perrin and Pin 2004]).
However, the transition-based notion for acceptance is again more succinct:
even though state-based acceptance can be reduced to transition-based ac-
ceptance without adding any new states or transitions to an automaton—
visiting a state infinitely often implies taking a transition leaving the state
infinitely often —the same does not hold for the converse reduction in the
general case. It can thus be said that transition-based acceptance general-
izes state-based acceptance (see, e.g., [Giannakopoulou and Lerda 2002] for

1. INTRODUCTION 5

LTL spec- alternating nondeterminis- nondeterminis- verifi-

ification automaton tic automaton tic automaton cation
(generalized (Biichi ac-
state-based acceptance acceptance) ceptance)
> _
——————————— > — = = = —— - =
.......... > Ameaocone nnoaccanoaonnonnon SRS
v — == »
7
_______ > < ,
‘S . v A AT
‘S ‘/ ++
N 7 +t
- , +++
+
+
o
H++++++++ttttttrttttt++++++p ++
0000000066060 00000000> 0000000000000 0000000 0>
PODDDDDD>DP >D>DDD>DDD D PBDDDDDBDDDDBDBBDDDDDDD DD

transition-based acceptance

[Vardi and Wolper 1986]

— — — [Gerth etal. 1995] +++++++- [Giannakopoulou and Lerda 2002]
------- [Hammer et al. 2005] seee0ee [Couvreur 1999]

——— [Gastin and Oddoux 2001] »>epbbs this work

Fig. 1.2: Differences between automata-theoretic LTL verification procedures sug-
gested in the literature

examples). A similar asymmetry concerns the placement of labels, i.e., the
symbols that the automaton reads from its input, in the automata; again,
replacing single symbols with sets of symbols, or placing the labels on transi-
tions instead of states lead to more succinct definitions for automata.

The use of nondeterministic automata with generalized transition-based
acceptance for LTL verification was proposed by Couvreur [1999] and later
advocated by many other authors due to its simple benefits for minimizing
the representation of automata [Gastin and Oddoux 2001; Thirioux 2002;
Giannakopoulou and Lerda 2002; Duret-Lutz and Poitrenaud 2004]. Tau-
riainen [2003] considered extending the transition-based approach to alter-
nating automata. To take the best possible advantage of these automata in
the verification procedure, each verification step should preferably be imple-
mented with algorithms that are able to work directly with this definition to
avoid spending additional effort on converting between expressively equiva-
lent formalisms. Surprisingly, only few constructions [Couvreur 1999; Tauri-
ainen 2003; Hammer et al. 2005] strive to achieve this goal fully in practice:
most other translations suggested in the literature employ additional conver-
sions between formalisms to finally obtain automata with a classic Biichi ac-
ceptance condition specified using a set of states. Figure 1.2 illustrates some
of these conceptual differences between several automata-theoretic LTL ver-
ification procedures suggested in the literature. For simplicity, we list only a
single representative reference to literature on the various approaches.

1. INTRODUCTION

Minimization of automata. The verification procedure for LTL has also
raised interest in techniques for the minimization of w-automata in general
to counter combinatorial explosion. In addition to techniques that exploit
special structural properties of automata [Rohde 1997; Ftessami and Holz-
mann 2000; Somenzi and Bloem 2000; Gastin and Oddoux 2001; Thirioux
2002], constructions based on various simulation relations have also been
proposed for the minimization of both nondeterministic [Etessami and Holz-
mann 2000; Somenzi and Bloem 2000; Etessami et al. 2001, 2005; Etessami
2002; Gurumurthy et al. 2002] and alternating automata [Fritz and Wilke
2002, 2005; Fritz 2003]. On the other hand, the translation of LTL into
automata has been improved further by making use of syntactic techniques
such as simplifying LTL specifications by rewriting [Etessami and Holzmann
2000; Somenzi and Bloem 2000; Thirioux 2002]. These optimizations ap-
pear in Fig. 1.1 as the dashed loops “inside” each translation phase. Syntac-
tic optimization techniques have been applied also to the translation steps

between phases [Daniele et al. 1999; Giannakopoulou and Lerda 2002].

Symbolic tableau procedures. In addition to the explicit automata-based
approach to LTL verification, there exist also verification methods that per-
form their task using implicit “symbolic” representations of systems and ta-
bleaux built from logical specifications [Clarke et al. 1994, 1997; Kesten et al.
1998]. As a matter of fact, procedures suggested for the construction of such
tableaux [Lichtenstein and Pnueli 1985, 2000; Burch et al. 1992; Kesten et al.
1993; Clarke et al. 1994, 1997; Kesten et al. 1998] can easily be seen as an-
other line of automata translation procedures by identifying the nodes in
a tableau directly with the states of a nondeterministic automaton. How-
ever, due to the implicit representation used for the connections between
tableau nodes (which can analogously be identified with transitions of a cor-
responding automaton), the symbolic tableau constructions are not usually
concerned with questions such as the minimization of the number of nodes
in the tableaux.

Extensions to other logics. Although most translation procedures from
LTL into automata—including the one that will be presented in this work—
concentrate only on future time, also constructions for LT'L, extended with
past time connectives have been proposed in the literature, using both non-
deterministic [Vardi and Wolper 1986; Ramakrishna et al. 1992b; Schnei-
der 2001] and alternating automata [Manna and Sipma 2000; Kupferman
et al. 2001; Gastin and Oddoux 2003] in the translation. Extensions to
other specification formalisms include constructions for branching time log-
ics [Bernholtz et al. 1994; Kupferman et al. 2000], logics augmented with
extended operators [Vardi 1988; Vardi and Wolper 1994; Kupferman et al.
2001; Laroussinie et al. 2002; Bustan et al. 2005] or first-order quantifica-
tion [Etessami 1999], the propositional pi-calculus [Emerson and Jutla 1991;
Emerson etal. 1993, 2001], interval logics [Ramakrishna et al. 1992a, 1996,
and temporal logics on infinite traces instead of words [Gastin et al. 199§;
Bollig and Leucker 2001, 2003]. On the other hand, special constructions
targeted towards efficient automata translation of LTL safety properties have
also been proposed [Geilen 2001; Latvala 2003], together with constructions

1. INTRODUCTION 7

that aim to reduce nondeterministic choice between transitions in automata

[Thirioux 2002; Sebastiani and Tonetta 2003].

Organization and Contributions of This Work

This work presents a unified approach to translating future-time LTL into
automata and checking for the emptiness of the automata by making use
of special cases of a single definition of alternating w-automata with gener-
alized transition-based acceptance throughout all constructions, advocating
(as many authors before) this type of acceptance as a concept well-suited for
both understanding and implementing the verification procedure. Some of
the presented results have previously appeared in [Tauriainen 2003, 2004,
2005, 2006].

The chosen type of generalized acceptance, which combines an “inverse”
interpretation of classic nongeneralized Biichi acceptance (previously used
in LTT-to-automata translation procedures by Gastin and Oddoux [2001])
with the intuitive connection between multiple “acceptance conditions” and
syntactic properties of LTL formulas [Gerth et al. 1995], is used to define
a translation procedure in which the introduction of new acceptance con-
ditions is completely transparent. Another technique used for simplifying
the presentation is to adopt a definition of alternating automata which sup-
ports direct representation of individual transitions, which are essential, for
example, for depicting automata as traditional state graphs; the concept of
a transition is also convenient for designing and explaining simplification
techniques for alternating automata. Similarly, a definition of runs of alter-
nating automata is used that allows many standard theoretical constructions
on runs of alternating automata (for example, obtaining a finite representa-
tion for the “levels” of a run after uniformization; see, for example, [Muller
and Schupp 1995]) to be viewed as direct transformations on runs of alternat-
ing automata. The basic definitions of infinite words, linear time temporal
logic and automata are reviewed in Ch. 2. This chapter also introduces self-
loop alternating automata, which can be seen as another “transition-based”
version of a subclass of alternating automata known as very weak alternating
[Isli 1994, 1996; Rohde 1997; Gastin and Oddoux 2001], alternating linear
[Loding and Thomas 2000], or linear weak alternating [Merz and Sezgin
2003; Hammer et al. 2005] automata. Throughout this work, the main con-
structions used in the transformation of automata and their runs are given full
correctness proofs by systematically using a basic toolset of simple results on
the properties of runs of generalized alternating automata. Also this toolset is
laid out in Ch. 2.

Chapter 3 reviews a basic translation procedure from LTL into self-loop
alternating automata. This procedure, which is based on the application of
simple translation rules for joining automata built for simple LTL formulas
incrementally into more complex automata, is closely related to the con-
struction of Gastin and Oddoux [2001] and satisfies the best known upper
bounds for the sizes of components in automata corresponding to LT'L for-
mulas. Similarly to related constructions, however, this procedure needs ex-
ponential space in the length of the formula in the worst case due to the
explicit representation of transitions. This chapter also reviews the result of
Rohde [1997] and Loding and Thomas [2000] on the expressive equivalence

1. INTRODUCTION

1.

of LTL and subclasses of alternating automata by presenting a reverse trans-
lation from self-loop alternating automata into LTL formulas and analyzing
its complexity.

Chapter 4 introduces constructions for translating self-loop alternating w-
automata into nondeterministic w-automata, again generalizing results pre-
sented by Gastin and Oddoux [2001]. Unlike alternating w-automata in
general, self-loop alternating w-automata with generalized acceptance can
be translated into nondeterministic automata using a construction that very
closely resembles the classic subset construction of Rabin and Scott [1959]
for determinizing automata on finite words. In general, however, the nonde-
terministic w-automaton may have to use a more complex form of the gen-
eralized acceptance condition. This is nevertheless not necessary for a class
of alternating automata that have uniform acceptance synchronized runs (a
new concept introduced in Ch. 4) on all words that they recognize; in par-
ticular, all automata built from LTL formulas using the translation proce-
dure from Ch. 3 have this property. Moreover, the nondeterminization con-
struction can be optimized further for these automata by adapting syntactic
techniques known from direct translation procedures between LTL and au-
tomata [Daniele et al. 1999; Giannakopoulou and Lerda 2002]. In some
cases, it is possible to avoid the application of a subset construction entirely
if the formula to be translated into an automaton belongs to a special syntac-
tic subclass of LTL which translates directly into alternating automata that
support simple completion into nondeterministic automata. This subclass,
previously mentioned in the context of symbolic translation algorithms by
Schneider [1999], is shown to be closely related also to the syntactic subclass
LTL* introduced by Maidl [2000a]. The satisfability problem of formulas
in this subclass of LTL is shown to be NP-complete.

Chapter 5 studies the optimization of the basic translation rules presented
in Ch. 3 by making use of language containment relationships between self-
loop alternating automata. These relationships can also be used to design
refined translation rules that aim to simplify the transition structure of au-
tomata built with those basic rules which are the main cause of the expo-
nential worst-case space requirements in the basic translation procedure —
however, sometimes with a penalty on the number of states in the con-
structed automata. Some of the refined rules nevertheless prove to be ap-
plicable universally as replacements of the basic translation rules without a
need to apply computationally expensive tests for language containment re-
lationships. The automata built using the refined rules can still be translated
into nondeterministic automata without changing the form of generalized
acceptance by applying optimized constructions from Ch. 4. Furthermore,
the refined rules also lead to an extension of the syntactic subclass of LTL
which translates into automata that can be completed into nondeterminis-
tic automata without applying a general nondeterminization construction.
The satishability problem for this strictly more expressive subclass remains
NP-complete.

Chapter 6 focuses on the simplification of self-loop alternating automata
by making use of language containment tests to remove transitions from the
automata. The application of the presented simplification techniques and
the refined translation rules from Ch. 5 is illustrated with examples, which

INTRODUCTION 9

10

include a comparison against the translation procedure proposed by Gastin
and Oddoux [2001]. The optimization techniques discussed in Ch. 5 and
Ch. 6 are put together in Ch. 7 into a high-level refined translation procedure
from LTL into self-loop alternating automata.

Chapter 8 presents a new generalized version of the classic nested depth-
first search algorithm of Courcoubetis et al. [1991, 1992] for checking the
emptiness of nondeterministic automata with generalized transition-based
acceptance. The new algorithm improves the search algorithm’s worst-case
resource requirements, in particular, by reducing the number of additional
bits that need to be stored with every visited state (in a simple hash table
based implementation) from linear to logarithmic in the number of general-
ized acceptance conditions.

Finally, Ch. 9 concludes the work by highlighting the main results and
discussing directions for further work.

1. INTRODUCTION

2 DEFINITIONS AND BASIC RESULTS

2.1 MATHEMATICAL CONCEPTS AND NOTATION

We assume basic knowledge on sets, ordered tuples, graphs, trees, relations
and functions (mappings), and the principle of mathematical induction. We
also refer to basic concepts of computability theory (O-notation, decision
problems, deterministic and nondeterministic decision procedures, complex-
ity classes NP and PSPACE, hardness and completeness for complexity
classes) without presenting their formal definitions; see any textbook on com-
putability theory (for example, [Papadimitriou 1994]) for details.

We shall work with the set of natural numbers N £ {0, 1,2, ...} extended
with an element w ¢ N. For notational simplicity, we shall not make use
of the formal theory of ordinals in this presentation; instead, we extend the
standard total ordering < C N x N of the natural numbers into (NU {w}) x
(NU{w}) by defining w to be an element that satisfies w ¢ w and n < w for
all n € N. Comparison between elements of N U {w} will often be denoted
also by the operators =, <, > and > with their usual semantics. Furthermore,
we also extend addition on the natural numbers to (NU {w}) x (NU {w})
by definingw +nZn+wZw+wZw.

Let X and Y be sets. The sets X and Y are equipollent if and only if (iff)
there exists a bijective mapping f : X — Y. If there exists a natural number
n € N such that X is equipollent to the (possibly empty) set {1,2,...,n} C
N, we say that X is a finite set of size n (denoted by |X| = n). If X is
equipollent to the set of natural numbers N, we say that X is (countably)
infinite and define | X| = w. The powerset of X (denoted by 2%) is defined

as the set of all subsets of X, i.e,2¥ £ {Y | Y C X}.

If X is a subset of another set Y, we denote by Y \ X the complement
of X with respect to Y (i.e, Y\ X £ {z € Y | z ¢ X}). When the set
Y is clear from the context, we often denote the complement of X by the
shorthand notation X.

2.1.1 Sequences

Let X be a nonempty set. A sequence (called occasionally also a word in
further discussion) « over X is a mapping z : I — X, from an index set
= {neN|n < m for some m € NU{w}} to X. Foralli € I, (i)
is called the (i + 1) element of x. We may also describe = by “listing its
elements” as * = (;)icr = (%0, 21, T2, ...) (more simply, © = xoz125...)
where z; = x(i) forall i € I. We call |z| € |I] the length of the sequence.
Foralln € NU{w}, we denote the class of all sequences over X of length n by
X™. The unique sequence in XY is called the empty sequence over X and is
denoted by e x. Each element of X can be treated as a sequence by applying
the obvious isomorphism between X and X'. The set X* £ J,.,. X’
is the set of all finite sequences over X; X“ denotes the set of all infinite
sequences.

Sequences can be used to define other sequences. Letz : I — X be a

2. DEFINITIONS AND BASIC RESULTS 11

sequence over X, leti € I, and let0 < j < |I|. The sequence 2’ : I’ — X,
where I' £ {neN|i<n+i<jland2/(k) € x(k+i) forall k € I', is
called a subsequence (alternatively, a subword) of and denoted by 7). If
i =0, then 2’ is a prefix of x; if j = |I|, then 2’ is called a suffix. In this case
we usually refer to 29 using the simpler notation z*. Clearly, the suffix z*
is infinite iff is infinite. Two subsequences z; = xl91) and x4y = zl?272) of
a sequence z (0 < iy,ip < |z|, 0 < ji,j2 < |z|) are syntactically identical
(denoted xy = xq) iff |z1| = |z holds, and z1(i) = x2(7) holds for all
0 <i < |z1]; otherwise they are syntactically distinct (z1 #).

Itz : [} - Xy and 25 : I — X, are two sequences with |z;| < w, the
concatenation of 1 and x5 (denoted x;x5) is the sequence x : {n eN ‘ n <
|| + |I2]} — X1 U X5 defined by

Because concatenation is an associative operation, i.e., because (zy)z =
z(yz) holds for all sequences z, y and z (|z| < w, |y| < w), we usually
write concatenations of sequences without parentheses.

2.1.2 w-Regular Expressions

12

Let X be a nonempty set (called the alphabet). We shall often describe
subsets of X by means of w-regular expressions over X . The set of w-regular
expressions over X is the smallest set of finite sequences built from elements
of X and the symbols (,), U, *, “ (not included in X) such that the set
is closed under finite application of the following syntactic rules (formally
defined using concatenation of sequences; in the definition of the rules, we
also make use of an auxiliary set of r-expressions over X):

e Fach element of X is an r-expression.
e If wand (3 are r-expressions, then (aUf3), (a3) and o* are r-expressions.

e If v is an r-expression and [is an w-regular expression, then o and
() are w-regular expressions.

e If o and 3 are w-regular expressions, then (o U) is an w-regular ex-
pression.

Fach r-expression (w-regular expression) a defines a set of finite (resp. infi-
nite) nonempty words over X. We denote the set of words defined by the
r-expression or w-regular expression a by £(«v) and call this set the language
of . Formally, £(«) is defined for r-expressions and w-regular expressions as
follows:

o L{a) ¥ {z:{0} - X |z(0) = a} forall @ € X (i.e., the singleton
set containing the unique sequence of length 1 with o € X as its first
element);

e L((aUp)) = L£(a)UL(B), where a and 3 are either both r-expressions
or both w-regular expressions (the sequences that belong to either or

both of L(«) and L(3));

2. DEFINITIONS AND BASIC RESULTS

e L((ap)) = {zy|z € L(a), y € L(B)} for any r-expression a and
any r-expression or w-regular expression [(the sequences formed by
concatenating a sequence from £(/3) to a sequence in L£(«));

o L(o*) Z {ex}U Ui<ico {2y . .2;|2; € L(a)forall 1 < j < i}
for any r-expression « (the set of sequences obtained by finite concate-
nations of zero or more sequences in £(«))

o L(a¥) ¥ {miaozs... |2 € L(a)\ {ex} forall 1 < i < w} for any
r-expression « (the set of infinite sequences obtained by concatenating
nonempty sequences in the language of «).

Whenever the language of an w-regular expression « is a singleton set, it
is conventional to identify the w-regular expression with the unique word in
its language. In such cases we shall simply speak of the word « instead of
“the unique word in the language of a”. Similarly, we can also identify a
nonempty finite word w : I — X (0 < || < w) with an r-expression and
write w* and w* to denote the languages obtained by finite (resp. infinite)
concatenations of the finite word w. In addition, we simplify the general no-
tation by omitting parentheses from r-expressions and w-regular expressions
whenever possible by fixing the precedence of U, *,“ and concatenation such
that * and “ have precedence over concatenation, which has precedence over
U.

Example 2.1.1 The w-regular expression a* represents the infinite word
formed by repeating the symbol a indefinitely, the w-regular expression a* U
b*c* represents all infinite words formed either from an infinite sequence
of a’s, or a (possibly empty) finite sequence of b’s followed by an infinite
sequence of ¢’s, and the w-regular expression (a U b U ¢)*(ab*)¥ represents
the language of infinite words built from the letters @, b and ¢ such that each
word in the language contains infinitely many a’s but only finitely many ¢’s.

|

2.2 PROPOSITIONAL LINEAR TIME TEMPORAL LOGIC

As seen in Ex. 2.1.1, w-regular expressions provide a means for specifying
infinite sequences. However, the basic operations for building w-regular ex-
pressions from simpler expressions are not always very convenient for defin-
ing languages in practice. For example, even though the languages defin-
able using w-regular expressions over a given alphabet are closed under the
Boolean operations (union, intersection and complementation with respect
to the language of all infinite words over the given alphabet) [Biichi 1962;
McNaughton 1966], finding an w-regular expression for a given Boolean
combination of languages defined by simpler expressions is often difficult in
practice (especially for complementation). This difficulty of combining sim-
ple expressions into more complex ones is clearly an undesirable property for
a language intended for specifying infinite sequences. Popular specification
languages are therefore usually based on alternative formalisms. In partic-
ular, languages based on formal logic support expressing Boolean combina-
tions of specifications directly by using the corresponding operations in the

2. DEFINITIONS AND BASIC RESULTS 13

logic. Among the best-known such logics suggested for reasoning about the
behavior of nonterminating systems is the propositional linear time temporal
logic (LTL) proposed by Pnueli [Pnueli 1977; Gabbay et al. 1980; Pnueli
1981]. Although this logic formally captures only a strict subset of the se-
quences specifiable using w-regular expressions (see, for example, [Thomas
19901]), the logic nevertheless covers a class of specifications that is expressive
enough for many actual verification tasks [Manna and Pnueli 1992]. In this
section, we shall review the syntax and semantics of this logic.

2.2.1 Syntax

Let AP be a countable set of atomic propositions. The set LTL(AP) of
propositional linear time temporal logic formulas over the atomic propo-
sitions AP is the smallest set of finite sequences built from elements of
AP, parentheses “(” and “)”, the symbol T, propositional connectives (or
operators) =, V, and temporal connectives (operators) X and Ug such that
LTL(AP) includes {T} U AP as a subset (where we assume that AP does
not include any of the symbols listed above) and is closed under the finite
application of the syntactic rule

If g, € LTL(AP), then —p, (¢ V ¥), X, (¢ Ust)) € LTL(AP).

A subformula of a formula ¢ € LTL(AP) is a subsequence of ¢ that belongs
to LTL(AP). The collection of all syntactically distinct subformulas of ¢ is
denoted by Sub(yp). It is easy to check (by induction on the length of ¢) that
|Sub(¢)| < |¢| holds for all ¢ € LTL(AP).

The formula ¢ € LTL(AP) is called a literal iff p = por ¢ = —p
holds for some atomic proposition p € AP; literals and the symbol T are
called atomic formulas. If ¢ ¢ {T} U AP holds (i.e., ¢ = oy for o €
{=, X}, or ¢ = (¢1 0 ¥3), where o € {V,Us}, and ¢1,92 € LTL(AP)),
@ is called a compound formula with main connective o, and ¢, and ¢
are the top-level subformulas of ¢. The arity of a compound formula and
its main connective is the number of top-level subformulas in the formula;
formulas (connectives) of arity 1 and 2 are called unary and binary formulas
(connectives), respectively.

A formula ¢ € LTL(AP) that does not contain any temporal connectives
is called a propositional (or Boolean) formula, otherwise it is a temporal
formula; the set of all propositional formulas over the atomic propositions
AP is denoted by PL(AP). The formula ¢ is called a pure temporal formula
iff ¢ = X1 or p = (p1 Us 2) holds for some ¢4, po € LTL(AP). We define
the set Temp(¢) as the maximal subset of Sub(¢) which contains only pure
temporal formulas.

2.2.2 Semantics

14

Basic operators

Linear time temporal logic formulas are interpreted over infinite sequences
of sets of atomic propositions chosen from AP, i.c., elements of the power-
set 247 of AP. The semantics of linear time temporal logic in an infinite
sequence w € (247)% of subsets of AP is defined inductively using a binary
relation |= as follows:

2. DEFINITIONS AND BASIC RESULTS

wkET.

Itp e AP, then w = piff p € w(0).

w =~y iff w = ¢ does not hold (denoted also by w [~ ¢).

w (V) iffw g orw .

w = Xp iffw! = . [Next time]

w E (¢ Usp) iff there exists an index 0 < 4 < w such that w® | ¢
holds, and w’ |= ¢ holds forall 0 < j < 1. [Strong Until]

We say that w € (247)% satisfies (alternatively, is a model of) the formula
¢ € LTL(AP) iff w |= ¢ holds. The set £(¢) = {w € 247)* |w = ¢}
of all models of ¢ is called the language of . The formula ¢ is satishable
if L(¢) # 0 holds and unsatisfiable otherwise. The formula ¢ is valid iff
- is unsatisfiable. For all formulas o1, po € LTL(AP), itis clear from the
definition of the semantics that £((¢1 V ¢2)) = L(p1) U L(gs), and the

complement L(¢;) = (247) \ L(g1) of the language of ¢, with respect to
(24P« equals L(—y;). For a pair of formulas ¢, € LTL(AP), we write
¢ = 1 as a shorthand for L(p) = L(¢); in this case we say that ¢ and ¢
are logically equivalent. Clearly, two syntactically identical LTL formulas
are always logically equivalent, but the converse does not hold in general (for
example, ¢ = == holds for all formulas ¢ € LTL(AP), but ¢ # ——¢).
If p € LTL(AP) is an LTL formula with a subformula i) € Sub(y), then
it is easy to check from the semantics of propositional linear time temporal
logic that ¢' = ¢ holds for the formula ¢' € LTL(AP) obtained from ¢ by
substituting a formula ¢’ € LTL(AP) for any occurrence of the subformula
¥ in ¢ whenever ¢' = 1) holds.

It ¢ € PL(AP), we project the satisfaction relation from infinite se-
quences in (247)“ to subsets of AP and use the traditional notation o |= ¢
(0 € AP) for propositional satishability. (Formally, using the above def-
inition, ¢ = ¢ is equivalent to the statement that w | ¢ holds for all
w € (247)% with w(0) = 0.)

Derived operators

The set of linear time temporal logic formulas is often extended by introduc-
ing derived constants or connectives expressible in terms of the basic con-
stants and connectives T (“true”), = (negation), V (disjunction), X (Next
Time) and Us (Strong Until). The derived connectives allow more flex-
ible expression of LI'L. properties without changing the expressiveness of

the logic. Standard extensions include the Boolean constant L (“false”™
1 ¥ —T), the propositional connectives A (conjunction: (@1 A ©9) =
—(—p1 V 2)), — (implication: (p; — @2) e (=1 V @2)), < (equiva-
lence!: (o1 <) e (o1 = @2) A (2 — 1)) and & (exclusive dis-
junction: (1 @ 9) e —(¢1 < p2)) as well as temporal connectives such

das

!Although = and « both capture logical equivalence between formulas, we do not con-
sider the operator = to be part of the (extended) syntax of the logic. This operator will be
mainly used for separating different steps in derivations of logically equivalent LTL formulas.

2. DEFINITIONS AND BASIC RESULTS 15

o F:wlFpiffw = (T Usgp). [Finally]

o G:wl Gpifftw = —F—p. [Globally]

e Uy w k= (pUy) iffw = (Go V (9 Usy)). [Weak Until]

* Ru:w = (pRuwy) iffw = = (=9 Us =), [Weak Release]
equivalently, iff w = (¢ Uy (0 A)). '

o R w = (pRsy) iffw = =(=p Uw =), [Strong Release]

equivalently, iff w |= (¢ Us (¢ A).

The sets of propositional and temporal formulas are extended in the obvious
way. We also extend the satisfaction relation = to disjunctions and conjunc-
tions over sets of LT formulas in the traditional way: for any finite subset
® C LTL(AP) and any w € (247)%, w = V o ¢ (0 F A e) holds
ift w = ¢ holds for some (for all) ¢ € ®. (By convention, w &= \/ 4¢
and w = N\ cy ¢ hold for all w € (247)~.) For convenience, we shall oc-
casionally abuse the notation \/ 4 ¢ and A\ .4 ¢ to denote any (arbitrarily
parenthesized) LTL formula formed by joining the elements in the set of for-
mulas & C LTL(AP) in some order with either the V or the A connective,
respectively. (By the commutativity and associativity of these connectives,
all such formulas are logically equivalent.) For example, this notation can be
used to define conjunctive and disjunctive normal forms of propositional for-
mulas as formulas of the form A, V1<, €ij and Vi<, Ai<jcm, ligs
respectively, where /; ; is a literal (i.e., ¢; ; € {p, ~p} for some p € AP) for
all<i<nand1<j<m; (0<n<w,0<m; <wforalll <i<n).

In this work, we assume all LTL formulas to be written using atomic
propositions, Boolean constants T and L, and the (extended) set of connec-
tives {—, V, A, X, Us, Uy, Rs, Ry }. All other connectives are assumed to be
substituted with their definitions. The subscripts s and w used in the U and
R connectives denote the strength of the connectives; a formula having one
of these connectives as its main connective is called a strong (s) or weak (w)
temporal eventuality, respectively. The subscripts will sometimes be omitted
if the strength of a connective is not relevant in the context.

The models of the temporal eventualities are infinite sequences over 247
that have an infinite suffix satisfying a designated top-level subformula (or
both top-level subformulas) of the eventuality. The strong temporal even-
tualities (Us and Rg) require the existence of such a suffix unconditionally;
their weak variants relax this requirement by permitting models in which an-
other top-level subformula (determined by the type of the connective) holds
throughout the entire sequence.? In our notation, Us and R,, correspond to
the traditional Until and Release connectives commonly used in the litera-
ture (see, for example, [Clarke et al. 1999]).

2.2.3 Positive Normal Form

We shall present most of our constructions involving LTL formulas using a
syntactically restricted subset of LTL formulas in which the use of negation

9
“For this reason, weak temporal eventualities are sometimes referred to as invariance
properties in the literature.

16 2. DEFINITIONS AND BASIC RESULTS

Table 2.1: LTL operators and their duals

olV. A U Uy, R Ry
AV Ry R U, U

is allowed only immediately before atomic propositions. Formally, we define
this set LTL"™*(AP) of LTL formulas (over a set AP of atomic propositions)
in positive normal form as

LTLPNY(AP) € {p € LTL(AP)| forall 0 <i < |p| — 1:
if o(i) = -, then (i + 1) € AP}.

The restriction to LTL'™N"(AP) does not reduce the expressive power of
the logic when using the extended set of LTL operators fixed above: any
formula ¢ € LTL(AP) can be written as a logically equivalent LTL formula
[¢]"NF in positive normal form defined recursively as follows:

d f . . .
PNF = if i is an atomic formula

[
[~ T]PNF = L

]
]
[J_]PNF def T
7N
)
)

"U

F df []PNF

[==1
X1

[~Xp1 PNF d¢f X[~]PNF

[(prow)] " = ([pa)™ o [po]™")
)] def ([]PNFO[]PNF)

1
PNF def X[ip1]PNF

where @1, 02 € LTL(AP) are the top-level subformulas of ¢ if ¢ is a com-
pound formula, o € {V, A, U, Uy, Rs, Ry}, and & is the dual operator of o
defined as shown in Table 2.1.

It is easy to check (by induction on |p]) that [¢]
form. Similarly, [p]"™F = ¢ holds since each case in the definition of
is based on some LTL identity (in particular, the “generalized” De Morgan
law =(¢1 0 o) = (—¢1 6 —¢9) holds for all @1,y € LTL(AP) and o €
{V, A, Ug, Uy, R, Ry, }). Furthermore, it is easy to see that |[PNF]| < 2 - ||
holds, and thus [Sub([¢]™F)| < |[¢"™F]| < 2 |¢|. Similarly, because
the number of temporal operators in [p]"N" is always equal to their number
in ¢ (as is again easily checked from the recursive definition), [¢]"NF has
at most twice as many syntactically distinct pure temporal subformulas as ¢
(each pure temporal subformula of [p]FNF either equals [¢)]FNF or [—ep]PNF
for some 1) € Temp(y)).

PRI {5 in positive normal

[Qp] PNF

Example 2.2.1 We find the positive normal form of the LTL formula

def

¢ = (((-p1 Rwp2) A (L Ry =p1)) AXpy) € LTL({p1,p2}).

2. DEFINITIONS AND BASIC RESULTS 17

Applying the recursive definition, we get

= |-
-
gg

(i

PNF PNF

(((=p1 Ruwp2) A =(L Ry 1)) /}\)Iépz)}
=((=p1 Rwp2) A=(L Ry =p1))] T V [Xpo] PNF)
[=(=p1 Ru p2)] PNF V [2=(L Ry =p1)]"NF) V X[=po] PNF)
([2=p]™NF Us [=p2] PNF) V [(L Ry =p1)]PNF) v X=pg)
([p1] PNF Us) V ([L]"NF Ry [=pa]™NF)) V Xp2)
(p1Us —p2) V (L Ry —p1)) V X—p2).

For all formulas ¢ € LTLPNY(AP), we define the node size of ¢ (denoted
by NSize()) and the set of node subformulas of ¢ (NSub(yp)) as follows:

0 atomic

ZIﬁE{w'ESUb(s&)W' fOp—]evel} NS]ZG('@Z)) otherwise
 atomic

Upe furesube)er oplevely NSub(1) otherwise

NSize(¢)Lﬂl+{
NSub(p) € {¢} U

Informally, NSize(y) corresponds to the number of nodes in a nonempty la-
beled tree (labeled with subformulas of ¢ € LTL*NF(AP)) such that the root
of the tree is labeled with ¢ itself, and each node labeled with a non-atomic
subformula i) € Sub(p) has one or two children labeled with ¢’s top-level
subformulas. The set NSub(¢) C Sub(g) can then be identified as the set of
syntactically distinct node labels occurring in the tree (alternatively, the set
of nodes in a directed acyclic graph obtained from the tree by merging nodes
with identical labels). Because ¢ is in positive normal form, no internal node
of the tree (i.e., a node with at least one child node) is labeled with a formula
of the form —).

Clearly, NSize(p) < |¢| holds for all ¢ € LTL"N*(AP), and for an arbi-
trary LTL formula ¢ € LTL(AP),

|NSub ([¢]™F) | < NSize([p]™) < [["NF]] <2 gl

NSize(y) and NSub(¢) will be useful for analyzing constructions involving
LTL formulas in positive normal form.

Example 2.2.2 Figure 2.1 shows the labeled tree representation of the LT'L

formula

= (Vs =p2) V (LR =p1)) V Xop) € LT ({p1, po})

defined in the previous example. From the tree representation it is easy to

verify that NSize(¢)) = 10, and |[NSub(¢)|= ‘ﬁw, ((p1Us—p2) V (LRy=p1)),

(p1Usmp2), p1, —p2, (LRw=p1), L, =p1, X—pa f | = 9. L]
2.3 ALTERNATING AUTOMATA

As a third formalism for characterizing sets of infinite words we consider fi-
nite automata, i.e., finite state machines that are able to recognize words

18 2. DEFINITIONS AND BASIC RESULTS

10
((((p1 Us =p2) V (L Ry —=p1)) V X=p2))

7 2
(1 Y. =p2) vV (L Ry =p1))) (X=p2)

3 3 1
(@ 0:=r2) (CRe—pD)

1*1 1 1

Fig. 2.1: The LTL formula (((p1 Us—p2) V (L Ry —|p1)) vV X—|p2) as a labeled tree.
The number beside a node corresponds to the value of NSize(v)) for the LTL for-
mula ¢ labeling the node

by reducing a given property of a word into a property of a state sequence
generated by the machine when given the word as input. The automaton
generates this state sequence by examining the word one symbol at a time,
choosing the next state to be generated from a finite (possibly empty) set of al-
ternatives determined by the most recently generated state and the next sym-
bol in the input. The concept of mixing this nondeterministic (existential)
choice between several alternatives with universal choice for the next state
to be generated (intuitively, choosing multiple “next” states at once) was first
proposed for finite automata working on finite words by Kozen [1976] and
Chandra and Stockmeyer [1976], who defined the expressively equal notions
of parallel and alternating finite automata, respectively (and later combined
their work in [Chandra et al. 1981]). The Boolean automata of Brzozowski
and Leiss [1980] provide another equivalent way to combine existential and
universal behavior in finite automata. This concept of alternation was later
extended to automata working on infinite words and trees by Miyano and
Hayashi [1984a,b] and Muller and Schupp [1985, 1987], respectively. Un-
like a nondeterministic automaton, which always generates at most one next
state at each step when working on its input, an alternating automaton can at
any step generate multiple “next” states at once and spawn copies of itself that
work independently on the remaining input. Thus, instead of mapping its in-
put to a single state sequence, an alternating automaton may generate a col-
lection of such sequences: whether the automaton recognizes (“accepts”) its
input is then determined from the properties of this collection of sequences.

In the case of finite words, alternation allows for a succinct representation
of “acceptable” sequences that does not add to the expressiveness of plain
nondeterministic automata: for every alternating automaton accepting a set
of finite words using n states, there exists a nondeterministic automaton that
accepts the same set of words. The nondeterministic automaton may have
an exponential number of states in n in the worst case, however, because the
minimal deterministic automaton simulating an alternating one may have
a doubly exponential number of states in n in the worst case [Kozen 1976;
Chandra and Stockmeyer 1976; Brzozowski and Leiss 1980; Chandra et al.
1981; Leiss 1981]. An analogous correspondence holds between classes of
alternating and nondeterministic automata on infinite words under many
notions of acceptance [Miyano and Hayashi 1984a,b; Lindsay 1988; Muller
and Schupp 1995]. Together with the expressive power of automata (which
can be made to coincide with that of the w-regular expressions by using an

2. DEFINITIONS AND BASIC RESULTS 19

appropriate notion for acceptance [Biichi 1962; McNaughton 1966]) and the
suitability of automata for algorithmic analysis in general, the succinctness of
alternating automata provides the main motivation for applying them to the
specification and automatic verification of properties of infinite sequences.
In this section, we review the basic definitions and properties of alternating
automata on infinite words and some subclasses of the automata.

2.3.1 Basic Concepts

20

The combination of existential and universal choice between states of al-
ternating automata can be captured by encoding the transitions of the au-
tomata as arbitrary Boolean functions (formulas) on the states of the au-
tomata [Kozen 1976; Chandra and Stockmeyer 1976; Brzozowski and Leiss
1980; Chandra et al. 1981]; however, it is common to restrict the use of nega-
tion [Chandra and Stockmeyer 1976] especially when working with infinite
inputs [Muller and Schupp 1985, 1987; Vardi 1994]. Although the Boolean
representation is convenient for proving many fundamental properties of al-
ternating automata, such as their eligibility to an elegant complementation
construction based on syntactic manipulation of the Boolean functions and
“dualization” of the notion of acceptance [Muller and Schupp 1985, 1987],
the notion of a single transition is not always explicit in the Boolean repre-
sentation. Such a notion is nevertheless useful, for example, for representing
automata graphically as traditional state graphs. As we shall see later in Ch. 6,
an explicit representation for the transitions is also convenient for the simpli-
fication of the automata. For these reasons, we adopt a definition similar
to the one used previously by Gastin and Oddoux [2001]; in this definition,
the individual transitions leaving a state correspond to the disjuncts in the
disjunctive normal form of a corresponding Boolean function built from the
Boolean constants, the states of the automaton and the Vv and the A connec-
tives.

Formally, an alternating automaton is a tuple A= (2, Q, A, q;, F), where
Y is a finite set called the alphabet, @ is the finite set of states, ¢; € @ is the
initial state, A C Q x 2% x 27 x 29 is the transition relation and F is the
finite set of acceptance conditions.

Individual elements in the transition relation A are called transitions of
the automaton. The components of a transition t = (q,T", F, Q') € A (for
some g € Q, ' C X, F C F,Q C Q) are called the source state, the
guard, the acceptance conditions, and the target states of ¢, respectively. The
transition ¢ is an initial transition of A iff the source state of ¢ is the initial
state of the automaton A (¢ = qr), a self-loop iff it includes its own source
state in its target states (¢ € @), and (for an acceptance condition f € F)
an f-transition iff it includes the condition f in its acceptance conditions
(f € F). Astate ¢’ € Q is an f-state iff it is the source state of an f-transition
in A.

The well-known class of nondeterministic finite automata arises as a spe-
cial case of alternating automata in which || = 1 holds for every transition
(q,T,F,Q") € A. In other words, an alternating automaton is nondeter-
ministic iff its every transition has exactly one target state. Many questions
about properties of nondeterministic automata can be answered using graph-

2. DEFINITIONS AND BASIC RESULTS

D PRU!
(b, ¢} oo 2
{a} {0} gr
}'{ } {b,d}\{a,c}
b,d a,c

(a) (b)

Fig. 2.2: (a) The alternating automaton A = <{a, b,c,d}, {q1,92,493,94,95},
{<Q1a{a}7®a{QQ7Q4}>7 <(J1,{d},@,®>, <(p,{b},®,{q1}>, <QQ,{b,C},®,{Q3}>, <q3,{a},@,{qg}>,
<Q4,{a,d},{'},{Q4}>, <Q4v{b}a{'}7{Q4,lJ5}>a <Q47{C}a@7{Q4}>7 <¢J57{G,C}7{O},{QS}>7 <¢J5,
{bvd}vwa{QS}>}7Q17{.7O}>;

(b) The subautomaton A% = <{a, b,c,d}, {q4,q5}, {<q4,{a,d},{o},{q4}>, (ga.{b},
{.}7{Q47q5}>a <Q4,{C},@,{(J4}>, <Q57{aac}7{o}a{Q5}>v <q5a{b7 d}v(z)a{Q5}>}v 44, {.7 O}>

theoretic decision procedures. We shall discuss the construction and analysis

of such automata in Ch. 4 and Ch. 8.

Example 2.3.1 We illustrate our conventions for drawing alternating au-
tomata in Fig. 2.2 (a). The states of the automata are drawn as circles (with
the initial state of the automaton marked by a small arrowhead), and the
transitions of the automata are represented by sets of arrows connecting the
circles. We occasionally omit the labels of the states if they are not relevant in
the context. For each transition (¢, ', F, Q') € A with a nonempty set of tar-
get states (i.e., if |Q'| = n holds for some 1 < n < w), we draw n arrows from
the state ¢ to each state in @'. It is also permissible for a transition to have
no target states (in which case @’ = 0 holds): every such transition (such
as the transition with guard {d} starting from the state ¢; in Fig. 2.2 (a))
is represented with a single arrow connected only to the transition’s source
state. Arrows associated with the same transition are drawn in the same line
style; since the source of each transition is unique, the same line styles can
be reused in each state of the automaton without ambiguity as far as the
correspondence between arrows and transitions is concerned. Acceptance
conditions in F are represented by small shaded circles on the transition ar-
rows; each different shade corresponds to a different acceptance condition.
To simplify the figures, we usually place the transition guards near only one
of the arrows associated with a particular transition. We nevertheless repeat
the acceptance conditions of the transition on each of these arrows. |

Successors, Paths, Descendants and Subautomata

Let A = (¥,Q, A, g, F) be an alternating automaton, and let ¢ € Q. A
state ¢ € @ is a successor of ¢ if there exists a transition (¢,I", F, Q') € A
such that ¢ € Q'. A path in A is a nonempty sequence = = (¢;)o<i<n € Q"
where 1 < n < w, and ¢; is a successor of ¢;_; forall 1 <i < n. If n = 1, the
path is trivial; if n < w, the path is a finite path from gy to ¢,_1; otherwise
the path is infinite. The length of the path is the length of the sequence z,
i.e., the number of states in the sequence. The path visits the state ¢ € @ iff
¢; = q holds for some 0 < i < n. The path is simple iff ¢; # g; holds for all

2. DEFINITIONS AND BASIC RESULTS 21

22

0 <i,j<n(i+#}j),anditisa loop (alternatively, a cycle) iff it is a finite
nontrivial path with ¢,—1 = go. The cycle is simple iff (qo, g1, .., Gn—2) Is
a simple path. We reuse the terminology introduced for the transitions of A
and call a loop of length 2 a self-loop. (A self-loop transition always defines a
path that is a self-loop, but the converse does not hold in the general case.)
A state ¢’ € @ is a descendant of g € @ iff there exists a finite nontrivial path
from ¢ to ¢’ in the automaton; in this case we also say that ¢’ is reachable
from ¢ in A.

Let tl = <ql,F1,F1,Q/1> € A and tg = <QQ,P2,FQ,QIQ> € A be two
transitions of A. The transition ¢ is consecutive to the transition ¢; iff the
source state of ¢ is a target state of ¢; (i.e., iff g2 € @) holds). A transition
chain is a (possibly empty) sequence of transitions (£;)o<i<n € A" (0 < n <
w) such that ¢; is consecutive to ¢;_; for all 1 < ¢ < n. We say that the
chain is maximal if the chain cannot be concatenated with a transition (in
either order) to obtain another chain of transitions. Analogously to paths, the
length of the chain is the number of transitions (n) in the chain, the chain
is finite if n < w and infinite otherwise, the chain visits a state ¢ € Q iff ¢ is
the source state of ¢; for some 0 < ¢ < n, and it is simple iff t; # ¢; holds for
all 0 <i,7 <n (i # 7).

Example 2.3.2 In Fig. 2.2 (a), the successors of ¢; are the states ¢go and gq4; the
descendants of ¢; include also the states g3 and g5, because z; = (41,2, q3)
and 22 < (g1, qu, g5, ¢5) are finite nontrivial paths (of lengths 3 and 4) from ¢,
to g3 and gs, respectively. Because x does not visit any of the states g1, g2 or g3
twice, x; is simple; this does not hold, however, for the path x5 that includes
a selfloop (gs, g5) from g5 to itself. The path 5 = (g2, 3, @2, G3, G2, G5, - -)
is an infinite path that begins with a cycle (g2, g3, ¢2) that is not a self-loop.

The infinite transition chain y o (<q1, {a}, 0, {qo, q4}>, <q4, {c},0, {Q4}>,
(g1, {c},0,{as}), (qu, {c},0,{qu}),...) visits the states ¢; and g4. [|

Let ¢ € Q be a state in the automaton A. The subautomaton of A with
initial state ¢ (denoted A7) is the alternating automaton obtained from A
by changing its initial state to ¢, removing all states that are different from
¢ but that are not descendants of ¢ from the resulting automaton and re-
stricting the transition relation A to the remaining set of states. The sub-
automaton shares its set of acceptance conditions with the original automa-
ton. We also say that A? is rooted at the state ¢ € Q. Formally, A9 <
(2,Q%, A1, q?, F9), where Q¢ < {¢} U{¢ € Q | ¢ isa descendant of ¢},
A1 {{¢.T,F,Q") e A|{{}UQ CQ},qf “ ¢, and F1 = F.Itis casy
to see that if LA is a subautomaton of A and ¢’ € QY then (A9)? = A7 i.e.,
each subautomaton of A7 is also a subautomaton of A.

When taking subautomata of alternating automata, we sometimes also
project the acceptance conditions of A into another given set of acceptance
conditions 7. Formally, for a set 7/, we denote by .A%%" the automaton
(2,Q1, A% g1 F"), where Q7 and ¢! are defined as above, and A% =
{{¢,0,FNF,Q) (¢, F,Q) € A {d}UQ € Q.

Example 2.3.3 Figure 2.2 (b) shows the subautomaton A% obtained from
the automaton A depicted in Fig. 2.2 (a). [

2. DEFINITIONS AND BASIC RESULTS

Runs

A run of an alternating automaton A = (X, Q, A, g7, F) on an infinite word
w € X¢ is a directed labeled acyclic graph (DAG) G = (V, E, L), where
the set of nodes V, the set of (hyper)edges E and the labeling function L :
VUE — QU A satisty the following conditions (for X C V' U E, we write
L(X) as a shorthand for {L(z) | z € X}):

e The set of nodes V' can be partitioned into finite pairwise disjoint levels
Vi CV e,V =Upic, Vi Vin'V; # D forall 0 < i, j < w,i # j)
such that Vo = {vo} is a singleton, and B C J,,_,(V; x 2"+1).

[Partitioning to levels]

e Forall v € V, there exists a unique edge (v, V') € E.
[Forward causality]

e Forall v/ € V' \ Vj, there exists an edge (v, V') € E such thatv' € V.
[Backward causality|

e L(vg) =qr,and forall0 <i<wande= (v,V') € EN(V; x 2Vi+1),
there exists a transition ¢t = (¢,I', F, Q') € A such that L(e) = ¢,
L(v) =q,w(i) €T, and L(V') = Q". [Consistency of labeling]

Let e = (v,V’) € E. Reusing the terminology defined for alternating
automata, we call each element v € V" a successor of v; source and target
nodes of edges, descendants of a node, paths in a run, consecutive edges, and
chains and maximal chains of edges are defined in the obvious way.

Graph- vs. tree-based runs. Note that, although every individual level of a
run is required to be finite, we do not require the maximum number of nodes
in a level of a run to be finitely bounded. Therefore, the above graph-based
definition of runs subsumes (but is no more general than) the more common
definition of runs as finitely branching labeled trees (see, for example, [Vardi
1995]) in which the partitioning and backward causality properties follow im-
plicitly from the properties of trees. The graph-based definition is convenient
for expressing results on runs simply as transformations between runs without

a need to introduce additional concepts such as “run DAGs” (as often used
in the literature [Isli 1994, 1996; Kupferman and Vardi 1997, 2001]).

Example 2.3.4 Figure 2.3 illustrates the construction of the first few levels
of (one possible) run for the alternating automaton in Fig. 2.2 (a) on an
input word that begins with the symbols acabacababded. Again, we represent
nodes of the run with circles and edges with (sets) of arrows connecting the
nodes; we first draw the node corresponding to the level V4 of the run (the
leftmost node in the figure) and label this node with the initial state ¢; of the
automaton. On the first input symbol ¢, the automaton spawns two copies of
itself that then process the next symbol of the input, starting from the states
¢2 and gy, respectively. The spawning of the two copies is represented by
drawing arrows from the node labeled with the state ¢; to two new nodes
labeled with these states in the figure; these nodes form level V; of the run.
Nodes on the same level are always drawn horizontally aligned (with their
labels shown beside the nodes themselves). Subsequent levels of the run

2. DEFINITIONS AND BASIC RESULTS 23

24

g2 43 42 q1 42 Q1
O—»O0—>»0O0—> O—O0—>»
{b.c} {a} {6} \{a} {b} {d}

q2 43 q2 q q4 Q4 g4 G4 q4 G4 Q4
O—» O-e»0O--»0)

n- {be} " {a} 7 (b} " {a} " {e} \IWH (b} {a,d} {c} "{a,d}

q4 Q4 qda4 Q4 qa4 Q4 q4 44/ Q5 g5 45 Q45 Qs
O—>»0O--»0)

{c} H{a,d} \{b} {a,d} {c} {a,d} \{b} {b,d} {b,d} {a,c}{b,d},
{a,c} {a,c} {a,c}{b.d a,c}{b,d} {b,d} {a,c} {b:d}

o-o»O—> oO—»
9 45 (45 45 (45 (45 (45 (G5 (5

Fig. 2.3: First few levels of a run of the alternating automaton in Fig. 2.2 (a) formed
by reading the input acabacababdcd

of the automaton are defined in a similar manner so that the labels of the
successors of each node always match the target states of some transition
that starts from the state labeling the node itself and includes the next input
symbol (shown at the top of the figure) in its guard.

The nodes in a level of the run represent the copies of the automaton
which are “active” at the corresponding position of the input. As seen in the
figure, the number of active copies (of which several may be in the same state
of the automaton) can change while the automaton processes its input: the
automaton may spawn new copies of itself, some of the copies may “merge
together”, or a copy of the automaton may “die” by taking a transition with an
empty set of target states. Note that the structural properties of a run do not
enforce the merging of copies; nor do they enforce any global finite upper
bound on the number of copies of a particular subautomaton (or the total
number of active copies of the automaton) spawned at any position of the
input.

The arrows leaving each node constitute the unique (hyper)edge starting
from the node. Formally, each of these edges is labeled with a transition of
the automaton. We mark only the guards and the acceptance conditions of
these transitions in the figure; the exact label of each edge in the run can

nevertheless be determined uniquely from this information together with the
labels of the nodes. u

Infinite Branches and Their Properties

Let G = (V,E, L) be a run of an alternating automaton A = (3, Q, A,
qr, F) on an infinite word w € X*. We call each maximal chain of edges
in G a branch of G; by the partitioning and backward causality, it is easy to
see that each branch of G begins with the unique edge (v, V1) € E. In
particular, we denote the set of infinite branches in G by B(G) and define,
for each infinite branch 5 = (e;)o<i<w € B(G),

inf(5) < {feF|Vi>0:3j>i: L(e;)isan f-transition of A}
and
fin(5) = {f S f‘ 3i>0:Vj >1i: L(ej)isan f-transition of.A}.

2. DEFINITIONS AND BASIC RESULTS

The sets inf(3) and fin(3) are called the infinity set and the final set of £,
respectively; inf(3) collects the acceptance conditions occurring in the label
of infinitely many edges in the branch 3, and fin(3) is the maximal set of
conditions that are missing from the labels of only finitely many edges in the
branch. It is easy to see that if fin(3) # 0, then inf(3) # (), and furthermore,
if inf(5) # 0, then, for all f € inf(3), there exists an f-transition t; € A
such that L(e;) = t; holds for infinitely many ¢, because A is finite.

Acceptance Modes and the Language of an Automaton

Let G = (V,E, L) be a run of an alternating automaton A = (3, Q, A,
qr, F) on an infinite word w € X%, and let B(G) be the set of infinite
branches in G. A branch 8 € B(G) is inf-accepting iff inf(3) = F and fin-
accepting iff fin(5) = 0. The run G is inf- (fin-)accepting iff every branch
B € B(G) is inf- (fin-)accepting, respectively. (If all branches of G are finite,
then B(G) = 0, and thus G is trivially both inf- and fin-accepting.)

We say that A inf-accepts (fin-accepts) w € £ iff A has an inf-accepting
(fin-accepting) run on w. We call the set of infinite words accepted by A
in a fixed acceptance mode the language of A and denote it by Liye(A)
or Lgn(A), where the acceptance mode is given in the subscript. The au-
tomaton A inf- or fin-recognizes a language £ C ¢ iff £L = Liy(A) or
L = L, (A), respectively. The automaton is inf- (fin-)empty iff it inf-
(fin-)recognizes the empty language. We call two automata inf- (fin-)equiva-
lent iff they inf- (fin-)recognize the same language.

Transition- vs. state-based acceptance. In the literature, acceptance is of-
ten characterized by associating acceptance conditions with states instead of
the transitions of an automaton and defining (for an infinite branch 3 in
a run of the automaton) inf(3) (fin(3)) to be the union of the acceptance
conditions associated with those states in the automaton that occur as labels
of the source nodes of infinitely many (resp. all except for finitely many)
edges in 3. We shall refer to this form of acceptance as state-based (inf- or
fin-)acceptance to distinguish it from the above notion of transition-based ac-
ceptance. It is a well-known fact that state-based inf-acceptance can always
be reduced to transition-based inf-acceptance without altering the state set of
the automaton, but the converse reduction may necessitate duplicating some
states of the automaton to preserve its language; the results on nondetermin-
istic automata (see, for example, [Perrin and Pin 2004]) generalize easily to
alternating automata with multiple acceptance conditions.

Relation to generalized Biichi acceptance. Our notion of inf-acceptance
is equivalent to classic (generalized) Biichi acceptance commonly used in
the literature (see, for example, the survey article by Thomas [1990]). As
a matter of fact, fin-acceptance can be seen merely as a way to rephrase
the notion of inf-acceptance, because inf- and fin-acceptance can be eas-
ily reduced to each other: an alternating automaton A = (3,Q, A, ¢, F)
fin- (inf-)recognizes the language £ C X% iff the automaton obtained from
A by complementing the set of acceptance conditions of every transition
of A with respect to F inf- (fin-)recognizes the same language. (That is,

Lin(A) = Lint(A’) holds for the automaton A" = (X, Q, A’, g1, F) having

2. DEFINITIONS AND BASIC RESULTS 25

26

a a a b c d
q4 44 %1_@ e qa g4 %1_@ e g4 g4 44
At It NS SRSk
95 g5 g5 G5 g5 95 g5 g5 g5
(050 J05e: 1083 2 O-O»O—>O- () O-O»O—»O-r»0)
{a,c} {a,c} {a,c} {b,d} {a,c} {b,d}
(a) (b) (c)

Fig. 2.4: Possible extensions of the graph in Fig. 2.3 into a run of the alternating
automaton shown in Fig. 2.2 (a). (a) Extension on the input a*; (b) Extension on
the input (ab)¥; (c) Extension on the input (¢d)*

the transition relation A’ £ {{¢.T,F\F,Q)| (¢,T,F, Q') € A}; asamat-
ter of fact, if | F| = 1 holds, then fin-acceptance coincides with a notion of
acceptance commonly known as co-Biichi acceptance.) Nevertheless, fin-
acceptance provides a convenient way to identify a collection of transitions
that an automaton is forbidden to take indefinitely in any infinite branch of
a fin-accepting run on an input w € X* belonging to the language of the
automaton. Obviously, this requirement resembles the characteristic proper-
ties of models of strong temporal eventualities of LTL: recall that an infinite
word does not satisfy a strong temporal eventuality if some designated LTL
property remains unsatisfied in all sutfixes of the word. We shall make use of
this connection between the semantics of LTL and fin-acceptance in Ch. 3.
Additionally, with fin-acceptance one can freely add new acceptance condi-
tions to an automaton without modifying its transition relation to preserve
the language of the automaton.

Because the different acceptance modes are reducible to each other as de-
scribed above, each theorem on alternating automata working in one accep-
tance mode corresponds to a theorem on automata working in the opposite
acceptance mode. We shall prove most of our results for only one acceptance
mode and shall not deal with the opposite mode explicitly.

Example 2.3.5 Consider again the initial fragment of a run of the automaton
from Ex. 2.3.1 on the input acabacababded (Fig. 2.3). This run fragment ends
in a level having two nodes labeled with the states g4 and gs, respectively. We
investigate inf- and fin-acceptance in several runs of the automaton obtained
via simple infinite extensions of the input.

Concatenating the word a“ to the input allows us to extend the graph
in Fig. 2.3 into a run ending in, for example, an infinite number of identi-
cal levels shown in Fig. 2.4 (a). It is easy to see that the run formed in this
way contains a finite number of infinite branches, and all of these branches
end in an infinite sufhx of identically labeled edges (labeled either with the
transition (g4, {a, d}, {e}, {qs}) or the transition (g5, {a, ¢}, {o}, {g5})). Be-
cause neither of these transitions is both a e- and a o-transition, it follows that
the conditions e and o cannot both belong to the infinity set of any infinite
branch, and thus the run is not inf-accepting. On the other hand, the run is
not fin-accepting, either, because the final set of every infinite branch always
includes one of the conditions e or o.

2. DEFINITIONS AND BASIC RESULTS

Figure 2.4 (b) shows another extension for the graph in Fig. 2.3 obtained
by concatenating the word (ab)” with the original input. The run now con-
tains infinitely many infinite branches: intuitively, after traversing a chain
of edges that ends in an edge labeled with a self-loop starting from the state
q4, we always have the opportunity of extending this chain with an edge la-
beled either with another self-loop starting from gy, or a self-loop that starts
from ¢5. Nevertheless, it is easy to see that all infinite branches again end in
an infinite suffix of edges labeled with self-loops starting from a fixed state
of the automaton. More precisely, the edge labels will eventually alternate
between the transitions <q4, {a,d},{e}, {q4}> and <q4, {b},{e}, {qu, q5}>, or
the transitions <q5, {a, c}, {0}, {q5}> and <q5, {b,d}, 0, {q5}> in every infinite

branch of the run. Similarly to the first case, no infinite branch has {e, o}
as its infinity set, and the run is not inf-accepting. Although the final set of
all infinite branches ending in a suffix labeled with self-loops starting from
¢s 1s empty, the run is nevertheless not fin-accepting, either, because the ac-
ceptance condition e will eventually repeat indefinitely in the edge labels of
every infinite branch that ends in an infinite suffix of edges corresponding to
self-loops starting from the state gy.

Finally, extending the graph in Fig. 2.3 into a run by reading the in-
put (cd)® can be done as shown in Fig. 2.4 (c). As above, the run is not
inf-accepting; however, in this case all infinite branches of the run contain
infinitely many edges labeled with transitions having no acceptance condi-
tions as seen in the figure. Therefore the automaton fin-accepts the word
acabacababded(cd)®. [

2.3.2 Properties of Runs of Alternating Automata

In this section we list several basic facts about runs of alternating automata.
These facts will be used mainly as tools in the proofs of subsequent results.
We begin by establishing an obvious correspondence between reachability in
a run of an alternating automaton and reachability in the automaton itself;
compare this result with Fig. 2.2 (a) and Fig. 2.3.

Proposition 2.3.6 Let G = (V, E, L) be a run of an alternating automaton
A= (X Q,A, q;,F) on an infinite word w € ¥¥. Letv € V; be a node in
G atsome level 0 < i < w. Ifv' € V is a descendant of v in G, then L(v') is
a descendant of L(v) in A.

Proof: Because of the partitioning of V, each descendant of v in G is an
element of V;j forsome 1 < j < w. If v' € V4 is a successor of v, then v
is the source state of an edge that includes v' in its target nodes, and because
G is a run, the consistency of the labeling implies that L(v") is a successor
(hence, a descendant) of L(v) in A.

Assume that the result holds for all descendants v € V4, of v for some
1 < j < w,and let v” € Vi1 be a descendant of v. Thus G contains
a finite nontrivial path from v to v”, and, because E contains edges only
between consecutive levels of G, there exists a descendant ' € V4 ; of v and
an edge e = (v/, V') € E such that v” € V" holds. Because the labeling L is
consistent, L(v") is a successor of L(v') in A, and thus L(v"”) is a descendant
of L(v) by the induction hypothesis. O

2. DEFINITIONS AND BASIC RESULTS 27

28

{

Q

¥ qra drs 4ro 418 91 91 o 4918 91
N \p@ \00«1 /\QDQ '\0(3 \oo«z \ooQ \00\

o)))) X
X X A X X X AN
< & & EX & & &

Fig. 2.5: Every run of an alternating automaton contains a chain of edges labeled

with initial self-loops of the automaton such that the sequence is either infinite, or it
can be extended with an edge labeled with an initial transition that is not a self-loop

Consider the construction of a run for an alternating automaton A.
Clearly, the only way to extend a finite (possibly empty) chain of edges la-
beled with initial self-loops of the automaton with a new edge starting from
a node labeled with the initial state of the automaton in a consistent way
is to label the new edge with another initial transition of the automaton.
Therefore, every run of the automaton contains either a finite chain of edges
labeled with initial transitions of the automaton such that all edges except
the last one correspond to self-loops of the automaton, or an infinite chain of
edges, all edges of which are labeled with initial self-loops of the automaton
(see Fig. 2.5). Because we shall often rely on the existence of such a chain of
edges in a run of an alternating automaton, we state this simple fact formally
here for further reference.

Proposition 2.3.7 Let G = (V, E, L) be a run of an alternating automaton
A= (2,Q,A, qr,F). There exists an index 0 < i < w and a chain of edges
(ej)o<j<it1, €5 € EN(V; x 2Yi+1) such that L(e;) is an initial self-loop of A
forall 0 < j < i, and eitheri = w, or L(e;) is an initial transition of A that is
not a selt-loop.

Proof: Because G is a run, L(vg) = g7, and v, has the unique outgoing edge
e = (v, V1) € EN (Vy x 2Y1) such that L(e) is an initial transition of A. If

1 ¢ L(V1), then L(e) is not a self-loop, and thus ¢ = 0 can be chosen as the
index referred to in the proposition.

Assume that G contains a chain of edges (€;)o<j<k, €; € EN(V; x 2Yi+1),
for some 0 < k < w such that L(e;) is an initial self-loop of A for all 0 <
Jj < k. Letey = (v,V’) forsome v € V, and V' C Vj 1. Because L(ey)
is an initial self-loop of A, there exists a node v' € V' such that L(v') = ¢;.
Due to forward causality, v’ has the unique outgoing edge ex; = (v', V") €
E N (Vg1 x 2%+2) for some V" C V,.,9, and because L is consistent, e 1 is
labeled with an initial transition of A. Clearly, e; and ey, are consecutive.
As above, if ¢y ¢ L(V"), then L(ej41) is not a self-loop, and (e;)o<j<k+1 is a
chain of edges that satisfies the criteria given in the proposition. Otherwise
(€j)o<j<k+1 is another chain of edges labeled with initial self-loops of A. By
induction, it follows that G contains a chain of edges satistying the required
criteria. U

The following proposition proves the fact that each run of an alternating
automaton A on an infinite word w € £ is built from the runs of its subau-

2. DEFINITIONS AND BASIC RESULTS

tomata on suffixes of w; compare this result again with Fig. 2.3.

Proposition 2.3.8 Let G = (V, E, L) be a run of an alternating automaton
A= (3,Q,A, q,F) on an infinite word w € X¥. Letv € V; be a node
in G at some level 0 < i < w with L(v) = ¢ € Q. Define the graph
GY = (V" E", L"), where

o V' E [} U{v €V | v isadescendant of v in G},
o v {(/ V'Y FE | {VIuV' C Vv}, and

o LV: (VPUE") — (QUA) is defined by the rule L"(z) 2 L(x) for all
re VY UPR".

The graph GV is a run of the subautomaton A? = (X, Q?, A4, ¢, F9) on the
suffix w' of w.

Proof: We check that G satisfies the properties required of a run of the sub-
automaton A7 on w'.

(Partitioning) V" can be partitioned into finite disjoint levels V Zyen
Vig; (0 < j <w). Clearly, Vi = {v}, and E* C [y, (V) x 2"541).
(Causality) If v' € V¥, then v/ = v or v/ is a descendant of v in G, and
because G is a run, there exists a unique edge e = (v',V’) € E. Clearly,
every node in V’ is a descendant of v. Therefore, {v'} UV’ C V¥ and
e € EV is the unique edge starting from v’ also in E”.

Ifv" € V?\ {v}, then v is either a successor of v, or a successor of a node
that is itself a descendant of v in G. In either case, there exists a node v” € V¥
and an edge e = (v", V") € E such that v’ € V" holds. Obviously, all nodes
in V" are descendants of v. Thus {v"} UV” C V" holds, and e € E".
(Consistency of LV) By the definitions of G¥ and A%, L”(v) = L(v) = q is
the initial state of AY. Let v’ € VP C Vi for some 0 < j < w. By causality,
there exists a unique edge e = (v/, V') € E¥ C E (with V' C V;4,44), and
by consistency of L, L(e) = (L(v'),T', F, L(V")) € A holds for some I' C %
and F' C F such that w(i + j) € I'. Because L¥(x) = L(x) holds for all z €
VU U EY, then obviously (L(v'),T', F,L(V')) = (L*(v'),T,F,L*(V")) =
L*(e) holds. It remains to check that (L(v'),T', F, L(V')) € A% Clearly, if
v = v, then L(v') = L(v) = ¢ € Q7. Otherwise v’ is a descendant of v in
G, and thus L(v') is a descendant of L(v) = ¢ in A by Proposition 2.3.6. In
either case, all states in L(V”) are descendants of L(v), and thus L({v'} U
V’) C Q1. Because F' C F = F7 holds by the definition of A%, it follows
that (L(v'),T, F, L(V')) € A? holds.

We conclude that GV is a run of A% on (w(i + j))0<],<w = wl) = ' O

By focusing only on inf- or fin-accepting runs of alternating automata,
Proposition 2.3.8 leads to the result that any inf- or fin-accepting run of an al-
ternating automaton consists of inf- or fin-accepting runs of its subautomata,
respectively.

2. DEFINITIONS AND BASIC RESULTS 29

30

Proposition 2.3.9 Let A = (3,Q,A, q;, F) be an alternating automaton
working in acceptance mode pi € {inf, fin}, and let G = (V, E, L) be a -
accepting run of A onw € ¥*. Forall0 < i < wandv € V;, the run G"
obtained from G using the construction in Proposition 2.3.8 is a ji-accepting
run of A*™) on w'. More generally, if G = (V, E, L) is a i-accepting run of
A on w, then AX™) p-accepts w' forall0 < i < wand v € V.

Proof: By Proposition 2.3.8, G is a run of the subautomaton AX®) on w?. If
there exists an infinite path through GV starting from the node v, then this
path is a suffix of some infinite path through G that begins from the node
vo € Vp and visits the node v. (This follows directly from backward causality
and the fact that V¥ C V and E¥ C FE hold.) It follows that also each infinite
branch 3% = (e})o<j<w € B(G®) in G is a suthx of an infinite branch
B = (ej)o<j<w € B(G) in G (where € = ¢, forall 0 < j < w). Because
G is a praccepting run of A, 3 is p-accepting. Thus, either inf(5) = F
(u = inf), or fin(8) = O (u = fin). Since (Y is an infinite suffix of 3,
[contains only finitely many edges not contained in %, and thus either
inf(3%) = inf(3) = F = FXW or fin(8") = fin(3) = 0 holds. It follows
that GV is a p-accepting run of ALY on w'. O

Proposition 2.3.9 has the following immediate consequence on the non-
occurrence of nodes and edges labeled with certain states or transitions of an
alternating automaton in an inf- or fin-accepting run of the automaton.

Proposition 2.3.10 Let A = (£,Q, A, qr, F) be an alternating automaton
working in acceptance mode p € {inf,fin}. Let gy € Q be a state of the
automaton such that £,(A%) = (holds, or let ty = (¢,T,F,Q") € A
(q e QT C X F C Fand@Q C Q) be a transition such that ' = (),
or ﬂq,eQ,Eu(Aq/) = 0 holds. For all w € L,(A), no p-accepting run of
A on w contains a node (edge) labeled with the state gy (the transition t,
respectively).

Proof: Let G = (V, E, L) be a p-accepting run of A on some w € X, If
there exists a node v € V; (0 < i < w) such that L(v) = ¢y holds, then
w" € L,,(A®) holds by Proposition 2.3.9. But then £,,(A%) is not empty. It
follows that G has no nodes labeled with the state g.

Lete = (v,V') € EN(V; x 2¥+1) (0 < i < w) be an edge in G.
Because the labeling L is consistent, the guard of the transition L(e) € A
cannot be nonempty (it contains the symbol w(7)), and the target nodes V'
of e are labeled with the target states of L(e). Because V' C V holds, it
follows by Proposition 2.3.9 that A7 p-recognizes w'™! for all ¢ € L(V'),
ie, w*t € MNyeron L, (A7) holds. But then Nyero L, (A7) # 0. Ttis
easy to see that ¢y cannot be the label of e. O

Consequently, it is safe to remove a state (transition) from an alternating
automaton if the subautomaton rooted at the state inf- or fin-recognizes the
empty language (respectively, if the intersection of the languages recognized
by the subautomata rooted at the transition’s target states is empty).

Corollary 2.3.11 Let A = (X,Q,A,q;,F) be an alternating automaton
working in acceptance mode p € {inf, fin}, let Qy C @ be a set of states

2. DEFINITIONS AND BASIC RESULTS

such that £,,(A?) = 0 holds for all ¢ € @, and let Ay C A be a set of transi-
tions such that ' = () or ﬂq,eQ,Eu(Aq') = () holds for all {q,T", F, Q") € Ay
(qe NCY FCFandQ C Q). Let A = (X,Q,A, qr,F) be the
alternating automaton obtained from A by defining @)’ ZQ\ (Q@ \ {q;})
and A’ ¥ {(q, ILE,Q") € A\ Ay ‘ {¢}uQ" C Q’} The automata A and

A’ are p-equivalent.

Proot: Clearly, @' C @ and A’ C A holds. Because A and A’ share their
initial state and their acceptance conditions, it is easy to see that every p-
accepting run of A’ on some w € X% is also a p-accepting run of A on w.
The converse result follows because no p-accepting run of A on any w €
Y% contains nodes or edges labeled with states from Qg or Ay, respectively
(Proposition 2.3.10). We conclude that A and A’ are p-equivalent. O

Proposition 2.3.9 implies also that the language inf- or fin-recognized by
an alternating automaton depends only on the structure of the subautomaton
rooted at the initial state of the automaton. Consequently, given an alternat-
ing automaton, we can always remove all its non-initial states that are not
reachable from its initial state (and the transitions having such states as their
source state or in their target states) without changing the language of the
automaton.

Proposition 2.3.12 Let A = (£,Q, A, g1, F) be an alternating automaton
working in acceptance mode p € {inf, fin}. For allw € ¥¥, A p-accepts w
ift AY pi-accepts w.

Proof: By the definition of A%, the set of states (transitions) of A% forms
a subset of the states (transitions) of A, and because A and A% share their
initial state and the set of acceptance conditions, every p-accepting run of
A% on some w € ¥ is also a p-accepting run of A on w.

Conversely, if G = (V, E, L) (with Vi = {w}) is a p-accepting run of A
on w € ¢, then it follows immediately by Proposition 2.3.9 that G* = G is
a p-accepting run of AL = A% on w° = w. O

Example 2.3.13 Consider again the alternating automaton depicted in
Fig. 2.2 (a) (p. 21). If we choose ¢4 instead of ¢; as the initial state of this
automaton, then, by Proposition 2.3.12, we know that the language of the
automaton is completely determined by the subautomaton 4% shown in
Fig. 2.2 (b), and thus the modified automaton and A% (obtained from it
by removing the states ¢1, g2 and g3) recognize the same language. |

2.3.3 Semi-Runs

In this section we define a class of graph structures which will be convenient
for proving many results on alternating automata via transformation of runs
of the automata. Let A = (X, Q, A, ¢, F) be an alternating automaton,
and let w € ¥*. We call a directed labeled acyclic graph G = (V. E L) a
semi-run of A onw it V', E and L satisty the partitioning, backward causality
and the consistency properties defined for runs of A (p. 23) together with a
relaxed forward causality condition defined as

2. DEFINITIONS AND BASIC RESULTS 31

32

w(0) w(1) w(2) w(3) w(4) w(5) w(0) w(l) w(2) w(3) w(4) w(5)

-»0)
q1
-»0)

q1 q1

-»0)
i Q2 q2 *
O—»0O -»0)
q2 -
=-»o)
-»0) -0
g3 * 3 }
- et
3 -
=-»o)

(a) (b)

Fig. 2.6: Extending a semi-run of an automaton on an input w into a run of the
automaton using runs of the automaton’s subautomata. (a) A semi-run of an au-
tomaton on w together with runs of its subautomata on suffixes of w; (b) The run
(black nodes and edges) obtained by joining the runs of the subautomata with the
semi-run of the automaton)

For all v € V, there exists at most one edge (v, V') € E.
[Forward semi-causality]

Thus, all nodes of a semi-run do not need to have any outgoing edges (but
each edge starting from a node is still unique). The concepts of an infinite
branch and acceptance extend to semi-runs in an obvious way: a semi-run G
is called an inf- or fin-accepting semi-run iff each infinite branch through G
is inf- or fin-accepting, respectively.

An inf- (fin-)accepting semi-run of A on w can be extended into an inf-
(fin-)accepting run of A on w provided that it is possible to “attach” an inf-
(fin-)accepting run of a subautomaton of A on a sutfix of w to each node of
the semi-run with no outgoing edges. This fact is formalized in the following
proposition; see also Fig. 2.6.

Proposition 2.3.14 Let A = (£,Q, A, qr, F) be an alternating automaton
working in acceptance mode p € {inf, fin}, and let G = (V, E, L) be a u-
accepting semi-run of A onw € %¢. Let V; & {veV;|En({v} x2%+) =
0} denote the set of nodes at level 0 < i < w of G with no outgoing edges,
and assume that A*®) has a p-accepting run on w' for all 0 < i < w and
o € V;. The automaton A j-accepts w.

Proof: Forall 0 < i < wand all & € V;, let G* = (V?, E?, L?) (with Vi =
{v¥}) be a p-accepting run of AX® on w'. Without loss of generality, we

may assume that V* N V* = () holds for all pairs of nodes 9,9" € Uy<;, Vi
(0 # ¢')and V* NV = () holds for all o € Jyc;,, Vi. Define the graph

G'= (V' E',L'), where
e VEVU U0§i<w Uﬁe@ (Vo {wg)),
o B2 U Ui User, ((B°\ {0, VD U {(2,V7)}), and

2. DEFINITIONS AND BASIC RESULTS

e the labeling function L' is given by

L) L(v) ifveV R
- L(w) ifv e VO {ug} for some v € Uy, Vi
L(e) ifec E
L'(e) { L¥(e) ife € E7\ {{vg, Vi) }, 0 € Upeic Vi

~

L ((vh, V")) ife = (0, V}") for some © € Uo<icw Vi

We show that G’ is a p-accepting run of A on w by checking that G’
satisfies all properties required of an accepting run.

(Partitioning) V' can be partitioned into finite disjoint levels by defining
A=AV Uo<jci Uner, Vilys then also B C (JZq (V] x 2Vi1) holds. In
addition, because G is a semi-run of A, Vi = V} is a singleton.

(Forward causality) Letwv € V'. If v € V, and v has an outgoing edge in
G, then forward causality follows because £ C E’ holds. Otherwise, ifv € V
has no outgoing edges in G, then v € IA/Z for some 0 < i < w, and by the
definition of &/, (v, V}) is the unique edge starting from v in this case. In the

remaining case, v € V?\ {vl} holds for some 0 < i < wand 9 € V;. Because
G? is a run of AX® on w?, there exists a unique edge e = (v, V') € E?, and
because v # v, e € E’ holds by the definition of G’

(Backward causality) Letv' € V' \ Vj. If v/ € V, then, because G is a
semi-run, there exists (in G) anode v € V and an edge e € E that starts from
v and includes v in its target nodes. Because V' C V' and E C E’, the same
still holds in G, If v € V\ {vg} for some 0 € Uy, V,, then v/ € Vv for
some 1 < j < w. Because G? is a run, there exists (in G?) a node v € Vj@_1
and an edge e € E? that starts from v and includes v’ in its target nodes. If
j>1,thenv e Vo\{vl} C V'ande € E*\ {(v},V{")} C E', and backward
causality follows. If j = 1, then v’ is a successor of a node v € (Jy;,, V; by
the definition of G', and G’ has the backward causality property also in this

case.
(Consistency of L) Because Vj = Vy = {vg} and L is consistent, L' (vg) =
L(UQ) =dqr.

Lete € E'. Clearly, e € V/ x 241 forsome 0 < i < w. Ife € E
holds, then e = (v, V') € V; x 2Yi+1 holds by the definition of G’. Because
L is consistent, it follows from the definition of G’ that L'(e) = L(e) =
(L(v),T, F,L(V")) € Aholds in G for some I' C ¥ and F C F such that
w(i) € T. The labeling L’ is now consistent because (L(v), T, F, L(V")) =
(L'(v),T,F,.L'(V")).

If e = (6, V) holds for some & € Vj, then, by the definition of G’ and
the consistency of L?, L'(e) = L*((v{, V")) = (L°(vd),T, F,L°(V{)) €
A holds for some I' € 3 and FF C F such that w'(0) = w(i) € T.
Then also the labeling L’ is consistent, because (L?(vg), T, F, L*(V{")) =
(L(0), 0, F, L°(V)) = (L'(0), T, F, L' (V).

Finally, if e = (v, V') € E*\ {(¢v§,V{")} holds for some o € Vi(0<i<
w), then e € V}” x 2V C Vi x 2Vi+s+1 holds for some 1 < j < w (and
{v} UV’ C VP\ {v}). Because G? is a run of AL on w?, the labeling
L is consistent, and thus L'(e) = L%(e) = (L?(v), T, F, L*(V")) € A holds

2. DEFINITIONS AND BASIC RESULTS 33

34

for some ' C ¥ and F C F such that wi(j) = w(i + j) € T'. Because
(L*(v),T, F,L°(V")) = (L'(v),T, F,L'(V')), L' is consistent also in this

case.

(Acceptance) Clearly, G’ is p-accepting if all branches of G’ are finite.
Otherwise let § € B(G’) be an infinite branch in G’. If 3 is contained in
G, then (3 is p-accepting by assumption. Otherwise the branch consists of a
finite (possibly empty) chain of edges in G followed by an edge of the form
e = (0,V}) for some & € Jye;, Vi and Vi C V7, which is then followed
by an infinite chain of edges through G?. Clearly, this chain is a suffix of
an infinite branch % in G®. Since the number of edges in 3 preceding
this suffix is finite, it follows that inf(3) = inf(3?) and fin(3) = fin(3?), and
since either inf(3%) = F or fin(8%) = 0 (depending on the acceptance mode
), it follows that also inf(3) = F or fin(3) = () holds. We conclude that G’
is a pr-accepting run of A on w. O

Proposition 2.3.14 provides a simple method for constructing accepting
runs for alternating automata by first finding an accepting semi-run for the
automaton, and then extending it with accepting runs for the automaton’s
subautomata. We shall make extensive use of this result in later chapters.
As a first example of an application of the result, we establish a simple cor-
respondence between a single step of operation of an alternating automa-
ton and inf- (fin-)acceptance. More precisely, an alternating automaton inf-
(fin-)accepts its input only if all copies of the automaton spawned by the first
transition taken by the automaton inf- (fin-)accept the input that remains af-
ter the first input symbol; conversely, the automaton can always be made to
accept its input if it has such an initial transition whose guard contains the
first symbol of the input.

Proposition 2.3.15 Let A = (£,Q, A, g1, F) be an alternating automaton
working in acceptance mode p € {inf, fin}, and letw € ¥¥. The automaton
A p-accepts w iff there exists a transition (q;, ', F, Q') € A forsomeT C ¥,
F C Fand Q" C Q such that w(0) € T holds, and for all ¢ € @', the
subautomaton A? p-accepts w?.

Proof: (Only if) Assume that A p-accepts w. Then A has a p-accepting
run G = (V, E, L) on w, and G contains a state vy € V; labeled with the
initial state of A and an edge e = (vy, V1) € E labeled with a transition
t ={q,I,F,Q) € Aforsome ' C ¥ and F C F such that w(0) € I" and
Q' = L(V1) hold. By Proposition 2.3.8, we can extract from G a run of the
subautomaton A? on w! for all ¢ € @', and because G is p-accepting, each
of these runs is p-accepting by Proposition 2.3.9.

(If) Assume that there exists a transition t = (q;,T', F, Q") € A for some

Trcy FC FandQ = {¢1,--,qn} € Q (0 < n < w) such that
w(0) € T holds, and the subautomaton A% has a p-accepting run on w' for
all 1 <i <n. Define the graph G = (V, E, L), where

° Vdéf{v[,vl,...,vn},where vr # v; forall 1 < ¢ <n, and v; # v, for
all 1 <i,j<n,i+j,

2. DEFINITIONS AND BASIC RESULTS

e £ Y {(vl, {vq,. .. ,vn})}, and
def def . def
o L(vy) = qr, L(v;) = gi for 1 <i <mn,and L((v;, {vq, ... ,vn})) =t

It is easy to see from the definitions that G is a semi-run of A on w: obvi-
ously, V' is partitioned into finite disjoint levels Vo = {vr}, Vi = {v1, ..., v.},
Vi=0forall2 <i < w(and E C Vj x 2"), the edge starting from v; is
unique (and it is the only edge in E), each node v € V' \ {v;} is a successor
of vr, and the labeling L is consistent. Since G has no infinite branches, G is
trivially p-accepting. Because L(v) € {q, ..., ¢,} holds for all nodes v € V'
with no outgoing edges (i.e., forall v € V) and A% has a p-accepting run on
w! for all 1 < i < n by the assumption, we can apply Proposition 2.3.14 to
extend the semi-run G into a p-accepting run of A on w. O

2.3.4 Self-loop Alternating Automata

In this work we concentrate on a restricted class of alternating automata
known to be closely related to linear time temporal logic in that every lan-
guage definable as the set of models of an LTL formula is also a language rec-
ognizable by an alternating automaton in this subclass and vice versa [Rohde
1997; Loding and Thomas 2000]. Since automata in general possess intu-
itively appealing “operational” characteristics, translating linear time tempo-
ral logic into finite automata provides a first step towards effective procedures,
for example, for checking the satishability of LTL formulas. By concentrating
on a subclass of automata that is equally expressive to L'T'L, the characteristic
properties of these automata allow making the procedures simpler and more
efficient. Because our basic definitions of automata and acceptance gener-
alize traditional definitions by allowing alternating automata to have multi-
ple acceptance conditions associated with their transitions, we shall rephrase
several basic results on this subclass of alternating automata in this and the
following chapter using the generalized definitions to provide explicit details
of various automata constructions. These details are needed, for example, for
transforming the formal constructions into an actual implementation.

Definition and Relation to Weak Alternating Automata

Formally, we call an alternating automaton A = (£, Q, A, g7, F) a self-loop
alternating automaton iff all its simple cycles (i.e., cycles that do not visit any
state except their first state twice) are self-loops.

Self-loop alternating automata share their structural properties with a sub-
class of alternating automata referred to as the class of very weak [Isli 1994,
1996; Rohde 1997; Gastin and Oddoux 2001], linear [Léding and Thomas
2000], linear weak [Merz and Sezgin 2003; Hammer et al. 2005] or one-
weak [Ben-David et al. 2005] alternating automata in the literature. The
usual terminology stems from the identification of the subclass with a special
case of the more general weak alternating automata introduced by Muller
etal. [1986, 1992]; however, we prefer the above direct definition to separate
the intuitive structural characterization of the automata in the subclass from
any particular (usually state-based) notion of acceptance that is implied by
the standard definition of weakness.

2. DEFINITIONS AND BASIC RESULTS 35

36

Weak alternating automata [Muller et al. 1986, 1992] have their state sets
partitioned into subsets arranged into a partially ordered hierarchy in which
no state in any subset of the hierarchy has a successor that belongs to a set that
is strictly higher in the hierarchy. In very weak automata, each of these sub-
sets consists of a single state of the automaton. The connection between this
structural property of very weak alternating automata and self-loop automata
is given in the following proposition.

Proposition 2.3.16 An alternating automaton A = (X, Q, A, g1, F) is a self-
loop alternating automaton iff there exists a mapping p : () — N such that
for all transitions (¢, F,Q') € A (¢ € Q, T C X, F C Fand Q' C Q),

p(q") < p(q) holds forall ¢ € Q" \ {q}.

Proof: (Only if) Assume that all simple cycles in the automaton A are self-

loops. Let Qp C @ denote the set of states such that for all ¢ € Qo, ¢ either
has no successors, or the only successor of ¢ is ¢ itself. We claim that for all
g € Q, either ¢ € Qg holds, or ¢ has a descendant ¢/ € Q. If this were
not the case, there would exist a state ¢ € @ \ Qo with no descendants in
Qo. Therefore, the automaton would contain an infinite path (¢;)o<i<., with
go = q and ¢; # @41 forall 0 < ¢ < w. Since @Q is finite, there would
now exist two indices 0 < n < m < w such that ¢, # ¢, and ¢,, = ¢,
hold. However, the automaton would then contain a simple cycle (from g,
to itself) that is not a self-loop, contrary to the assumption.

The above result shows that the mapping p: Q — N,

p(q) = max {|z] | @ is a simple path from g to a state ¢’ € Qo}
is well-defined on Q.

To show that this function satisfies the criterion given in the proposition,
suppose that A contains a state ¢ € () and a transition (¢, I', F, Q') € A for
some ' C ¥, FF C Fand Q' C @ such that p(¢’) > p(q) holds for some
¢ € @\ {q}. Then there exists a simple path of length p(¢’) from ¢’ to a
state ¢ € Qg in the automaton. However, because ¢’ # ¢ is a successor of g,
there exists (due to the fact that all simple cycles of A are self-loops) a simple
path of length p(¢') + 1 from ¢ to ¢”. But then p(q) cannot be the maximal
length of a simple path from ¢ to a state in Q. Thus, p(¢') < p(g) holds.

(If) Assume that there exists a mapping p : @ — N satistying the given

criterion. Let z = (¢;)o<i<n (1 < n < w) be a simple cycle in A. Suppose
that the cycle is not a self-loop, i.e., n > 1 holds. Since ¢;41 is a successor
of g; for all 0 < i < n and all states {qo, . . ., ¢,_1} are distinct (and ¢, 1 #
Gn = qo), it follows that

p(qo) > p(q1) > - > p(gn-1) > p(qn) = p(qo),

which is clearly a contradiction. Therefore n = 1, and z is a self-loop. It
follows that A is a self-loop alternating automaton. O

Example 2.3.17 Figure 2.7 depicts a self-loop alternating automaton work-
ing over the alphabet {a,b,c}. The function p (defined in the proof of
Proposition 2.3.16) divides the state set of the automaton into four partitions

2. DEFINITIONS AND BASIC RESULTS

Fig. 2.7: A self-loop alternating automaton

as shown in the figure. The structure defined by the states and transitions of a
self-loop alternating automaton can be considered to have been built from a
directed acyclic graph by adding to it edges including their own source state
in their target states. u

Convergence of Infinite Run Branches

Because every loop of a self-loop alternating automaton visits a single state,
the labels of the source states of the edges in an infinite branch of a run of
the automaton will eventually converge to a fixed state of the automaton.
In this case we simply say that the branch converges to a fixed state of the
automaton.

Proposition 2.3.18 Let G = (V, E, L) be a run of a selt-loop alternating
automaton A = (X,Q,A,qr,F). For each infinite branch (e;)o<i<cw =
(v, V) pese, € B(G), there exists an index 0 < j < w and a state ¢ € Q
such that for all j < k < w, L(v) = q holds, and L(e;) is a self-loop transi-
tion of A with source state q.

Proof: Let p : @ — N be a mapping satisfying the condition given in
Proposition 2.3.16. By the definition of a run, L(e;) is a transition of A
having source state L(v;) and including L(v;1;) in its target states for all
i. It follows that (p(L(vi)))ogi<w is a nonincreasing infinite sequence of
nonnegative integers, and thus there exists an index 0 < j < w such that
p(L(vk)) = p(L(v;)) holds forall j < k < w. But then also L(vy,) = L(v;)
holds for all j < k < w, since L(v;11) is a successor of L(v;) in A for all
0 < i < w, and p(¢) is strictly less than p(L(v;)) for all successors ¢’ of
L(v;) other than L(v;) itself. Thus we may choose ¢ = L(v;), and because
L(vg41) = ¢ is included in L(ey)’s target states for all j < k < w, it follows
that L(ey) is a self-loop of A with source state ¢ for all j < k < w. O

A state ¢ € @ of a self-loop alternating automaton A = (£, Q, A, qr, F)
working in fin-acceptance mode is a transient state iff all self-loops from this
state to itself share a common acceptance condition, formally, if there exists
an acceptance condition f € F such that f € F holds forall (¢,T', F, Q') €
A with ¢ € Q'. (This holds trivially if there are no self-loops starting from the
state.)

2. DEFINITIONS AND BASIC RESULTS 37

38

It is easy to show that every infinite branch of a fin-accepting run of a
self-loop alternating automaton will converge to a nontransient state of the
automaton.

Corollary 2.3.19 Let A = (3,Q,A,q;,F) be a self-loop alternating au-
tomaton, and let G = (V, E, L) be a run of A onw € . If G is a fin-
accepting run of A, then each infinite branch of G converges to a nontran-
sient state of A.

Proof: Let 3 = (€;)o<i<w = ({vi, W>)o<i<w € B(G) be an infinite branch in
G. By Proposition 2.3.18, there exists a state ¢ € @ and an index 0 < j < w
such that for all j < k < w, L(vg) = ¢, and L(e) is a self-loop of A
with source state ¢. Because G is fin-accepting, fin(5) = 0, and thus, for
all f € Fand j < k < w, there exists a k < k' < w such that the self-
loop L(ex) € A is not an f-transition of A. Because the same holds for

all acceptance conditions in F, it follows that ¢ is a nontransient state of A.
U

Another corollary of Proposition 2.3.18 is that no acceptance condition
associated with a non-self-loop transition of a self-loop alternating automaton
affects the language recognized by the automaton. Thus, we can always re-
move all acceptance conditions from the transitions of the automaton which
are not self-loops.

Corollary 2.3.20 Let A = (X,Q,A,q;,F) be a self-loop alternating au-
tomaton. Define the self-loop alternating automaton A" = (¥, Q, A', q1, F),
where A’ is obtained from A by making the set of acceptance conditions

of all non-self-loops of A empty (formally, A’ < {(q,F, F,Q) € A‘ q €
QYu{(¢,T.0,Q)|(¢.T,F,Q") € Aforsome F C F,and q ¢ Q'}). The

automata A and A’ are fin-equivalent.

Proof: Let B = (e;)o<i<w € B(G) be an infinite branch through a run
G of either of the automata. By Proposition 2.3.18, there exists an index
0 < j < w such that L(e;) is a self-loop of both automata for all j < i < w,
and thus [contains only finitely many edges labeled with non-self-loop tran-
sitions. Therefore, none of these transitions can contribute to the accep-
tance conditions occurring infinitely often in the labels of the edges of 5,
ie., inf(5) = inf ((ei)ngw) and fin(f) = ﬁn((ei)ngw). The result now
follows since the definitions of A" and A differ only in the acceptance condi-
tions associated with non-self-loop transitions. O

Example 2.3.21 Consider again the automaton shown in Fig. 2.7. By
Corollary 2.3.20, we can remove all acceptance conditions from the non-
self-loop transitions of the automaton. This simplification results in the au-
tomaton shown in Fig. 2.8. Because both the original and the simplified
automaton have no self-loops starting from the states g3 or g4, these states are
trivially transient. Also the states ¢o and g are transient, because all self-loops
starting from these states share a common acceptance condition. Thus, by
Corollary 2.3.19, every infinite branch in a fin-accepting run of either au-
tomaton converges to one of the states q1, ¢s, g7 or ¢s. |

2. DEFINITIONS AND BASIC RESULTS

/

2N ¥
{“‘?b}

{c}® {a,b,c}

Fig. 2.8: The self-loop alternating automaton of Fig. 2.7 after removing acceptance
conditions from its non-self-loop transitions

2. DEFINITIONS AND BASIC RESULTS 39

3 BASIC AUTOMATON TRANSLATION

40

The languages definable by linear time temporal logic formulas are known
to be recognizable by nondeterministic automata on infinite words, i.e., ev-
ery linear time temporal logic formula can be translated into a correspond-
ing nondeterministic automaton that accepts its models. This connection
between LTL and automata theory has stimulated active research towards
finding an efficient procedure for translating LTL and its subclasses or exten-
sions into automata. The proposed approaches can be roughly divided into
(1) procedures based on combining a “local automaton” with an “eventuality
automaton” [Wolper et al. 1983; Vardi and Wolper 1986; Ramakrishna et al.
1992b; Vardi and Wolper 1994], (ii) procedures that build on a tableau de-
cision procedure for LTL ([Manna and Wolper 1982, 1984; Wolper 1985])
[Gerth et al. 1995; Couvreur 1999; Daniele et al. 1999; Somenzi and Bloem
2000; Wolper 2001; Giannakopoulou and Lerda 2002; Thirioux 2002], and
(iii) translation procedures that build an automaton incrementally by com-
bining automata built for subformulas of an LTL formula into more com-
plex automata, using nondeterministic [Michel 1985; de Jong 1992; Schnei-
der 2001; Fritz 2005] or alternating [Isli 1994, 1996; Vardi 1994; Rohde
1997; Manna and Sipma 2000; Gastin and Oddoux 2001; Fritz 2003; Ham-
mer et al. 2005] automata as the target formalism. The translation proce-
dures have been improved with techniques for the minimization of automata
[Etessami and Holzmann 2000; Somenzi and Bloem 2000; Etessami et al.
2001, 2005; Etessami 2002; Fritz and Wilke 2002, 2005; Gurumurthy et al.
2002] and heuristics for reducing nondeterminism in the generated automata
[Thirioux 2002; Sebastiani and Tonetta 2003]. The procedures have also
been specialized for LTL safety properties [Geilen 2001; Latvala 2003].

The language of any LTL formula can be recognized by a nondeterminis-
tic automaton having exponentially many states in the length of the formula
[Wolper et al. 1983; Vardi and Wolper 1994], and this upper bound is tight
(see, for example, [Wolper 2001]). Muller et al. [1988] proposed using weak
alternating automata as a succinct automata-theoretic formalism for work-
ing with many temporal logics, showing (using the extended temporal logic
of Wolper [1981, 1983] interpreted over tree models as an example) them
to be translatable into automata with only a linear number of states in the
length of a formula; the special case for LTL has since been discussed in
many sources [Isli 1994, 1996; Vardi 1994; Rohde 1997; Manna and Sipma
2000; Gastin and Oddoux 2001; Fritz 2003; Hammer et al. 2005]. Although
all translations from LTL to alternating automata are very similar, they use
slightly different strategies for dealing with negations in the input formulas.
Common approaches include working directly with the closure of the input
formula [Isli 1994, 1996; Vardi 1994] (i.e., a set of formulas obtained from
the subformulas of the formula and their negations), rewriting the formula
in positive normal form before translation [Manna and Sipma 2000; Gastin
and Oddoux 2001; Fritz 2003], or using a complementation procedure for
alternating automata [Rohde 1997].

In this chapter we describe a translation from linear time temporal logic to
self-loop alternating automata working in fin-acceptance mode. Borrowing

3. BASIC AUTOMATON TRANSLATION

ideas from known translation procedures [Rohde 1997; Gastin and Oddoux
2001], we use a set of rules to construct a self-loop alternating automaton
A, that recognizes the language of a given LTL formula ¢ (Sect. 3.1). The
translation proceeds in a bottom-up manner by joining automata built recur-
sively for subformulas of (the positive normal form of) ¢ into increasingly
complex automata. This intuitive “modular” approach to building automata
was proposed already in some studies on translating LT'L formulas directly
into nondeterministic automata [Michel 1985; de Jong 1992] (and applied
also by Schneider [2001] and Fritz [2005]); however, these constructions
are made complicated by the intricacies of working with nondeterministic
infinite word automata in general, such as the difficulty of their complemen-
tation. These complexities do not arise when using alternating automata as
the target formalism.

We show that the worst-case number of states in the automaton built using
our translation rules meets the best upper bound known for similar transla-
tions presented in the literature (Sect. 3.2) and show the correctness of the
translation (Sect. 3.3). Although formally only a matter of preference, using
fin-acceptance instead of inf-acceptance (a direct generalization of the idea
of using co-Biichi acceptance as suggested by Gastin and Oddoux [2001])
gives a simple explanation for the introduction of new acceptance condi-
tions during the translation. Finally, we shall review the connection between
the expressiveness of LTL and self-loop alternating automata [Rohde 1997;
Loding and Thomas 2000] by discussing a reverse translation from self-loop
alternating automata to L'TL and analyzing its complexity (Sect. 3.4).

3.1 TRANSLATION RULES

In this section we introduce rules for translating LTL formulas into self-loop
alternating automata. We first review the notation that is customarily used
to simplify the representation of transition guards of automata working on
inputs over the fixed alphabet 247, With this alphabet, the transition guards
will be elements of the set 22" i.e., families of sets of atomic propositions.
Since there is a simple correspondence between these families and Boolean
formulas, it is convenient to express the guards with these formulas. More
specifically, for any family T' = {07, 09,...,0,} € 22"" (0 < n < w), where
o C AP forall 1 < i < n, there exists a characteristic Boolean formula
Or, for example, O = \/7_, ((Apeo, P) A (Apeario, —p)), such that, given a
subset 0 C AP, o |= 6r holds iff o € T; conversely, each Boolean formula 6
is characteristic for the family of its models Ty 2 {o C AP | o |= 0} € 22"
Therefore, when considering the runs of an alternating automaton, the fact
that 0 € T holds for some 0 C AP and some guard I' € 22" of some
transition is equivalent to the condition that o |= 6 holds for a characteristic
Boolean formula 6 of I'. This notation will be used in further discussion
whenever dealing with automata having the fixed alphabet 247

Let ¢ € LTL(AP) be an LTL formula. By the discussion in Sect. 2.2.3,
we may assume that ¢ is in positive normal form (by first replacing ¢ with
[]"NF if necessary). We construct from ¢ an alternating automaton A, by
applying the following rules recursively to the subformulas of ¢. See Fig. 3.1

3. BASICAUTOMATON TRANSLATION 41

42

for illustration on the application of each rule.

Atomic Formulas
Letp € {T, L} or ¢ € {p, —p} for some atomic proposition p € AP. The

automaton for ¢ is defined as A, = (247, Q, A, q1, F), where Q = {q} for
some new state gy,

otherwise
and F & 0.

Next Time

Let ¢ = Xyy. Given the definition of the automaton A, = (247 .Qq, A4,
qr1, F1) for the subformula ¢, the automaton A, = (247, Q, A, q;, F) for
¢ has the components

e Q= QU {q} (where ¢ is a state not included in Q,);
o A “ AI U {<QI7 T7@7 {QI1}>}, and
« FL 7.

Binary Connectives

Let o = (1 0p9) for some binary connective o € {V, A, Ug, Uy, Rg, Ry }. Let
Ay = 247.Q1, A1, qn, Fr) and Ay, = (247 Qs, As, qr2, F2) be already
defined for the top-level subformulas ¢ and ¢, of ¢, respectively, such that
AZ;IEUFQ = .AZ;QEUE holds for all ¢ € @, N Q5 (i.e., if the two automata
share a state, then they share all states and transitions reachable from this
state). The automaton A, = (247, Q, A, q;, F) for the formula ¢ is built by
defining

e Q< Q,UQyU{q}, where g is a new state not included in Q1 U Qs;
° AdéfA1UA2UAO;aHd
def

[] f:f1Uf2Ufo

where the definitions of A, and F, for each binary connective are given in

Table 3.1.

Example 3.1.1 We illustrate the use of the translation rules by building an
automaton for the LTL formula

((GFp: A GFpo) v (psRu (ps Reps)) € LTL({p, - ps}).

Because we do not have explicit translation rules for the F and G connectives,
we first rewrite the subformulas with F or G as their main connective in terms
of the basic connectives via the L'TL. identities

Fo= (T Usp) and Gy = (LRy).

3. BASIC AUTOMATON TRANSLATION

(o e {T.p.-p} (pcAP)|

Fig. 3.1: Automata built using translation rules. (a) Automaton built from an atomic
formula ¢ € {T,p,—p} (p € AP); (b) Automaton built for the atomic formula L;
(c) Two component automata A; and Ay; (d) Automaton built from A; with the
Next Time rule; (e)—(j) Automata built from .4; and A3 using the translation rules
given for the V, A, Us, Uy, Rs and Ry, connectives, respectively

3. BASICAUTOMATON TRANSLATION 43

44

Table 3.1: Definitions of F, and A, for the binary connectives (61, 62 conjunctions
of atomic formulas over AP, F; C Fy, Fy C F, Q] C Q1, Q5 C @2, and f is
a new acceptance condition not yet used in the application of another translation
rule)

o ‘.7-"0 A,

{lar,0,0,Q0) | (an. 00, FL Q1) € A
U {<QI,02,®,Q'2> ‘ (q12, 02, F5, Q) € AQ}

Q) A
A 0 {<QI> (61 N 65),0,Q1 U Ql2> ‘ 232:2; F;: gé; i A;, }

{(an b0 {71 QU ar)) | (an. 60 P, Q1) € A

Us
ck U {<q1,02,®7Ql2> ‘ (qra, 02, F5, Q) € A2}

{<QI7917®7Q/1 U{ar}) ‘ (qr1, 00, F1, Q1) € A1}

Uy | 0
U {<q17027®7Q12> ‘ <q127027F27Q/2> € AQ}
{(an 0247} QU{a}) | (ar2, 00 P2, Q3) € A
Re [{/} c o s 60, FL QY € A,
U{<QI’ (01 10),0, Q1 U Q3) <q2,«9;,F;,Q’;> € A; }
@ {(ar,02.0,Q5 U {ar}) | (a2, 60 o, Q5) € Do}
Rw

01, F1, Q1) € A
U ’ 9 /\0 ’ / U / <QI17 1,41, /1 1 }
{<ql (617 62),0,0, 0 Q5) ‘ (qr2, 02, F3, Q3) € As

3. BASIC AUTOMATON TRANSLATION

Thus, the formula can be rewritten as the logically equivalent formula

(LR (T Usp) A (LR (T Uspa))) V (s R (s Reps))

this formula is clearly in positive normal form. Because the main connec-
tive V of the formula is a binary connective, we first have to find automata

for the formulas ¢ = ((L Ruw (TUsp1)) A (LR (T Uspg))) and ¢ <

(ps Rw (p4Rsps)) before we can apply the translation rule for the V con-
nective. Proceeding recursively towards the subformulas of the formula ¢,
we first build automata shown in Fig. 3.2 (a) for the subformulas L, T, p
and py of . We can then define automata for the subformulas (T U p;)
and (T Usps) by applying the translation rule given for the Ug connective
first to At and A,,, and then to At and A,,; see Fig. 3.2 (b). Because the
subformulas are strong temporal eventualities, we associate a unique accep-
tance condition with each compound automaton. (To simplify these and the
following figures, we shall always omit the states not reachable from the ini-
tial states of the constructed automata, since they can be removed from the
automata by Proposition 2.3.12 without changing their languages.)

We then apply the R,, translation rule to the automata A, and Ay, ,,),
and then to A, and Ay, p,), to obtain the automata shown in Fig. 3.2 (c).
Because Ry, is a weak temporal eventuality, no new acceptance conditions
are added to the automata. (Because the automaton A, has no initial tran-
sitions, the initial transitions of A, g, (T u, p,)) are completely determined by
the automaton Aty p,) forall i € {1,2}.)

We next merge the automata built for the top-level subformulas of ¢ into
the automaton shown in Fig. 3.2 (d) for the formula ¢ itself by using the A
translation rule.

The translation of the subformula (ps Rw (ps Rsps)) proceeds similarly.
We start from the automata built for the atomic subformulas (see Fig. 3.3 (a))
and apply the R; translation rule to A, and A, to obtain an automaton for
the formula (ps Rsps) (Fig. 3.3 (b)). Again, because (psRsps) is a strong
temporal eventuality, we add a new acceptance condition to the automaton.
We then apply the R, rule to A, and Ay, r, ps) to construct an automaton
for the formula ¢ (Fig. 3.3 (c)).

We finally apply the V translation rule to A, and A to build the automa-
ton shown in Fig. 3.4 for the formula

(LR (T Uspi)) A (LR (T Usp2))) ¥ (ps Ru (0 Res) |

3.1.1 Simple Observations

Correspondence between node subformulas of ¢ and states of A,. The
construction of an automaton A, for the given LTL formula ¢ (in positive
normal form) is guided by the structure of ¢, which completely determines
the set of rules that need be applied for translating the formula into an au-
tomaton. Even though the particular application order of the rules may re-
main partially unspecified (i.e., automata for any pair of subformulas of ¢

3. BASICAUTOMATON TRANSLATION 45

46

‘A(TUsm)‘ ‘A(TUSP2)‘

A AT A [A

|
°PRG S

AR, (T U p1)) AR, (T Usp2))

_|
_|
3

/-A ‘.\
pr | T T| P2
ox} 20
P1 v v b2
(c)

(T /\pg) (p1 A\ T)

Fig. 3.2: Building an automaton for the LTL formula ¢ <t <(J_ Rw (T Uspl)) A

(LRw (T Uspg))>. (a) Automata for the atomic subformulas of ¢; (b) Au-
tomata for the formulas (T Usp;) and (T Usps); (¢) Automata for the formulas

(J_ Rw (T Uspl)) and (J_ Rw (T Uspg)); (d) Automaton for the formula ¢

Aps| [Aps| [Aps) (/];3/\(134/\])5))

‘ v (pa A ps)
é:) ’ (ps A\ ps)
Ps | Pa D5 (pyAps)) Ps Q:)
(PaAps) b
(a) (b) (c)

Fig. 3.3: Building an automaton for the formula o (p3s Rw (P4 Rsps)). (a) Au-
tomata for the atomic subformulas of 1; (b) Automaton for the formula (p4 Rs ps);

(c) Automaton for the formula ¢

3. BASIC AUTOMATON TRANSLATION

Al AT T
TA o
(pQ)/.!r :““00,4]74 A ps)
Ch Tty 2 (A (panps))
e e
L R O (paAps)
,\.\?1 2 % ++f75 ’ (p3 /\p5)
P & EREN
Qt)T - (ps A p5°5>o°<’Q:)p5
P P2 (panps)

Fig. 3.4: Automaton for the LTL formula [((J_ Rw (T Uspl)) A (J_ Rw (T Uspg))) Vv
(p3 Rw (p4 Rs p5))]

that do not share any subformulas can be constructed in either order), au-
tomata built for two syntactically identical subformulas of ¢ are nevertheless
easily seen to be isomorphic (i.e., one can be obtained from the other by re-
naming its states and acceptance conditions). It is therefore possible to reuse
the structure of the automata constructed during the translation by direct-
ing the transitions added in the application of a translation rule to previously
added states whenever possible. Because the recursive translation rules treat
the atomic subformulas of ¢ as the base case, it follows that the number
of rule applications required equals the number of node subformulas of .
Therefore, because NSub(y) is finite, the translation always terminates, and,
because each step of the translation adds exactly one new state to the result,
there is a bijective correspondence between NSub() and the set of states in
the automaton built for the formula .

Interpretation of the translation rules. The correspondence between
NSub(p) and the states of the automaton A, gives a simple interpretation
of each translation rule. Intuitively, each translation rule gives instructions
on how to recognize the language of an LT'L formula ¢ by either giving an au-
tomaton for ¢ directly (the rules for the atomic formulas), or describing how
to run the automata built for the top-level subformula(s) of a non-atomic for-
mula ¢ to recognize the language £(¢). Thus, for example, the translation
rule for constructing an automaton Ay, »,,) for the language £((p1 A ¢2))
interprets to first building the automata A, and A, for the languages £(¢1)
and L(p3) and then creating an automaton that, in effect, runs A, and A,
in parallel on any given input. The translation rule makes the first admissi-
ble transition in any run of A, r,) mimic a pair of initial transitions taken
synchronously by each of the component automata. As a result, the initial
transition in any run of Ay, A, corresponds to spawning both A, and A,
on the same input. However, since this initial transition already synchronizes
by itself with the first symbol of the input, the target states of the transition
need be adjusted so that the set of copies of the automaton which are active
after the transition matches the copies of A,, and A, that would be active
after a synchronous pair of initial transitions. This is the reason for not in-
cluding the initial states of the component automata in the target states of

3. BASICAUTOMATON TRANSLATION a7

48

the initial transitions of Ay, r4,) unless the transitions are self-loops, which
are thus unrolled in the application of the translation rule.

A corresponding adjustment of target states is needed for defining the ini-
tial transitions of automata built for any other connective, except for the Next
Time operator X; namely, the purpose of the Next Time translation rule is to
modify an automaton built for an LTL formula ¢ into an automaton that, in
effect, postpones the checking of ¢ by one initial step.

For the binary temporal connectives Ug and U,,, the definition of A, in
the translation rules is a direct automata-based encoding of the well-known

LTL identity
(p1Ups) = (@2 V (1 A X(p1 U 802))>

where U is an Until connective of the same strength on both sides of the
identity. Thus, for example, the translation of the formula (p; Us ¢2) into an
automaton corresponds to first building automata for the top-level subformu-
las and then joining them into an automaton that verifies that either ¢4 holds
in the infinite suffix of the input beginning at the current input position, or
that ¢ holds in this suffix and (¢; Ug 2) still holds in the infinite suffix be-
ginning at the next input position. In the latter case, the automaton spawns
two independent copies of itself, one of which checks whether the infinite
suffix beginning at the current input position belongs to £(¢1), whereas the
other proceeds to check whether (¢1 Us) still holds from the next input
position onward.

The rules for the Release connectives can be derived from the rules intro-
duced for the A and Until connectives via the identities

(21 R 2) = (92 Us (01 A2)) and (1 Ry 02) = (2 Uw (01 A 02)).

Formally, the combination of the rules introduced for the A and the Until
connectives defines an automaton with a state that is unreachable from the
initial state of the automaton, namely, the initial state of the automaton con-
structed for the formula (@1 A o). However, this state can be safely discarded
by Proposition 2.3.12 without changing the language of the automaton. This
simplification then gives the direct rules shown in Table 3.1.

Loop structure. Building an automaton for a compound formula ¢ from
one or two component automata constructed for the top-level subformula(s)
of ¢ is done by taking a new initial state for the automaton and then adding
transitions from this state to itself and the states of the component automata
as instructed by the translation rules. Since no rule manipulates the tran-
sition relation of any component automaton, it follows (by induction) that
every state ¢ of the automaton A, constructed for an L1'L formula ¢ will
always remain unreachable from all of its descendants except possibly ¢ it-
self. Thus, all loops in the transition structure of the final automaton will
be self-loops, which may arise in the application of the translation rules to
subformulas of ¢ with a binary temporal main connective. By these observa-
tions, it follows that the automaton constructed by the translation rules is a
self-loop alternating automaton.

3. BASIC AUTOMATON TRANSLATION

Structure of transition guards. The guard of the only transition in an au-
tomaton built for any atomic formula different from _L is simply the formula
itself, encoding the subsets of AP that satisty it: for T, all subsets of AP;
for literals, all subsets of AP that (for negative literals, do not) include the
proposition in the literal. The guards of the initial transitions of any com-
pound automaton are either T (the Next Time operator), or they are built
from the guards of the initial transitions of the component automata. It is
easy to see that each new transition either inherits its guard directly from
another transition, or the guard is built as the conjunction of two previously
defined guards. By induction, it follows that all guards in the final automaton
will be finite conjunctions of one or more atomic formulas, corresponding to
finite intersections of one or more subsets of 24 by the semantics of A. This
very restricted form allows for efficient checking of propositional implica-
tions between the guards, which is needed for the automaton simplification
constructions discussed in Ch. 6.

Acceptance conditions. New acceptance conditions are introduced to the
constructed automaton whenever applying one of the translation rules to a
subformula having either of the strong binary temporal operators (Us or R;) as
its main connective. Intuitively, because the conditions are interpreted as fin-
acceptance conditions, they will prevent the automaton from remaining in a
state corresponding to an unsatisfied strong temporal eventuality indefinitely
along any path through a fin-accepting run of the automaton. Therefore, the
acceptance of an input requires the eventual satisfaction of each strong tem-
poral eventuality along the input as required by the semantics of the strong
temporal operators. This intuition will be made formal in the correctness
proof of Sect. 3.3.

As seen from the translation rules, the transitions added to the automaton
at each step never inherit any acceptance conditions from previously defined
transitions. Since each translation rule adds at most one acceptance condi-
tion to the automaton, it follows that the set of acceptance conditions of each
transition of the final automaton will be either an empty or a singleton set.
Since all transitions with a nonempty set of acceptance conditions are self-
loops of the automaton, the final automaton is easily seen to be constructed
simplified in the sense of Corollary 2.3.20. Additionally, it is easy to see from
the translation rules that all transitions of the final automaton having a partic-
ular acceptance condition in their set of acceptance conditions always have
the same source state.!

!Actually, this fact can be used (together with Proposition 2.3.18) to show that it is not
necessary to associate a unique acceptance condition with each strong temporal eventual-
ity, i.e., all eventualities could share the same acceptance condition as in the translation of
Gastin and Oddoux [2001]. We shall not do this here, however, since the correctness of
many heuristics for improving the translation (to be presented in the following chapters) re-
lies on the strict correspondence between acceptance conditions and temporal eventualities.

3. BASICAUTOMATON TRANSLATION 49

3.2

SIZES OF COMPONENTS IN AN AUTOMATON BUILT FROM AN LTL FOR-

MULA

In this section we consider upper bounds for sizes of components of an
automaton built from (the positive normal form) of an LTL formula ¢ €
LTL(AP). The sizes of the components of the subautomaton A rooted at
the initial state of the automaton A, (built from [¢]"NF
rules of Sect. 3.1) satisfy the inequalities

using the translation

e |Q] <1+ |Temp([p]™)| <1+2-|Temp(yp)| (Sect. 3.2.1),
o |A] < NSl ™)1 £ 92l (Sect. 3.2.2), and
o | F|< H(apl 0 9) € Sub([p]"NF) : 0 € {Us, RS}}‘. (Sect. 3.2.3)

3.2.1 Number of States

50

As noted previously, an LTL formula ¢ (in positive normal form) can be
translated into an automaton in |[NSub(¢)| applications of a translation rule.
Since the rules build the automaton one state at a time, the translation ends
after exactly |[NSub(p)| states have been defined. Therefore, the size of
NSub(y) also gives a simple upper bound for the number of states in an
automaton recognizing the language of the formula .

As seen already in Ex. 3.1.1, the application of a translation rule to de-
fine an alternating automaton from smaller component automata may leave
some states in the component automata unreachable from the initial state
of the newly constructed automaton. However, this fact is not taken into ac-
count when using the number of translation steps as an upper bound for the
number of states in an automaton A, built for a given LTL formula. Because
the language of an alternating automaton depends only on those states of the
automaton that are actually reachable from the initial state of the automa-
ton (Proposition 2.3.12), a tighter bound can be given by considering the
number of states in the subautomaton A% obtained from the result of the
translation by restricting it to the smallest set of states that includes the state
qr and the states actually reachable from ¢;. For this purpose, we examine the
translation rules to find the exact conditions under which a state introduced
during the translation will still be reachable from the initial state of the final
automaton.

Fach translation rule for building a compound automaton either adds a
transition to an initial state of a component automaton (the Next Time rule),
or it uses the initial transitions of the component automata as a basis for
defining the initial transitions of the compound automaton (rules for the bi-
nary connectives). It is clear from the translation rules that all target states of
each initial transition of a component automaton will be included as target
states of some transition of the compound automaton. Additionally, since
none of the rules ever change —or even refer to—the non-initial transitions
of any component automaton, it follows that a state reachable from the initial
state of a component automaton will remain reachable from the initial state
of any automaton obtained from it by any number of translation rules. By
examining the translation rules, we find that the initial state ¢; of some com-
ponent automaton will still be included in the subautomaton rooted at the

3. BASIC AUTOMATON TRANSLATION

initial state of the final automaton at least if it satisfies one of the following
conditions:

e ¢ is the initial state of the final automaton built for the LTL formula
. Clearly, because ¢y is the last state to be added into the automaton,
the final automaton is never used as a component automaton in any
translation rule.

e ¢ has a self-loop transition to itself, which is possible (by the definition
of the translation rules) only if ¢; is the initial state of an automaton
built for a binary pure temporal subformula (i.e., a subformula with
either Ug, Uy, R or R,, as its main connective).

e ¢, is the initial state of an automaton corresponding to a subformula
¢1, and X1 € NSub(y). (Since X¢; € NSub(yp), the Next Time rule
will be applied to the automaton A, in the translation; the application
of the rule then results in an automaton with an initial transition to ¢;.)

We show that the three above conditions actually describe the exact set of
states in the subautomaton rooted at the initial state of the final automaton.
Assume that ¢; is the initial state of an automaton (corresponding to a formula
1 € NSub(y)) such that ¢ satisfies none of the above conditions. Then, ¢
has a non-atomic compound subformula with ¢; as a top-level subformula.
Because X1 ¢ NSub(yp), all such subformulas are binary subformulas of .
Let ¢’ be any of these formulas. When a translation rule is applied to con-
struct the automaton A, the state ¢; will not be connected to the initial state
of A/, because ¢; has no self-loop transitions. Because X¢; ¢ NSub(y), it
follows that ¢; cannot be connected to the initial state of another automaton
constructed later in the procedure, and thus ¢; will remain unreachable from
the initial state of the final automaton. We have thus proved the following
result:

Proposition 3.2.1 Let A, be the alternating automaton built for the L'TL
formula ¢ € LTL'™™¥(AP) using the translation rules, and let AL (with
state set ()) be the subautomaton rooted at the initial state of A,. Then,

{#}
|Q| = U {(()01 o SOQ) € NSUb(Qp) IS {U57 Uwa Rsa Rw}}
U {1 € NSub(yp) : Xp; € NSub(yp)}

This result leads to the following upper bound for the number of states in an
alternating automaton constructed from any LTL formula (that is not neces-
sarily in positive normal form). The upper bound is essentially the same as
the one that is implicit in the translation of Gastin and Oddoux [2001].

Corollary 3.2.2 Let ¢ € LTL(AP) be any LTL formula built from the ele-
ments of AP, the Boolean constants T and L, and the connectives {—,V, A,
X, Us, Uw, Rs, Rw}. The language of the formula ¢ can be recognized by an
alternating automaton on the alphabet 24 with at most 14| Temp ([] ™" |
< 14 2-|Temp(p)| states (1 + | Temp ()| states, if ¢ itself is in positive nor-
mal form). (If ¢ is a binary pure temporal formula, the upper bound reduces
to | Temp ([¢]"NF) | states.)

3. BASICAUTOMATON TRANSLATION 51

Proof: As noted in Sect. 2.2.3, the formula [¢]"NF (which is in positive nor-
mal form) has at most twice as many pure temporal subformulas as ¢, i.e.,
| Temp ([p]""F)| < 2 - |Temp(p)|, and L([¢]"F) = L(p). By applying
the translation to [¢]"NY, the result follows directly from Proposition 3.2.1 by
observing that

{(p1 0 ¢2) € NSub([p]"NF) : 0 € {Us, Uw, Rs,Ru} }

U {1 € NSub([g]"NF) : Xy, € NSub ([¢]PNF)} < | Temp ([g]PNF) .

O

3.2.2 Number of Transitions

52

By Corollary 3.2.2, any LTL formula can be translated into an alternating
automaton with a linear number of states in the number of pure temporal
subformulas in the formula. However, it is not difficult to see that there is
a price to pay for the explicit representation of transitions: an automaton
built using the translation rules may have exponentially many transitions in
the length of the formula in the worst case. First, it is easy to show that
the number of transitions defined in the translation of (the positive normal
form of) an LTL formula ¢ € LTL(AP) into an automaton is exponentially
bounded by NSize ([¢]"NF):

Proposition 3.2.3 Let A, be an alternating automaton built from (the pos-
itive normal form of) an LTL formula ¢ € LTL(AP) using the translation
rules presented in Sect. 3.1. The automaton A,, has at most 2N57e(#]"™)—1 <
2%1¢1=1 transitions.

Proof: We first prove the result for formulas in positive normal form. Let
¢ € LTL'NY(AP), and let A be the set of transitions of A,,. If NSize(yp) = 1,
then ¢ is an atomic formula. By the translation rules, A contains at most one
element, and because 2V57¢(@)—1 = 20 — 1 the result holds in this case.
Assume that the result holds for all LTL formulas whose node size is less
than or equal to some fixed 1 < k < w, and let ¢ be a compound formula
with node size k + 1. Then, p = X1 or ¢ = (1 0 ps) for some o €
{V, A, Ug, Uy, Re, Ry} and 1, 0o € LTLFN(AP) such that NSize(yp,) < k
and NSize(ps) < k hold. Let A, = (247, Q1, A1, qp1, F1) and Ay =
(24F ' Qq, Ay, q12, F2) be the automata built using the translation rules for
the formulas 7 and ¢, respectively. Additionally, let A7 C Ay and A2 C

Ay denote the initial transitions of A; and Aj, respectively (i.e., A" -
{(g.0,F,Q") € A;i|q=qp;} for all i € {1,2}). There are the following

cases:

(p = Xp1)
|A| =|A|+1 (translation rule for the X connective)
< oNSize(p1)—1 +1 (induction hypothesis)
< 2NSizeE<p1§fl + 9NSize(p1)—1 (NSize(p1) > 1)
— 2NSize ©1
— 9NSize(p)—1 (definition of NSize(y))

3. BASIC AUTOMATON TRANSLATION

(90 = (()01 o ()02)7 ° € {\/7 US; UW})

|A] < JA | + |Ag] + |ATY] + |AT2] (translation rules)
<AL+ [Ag| 4 A + [Ay]
=2-(JA]+]Ag])
<2- (QNSIR(@I)*I + 2NSIZ6(@2)71) (induction hypothesis)
— 2NSize(<p1) 4 2NSize(Lp2)
< QNSize(pr) . 9NSize(p2) (NSize(p1), NSize(p2) > 1)
— 2NSize(<p1)+NSize(g02)
= QNSize(p)—1 (definition of NSize(¢p))

(o= (L1 A g2))
IA] <A | + |Ag] + |AT] - |AT2] (translation rules)

< AL+ [Ag] 4 [Aq] - |Ag]
< 2NSize(<p1)—1 + 2NSize(gpg)—1 + 2NSize(<p1)—1 3 2NSize(gpg)—1

(induction hypothesis)

< 22 . QNSize(p1)=1 . oNSize(p2)—1 (NSize(p1), NSize(ps) > 1)

— oNSize(¢1)+NSize(p2)
= QNSize(p)-1 (definition of NSize(p))

(p = (p10¢s), 0 € {Rs,Ru})
‘A| < A1+ | A + ‘Agm| + ‘Agn| . |Agm| (translation rules)

< A+ |Ag| + [Ag| + |Aq] - |Ag]
< 2NSize(<p1)—1 +92. 2NSize(<p2)—1 + 2NSize(g01)—1 . 2NSize(<p2)—1

(induction hypothesis)

S 22 X 2NSize(<p1)—1 3 2NSize(gpg)—1 (NSize(cpl),NSize(cpg) > 1)
— 2NSize(<p1)+NSize(g02)
= NSize(p)-1 (definition of NSize(¢p))

By induction on |¢|, it follows that the automaton built from any formula ¢ €
LTLFN¥(AP) using the translation rules has at most 2N5#¢()~1 transitions. If
@ € LTL(AP) is not in positive normal form, then the result follows because
NSize([p]PNF) < 2 - |¢| holds. O

On the other hand, for every 1 < n < w, it is possible to find an LTL
formula ¢ such that NSize(¢) € O(n) holds, but an automaton built from ¢
using the translation rules has 20 transitions (even when restricted to the
subautomaton rooted at its initial state).

Example 3.2.4 Let {¢,}1<n<w (Where ¢, is an LTL formula over n atomic
propositions {p1, p2,...,p,} forall 1 < n < w) be a set of LTL formulas
defined inductively as

o 2 (TUsp1), and

On1 = (¢n AT Usprsr)) foralll <n <w.

Clearly, ¢, is in positive normal form for all 1 < n < w, and NSize(y,,) =
4n —1 € O(n) holds for all 1 < n < w (NSize(y;) = NSize((T Usp1)) =
3 =4-1-1,and if NSize(py) = 4k — 1 holds for some 1 < k < w, then
NSize(ppr1) = 1 + NSize(ipr) + NSize((T Us pry1)) = 1+ (4k — 1) + 3 =
Ak +1) —1).

Let g1, be the initial state of A, . By Proposition 3.2.3, A, has at most
oNSize(pn)=1 ¢ 20 transitions. We show that A, has at least 2" initial

3. BASICAUTOMATON TRANSLATION 53

transitions. It is easy to see that the automaton built for any of the subformulas
of the form (T Us p,,) using the translation rules has two initial transitions. If
A, has 2% initial transitions for some 1 < k < w, then A,, ,, has 2F - 2 =
261 initial transitions by the definition of the translation rule given for the A
connective. Obviously, these transitions remain in the subautomaton rooted
at the initial state of A,, ., and it follows that A% has 20 transitions for
all1 <n < w. [|

From the above example it follows that the result of the translation proce-
dure from LTL to self-loop alternating automata based on the rules presented
in Sect. 3.1 may need exponential space in the node size of the given formula
in the worst case. Clearly, the translation will in such cases require also at
least exponential time in the node size of the formula. This worst-case behav-
ior is caused by the cumulative effect of applying translation rules defined for
the A and R connectives to LTL formulas containing nested occurrences of
these connectives: to define the initial transitions in a compound automaton
built using one of these rules, it is always necessary to enumerate all pairwise
combinations of initial transitions of the component automata.

3.2.3 Number of Acceptance Conditions

Let A, = (247,Q, A, q1, F) be a self-loop alternating automaton built for
the positive normal form of an LTL formula ¢ € LTL(AP) using the trans-
lation rules. As noted already at the end of Sect. 3.1, new acceptance condi-
tions are introduced during the translation whenever applying a translation
rule to a subformula corresponding to a strong temporal eventuality (i.e., a
formula with Ug or Ry as its main connective), and thus

I <[{(1 0 02) € Sub([]™") : 0 € {Us,Re}}|.

3.3 CORRECTNESS OF THE TRANSLATION

54

In this section we show the correctness of the translation. We start by proving
a lemma that characterizes fin-acceptance in a self-loop alternating automa-
ton built using the translation rules for an LTL formula having Us or U,
as its main connective and establishes a direct correspondence between the
semantics of LTL and the behavior of these automata.

Lemma 3.3.1 Let o = (¢ 0 p3) € LTLY™(AP) (o € {U,,U,}), and let
.A = <2AP, Q, A, qr, f), .Al = <2AP, Qh Al, qri, f1> and AQ = <2AP, QQ,
Ao, qra, F2) be the self-loop alternating automata constructed using the trans-
lation rules for , 1 and p,, respectively. For all w € (24F),

A fin-accepts w iff there exists an index 0 < ¢ < w such that Ay fin-
accepts w', and for all 0 < j < i, Ay fin-accepts w’
or
o = Uy, and A, fin-accepts w' forall 0 < i < w.

Proof: (Only if) Assume that A fin-accepts w € (24F)“. Then, A has a
fin-accepting run G = (V, E, L) on w. By Proposition 2.3.7, there exists

3. BASIC AUTOMATON TRANSLATION

an index 0 < i < w and a chain of edges (e;)o<j<it1, €j = (v;,V]) €
E N (V; x 2Y+1), such that L(e;) is an initial self-loop of A forall 0 < j < 4,
and if i < w, then L(e;) is an initial transition of A that is not a self-loop.

Because L(e;) is an initial self-loop of A for all 0 < j < 4, it follows from
the translation rules that for each such self-loop there exists a corresponding
initial transition of A; forall 0 < j < 4. Furthermore, if i < w, the transition
L(e;) (which is not a self-loop of A) corresponds to some initial transition of
Ap. Let0 < j <i+1,andlet L(e;) = L({v;,V])) =t = {(q1,0, F, Q') € A
for some 0 € PL(AP), F C F and ' C Q. Because G is a run, w(j) = 6
and Q" = L(V}) hold. We consider the above two cases separately.

e If ¢ is a self-loop of A, there exists a transition (g1, 0, F1,Q}) € A4 for
some F; C Fj and Q) € @ such that Q' = @} U {q;} holds.

Because G is fin-accepting, each subautomaton A*") has a fin-accept-
ing run on w/*! = (w’)" for all v' € V] by Proposition 2.3.9, and
because Q) C Q' = L(Vj’) holds and Lg,(AY) = L. (A7) =
Lin(A?7) holds for all ¢ € @1, A? has a fin-accepting run on w’*!
for all ¢ € Q). Moreover, because w(j) = (w?)(0) [@ holds,
Proposition 2.3.15 shows that A; has a fin-accepting run on w?.

e If ¢ is not a self-loop of A, then ¢ corresponds to an initial transi-
tion (g2, 0, F5, Q") € Ay of Ay for some Fy, C Fy, and thus Q' C
@, holds. Similarly to the self-loop case, the subautomaton A
which is fin-equivalent to A§<”'), fin-accepts w/*! for all v € V] by
Proposition 2.3.9. Because Q" = L(V}) and w(j) = 6 hold, it follows
that A, fin-accepts w’ (Proposition 2.3.15).

Thus, because L(e;) is a self-loop of A for all 0 < j < 4, it follows that
A fin-accepts w’ for all 0 < j < i, and furthermore, if i < w, then A,
fin-accepts w’ by the above discussion. It remains to show that the case i = w
is impossible if o = Us. If this were the case, then 5 = (e;)o<;<; would be
an infinite branch in G having all of its edges labeled with initial self-loops
of A. However, because all of these self-loops share a common acceptance
condition if o = Uy, fin(f) would be nonempty, which would contradict the
assumption that G is a fin-accepting run of A on w. Therefore, if o = Uy,
then ¢ < w holds, and the result follows.

@ Assume that there either exists an index 0 < ¢ < w such that A, fin-

accepts w’ and for all 0 < j < 4, A; fin-accepts w’, or that o = U,, holds,
and A, fin-accepts w’ for all 0 < i < w. That is, assume that there exists an
index 0 < 4 < w such that A, fin-accepts w’ forall 0 < j < ¢, and if i < w,
then A, fin-accepts w’.

By Proposition 2.3.15, the automaton A; has an initial transition ¢;; =
(ar, 051, Fj1, Q1) € Ay forsome 0, € PL(AP), Fjy € Frand Q) € Q1
forall 0 < j < i such that w(j) = ;1 holds, and A? fin-accepts wi*! for all
q' € Q. Additionally, if i < w holds, an analogous result holds for an initial
transition ti,Z = <CJ12, 02‘72, F;‘72, Q;72> € AQ OfAQ.

By the definition of A, there now exists a transition t; = (g, 0;, Fj, Q) €
A, where 0; = 60,1, F; = {f} for some new acceptance condition f (o = Us)

3. BASICAUTOMATON TRANSLATION 55

56

w(0) w(l) w(2) w(3) w(4) w(5) w(0) w(l) w(2) w(3) w(4) w(5)

qr 61 qr 62 41 03 41 64 41 65 Q51

U1 V2 V3 V4 U5 U5
O 0o O
Vo qr
O O
V0,1 V1,1 V2,1 V3,1 V5,2 40,1 91,1 42,1 93,1 q5,2
O O O O

0,2 V3,2 qo,2 43,2

(a) (b)

Fig. 3.5: Construction of a semi-run in Lemma 3.3.1 (o = U, i = 5). (a) Node and
edge structure; (b) Labeling of nodes and edges

or Fj =0 (0 =U,),and Q; = Q) , U{qs} forall 0 < j < i. Furthermore, if
i < w holds, then there exists also a transition ¢; = (qr, 6;,0, Q}) € A, where
0; = 0ip and Q = Q;,. It is easy to see that, forall 0 < j < i+ 1 and
¢ € Q:\{a}, w(j) E 6; holds, and A7 fin-accepts w/*! (because @ \
{ar} = Q%1 € Q1 and Wt € Ly (A7) = Lin(A]T) = L3, (A7) hold
forall 0 < j <iand ¢ € Qf, by the definition of .A; an analogous result
holds for @; , and the automaton A; if i < w holds). Using the transitions ;,
we define a fin-accepting semi-run of A on w.

(Definition of G) ~ Write Q; \ {q1} = {¢;1, @2, - - - qjm;} € Q forall 0 <
J<i1+1(0<n; <w,qjr#qjeforalll <k ¢ <n;, k#{). Define the
graph G = (V, E, L), where

o 1, ¥ {w}, Vjn o {vjs1,v51, -+, U, } forall 0 < j < 4, and if
i <w,letVi, o {vig, ..., vip } and V; Y foralli+1 <j<uw;

« B U0§j<i+1 {(Ujv Vj+1>};

o L(v;) < qr, L(v;) £ qj, and L({v, Vi41)) 2, forall0 < j < it1
and 1 S k S n;.

Figure 3.5 illustrates a possible structure for G with o = Ug and i = 5.

(G is a fin-accepting semi-run of A on w) We check that G is a fin-accept-
ing semi-run of A on w.

(Partitioning) Vi = {vo}, and V is partitioned into finite disjoint levels
(with edges only between successive levels) by construction.

(Causality) Letv € Vj for some 0 < j < w. Then v either has no
outgoing edges, or v = v;. In this case v; has the unique outgoing edge
e = (vj,Vj41) € E. On the other hand, if v € Vj forsome 1 < j < w,
then v is a successor of the node v;_; € V,_;. It follows that G satisfies
both the forward semi-causality and the backward causality constraints.
(Consistency of L) Clearly, L(vg) = ¢; holds. Let e € E. By construc-
tion, e = (v;, Vj4+1) holds for some 0 < j < i+ 1. Because L(e) = t; =
(ar,0;, F;, Q%) = (L(v)),0;, F;, L(V;41)) € A and w(j) = 60; hold, it
follows that the labeling L is consistent.

(Acceptance) i < w, then the edge set E is finite. Therefore B(G) =
(), and G is trivially fin-accepting. Otherwise G contains a unique infinite
branch, all edges in which are labeled with initial self-loops of A. Because

3. BASIC AUTOMATON TRANSLATION

i = w implies that o = U,,, the set of acceptance conditions of each initial
self-loop of A is empty. It follows that the branch is fin-accepting, and
thus G is a fin-accepting semi-run of A on w.

(G can be extended into a fin-accepting run) Let v € V be a node in G

with no outgoing edges. Then v = v;;, € Vj1; holds forsome 0 < j <i+1
and 1 < k < n;. Because L(v) € Q) \ {gs} holds, and because A? fin-
accepts w’ for all ¢ € @} \ {qr}, it follows that G can be extended into a
fin-accepting run of A on w by Proposition 2.3.14, and thus w € Lg,(A)
holds. O

Using the above lemma together with Proposition 2.3.15, we can now give
a simple inductive proof of the correctness of the translation.

Theorem 3.3.2 Let ¢ € LTL™™(AP) be an LTL formula in positive nor-
mal form, and let A, be an automaton constructed from ¢ using the transla-
tion rules. For all w € (247)~, A, fin-accepts w iffw |= ¢ holds.

Proof: We proceed by induction on the node size of the formula ¢. If
NSize(p) = 1, ¢ is an atomic formula. If ¢ = L then it is easy to see from
the definition of A, that A, has no runs on any input, and thus Lg,(A,) =
0 = L£(L). Otherwise A, has exactly one initial transition (with guard ¢),
and it follows from Proposition 2.3.15 that A, has a fin-accepting run on w
iff w(0) = ¢ holds, which is equivalent to w = ¢ in this case, because ¢ is a
Boolean formula.

Assume that the result holds for all LTL formulas (in positive normal form)
of node size less than or equal to some fixed 1 < k < w, and let ¢ be a non-
atomic LTL formula in positive normal form such that NSize(p) = k + 1.
We split the proof in separate cases based on the main connective of ¢:

(o =Xp1)
A, fin-accepts w
iff there exists a transition (gr, 0, F, Q') € A such that w(0) |= 6 and for

all ¢ € @, Ag fin-accepts wt (Proposition 2.3.15)
iff w(0) & T and A, fin-accepts w’ (definition of A,)
iff w(0) =T and w! E o (induction hypothesis)
iff w = Xy (semantics of LTL,)

(p=(p1 V)
A, fin-accepts w
iff there exists a transition (g, 0, F, Q') € A such that w(0) = 6 and for
all ¢ € @', A% fin-accepts w' (Proposition 2.3.15)

iff there exists a transition (g1, 601, F1, Q) € A such that w(0) E 6,
and forall ¢ € @}, A% (= A%) fin-accepts w'

or

there exists a transition (g, 0o, Fs, Q5) € As such that w(0) = 6,
and for all ¢ € @3, A% (= AZ,) fin-accepts w! (definition of A,)

ift A, fin-accepts w or A, fin-accepts w (Proposition 2.3.15)

3. BASICAUTOMATON TRANSLATION 57

58

iff w ¢ orw = o (induction hypothesis)
iff wE (v1V) (semantics of LTL)

(o= (L1 A g2))
A, fin-accepts w
iff there exists a transition (gr, 0, F, Q') € A such that w(0) |= 0 and for
all ¢ € @, Ag fin-accepts wt (Proposition 2.3.15)
iff there exist transitions (g1, 01, F1,Q}) € Ay and (g2, s, F5, Q%) €
Ay such that w(0) = (61 Af) and forall ¢ € Q1 UQ5, A fin-accepts
wt (definition of A,,)
iff there exists a transition (g1, 0y, F1,Q}) € A; such that w(0) | 6,
and forall ¢ € @}, A% (= A%) fin-accepts w'
and
there exists a transition (g, 0, F5, Q4) € Ay such that w(0) = 6,
and forall ¢ € @, A (= AZ,) fin-accepts w'

ift A, fin-accepts w and A, fin-accepts w (Proposition 2.3.15)
iff w = ¢ and w = @9 (induction hypothesis)
iff wE (o1 A p2) (semantics of LTL)

(¢ = (1 Us p2) orp = (91 Uw 92))
A, fin-accepts w

iff there exists an index 0 < i < w such that A, fin-accepts w’ and for
all 0 < j <4, A, fin-accepts w’
or
© = (1 Uy ¢2), and forall 0 < i < w, A, fin-accepts w'
(Lemma 3.3.1)

iff there exists an index 0 < 7 < w such that w' = ¢y and for all 0 <

Jj<i,w ¢
or
v =(p1Uypz),and forall 0 <i < w, w' = 1 (induction hypothesis)
iff wpEoe (semantics of LTL)

(¢ = (p1Rsp2) or p = (p1 Ry ¢2))
A, fin-accepts w

iff A(go(prnpe)) fin-accepts w, where o is an Until connective of the
same strength as the main connective of ¢ (definition of A,,)

iff there exists an index 0 < ¢ < w such that A, ry,) fin-accepts w’ and
forall 0 < j <1, A,, fin-accepts w’
or
o = Uy, and A, fin-accepts w’ forall 0 <1i < w (Lemma 3.3.1)
iff there exists an index 0 < i < w such that w’ = (o1 A ¢3) and for all
0<j<iw = p
or
o= U,,and w' = s forall 0 < i < w
(case “A” and the induction hypothesis)

3. BASIC AUTOMATON TRANSLATION

iff wpE (gpz o (p1 A g02)) (semantics of LTL)
iff wpEoe (semantics of LTL)

The result holds by induction for all formulas p € LTLFN(AP). O

3.4 REVERSE TRANSLATION

In this section we verify that, for any self-loop alternating automaton A over
an alphabet 3 with 2" elements for some n € N (i.e., a set that is equipollent
to a powerset of some finite set S with n elements), there exists an LT'L for-
mula ¢ over the atomic propositions S such that for all w € 3¢, A fin-accepts
w iff w = ¢ holds. Together with Theorem 3.3.2, this result establishes
the expressive equivalence between self-loop alternating automata and LTL.
Prootfs for this result (based on slightly different basic definitions and notions
of acceptance) have previously been presented by Rohde [1997], and Loding
and Thomas [2000]; in this section, we prove the result directly for automata
having multiple acceptance conditions on transitions instead of states. Addi-
tionally, we consider also the complexity of the reverse translation by finding
upper bounds for the number of subformulas and temporal subformulas in
the LTL formulas built from self-loop alternating automata via reverse trans-
lation.

As noted by Rohde [1997], the expressive equivalence of self-loop alter-
nating automata and LTL generalizes to self-loop alternating automata over
an arbitrary (finite) nonempty alphabet ¥ in the sense that for any self-loop
alternating automaton A with alphabet ¥, there exists a finite set S, a one-
to-one mapping o : ¥ — 2% and an LTL formula ¢ € LTL(S) such that
for all w € ¥¥, A fin-accepts w iff (a(w(i)))OSKW = ¢ holds. It is easy to
define a one-to-one mapping a by taking S to be any finite set with at least
[log, |X|] elements. The claim then follows by applying the basic correspon-
dence between LTL and self-loop alternating automata whose alphabet’s size
is a power of 2 to the self-loop alternating automaton (over the alphabet 2°)
obtained from A by replacing each element of each transition guard of A
with its image under a.

We begin by characterizing in LTL the behavior of a copy of a (subau-
tomaton of a) self-loop alternating automaton A = (2%, Q, A, g7, F) along a
path in a fin-accepting run of the automaton on some input w € (2)*. In-
terpreting the path as the description of the stepwise behavior of the copy of
the automaton, we see (cf. Fig. 2.5, p. 28) that the copy either “stays” in the
state ¢ € @ labeling the first node in the path for a finite number of steps and
then exits the state (without ever entering it again, because A is a self-loop
alternating automaton), or remains in the state indefinitely by taking only
self-loop transitions (i.e., spawning a new copy of itself at every step). Be-
cause the run is fin-accepting, the infinite chain formed from these self-loops
corresponds to a fin-accepting branch of the run. Hence, for all acceptance
conditions f € F, the copy of the automaton takes infinitely many self-loops,
none of which is an f-transition of A.

To formalize this intuition, we first introduce some notation. Assume that

q is the source state of the i consecutive edge (labeled with a transition ¢ =

3. BASICAUTOMATON TRANSLATION 59

60

(q,T, F, Q") € A) in a chain through the fin-accepting run of A. Because ¢
is the initial state of some subautomaton of A, it follows by Proposition 2.3.15
that the guard of ¢ contains the input symbol w(i) € 27 (i.e., w(i) = @ holds
for the characteristic Boolean formula 6 of I'), and all subautomata rooted at
the states in @’ fin-accept w'™. Suppose that the language accepted by each
subautomaton rooted at a target state ¢ € Q" \ {¢} of ¢ coincides with the
language of some LTL formula ¢, i.e., w"™ |= ¢, holds. We thus find that

w' = u((q,0,F,Q)) £ (0~ N\ Xey).
7€\ (g}

Using f, the implications of a copy of A (that is in state ¢ € Q) taking a
self-loop, a non-self-loop, or a self-loop that is not an f-transition of A can
now be written as the LTL formulas

wself—loop (Q) o \/ﬂ((CL 97 F7 Q/>) ’ wnon—self—loop (Q) e \/,u(<Q7 97 F7 QI>)

(9,0,F,Q")eA, (¢,6,F,Q")eA,
q€q’ q¢Q’

and

¢1V01d q, f \/M qve F Q>)

(q,6,F,Q") e
4eQ’, feF

We can now give a characterization of the above description of the looping
behavior of A in LTL. Assuming the existence of LTL formulas correspond-
ing to the successors of the state ¢ of the alternating automaton A (excluding
q itself), we can apply the following lemma to find an LTL formula, the
language of which coincides with the language fin-accepted by the subau-
tomaton 4.

Lemma 3.4.1 Let A = (X,Q, A, qr, F) be a self-loop alternating automaton
over the alphabet > = 2% for some finite set S, and let ¢ € Q. Assume that for
all successors ¢’ of ¢ in A, excluding q itself, there exists an L'TL formula ¢,
such that for all w € ¥, the subautomaton (A?)? fin-accepts w iff w = ¢,
holds. For allw € ¥*, A fin-accepts w iff w satisfies the formula

Yq = = ((wself 00p() Us wnon-self-l(mp (Q)) Vv G(w%lﬂ"op (g) A /\ Fhmoialq, f))>

fer

Proof: (Only if) Let G = (V, E, L) be a fin-accepting run of A? on some

w € X¥. By Proposition 2.3.7, there exists an index 0 < ¢ < w and a chain
of edges (¢;)o<j<it1, €5 = (v, V]) € EN(V; x 2%5+1), such that L(e;) is an
initial self-loop of A9 for all 0 < j < 4, and if i < w, then L(e;) is an initial
transition of A7 that is not a self-loop. It is clear that L(v;) = ¢ holds for all
0<j<itl

Let 0 < j < i+ 1. Because G is a run, the edge e; = (v;, V) is labeled
with a transition t; = (q,0;, Fj,Q}) € A such that w(j) = 0; and Q' =
L(V}) hold. Because 6; is a Boolean formula, it follows that w’): 6; ho]ds
and because G is fin-accepting, (A?)7 fin-accepts wi™ for all ¢ € Q) by
Proposition 2.3.9. By assumption, this implies that w/™! = ¢, holds for all

3. BASIC AUTOMATON TRANSLATION

¢ € Q;\{q}. Therefore w’ |= (6, A /\q/eQ;\{q} Xgg), ie., w! = pu(t;) holds
by the semantics of LTL.

Because L(e;) is an initial self-loop of A? for all 0 < j < ¢, it follows from
the definition of Yigioep (¢) that w? = Yietienp(¢) holds for all 0 < j < 4. If
i < w, then, because L(e;) is an initial transition of A7 that is not a self-loop,

also w’): ,QZ)non—self—loop(Q) holds. But then w): (wself—loop (Q) Us ,lvz)non—self—loop (q))
holds by the semantics of LT'L, which implies that w |= ¢,,.

If i = w, then the chain 3 ¥ (€j)o<j<i 1s an infinite branch, all edges of
which are labeled with initial self-loops of A9. As seen above, w? = pu(t;)
and w’ = Yselloop (¢) hold forall 0 < j < w. Fix0 < j < w,and let f € F.
Because G is fin-accepting, fin(3) = 0, and thus there exists an index j <
k < wsuch that L(ey,) is notan f-transition of A. Because w* = p(t;,) holds,
and L(ey,) is an initial self-loop of A9, it follows that w* |= ,0i4(q, f) holds.
But then, because k > 7, w? |= Fi),0i4(q, f) holds, and because f is arbitrary

and wj): wself—loop (Q)v it fO”OWS that wj): (lpse]f—loop <Q) A /\fe]—' Fwavoid (Q7 f))
holds. Since j is arbitrary, we conclude that w = ¢, holds also in this case.

(If) Assume that w = ¢, holds. Then w satisfies at least one of the formu-
las (¢self—loop(Q) Us wnon—self—loop (Q)) and G (¢self—loop(q) /\/\fef-' F¢avoid(£]7 f)) ’ and

there necessarily exists a maximal index 0 < ¢ < w such thatw? = Yigio0p (¢)
and W & Pnonselloop(¢) hold for all 0 < j < 4, and if i < w, then
W' = Ynonselfloop (¢). From the definition of ¥yeio0p(¢) it follows that the
set of initial self-loop transitions T} o {(q,@,F, Q) eA ‘ q € QL w |
11({g,0, F, Q")) } is nonempty for all 0 < j < 4. Our goal is to choose self-
loops ¢; “ (g, 0;, F}, Q%) € Ty forall 0 < j < i (and if i < w, an additional
non-self-loop transition ¢; = (¢, 6;, F;, Q") € A such that w’ |= p(t;) holds;
t; exists because w' = Unonsselloop (¢) holds in this case) and construct a fin-
accepting semi-run G of A% on w by forming a (possibly infinite) chain of
edges labeled with these transitions. For this purpose, we fix a total order <
on the set of acceptance conditions F; because F is finite, every nonempty
subset of F then contains a minimal element under <.

(Detinition of the transitions t;) Let ty € T be any element of 7. As-
sume that the transitions t; = (q,0;, F;, Q) have already been defined
forall 0 < j < kforsomel < k < i. Letay < min ({k — 1} U
{O </< k‘ ﬂz<j<k71 F; # (Z)}) be the minimal index strictly less than
k such that all transitions ¢,,, ta,+1, - - -, tk—1 share a common acceptance

condition in F if such a condition exists (and let oy = k — 1 otherwise).
= def

Let Fi, = (4, <j<x_1 I be the set of all acceptance conditions shared by
these transitions, and define f, 2 min_ F}, for every nonempty Fj. Now, let
te = (q, 0, Fp, @Q}.) be any transition t = (¢, 0, F, Q)") € Ty, such that fu¢ F
if Fy, # () and such a transition exists in Ty; otherwise let ¢ be any transition
in the set Tj.

(Definition of G) ~ Without loss of generality, we may write @} \ {q} as a

finite set of distinct states Q) = {gj1, 2, -, qjn; } for some 0 < ny < w
andall0 < j < i+ 1. LetG = (V, E, L), where
o 1, ¥ {vo}, Vipa o {vjs1,v51, -+, Uy, } forall 0 < 5 < 4, and if

i <w,letVi déf{vm,...,vi,m} and V; Y0foralli+1<j<w;

3. BASICAUTOMATON TRANSLATION 61

62

o 0¥ U0§j<i+1 {<Uja Vj+1>};

b L(UJ)
and 1

2, L(vjx) < gjx, and L((vj, Vis1)) Dtiforall0<j<i+l
<k <n,;

(The structure of the graph G is identical to the graph defined in the proof
of the “If” direction of Lemma 3.3.1; see also Fig. 3.5.)

(G is a semi-run of A2 onw) We check that G satisfies all constraints re-
quired of a semi-run of .49 on w.

(Partitioning) Vi = {vo}, and V is partitioned into finite disjoint levels
(with edges between successive levels of) by construction.

(Causality) Letv € Vj for some 0 < j < w. Then v either has no
outgoing edges, or v = v; and j < i + 1. In this case v has the unique
outgoing edge e = (v;, Vj+1) € E. On the other hand, because the target
node set of the only edge starting from a node atlevel 0 < j < i+1 covers
all nodes in V4, it is clear that each node in Vj forsome 1 < j < wisa
successor of some node at level 7 — 1.

(Consistency of L) Obviously, L(vg) = ¢ holds. Let e € E. By con-
struction, e = (vj, Vj41) holds for some 0 < j <i + 1. Since w’ = p(t;)
holds (i.e., w’ | (6; A Ay @\ a) Xgg) holds), w(j) = 6; holds, and
because L(e) = t; = (q,6;, Fj Q; = <L v;),0;, Fj, L(Vj41 >h01ds, the
labeling L is Consistent.

(G is fin-accepting) ~ We check that G is fin-accepting. If i < w (i.e., if
w = (Vselftoop (@) Us Ynonsselfloop (@) holds), then the edge set E is finite. This
implies that B(G) = 0, and thus G is trivially a fin-accepting semi-run of .A?

on w. Otherwise B(G) contains a unique infinite branch 8 % (¢;)o<j<w,
where e; = (v, Vj41) forall 0 < j < w.

Assume that 3 is not fin-accepting. Therefore, there exists a minimal index
0 < k < w such that all transitions L(e;) = t; = (q,0;, Fj, Q}) share a
nonempty set of acceptance conditions from F for all £ < j < w. Let
fmin be the <-minimal acceptance condition among the maximal set of such
conditions. Because £ is minimal, there exists another index k < k' < w
such that f,;, is also the minimal element of Fj forall &’ < j < w.

Because i = w, w [~ (lpself_lmp(q) Us ¥non-selfloop (q)) Therefore it is nec-
essarily the case that w | ('l/}ge]f oop (@) N Nrer Fz/;d\md(q f)) holds, and
thus there exists an index &’ < ¢ < w such that w* = Yueid(¢, fmin) =
V woranes 1({g, 0, F,Q")). It now follows that T; has a nonempty subset

QEQ/7 fmin¢F
T of transitions, none of which includes fy;, in its acceptance conditions.

Because fuin 1s the minimal element of E, it follows that ¢, was chosen from
the set 7. But then fi,i, cannot be one of the acceptance conditions shared
by all transitions ¢; for all k¥ < j < w, which is a contradiction. It follows that
(3 is fin-accepting, and G is a fin-accepting semi-run of A% on w.

(G can be extended into a fin-accepting run of A9 onw) Letwv € V be a

node with no outgoing edges in G. Then v = v, € Vj;; holds for some
0<j<i+land1l <k < nysuchthat L(v) = g;x € Q \ {q}. Because
wl = pu(t;) holds, that is, w? = (6; A Ny Q) Xeq) ho]ds it follows that

3. BASIC AUTOMATON TRANSLATION

wth = g forall ¢ € Q5 \ {q}. In particular, (A%)%* now has a fin-
accepting run on w’*! by assumption. Since v is an arbitrary node of G with
no outgoing edges, it follows that G' can be extended to a full fin-accepting
run of A7 on w by Proposition 2.3.14, and thus .A? fin-accepts w. O

We can now establish the main result of this section by a straightfor-
ward inductive proof on the structure of self-loop alternating automata, using
Lemma 3.4.1 for proving the induction step.

Theorem 3.4.2 Let A = (X,Q, A, q1, F) be a selt-loop alternating automa-
ton over the alphabet ¥ = 25 for some finite set S. There exists an LTL,
formula ¢ over the atomic propositions S such that for all w € ¥, A fin-
accepts w iff w = ¢ holds.

Proof: Because A is a self-loop alternating automaton, there exists a function
p : @ — N such that for all transitions (¢, ', F, Q') € A, p(¢') < p(q) holds
forall ¢ € Q" \ {¢}. In particular, as seen in the proof of Proposition 2.3.16,
p(q) can be defined as

def

p(q) = max {|z| | = isa simple path from ¢ to a state ¢’ € Qo }

where Q, & {q € Q‘for all (¢,T,F, Q) € A, Q' C {q}} We proceed
by induction on p(q). If p(¢) = 1, then the result follows immediately for
the subautomaton A? by Lemma 3.4.1, since ¢ has no successors different
from itself (and thus the assumption needed in Lemma 3.4.1 holds trivially).
Assume that the result holds for all subautomata A%, where ¢ € @ satisfies
p(q) < iforsome 1 < i < w. Letq € @ be a state for which p(q) =
i + 1. Then, p(¢’) < i holds for all successors of ¢ excluding ¢ itself, and
the result follows again for the subautomaton A? by Lemma 3.4.1 and the
induction hypothesis. By induction, we conclude that the result holds also
for the subautomaton 4%, because p(q;) is finite, and therefore also for the
automaton A, because A and A% are fin-equivalent (Proposition 2.3.12). [J

The proof of Theorem 3.4.2 gives an inductive procedure for finding an
LTL formula that corresponds to a given self-loop alternating automaton by
repeatedly using the formula given in Lemma 3.4.1 as a pattern for defin-
ing LTL formulas corresponding to states with increasing values of p. We
illustrate the reverse translation with the following example.

Example 3.4.3 Consider again the self-loop alternating automaton working
on the alphabet ¥ = {a, b, ¢} from Ex. 2.3.21 (repeated in Fig. 3.6 with the
values of the function p used in Theorem 3.4.2). Because the alphabet ¥
consists of three distinct symbols, the automaton can be translated into an
LTL formula over two atomic propositions AP < {p;,p,} by defining (as
described in the beginning of this section) a mapping o : ¥ — 247 with
(for example) a(a) Z {p1}, a(b) Z {p,} and a(c) Z {p1,p:}. Under this

mapping, the guards of transitions in the automaton can be represented with

3. BASICAUTOMATON TRANSLATION 63

64

{e}s 9% 30} .,
{a} @ g

N
{&/R{b "

{bc} +,/ \.# Y«

{b} RO BT

|Ih1
#, RS
{a}(“ {b} ‘ p=1
{a b, c}

Fig. 3.6: The self-loop alternating automaton of Fig. 2.8 with the values of the func-
tion p displayed

the characteristic Boolean formulas

Oty = (p1 A —p2),

Oy < (1 A p2),
Oy < (p1 A),
Ofa,c) = ((p1 A =p2) V (p1 /\PQ)) =p1,
Oty = ((=p1 Ap2) V (p1 Ap2)) = pa, and
Otapey = (1 A=p2) V (=01 Ap2) V (D1 Ap2))) = (p1 V o)

In the following, we shall use the above 6 formulas instead of writing the
characteristic Boolean formulas explicitly to simplify the notation. We shall
also omit parentheses from formulas whenever it is possible to do so without
semantic ambiguity.

The reverse translation can be started from any state ¢ with p(q) = 1, for
example, the state ¢;. For this state, we define

def
wself—loop(cﬁ) = V<q7,0,F,Q/>eA, M((CI?’ 9, F, Q,>)

a7€Q
= 1({a7,0¢a}, {0}, {ar})) vV (a7, 00y, {o}, {ar}))
v N’((Cﬁa 9{0}, {.’ O}’ {Q7}>)
= (e{a} A /\q’e@ XQDQ’) v (e{b} A /\q’e(Z) XSDQ’)
V (01c) A Ngrep Xoq')
(Q{G} A\ T) V (Q{b} AN T) V (9{0} AN T)
Otay V Oy V O1cy,

def
Tzz)non—self—loop(c.h) = v<q7,0,F,Q/>eA,M(<q759 F Q >) =1
ar¢Q’
def
T/Javoid(QW .) = (a7.0,F,Q"YeA, M(<q77 07 F7 Q/>)
a7€Q’, o ¢F

— Iu,(((]7, G{Q}, {0}7 {Q7}>)
= H{a} A /\q/E(ﬂ Xqu/
= 04y, and

3. BASIC AUTOMATON TRANSLATION

Table 3.5: Yyeifio0p= Ynon-selfloop- AN Yayoig-formulas built during reverse translation

State ¢ wsclf—lnop (q) wlmn—sclfflonp (q) Yavoid (q7 .) Yavoid (q7 O)
a7 O¢a) V Op} V01 1 0(a) O¢v)
qs G{Q,b,c} L e{a,b,c} G{Q,b,c}
as 01b,c} 01a} A Xpgr A Xpgg 01b,c} 01b,c}
g6 1a} VO¢cy 0161 A Xepgs L1 0cy
a2 0{a,c} N Xpgs 061 N Xepgq O¢a,c} N Xpags 1
qs L (040} AXpas AXepgg) V (6151 AXpgr) 1 1
qa L (Ogay A Xepge) V O1p,c} L L
¢ (0163 AXepgz) V O1cy 010y A Xpgy A Xepgy 01c) 0163 AXpgs

def
wavoid(QW O) = \/<q7,9,F,Q’>€A, M(<Q77 67 F7 Q/>)

97€Q’, 0o ¢F

= N(<Q77 05y, {o}, {Q7}>)
= H{b} VAN /\qlem X‘Pq’

Applying Lemma 3.4.1, we get the formula

Pqr “ (Tzz)self—loop(Q'?) Us Tzz)non—self—loop(cﬁ))

\ G(wself—loop (Q7) A /\fe{o,o} Fwavoid(q?y f))
G{G} V G{b} V ‘9{(:}) Us L) V G((@{a} V H{b} V ‘9{(:}) A F@{a} A FH{b})
V G((@{a} V G{b} V ‘9{(:}) A FH{a} N FH{b})

((
1
G((Q{a} V 9{5} V 9{0}) A Fe{a} AN F@{b}).

Table 3.5 and Table 3.6 show (simplified) formulas built by repeating the
reverse translation in the states gs, g5, ¢s, @2, ¢3, ¢4 and ¢; (where the order is
determined by increasing values of p). No (simplified) formula correspond-
ing to a transient state of the automaton has a top-level subformula having
G as its main connective. By the discussion at the beginning of this sec-
tion and Theorem 3.4.2, the automaton fin-accepts a word w € {a, b, c}* iff

(alw (D)) gy, = @ hoMds. n

It is easy to see from the previous example that the length of the for-
mulas obtained by repeated applications of Lemma 3.4.1 grows rapidly as
the value of p increases (in the example, we did not even try to write the
@, formulas in explicit form for states with p(q) > 1). There is neverthe-
less some sharing between the subformulas: in the remainder of this sec-

Table 3.6: ¢,-formulas built during reverse translation

State ¢ | @q
q7 G((G{a} VG{b} VG{C})/\FG{Q} /\FG{b})
qs GOiab,c)
s (0gb,c} Us (O1ay AXpgr AXpqg)) V GOy)
6 (Ogay V Ogcy) Us (B1p) A Xepgg)
q2 (Oga,cy A Xpgs) Us (013 A Xepgg)
q3 (Ogay N Xpgs A Xpge) V (0153 A Xpgr)
q4 (O1ay A Xepgg) V O1p,c)
a1 (((Ogpy A Xepgg) V O1ey) Us (0(ay A Xpgy A Xepg,))
V G(((O1p1 AXepgs) V Ogey) AFOLcy AF(O1p1 A Xpgg))

3. BASICAUTOMATON TRANSLATION 65

66

tion, we shall investigate the behavior of the simple reverse translation pro-
cedure based on Lemma 3.4.1 by determining upper bounds for the number
of subformulas and pure temporal subformulas in a formula ¢ obtained by
applying the procedure to a self-loop alternating automaton A. In particu-
lar, the upper bound for the number of pure temporal subformulas can be
used as a coarse measure for the efficiency of the reverse translation: because
the formula ¢ could be translated back into an automaton having at most
1 4 |Temp(yp)| states (Corollary 3.2.2), | Temp()| should ideally not exceed
the number of states || in A. However, because the formula pattern de-
fined in Lemma 3.4.1 includes explicit quantification over the acceptance
conditions F of the automaton A, the upper bound for the number of pure
temporal subformulas will actually depend on the product of |@Q| and |F|.
Even worse, the upper bound for the number of subformulas in ¢ depends
explicitly also on the number of transitions in A (which may be exponential
in |@Q]), and therefore reverse translation using the simple strategy based on
the repeated application of Lemma 3.4.1 is unlikely to be feasible in practice
except for very small problem instances.

Proposition 3.4.4 Let A = (£,Q, A, qr,F) be a self-loop alternating au-
tomaton with |Q| 7& 0 and |A| # 0 over the alphabet > = 2° for some finite

set S, and let ¢ < @, be the LTL formula obtained from A by repeated
applications of Lemma 3.4.1 to states in A as described in Theorem 3.4.2.

Letc ™ max{|Sub(9)| :{q,0,F, Q") € A} > 1 be the maximum number
of (syntactically distinct) subformulas in any Boolean formula occurring as
the guard of a transition in A. Then,

(a) [Sub(e)| € O((c + |F]) - |Q| - A]), and
(b) [Temp()| € O((1+ |7]) - QI).

Proof: (a) Clearly, |Sub(y)| cannot exceed the number of subformulas cre-

ated in repeated applications of Lemma 3.4.1. We find an upper bound for
the number of these formulas. It follows directly from Theorem 3.4.2 and the
definitions of y, ¢, and the various ¢ formulas that a subformula ¢’ built in
reverse translation will have one of the following forms:

(1) ¢ =, forsome q € Q; (Theorem 3.4.2)
(2) ¢ =Xy, forsome q € Q; (definition of 1)
(3) ¢ € Sub(/\q,EQ,\{q} Xpg) \ Uy co Sub(Xpy) for some transition

<q7 07 Fa QI> € A7 (_)

(4) ¢’ € Sub(0) for some transition (¢, 0, F, Q') € A (—)
(5) ¢ = p(t) for some transition t € A (definitions of the ¢ formulas)
(6) ¢ € Sub (’l/}ge]f loop ())\ Uiea Sub((t)) for some g € Q; (def. of p,)
(7) ()0/ € Sub (wnon selﬂoop) \UteA Sub (:u) for some q € Q (—)
8) e Sub(wd\md q,f)) \ Usiea Sub((t)) forsome ¢ € Q and f € F;

(—)

(9) @' = Fthaia (¢, f) for some g € Q and f € F; (—)
(10) ()0, € SU-b(/\fe]—‘ Fwavoid (Q7 f)) \ Uq’GQ Uf’e]—' SUb(F’l/}avoid (q,7 f,>) fOl’
some q € Q; (—)

(1 1) ()0/ = (¢self—loop(Q) A /\fe}‘ Fwavoid(cb f)) for some qc Q; (—)

3. BASIC AUTOMATON TRANSLATION

(12) ()0, = G(wself-loop <Q) A /\fg]—‘ Fwamid <Q7 f)) for some qc Q; (—)
(13) or ()0/ = (¢self—loop(Q) Us wnon—self—loop (Q)) fOI some ¢q S Q (_)

The total number of subformulas of type (1), (2), (11), (12) and (13) is
clearly less than or equal to 5 - |@]. Similarly, there are at most |A| subfor-
mulas of type (5) and at most ¢ - |A| subformulas of type (4) (each guard of a
transition in A has at most ¢ syntactically distinct subformulas). The number
of subformulas of type (9) is obviously bounded by |Q] - | F].

It is straightforward to check that any formula of the form A g ¢ or
Veco ¢ for a finite & C LTL(AP) has no more than |®| subformulas not
appearing as a subformula of any ¢ € ®, independently of the way in which
the conjunction or the disjunction is parenthesized. Therefore, the num-
ber of subformulas of type (3) or (10) cannot exceed |Q| - |A| and |Q| - | F],
respectively.

Finally, it is easy to see that, for all ¢ € @ and f € F, Yitionp(),

Unon-selloop (@) OF Yavoid (¢, f) 1s of the form \/,_ 1, pu(t) for some A" C A, o
({g} x 2% x 27 x 29) N A. Clearly, [Sub(V/,ca () \ U;en Sub(p(t))| <
‘Sub(Viea, /J(f}))‘ < |A,| holds (for any ¢ € @) by the above discussion.
It follows that at most 3~ ., [A,| = [A] subformulas of type (6) or (7) and
> gcq |Agl - [F| = |A[- |F] subformulas of type (8) are created in reverse
translation.

Adding the numbers of the subformulas, we find that [Sub(e,,)| < (5 +
2-|F) QI+ B+ c+|FI) - [A[+1QI - [Al € O((c + |F]) - Q] - |A]).
(b) By the classification of subformulas of ¢ in (a), all pure temporal sub-

formulas built in reverse translation are of the form (2), (9), (12) or (13).

Therefore, | Temp(p)| < (3 + \]:l) Q| € O((1 + |F|) - |Q‘) O

3. BASICAUTOMATON TRANSLATION 67

4 NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTO-

68

MATA

In this chapter we study the translation of self-loop alternating automata into
nondeterministic automata. Because nondeterministic automata are equally
expressive to alternating automata on both finite [Kozen 1976; Chandra and
Stockmeyer 1976; Brzozowski and Leiss 1980; Chandra et al. 1981] and infi-
nite inputs (under many notions of acceptance, using the same mode of ac-
ceptance for both types of automata) [Miyano and Hayashi 1984a,b; Lindsay
1988; Muller and Schupp 1995], checking whether an alternating automaton
recognizes the empty language can be reduced to the corresponding question
on a nondeterministic automaton that is equivalent to the alternating one. In
the worst case, however, the number of states in the smallest such nondeter-
ministic automaton is exponential in the number of states in the alternating
automaton. Nevertheless, the language emptiness problem of alternating au-
tomata is usually solved in practice via some form of (explicit or implicit)
nondeterminization.

In general, the key to translating an alternating automaton into a finite
nondeterministic one is to find a finite encoding for the information that is
needed to distinguish accepting branches from non-accepting ones in a run
of the automaton. It is well-known that this can be done under very general
notions of acceptance by merging branches together in a systematic way to
keep the number of active copies at each level of the run of the automaton
bounded. We begin this chapter by reviewing this process of run uniformiza-
tion for self-loop alternating automata working in fin-acceptance mode in
Sect. 4.1. The uniformization of runs leads to a construction for translating
self-loop alternating automata working in fin-acceptance mode into nonde-
terministic automata working in the same mode (Sect. 4.2). This construc-
tion is very similar to the one previously proposed by Gastin and Oddoux
[2001]. Because of our more general notion of acceptance, however, a trans-
lation procedure (from LTL into nondeterministic automata) based on the
construction has inferior performance to Gastin and Oddoux’s construction
due to its greater worst-case impact on the number of new acceptance con-
ditions required for the nondeterministic automaton. We show in Sect. 4.3
that there is nevertheless no need for the introduction of new acceptance
conditions during nondeterminization for a special class of automata which
have accepting runs that satisfy certain restrictions on the occurrence of tran-
sitions associated with acceptance conditions of the automaton. It occurs
that all automata obtained from the translation presented in Ch. 3 trivially
belong to this class of automata.

Of course, there are also cases in which an alternating automaton can
be translated into a nondeterministic one without an exponential blow-up in
the number of states. In Sect. 4.6, we review a simple syntactic subclass of
LTL that translates directly into nondeterministic automata using the rules
presented in Sect. 3.1. Consequently, any formula in this subclass can be
translated into a nondeterministic automaton with a linear number of states
in the number of pure temporal subformulas in the formula. This subclass
of LTL was previously considered by Schneider [1999] in the context of sym-

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

bolic translation algorithms between LTL and nondeterministic automata.
We show that the subclass is very closely related also to the syntactic subclass
LTL%* introduced by Maidl [2000a]. We also observe that deciding formula
satishability in this restricted subset of LTL is NP-complete.

4.1 UNIFORM RUNS

In this section, we review a classic technical result that will allow us to restrict
the search for an accepting run for a self-loop alternating automaton into a
restricted subset of runs in which the number of nodes in each level of a
run remains bounded by the number of states in the automaton. This result
then leads to a construction for translating self-loop alternating automata into
nondeterministic automata (to be discussed in Sect. 4.2).

Merging Run Branches

The only restriction on the size of levels in a run of an alternating automaton
is that each level of the run should be finite. The number of nodes in a level
of a run may nevertheless grow without any finite bound as the automaton
keeps spawning new copies of its subautomata when working on its input.
Because the automaton has only finitely many states, however, any level with
more nodes than there are states in the automaton represents a situation in
which some active copies of the automaton are in the same state. If the
run is accepting, then all subgraphs rooted at identically labeled nodes at
the level are accepting runs of the same subautomaton on the remaining
input (cf. Proposition 2.3.9). A simple idea to reduce the size of the level
is to force all copies in the same state to behave identically on the rest of
the input by choosing a representative node among the identically labeled
nodes and redirecting each edge that covers any of the nonrepresentative
nodes as a target node to cover the representative node instead, cutting off the
subgraphs originally rooted at the other nodes. Obviously, this transformation
causes some branches in the original run to be merged. Repeating the same
consideration for each collection of identically labeled nodes at the level
would then allow reducing the size of the level to at most as many nodes as
there are states in the automaton.

In general, we call a systematic method for merging branches to keep a
level of a run finitely bounded a uniformization strategy. When applied to
the possibly infinite number of levels in the run, however, a uniformization
strategy should also preserve the acceptance and non-acceptance of runs in
order be useful in considerations on the existence of accepting runs for the
automaton. Instead of simply merging branches at their identically labeled
nodes, the decision on whether the merging of branches is permissible may
in the general case need to be based on additional information (that is, a
memory) about the past evolution of the individual branches. Despite the
possibly unbounded growth in the number of levels that precede another
level in a run, the information needed for uniformization can be shown to
be representable under very general notions of acceptance using only a fi-

nite amount of memory by appealing to the “forgetful determinacy” results
of Gurevich and Harrington [1982] (see [Lindsay 1988; Emerson and Jutla

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 69

70

1991; Muller and Schupp 1995]). For example, in the case of automata with
a single inf-acceptance condition, this information can be thought of as be-
ing annotated directly in the label of each node in the run to make branches
which have different memories distinguishable (see, for example, [Isli 1994,
1996]).! Ultimately, the finiteness of the memory needed for uniformization
will then allow the alternating automaton to be translated into a nondeter-
ministic one which “implements” the uniformization strategy.

As will be shown below, however, no branches ending in the same state
need ever be distinguished in runs of self-loop alternating automata with inf-
or fin-acceptance, since—similarly to weak [Muller et al. 1986, 1992] or,
indeed, very weak [Rohde 1997] automata—the acceptance of an infinite
branch in a run of such an automaton is determined by the branch’s conver-
gence properties (which, intuitively, do not depend on the past). Therefore,
we can use an explicit run-based definition of uniformity. (Instead of rea-
soning directly about runs of automata, uniformization results are usually
presented in a game-theoretic setting by arguing about the existence of finite
memory winning strategies for infinite acceptance games played on alternat-
ing automata. We refer the reader to the article by Muller and Schupp [1995]
for a general methodology for constructing such strategies under a variety of
notions of acceptance.)

Uniform Runs for Self-loop Automata

Formally, we call a run G = (V, E, L) (where V is partitioned into finite
disjoint levels V' = (Jo«;., Vi as usual) of an alternating automaton A =
(3,Q,A,qr, F) uniform iff, for all 0 < i < w, L(v) # L(v') holds for all
v,v" € V;, v # v'. (Because L is consistent, then obviously L(v), L(v') € @
holds, and it follows that the size of each level of G is bounded, i.e., |V;| <
|@| holds.) We say that an alternating automaton A has uniform inf- (resp.
fin-)accepting runs iff it has a uniform inf- (fin-)accepting run on all words
in its language.

Intuitively, an alternating automaton with uniform inf- (fin-)accepting
runs is able to accept all words in its language without spawning more than
one copy of any of its subautomata at any step when working on an input be-
longing to the language. Of course, the exact set of subautomata to spawn at
a particular step is not necessarily unique due to the possibility of combining
initial transitions of the currently active subautomata in several consistent
ways, and some of the combinations may fail to give rise to an accepting
run for the automaton. Nevertheless, the automaton always has at least one
“successful” way to choose the subautomata to spawn at each step whenever
the input given for the automaton belongs to the language of the automa-
ton. On the other hand, no such way exists if the input does not belong to
this language. This intuition, which is easily seen to apply also to nondeter-
ministic automata and, in fact, all alternating automata with no acceptance
conditions, is made formal below.

Proposition 4.1.1 Let A = (X,Q, A, q;, F) be a nondeterministic automa-
ton, a self-loop alternating automaton, or an alternating automaton with

'In our graph-based definition of runs, this may necessitate duplicating some nodes in
the run to ensure that every node will be uniquely labeled.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

F = 0. Forallw € ¥¥, A fin-accepts w iff A has a uniform fin-accepting
run on w.

Proof: (Only if) Let G = (V, E, L) be a fin-accepting run of A on w. If

A is nondeterministic, then, because every transition of A has exactly one
target state, all branches in G are infinite due to forward causality and the
consistency of L. Let ((v;, Viﬁ>)o<i<w € B(G) be an infinite branch in G

(where (v;, V") € EnN (V; x 2Y+1) and v;y; € V/ hold forall 0 < i <
w). Ttis easy to check that the graph G' = (V', E', L'}, where V/ < {v;},
L'(v;) o L(v;) (0 <i<w), E o U0§i<w {(UZ-, Vzl+1>} and L’((vi, Vz/+1>) o
L({(v;, V) (0 < i < w) is a uniform run of A on w (to show that L' is
consistent, observe that all nodes in V" have the same label in G for all
0 < i < w, because A is nondeterministic). Obviously, G’ contains the
unique infinite branch ((v;, Vi/4r1>)0<i<w; because fin(((v;, V/ 1))o<icw) =
fin(((vs, V/"))o<i<w) = 0 holds, G" is fin-accepting.

If A is an alternating automaton, we apply a uniformization strategy to G
to define a uniform fin-accepting run G' = (V' E', L) of A on w. Intu-
itively, we choose for each level of G a set of transitions (labeling a subset
of edges starting from the level) and define the next level of G’ as a set of
representative nodes for each distinct state of A that is a target state of one of
these transitions. These representatives then guide the selection of another
set of transitions.

Clearly, forming each level of G’ from nodes labeled with distinct states of
A already guarantees that the condition that characterizes uniform runs is sat-
isfied. However, the requirement that G’ should be a fin-accepting run of A
restricts the choice of transitions used for defining the successive levels of G'.
Namely, we have to ensure that the collection of levels thus defined does not
contain an infinite branch that violates the fin-acceptance condition. More
precisely, these levels should not include an infinite chain of edges labeled
with transitions of A that share an acceptance condition in F.

(Uniformization strategy and definition of G') ~ We now give the formal in-

ductive definition of G'. Let V] % {v}}, and let L' (v})) = ¢;. We assume that
the acceptance conditions in the finite set F are totally ordered by a relation
< C F x F. In addition to defining the levels V/, we shall also define a
function F; : Q — 27 forall 0 < i < w; intuitively, f € E(q) shall hold for
some acceptance condition f € F only if the most recently defined levels of
G’ include a nonempty chain of edges labeled with self-loops starting from
the state ¢, all of which have the condition f in their acceptance conditions.
Let Fo(q) 2 0 forall ¢ € Q. Tt is clear that each nonempty Fj(¢) contains a
~<-minimal element.

Let T; : Q — 22 (for each level 0 < i < w of G) be a function which
collects the transitions of A that label the edges starting from a node labeled
with the state ¢ at level i of G; formally,

Ti(q) € {L((v, V")) € A|3(v, V) € EN(V; x 2+1) 1 L(v) = ¢}.

(Because G is a run, G satishies the forward causality requirement, and thus
Ti(q) # 0 holds for all 0 < i < w and q € L(V;).) We divide T;(q) further

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 71

72

into three pairwise disjoint (possibly empty) partitions 7;1(q), T;2(q) and
T; 3(q) by defining

Ti(q) & {t € T;(¢q) | t is not a self-loop of A},
e {t € T;(q) \ Ti1(g) | t is not a min_ F, (g)-transition }, and

Tisla) £ Ti(@) \ (Tialg) U Tz‘,2<Q))‘

(If ﬁ’l(q) = (), then we consider no transition in T;(¢) to be a ming F;(q)-
transition in the definition of 7} »(q).)

Assume that V/ and F} have already been defined for some 0 < i < w, and
assume also that the labels of the nodes at level i of G’ form a subset of the
node labels at the corresponding level of G, i.e., L'(V}") C L(V;) (this clearly
holds for the level Vj of G'). We now choose for all ¢ € L’(V}) a transition
tiq = (0. Tig Fig, Qi) € Tix(q), where k € {1,2,3} is the least index of
a nonempty partition of T;(¢q) (because T;(q) # 0 holds, such a partition
always exists). That is, we choose t; , from T;(q) by preferring non-self-loops
over self-loops and self-loops that are not min_, F}(g)-transitions over other
self-loops.

Write quL,(Vi,) Qg =1%.1; - Qin;)y forsome 0 < n; < w (where q;; #
gy forall 1 < j k < n; j # k). Define the level ¢ + 1 of G’ as a set of n,

new nodes V/, | = {vi1, ..., v}, and let L' (v; ;) = g forall 1 < j < n,.

Because the labeling L is consistent in G, it follows immediately that
L'(V}y1) € L(Vis1), and thus we can repeat the same inductive construc-
tion at level ¢ 4+ 1 of G' after first defining the function F 4. Forall ¢ € @,
let

_ Fig if g€ L'(V)) N Q;, and Fy(q) = 0
Fini(0) = { Fyn Fq) ifqe L'(V/)NQ,, and Fi(q) # 0
0 otherwise.

In the first two cases, the transition ¢; , is well-defined (because ¢ € L'(V)
holds), and it is a self-loop of A starting from the state ¢ (¢ € @;,). If
F,(q) = 0 holds, then Fj(¢) has no <-minimal element. In this case we
simply initialize Fj,1(q) with the acceptance conditions of ¢ 4: clearly, (t;.,)
is then a nonempty chain of self-loops through ¢ that trivially share all accep-
tance conditions in Fj .

Otherwise, if F;(q) # 0 already contains a <-minimal element, then the
most recently defined levels of G’ contain a nonempty chain of edges corre-
sponding to a chain of self-loops through ¢ that share all acceptance condi-

tions in F;(q). The second case of the definition now guarantees that Fiii(q)
will contain a condition f € Fy(q) only if also the self-loop ¢; , includes f in
its acceptance conditions. Therefore, Fi;1(q) has the intended meaning at
level i + 1 of G'.

Finally, if ¢ ¢ L'(V}) N Q;, holds, then no transition chosen from T;(q)
starts or extends a chain of self-loops with source state ¢. In this case we
define F;1(q) to be empty.

This completes the inductive definitions of V/ and F}. To define the edges

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

of G/, we let

PR def U { V// G V/ % 2 1 ‘L/(V//) — ;7L/(v)}

0<i<w

and forall e = (v, V") € E' N (V} x 2¥%1) (0 <i < w), I'(e) = t; prw).

(G' is a uniform run of A onw) We check that G’ is a uniform run of A
on w. It is easy to see that each level of G’ consists of uniquely labeled nodes
by construction, and thus G satisfies the constraint required of uniform runs.
It remains to be checked that G” is a run of A on w.

(Partitioning) It follows directly from the definitions of V’ and E’ that
V4 is a singleton, V' is partitioned into finite disjoint levels, and the edges
of E’ lie between successive levels of G'.

(Forward causality and consistency of L') Clearly L'(v)) = gr holds.
Let v € V/ for some 0 < i < w. Because L'(v) € L'(V/) C L(V;)
holds, G contains at least one node at level i labeled with the state L'(v),
and because G satisfies the forward causality constraint, each such node
has an outgoing edge labeled With a transition in T;(q). Therefore the
transition t; ; = (q, [y g, Fi g, Qi ,) € Ti(q) is well-defined (i.e., t; ; = L(e)
for some e € E). By the deﬁmtlon of &', Q;, C L’(Vi’ﬂ) holds, and thus
there exists an edge ¢/ = (v, V") € E'N (V’ x 2Vi+1). This edge is unique
in E’, because all nodes at level 7 + 1 of G’ are labeled with distinct states
of A. Furthermore, because L'(¢’) = t;, = L(e) holds and because L is
consistent, it follows that also the labeling L’ is consistent.

(Backward causality) If v € V for some 1 < i < w, then there exists a
state ¢ € L'(V/ ;) € L(V;_1) and a transition t = {¢,T", F, Q') € T;_1(q)
such that L/ (v") € @ holds. Therefore, there exists a node v € V/ | and
an edge e = (v, V") € E’ such that L'(v) = g and L'(V") = @' hold.
Because no two nodes in V; have the same label, it follows that v/ € V",
and thus v’ is a successor of v in G'.

We conclude that G/ is a uniform run of A on w.

(G" is fin-accepting) 1If F = (), then fin(5) = 0 obviously holds for all
B € B(G'), and thus G’ is trivially fin-accepting.

Assume that F # () holds, and G is not fin-accepting. Then G’ contains
an infinite branch (e;)o<;<» € B(G’) that violates the fin-acceptance condi-
tion, and there exists a minimal index 0 < j < w such that the transitions
L'(e;) (j < < w) share an acceptance condition f € F.

On the other hand, if A is a self-loop alternating automaton, there exists a
minimal index 0 < k < w such that all transitions L'(e;) are self-loops of A
having a common source state ¢ € @ for all £ < i < w (Proposition 2.3.18).
It now follows from the definition of G’ that for all & < i < w, the transition
L'(e;) is the transition chosen by the uniformization strategy from 7;(q) at
level 4, ie., L'(e;) = tig = (q, g, Fig, Q;,) holds. Furthermore, because
L' is Consistent q € L'(V])NQ;, holds for a]l E<i<w.

Let ¢ = max{j, k}. Obviously, f € Me<icw Fig holds by the assumption.

Furthermore, there exists an index £ < ¢ < w such that F;(¢) # 0 holds for
all ¢/ <i < w: for if F;(q) = 0 holds for some ¢ < i < w, then, because

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 73

q € L'(V])NQ;, holds, it follows from the definition of the function Fii1(q)
that Fi,1(q) = F; 4> f holds. Then, Fy(q) # 0 holds by induction on ¢’ for

all i +1 < i’ < w, because the assumption that f € Fy(g) holds for some
i+1 <4 < wimplies (because of the fact that ¢ € L'(V;)) N Q}, , holds) that

Fyi1(q) = Fr g N Fy(q) 3 f. We may thus choose ¢ % i + 1 in this case.

Because Fi(q) # 0 holds for all ¢/ < i < w, it is easy to see from the
definition of the functions F;(q) that F;11(¢) € F;(q) holds for all ¢/ <
i < w. Because Fy(q) is finite, there exists an index ¢/ < ¢ < w and a

nonempty set of acceptance conditions F C F such that F;(¢) = F holds
for all 7 <i < w. Furthermore, F' C F; , also holds for all ¢ <i < w. Let

fmin = min_ F be the <-minimal acceptance condition in F.

Let /" < i < w, and let v € V; be a node in G labeled with the state ¢
(such a node exists, because ¢ € L'(V)) C L(V;) holds). Because t;, is a
self-loop of A that is also an fi,i,-transition, so is the transition labeling the
edge that starts from the node v in G (otherwise the uniformization strategy
would have preferred this transition when choosing a transition from 7;(q)).
Because the labeling L is consistent, the node v has a successor in G that is
labeled with the state ¢. By induction on ¢, it follows that G contains an infi-
nite branch with an infinite sufhx of edges labeled with fi,i,-transitions of A.
But then G cannot be a fin-accepting run of A on w, which is a contradiction.
It follows that G” is a uniform fin-accepting run of A on w.

(If) The result follows in this direction immediately because all uniform

fin-accepting runs of A on w are obviously fin-accepting. O

4.2 NONDETERMINIZATION CONSTRUCTION

74

The expressive equivalence of alternating and nondeterministic automata on
finite words follows already from the first results on alternation [Kozen 1976;
Chandra and Stockmeyer 1976; Brzozowski and Leiss 1980; Chandra et al.
1981]. Miyano and Hayashi [1984a,b] showed that this expressive equiva-
lence carries over to infinite words for automata working in inf-acceptance
mode using a single acceptance condition associated with states of the au-
tomaton. Isli [1994, 1996] used a construction similar to the one of Miyano
and Hayashi to show that an alternating automaton with n states, m of which
are designated “accepting”, can be translated into a nondeterministic au-
tomaton with at most ()™ - 3" states. The expressive equivalence of alter-
nating and nondeterministic automata under more general notions of accep-
tance and types of input was investigated (and proved) by Lindsay [1988],
Emerson and Jutla [1991] and Muller and Schupp [1995].

On the other hand, the translation of alternating automata into nonde-
terministic automata was considered also for automata with structural con-
straints. Muller et al. [1986, 1992] presented a construction for translating
weak alternating automata on infinite trees into nondeterministic automata
working in inf-acceptance mode. Very weak automata on words were further
studied by Rohde [1997], who proposed a construction for translating very
weak alternating automata working on transfinite words into nondeterminis-
tic automata, and Gastin and Oddoux [2001], who showed that every very

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

weak alternating automaton on infinite words (with n states, m of which are
associated with a single inf- or fin-acceptance condition) can be translated
into an equivalent nondeterministic automaton having at most 2" states and
m inf-acceptance conditions on transitions. As a matter of fact, this construc-
tion applies directly also to automata with a relaxed notion of one-weakness
[Ben-David et al. 2005]; the knowledgeable reader may note the similarity
of the construction with a special case of the construction of Muller et al.
[1986, 1992]. Similar ideas can be found also in the construction of Fritz
[2005]. Hammer et al. [2005] use a nondeterminization construction that
preserves state-based acceptance; their construction is correct, however, only
for a subclass of very weak alternating automata they call simple linear weak
alternating automata.

In this section we generalize the result of Gastin and Oddoux [2001] to
self-loop alternating automata with multiple fin-acceptance conditions asso-
ciated with their transitions. Similarly to Gastin and Oddoux’s construction,
we build from a self-loop alternating automaton with n states an equivalent
nondeterministic automaton with 2" states. If the self-loop alternating au-
tomaton has m acceptance conditions, the nondeterministic automaton has
at most nm acceptance conditions. This worst-case upper bound is optimal
for our nondeterminization construction; special cases in which this blow-up
can be avoided (such as when the alternating automaton is built from an LTL
formula using the translation rules) are discussed in Sect. 4.3.

4.2.1 Universal Subset Construction

Consider a uniform run of a self-loop alternating automaton A. Because
each level of this run comprises a (possibly empty) set of nodes labeled with
distinct states of A, the labels of the nodes in the level form a subset of states
of A with no duplicates. Intuitively, this run can be seen as a run of an-
other automaton on the same input by collapsing each level of the run into
a single node and the edges between each pair of consecutive levels into a
single edge between the nodes representing the levels (see Fig. 4.1), and by
defining a labeling for these nodes and edges. The nonbranching nature of
the node sequence that emerges suggests that a transition labeling an edge in
the sequence should not have more than one target state to ensure the con-
sistency of the labeling. Because each uniform run of A can be identified
in a similar way with a nonbranching sequence of nodes, it follows that the
underlying automaton can actually be made nondeterministic. The states of
this automaton are subsets of states of .4, and its transitions are obtained by
“synchronizing” transitions of A starting from a given subset of states.

The above intuition for simulating self-loop alternating automata with
nondeterministic automata resembles very closely the well-known subset
construction of Rabin and Scott [1959] used for simulating nondetermin-
istic automata on finite words with deterministic automata (i.e., automata
whose every state has a unique successor on each symbol of the alphabet). In
the case of alternating automata, however, the subsets consist of the current
states of the active copies of the alternating automaton, instead of possible
current states of a single copy of the automaton. The above intuitive con-
struction suggests combining a set of transitions taken at a particular level

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 75

76

Fig. 4.1: Collapsing the levels of a uniform run of an alternating automaton into a
nonbranching sequence of nodes

of a run by a collection of active copies of an alternating automaton into a
transition that simulates the change effected by the transitions in the set of
the active copies of the automaton. Because the labeling of the run is consis-
tent, all of these transitions include the current input symbol in their guard.
This fact suggests defining the guard of the simulating transition as the set
intersection of the guards of the individual transitions taken by the copies of
the alternating automaton. We sometimes refer to this principle of defining
the states and transitions of a nondeterministic automaton as the universal
subset construction for self-loop alternating automata (to distinguish it from
the classic “existential” construction for nondeterministic automata on finite
inputs).”

We have not yet considered how to define the acceptance conditions for
the transitions of the nondeterministic automaton. Similarly to the target
states and the guard of a transition that simulates a set of transitions, it would
seem possible to define the acceptance conditions of the simulating transi-
tion as a direct combination (such as the union) of the acceptance conditions
of the other transitions. This intuitive idea is not correct in the general case,
however. Below, we present a construction that introduces new acceptance
conditions for the nondeterministic automaton; the fact that these new accep-
tance conditions are indeed necessary for the universal subset construction
in the general case will be shown in Sect. 4.2.3.

Theorem 4.2.1 Let A = (X,Q, A, q1, F) be a selt-loop alternating automa-
ton. Define the automaton A" = <Z,2Q,A’, {a1},Q X .7-">, where, for all
Qe TCY FCQxFandQ C 29,

(Q,I',F,Q)e A" iff forall ¢ € @), there exists a transition (g, T,
F,Qp) € Asuch that’ = [\ oy, F' =

quQ/ng ({Q} X Fq)’ and Q = {quQ/ Q;}
hold.

(In particular, (0,%,0,{0}) € A’.) The automaton A’ is nondeterministic,
and L, (A) = Len(A’) holds.

2We note that there is no corresponding “existential” subset construction for translat-
ing arbitrary nondeterministic automata on infinite words into inf- or fin-equivalent deter-
ministic automata, because nondeterministic and deterministic automata are not expres-
sively equivalent under these notions of acceptance (see, for example, [Vardi 1996]): in
general, a more complex notion of acceptance is needed for the deterministic automaton

[McNaughton 1966; Safra 1988].

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

Proof: It is clear from the definition that the target states of each transition of
A" are singletons (containing a subset of ()), and thus A’ is nondeterministic.
We show that A and A’ are fin-equivalent.

(Lsn(A) C Lin(A')) Let G = (V, E, L) be a uniform fin-accepting run of

Aonw e ¥¥ We construct a fin-accepting run G' = (V', E', L') of A’ on
w.

(Definition of &) Let V' = Uo<ico{vi} (with V/ =y} forall 0 < i <
w), B ¥ U0§i<w {(UZ’-,VZ/JFI)}, and L'(v)) = L(V;)forall 0 < i < w. To
define the label of the edge starting from the node v} (0 < i < w), we first
write V; = {v;1,...,0ip, } for some 0 < n; < w (where v; ; # v; holds for
all 1 < j,k < mny, j # k). Because G is uniform, L(v; ;) = ¢i; # Gix =
L(v;x) holds for all 1 < j,k < n; (j # k), and thus there are n; distinct
transitions 7; C A labeling edges starting from the nodes in V;:

T, U {L({vi;, V") |{vi;, V") € E} = U {{ai5, iy, Fij, Qi) }-

1<j<n; 1<j<n;

def

The label of the edge (v}, V/,1) (0 < i < w)is then given by L' ((v], V{,,)) =
<U1§j§n¢{q@j}7 ﬂlgjgm Iij U 1<i<n; ({qw} X Fi,j)? { Ulgjgm ;]}>

9,5 EQZ-’]-
(G"isarun of A" onw) We check that the graph G’ satishies all constraints
required of a run of A’ on w.

(Partitioning) ~ Obviously Vj = {v{} is a singleton, and G’ is partitioned
into finite disjoint levels with edges between consecutive levels.
(Causality) Clearly, each level of G’ contains only one node, and for all
0 < < w, thenode v € V/ has the unique outgoing edge (v;, V//,;) € E'.
On the other hand, the node v € V! (1 < i < w) is a successor of the
node v, , € V' .

(Consistency of L') Itis clear from the definition that L' (v() = L(Vp) =
L({vo}) = {qr} holds. Let 0 < i < w, and letv = v} € V;. Because T; C
A holds, it follows from the definition of A’ that A’ contains the transition

<U1§j§nj {Qi,j}a ﬂ1§j§ni L, U 1<j<n; ({qu} XFi,j)v { U1§j§ni ;]}> =

4, €Q; 5
L'((v},V},1)). Because G is a run, w(i) € I;; holds forall 1 < j < n,
and thus w(i) € (<<, ['i; holds. Furthermore, because L is consistent,
it follows that U, ;,, {¢i,;} = Ui<j<p, {L(vi;)} = L(V;) = L'(v}) and
{Ulgjgni it = {LVi)} = {L(v}1)} = L(V/,;) hold. Therefore
also the labeling L' is consistent.
We conclude that G” is a run of A’ on w.
(G" is fin-accepting) ~ Suppose that G’ is not fin-accepting. Then there ex-
ists an index 0 < j < w and an acceptance condition (g, f) € @ x F such
that for all j < i < w, the transition L' ({v], V/,,)) € A’ isa (g, f)-transition.
Let j < i < w. By the definition of L/, T; contains an f-transition ¢t € A
(with source state ¢) that is a self-loop of A. Because ¢ is the consistent label
of an edge starting from a node v € V; with L(v) = ¢, v has a successor
in V1 that is also labeled with the state ¢. Furthermore, this successor is
the only node in V;;; that has ¢ as its label, because G is uniform. By in-
duction on 1, it follows that G contains an infinite branch with an infinite

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 77

78

suffix of edges labeled with f-transitions. This contradicts the assumption
that G is fin-accepting. Therefore G’ is a fin-accepting run of A’ on w, and
Len(A) C Lgn(A’) holds.

(Lan(A') C Lan(A)) Let G’ = (V' E',L') be a fin-accepting run of A’
on w € X¥. Because A’ is nondeterministic, we may assume (without loss
of generality) that G’ is uniform (Proposition 4.1.1). Therefore, every level
V! of G consists of a single node v} for all 0 < i < w. Write L'(v}) =
{gin, -y Gin;} € 29 for some 0 < n; < w (where q;; # ¢;x holds for all
1 <j,k<n;j#k)forall 0 <i < w. Similarly to the other direction, we
define a fin-accepting run G = (V, E, L) of A on w.

(Definition of G) Forall 0 < i < w, let V; consist of n; new nodes V; <

def

{vi1,. . Vin; }, and let L(v; ;) = ¢;; forall 1 < j < n;. Clearly, no two
nodes in V; have the same label, and L(V;) = L'(v}) holds for all 0 < i < w.
Because G’ is a uniform run of a nondeterministic automaton, the node
v, € V' has the unique outgoing edge (v}, {v/,}) € E’ labeled with a
transition (L' (v]), Ty, F;, { L' (v},,)}) € A’ forsomeT; C S and F; € Qx F
for all 0 < ¢ < w. By the definition of A’, there exist transitions ¢, ; =
(@i, Tij, Fij, ;j> € Aforall 1 < j < n;such that T'; = ﬂlﬁﬁni Ly ,
Fi=U 1<5<n; ({qu} X FM) and {L,(Uz/'Jrl)} - {U1§jgm ;]} hold.

94,5 € Q4,5
Letv € \}Z for some 0 < i < w; thus L(v) = ¢;; € L'(v}) for some
1 < j < n;. Wenow define e;; = (v, V") € V; x 2%+ by taking V" to be
the unique subset of Vi, for which L(V") = @; ; holds (such a subset exists,
because Q; ; € L'(v;y1) = L(Viy1) holds, and it is unique, because all nodes

in V1 have different labels). We then define F o U0§i<w{ei717 ey Cing)
and L(e; ;) o tijforall0 <i<wand1 <j<mn,.
(G isarun of Aonw) We check that G is a run of A on w.

(Partitioning) ~ Because L'(vj) = {qr}, no = 1 holds, and thus V; is a
singleton. Because the nodes of G” are labeled with subsets of the finite
set @, V; is finite for all 0 < ¢ < w (and disjoint from all other levels of
G by definition). By the definition of E, G has edges only between its
consecutive levels.
(Causality) Letv =v;; € V;forsome 0 <i <wand1 < j < n; By
the definition of G, v has the unique outgoing edge ¢, ; = (v, V") € E.
On the other hand, if v’ € V; holds for some 1 < i < w, then L(v") =
q € L'(v]) holds. Because G’ is a uniform run of a nondeterministic
automaton, v} is a successor of the node v} ; € V'. Lett' € A’ be the
transition labeling the edge between these nodes in G’. Because L'(v]) #
0, it follows from the definition of A’ that L'(v]_;) #), and there exists a
transition ¢ € A (with source state ¢ € L'(v_,)) which is a “component”
in the transition ¢ and includes ¢’ in its target states. By the definition of
G, Vi1 now contains a node v with L(v) = ¢, and the edge starting from
this node is labeled with the transition ¢. Thus v has a successor labeled
with the state ¢/. This successor is now necessarily the node v, because
the labels of nodes in V; are distinct by definition.

(Consistency of L)~ Clearly L(Vy) = {q;} holds. Letv = v;; € V
for some 0 < i < wand 1 < j < n;. By the definition of G, the

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

edge e;; € E starting from this node is labeled with the transition ¢; ; =
(@i, Vi, Fij, Qi ;) € A. Clearly, L(v) = ¢;; holds, and L(V") = @} ;
holds by the definition of e; ;. Furthermore, because G’ is a run, w(i) €
[y = Ni<p<n, Lix holds. In particular, w(i) € I';; holds, and thus the

labeling L is consistent.

(G is fin-accepting) Assume that G is not fin-accepting. Then there exists

an index 0 < j < w, an acceptance condition f € F and an infinite branch
(€:)o<i<w € B(G) such that L(e;) is an f-transition for all j < i < w. Be-
cause A is a self-loop alternating automaton, we may choose j large enough
such that the transitions L(e;) are self-loops of A (with source state ¢ € Q) for
all 7 <4 < w (Proposition 2.3.18). Because e; € E holds for all j <i < w,
then L(e;) =t = (¢, Uik, Fir, Q;k> holds for some 1 < k < n;. But then,
because t; , is a self-loop and f € Fj holds, it follows from the definition of
A’ that the transition L' ({(v], {v],})) is a (g, f)-transition for all j < i < w,
which contradicts the assumption that G’ is fin-accepting. Therefore G is a
fin-accepting run of A on w, and Lg,(A") C Lgn(A). O

4.2.2 Number of States and Transitions in a Nondeterministic Automaton

It is easy to see that a nondeterministic automaton built from a self-loop al-
ternating automaton with n states using the construction in Theorem 4.2.1
has at most 2" states. By combining the translation from LTL to self-loop
alternating automata (Sect. 3.1) with the construction, we obtain the follow-
ing simple corollary on the complexity of translation of linear temporal logic
formulas into nondeterministic automata. This upper bound for the number
of states is essentially the same as in the translations of Couvreur [1999] and
Gastin and Oddoux [2001] with the exception of an additive constant (that
arises because our automata have a unique initial state).

Corollary 4.2.2 Let ¢ € LTL(AP) be any LTL formula built from the ele-
ments of AP, the Boolean constants T and L, and the connectives {—, V, A,
X, Us, Uy, Rs, Ry }. The language of the formula ¢ can be recognized by
a nondeterministic automaton (working on the alphabet 24F) with at most
1 + 2Temp(el™™) < 1 4 92|Temp(P)l = 1 4 4ITemp(P)| gtates (1 4 2/Temp(2)|
states, if ¢ itself is in positive normal form). (If is a binary pure temporal
formula, the upper bound reduces to 2!TmP(£I™)l states.)

Proof: Let ¢ be an LTL formula in the given form. By Corollary 3.2.2, there
exists a selfloop alternating automaton A (working on the alphabet 247)
with at most 1 + | Temp ([¢]"F) | states (or at most | Temp ([¢]"NF) | states if
¢ is a binary pure temporal formula) such that Lg,(A) = L(¢) holds, and
this automaton can be built using the translation rules presented in Sect. 3.1.
By the construction in Theorem 4.2.1, there exists a nondeterministic au-
tomaton A’ that fin-accepts the same language. Because the subautomaton
rooted at the initial state of this automaton has at most 2/%/ states (where @
is the state set of \A), the result now follows immediately if ¢ is a binary pure
temporal formula.

If ¢ is not a binary pure temporal formula, then the construction pre-
sented in Theorem 4.2.1 yields a nondeterministic automaton with at most

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 79

21+ Temp((e]"")] gtates. In this case, however, the alternating automaton 4
has no self-loops starting from its initial state ¢;; furthermore, because A is
a selft-loop alternating automaton, no other transition of A can have ¢; as
its target state, either. It follows from the definition of A’ that the subau-
tomaton rooted at the initial state of A’ contains no states corresponding to
non-singleton subsets of) that include the state g;. Therefore, the upper
bound for the size of the subautomaton reduces to 1 + 2/TemP(™ I gtates.
and the result follows. O

We mention here that in the general case, the smallest nondeterministic
automaton (working on the alphabet 247) which recognizes the language of
an LTL formula (over the atomic propositions AP) always has exponentially
many states in the number of pure temporal subformulas of the formula. For
example [Wolper 20017, it is possible to express the behavior of an n-bit bi-
nary counter that resets itself infinitely often as an LT formula over n atomic
propositions with O(n) pure temporal subformulas (hence, as a self-loop al-
ternating automaton with O(n) states), but a corresponding nondeterministic
automaton working on the same alphabet has no less than 2" states.

It is easy to see from the construction in Theorem 4.2.1 that every tran-
sition of the nondeterministic automaton built from a self-loop alternating
automaton is defined in terms of a subset of transitions of the self-loop alter-
nating automaton. Therefore, the nondeterministic automaton built from a
self-loop alternating automaton A = (£, @, A, ¢r,) cannot have more than
2141 transitions. Combining this upper bound directly with the exponential
(2904D) upper bound for the number of transitions in a self-loop alternating
automaton built from an LTL formula ¢ € LTL(AP) using the translation
rules presented in Sect. 3.1 (see Sect. 3.2.2) yields a doubly exponential up-
per bound (in |p|) for the number of transitions in a nondeterministic au-
tomaton built for the formula . The number of transitions can nevertheless

be shown to be, in effect, only singly exponential in |¢|; the details follow in
Sect. 4.3.4.

4.2.3 Number of Acceptance Conditions

80

Given a self-loop alternating automaton A = (£, Q, A, g1, F), the construc-
tion of Theorem 4.2.1 gives a simple upper bound (|Q)| - |F|) for the num-
ber of acceptance conditions in a fin-equivalent nondeterministic automaton
built from A by applying the universal subset construction. A more accu-
rate upper bound can be found by observing that the nondeterministic au-
tomaton built from A using the construction has a (g, f)-transition (for some
(q,f) € Q@ x F)onlyif ¢ € @ is an f-state of A. Because the accep-
tance conditions for which no corresponding transitions exist do not affect
fin-acceptance (clearly, none of these conditions can appear in the label of
an edge in any infinite branch of a run of the automaton), these conditions
can be safely removed from the nondeterministic automaton without chang-
ing its language. A more accurate upper bound for the number of acceptance
conditions needed for the nondeterministic automaton is thus given by the
equation
Z {q € Q : qisan f-state of A}| < |Q] - |F].

feFr

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

The |@Q| - |F| upper bound in nevertheless tight if the states and transitions
of the nondeterministic automaton are to be defined using the universal sub-
set construction.

Proposition 4.2.3 A nondeterministic automaton built from a self-loop al-
ternating automaton with 1 < n < wstatesand 1 < m < w acceptance
conditions (and an alphabet of at least nm symbols) using the universal sub-
set construction needs nm acceptance conditions to recognize the language
of the alternating automaton in the worst case.

Proof: Let ¥ be a finite alphabet, and let w € ¥“. We use the notation
occ(w) 2 {o € & | w(i) = o for some 0 < i < w} for the set of symbols
occurring in w, and inf(w) £ {o € ¥ | w(i) = o for infinitely many
0 < i < w} for the set of symbols which occur in w infinitely many times.
Let {X,m}1<nm<w be a family of alphabets, where the alphabet %, ,,
(I <n,m < w)is the union of n pairwise disjoint m-symbol alphabets 33} |

. : def | n / 1o def
(1 <i<n)ie, Spm = Uisy 56, where 37 = {041,0i9,...,0im},

and ¥, NY5 = 0holds forall 1 <i,j < n,i# j. Define also the corre-
sponding family of languages { L, }1<nm<w, where, forall 1 < n,m < w,

Lom =2 {we 3% | B € inf(w), and if 33}, Nocc(w) # O for
some 2 < i < w, thenalso X, C inf(w)}.

Let 1 < n,m < w be fixed. We show that the language £, ,, can be fin-
recognized by a self-loop alternating automaton (on the alphabet ¥, ,,,) with
n states and m acceptance conditions, but a nondeterministic automaton
built from the alternating automaton using the universal subset construction
needs at least nm acceptance conditions to fin-recognize the same language.

Let 2 < i < n. Itis easy to check that the language {w € 52 |3}, C
inf(w)} is fin-recognized by the single-state automaton A; with m + 1 self-
loops and m acceptance conditions F,, “ {f1, fay ..., fn}; formally, A; &)

<2n,mv {a:}, A s,]:m>, where

A= {{gidoigh, Pk Aaih) |1 <5 <m b U {00 B\ B s For{ai}) }-

Clearly, forall 0 € ¥, ,,,, there is a unique transition in A; that includes ¢ in
its guard.

We now use the automata A; (2 < i < w) to build an automaton A4,, ,,
that fin-recognizes the language £, ,,,. Similarly to the automata A;, A, ,,,
has an initial state ¢; used for checking that the input of the automaton con-
tains infinitely many occurrences of each symbol in ¥ . Whenever the
automaton reads a symbol from some X} (2 < i < w), it spawns a copy
of the automaton A; to check that the input contains also infinitely many

occurrences of each symbol in /. The automaton always keeps a copy of
def

itself in its initial state. Formally, A,, ., = (X, 1, Qn, Anm, @1, Fin), where

Qndéf{qlaq%"')qn} and
Ao 2 (g1, {01}, Fu \ {2 Aa}) [1 < i <m}
U {<q17 E;,nwfma {Q17q@}> ‘ 2 S 1 S 77,}
UUrL, A

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 81

82

{o1} {a1}

(o1} {@E,b{&;,l}

{0'2 1}\ {0171} ‘/ ."-1 {01,1}
Ve e {051} %} Q‘)
{a1,q2} e L gs)

QDC’ (o] " Tyt 7000}

(o001} fosi} fosa} {orao2i) tony) o)

{0\2’71} Ha, 2,93}

(a) (b)

Fig. 4.2: Examples of automata used in the proof of Proposition 4.2.3. (a) The
automaton Ag ;. (b) State—transition structure of the nondeterministic automaton
obtained from A3 ; using the universal subset construction (transitions with empty
guards and states not reachable from the initial state omitted)

It is easy to see that A,, ,, is a self-loop alternating automaton, because there
are no transitions from any state ¢; € @, (2 < ¢ < n) to another state
q € Qn \ {@}. For illustration, see Fig. 4.2 (a) for the automaton Asj ;.

Observe that, forall ¢ € @, and 0 € £, ,,,, A, ,,, again contains a unique
transition with source state ¢ and o in its guard. Thus the automaton has
arun on every w € ¥ . and the run on w is unique with respect to the
sets of states and transitions labeling the nodes at the levels and the edges
starting from the levels, respectively. Obviously, the run always contains an
infinite branch that stays in the state g1, and if 3, N occ(w) # 0 holds for
some 2 < ¢ < n, the run contains also an infinite branch that converges
to the state ¢;. It is therefore easy to see that the run is fin-accepting only if
w € Ly, holds. On the other hand, it is straightforward to check that all
runs of A, ,, on w are fin-accepting if w € L, ,,, and thus the automaton
A, .m fin-recognizes the language £,, .

Let A/, .. be the nondeterministic automaton on the alphabet ¥, ,,, ob-
tained from Ap.m by defining its states 297 and transitions A/ | using the
universal subset construction, where we deliberately give each transition of
Al an empty set of acceptance conditions (see Fig. 4.2 (b) for illustra-
tion). Observe again that for every subset Q)" C @, and every symbol o €
Snm, Al has a unique transition (Q',T,0,{Q"}) € A, (T C .,
Q" C @) such that o € T" holds. In particular, A;, ,, contains the transition

chain (({q1,..., ¢}, S50, {{a, .. @, qi+1}}>)1§i<n71. Furthermore, it

is straightforward to check from the construction that for all o € %,,,,, A/,
contains the transition <Qn, {c},0, {Qn}> (and these are the only transitions
with a nonempty guard starting from the state Q),,).

Assume that there is a way to define the acceptance conditions of the
transitions of Aj , as subsets of a set F with less than nm elements such
that Aj, ,, fin-recognizes the language L, .. Let u = 011021 0,1 It
follows by the above discussion that the nodes at any level greater than or
equal to n in a run of A; | on an infinite word of the form uv (v € %)
are all labeled with the state (),,. Because u contains a symbol from each
¥, wv € Ly, holds only if v contains infinitely many occurrences of

,M?

each symbol in 3, ,,. Therefore, AJ, ,, fin-accepts the language L, ,, only

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

if the subautomaton (A,)¢ fin-recognizes the language of infinite words
containing infinitely many occurrences of each symbol of the alphabet 3,, ..

The language fin-accepted by (A7,)% is obviously empty if all self-loops
(Qn.{0},0.{Q.}) € AL, (0 € Ey,,) are f-transitions for some f € F.
Thus there exists a set of at most | F| self-loops that includes for each f € F a
self-loop that is not an f-transition. Because the guards of these self-loops are
singleton subsets of 3, ,,, it follows that A7, fin-accepts all words of the form
uw* for some permutation w of the symbols in the guards of these self-loops.
But then, because w = |F| < nm holds, uw® contains only finitely many
occurrences of some symbol o € 3,, ,,,. This contradicts the assumption that
the automaton AJ, ,, fin-recognizes the language L, ,,. Therefore, F must
have at least nm conditions (which is also sufficient by Theorem 4.2.1). [

4.3 AUTOMATA WITH ACCEPTANCE SYNCHRONIZED RUNS

The universal subset construction provides an intuitive way for translating
self-loop alternating automata into fin-equivalent nondeterministic automata
due to its resemblance to the classic existential subset construction for nonde-
terministic finite word automata. The construction is also essentially optimal
with respect to the blow-up in the number of states in the automaton. How-
ever, as shown in Sect. 4.2.3, translating a self-loop alternating automaton
with n states into an equivalent nondeterministic one using the construction
may necessitate an n-fold increase in the number of the automaton’s accep-
tance conditions. Consequently, the procedure obtained by combining the
rule-based translation of LTL into self-loop alternating automata (Sect. 3.1)
with the nondeterminization construction of Theorem 4.2.1 maps a formula
with n syntactically distinct pure temporal subformulas (m of which are bi-
nary temporal subformulas) into a nondeterministic automaton with O(nm)
acceptance conditions. However, most procedures for translating LTL into
nondeterministic automata with multiple inf- or fin-acceptance conditions
(beginning already with the procedure of Gerth et al. [1995] and, in partic-
ular, including that of Gastin and Oddoux [2001]) manage to do the transla-
tion using O(m) conditions for the nondeterministic automaton. The infe-
rior worst-case performance of the proposed construction appears to be a con-
sequence of associating acceptance with the transitions instead of the states
of the automata.

In this section, we shall introduce a subclass of alternating automata that
can be translated into nondeterministic automata without any blow-up in the
number of acceptance conditions. The subclass is characterized by a combi-
nation of structural and semantic properties that guarantee the existence of
a special kind of accepting runs that allows simplifying the universal subset
construction. It occurs that the self-loop alternating automata built from LTL
formulas using the translation rules presented in Sect. 3.1 trivially belong to
this subclass of automata. Therefore, these automata can be translated into
nondeterministic automata with at most as many acceptance conditions as
in automata built using previously known constructions. In principle, our
result is analogous to that of Hammer et al. [2005]: whereas they identify
a subclass of automata which can be translated into nondeterministic au-

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 83

[JO) [] (@] ©) [(@] [J©)

O - P\/
(@8 2V

oazzg-’g 7

Fig. 4.3: Principle of fin-acceptance synchronization. A level labeled on top of the
figure with the symbol e (resp. o) contains no edges labeled with the acceptance
condition e (o); a fin-acceptance synchronized run has infinitely many such levels
for both conditions

tomata without giving up state-based acceptance, our subclass of self-loop
alternating automata (with transition-based acceptance) admits translation
into nondeterministic automata without introducing new acceptance condi-
tions. Furthermore, similarly to the simple linear weak alternating automata
of Hammer et al. [2005], our subclass is not less expressive than the class of
self-loop alternating automata since its expressiveness captures all of LTL.

4.3.1 Acceptance Synchronicity

84

As seen in Sect. 4.1, the question on the existence of an accepting run for
a self-loop alternating automaton can be answered by considering only the
uniform runs of the automaton. The key to optimizing the nondeterminiza-
tion construction of Sect. 4.2 is to identify an even smaller subset of runs that
satisfy certain requirements on the occurrence of transitions associated with
acceptance conditions. We define this subset formally as follows.

Let G = (V, E, L) be a run of an alternating automaton A = (3, Q, A,
qr, F) on an infinite word w € 3¢ over the alphabet ¥ (where V' consists
of disjoint finite levels V; as usual), and let f € F be an acceptance con-
dition. We say that the run G is fin-synchronized with respect to f iff there
exist infinitely many 0 < i < w such that no transition that labels an edge
starting from a node at level ¢ of G is an f-transition of A. The run G is
fin-acceptance synchronized iff G is fin-synchronized with respect to all ac-
ceptance conditions in F. (The definition of inf-synchronicity with respect to
a condition f € F is analogous: we simply require that G contain infinitely
many levels, all edges starting from which are labeled with f-transitions. As
before, we nevertheless consider only fin-acceptance in the following to sim-
plify the discussion.)

Intuitively, if a fin-acceptance synchronized run of A on w is interpreted
(in the standard way) as a description of the behavior of A’s copies working
in parallel on the input w, then, although every copy of the automaton works
independently of the other copies, the copies nevertheless “cooperate” in
this run with respect to every acceptance condition f € F by avoiding f-
transitions at certain (infinitely many) positions of the input (see Fig. 4.3 for
illustration). It is easy to see that every fin-acceptance synchronized run of A
is a fin-accepting run of A.

Proposition 4.3.1 Let G = (V, E, L) be a run of an alternating automaton
A=(2,Q,A,qr,F) onsomew € . If G is fin-acceptance synchronized,

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

then w € Lg,(A) holds.

Proof: If B(G) = 0, then the claim holds trivially. Otherwise let § =
(€:)o<icw € B(G) (e; € EN (V; x 2¥+1)) be an infinite branch in G. We
show that fin(8) = 0 holds, that is, f ¢ fin(3) holds for all acceptance con-
ditions f € F. This is clear for the condition f € F if no edge in (3 is
labeled with an f-transition; otherwise, if L(e;) is an f-transition for some
0 < j < w, then, because G is fin-acceptance synchronized, there exists an
index j < k < w such that no edge in E N (V; x 2V+1) is labeled with
an f-transition. In particular, this implies that L(ey) is not an f-transition.
Because j is arbitrary, # contains infinitely many edges not labeled with an
f-transition, and thus f ¢ fin(3) holds. Because the same reasoning applies
to all acceptance conditions, it follows that fin(3) = () holds, and thus £ is
fin-accepting. Because (3 is arbitrary, it follows that G is a fin-accepting run
of A on w. O

4.3.2 A Simplified Nondeterminization Construction

By Proposition 4.3.1, an alternating automaton A working on infinite words
over the alphabet ¥ fin-accepts a word w € 3¢ whenever A has a fin-
acceptance synchronized run on w. The same result clearly holds in par-
ticular for uniform fin-acceptance synchronized runs on w. If A has also the
converse property, i.e., if A has a uniform fin-acceptance synchronized run
on all words w € Lg,(A), then A can be translated into a fin-equivalent
nondeterministic automaton that uses the same number of acceptance con-
ditions as A. Such an automaton can again be built using the universal subset
construction. Actually, A need not even be a self-loop alternating automaton
(however, it must have uniform fin-accepting runs in the sense of Sect. 4.1).

Theorem 4.3.2 Let A = (X,Q, A, q1, F) be an alternating automaton, and
assume that, for all w € ¥, w € Lg,(A) holds iff A has a uniform fin-
acceptance synchronized run on w. Define the automaton A’ = <Z, 29 A/,

{ar}, F), where, forall Q' € 29, T C ¥, F C Fand Q C 29,

(Q.T,F, Q) e A" iff forallq e (), there exists a transition (g, I';,
F,, Q) € Asuch thatT = (.o Ty, F' =

Useq For and @ = { U, @, } hold.
The automaton A’ is nondeterministic, and Lg,(A’) = Lgn(A) holds.

Proof: The proof is similar to that of Theorem 4.2.1 (p. 76); clearly, the def-
inition of A’ differs from the construction presented in Theorem 4.2.1 only
in the definition of the acceptance conditions. The assumption on the ex-
istence of uniform fin-acceptance synchronized runs is needed for showing
that all words fin-accepted by A are included in the language fin-recognized
by the automaton A" (which is obviously nondeterministic by definition).

(Lan(A) C Lan(A')) Letw € Lgn(A). By the assumption, A has a uni-

form fin-acceptance synchronized run G = (V,E,L) on w. Let G' =
(VIJE' L), V! (the levels of G' for all 0 < i < w) and T; C A (the
transitions that label edges starting from nodes at level 0 < i < w of G,

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 85

T = Uicjcn, {{¢:;.Tij, Fij, Q) ;) }) be as defined in the corresponding
direction in the proof of Theorem 4.2.1 with the exception that we define
the label of the edge (v}, V/,,) € E' (0 < i < w)as L'((v},V/)) =)
(Ungjendish Micjen, Tigr Ungjan, Figs { Urgjcn, Qis}) to make the
edge labels match the transitions of A’, which have their acceptance con-
ditions chosen directly from the set F. Similarly to Theorem 4.2.1, it is then
straightforward to check that G’ is a run of A’ on w. Note that this check does
not require assuming that A is a self-loop alternating automaton.

Suppose that G” is not fin-accepting. Then there exists an index0 < j < w
and an acceptance condition f € F such that the transition L' ({v}, V/,,))
is an f-transition for all 7 < i < w, and thus T; contains an f-transition for
all j < ¢ < w. But then G has only finitely many levels with no outgoing
edges labeled with f-transitions. This contradicts the assumption that G is
fin-acceptance synchronized (in particular, fin-synchronized with respect to

f). Therefore G’ is fin-accepting, and w € Lg,(A’) holds.

(Lan(A") C Lan(A)) Letw € Lgy(A'). It is again easy to check that the

graph G = (V, E, L) defined in the corresponding direction of the proof of
Theorem 4.2.1 (from a uniform fin-accepting run G’ = (V', E', L') of the
nondeterministic automaton A’ on w) is a run of A on w. (Because G’ is a
uniform run of a nondeterministic automaton, then V;/ = {v/} is a singleton
forall0 <i<w.)

If G is not fin-accepting, then there exists an infinite branch (e;)o<i<w €
B(G), an acceptance condition f € F, and an index 0 < j < w such that the
transition L(e;) is an f-transition for all j <i < w. Because L(e;) € A is (by
definition of A’) a “component” in the transition L' ((v}, {v},})) that labels
the edge between levels i and i + 1 of G’ (cf. the proof of Theorem 4.2.1), it
follows that L' ({v}, {v/,,})) is also an f-transition for all j < i < w. This is
a contradiction, because G’ was assumed to be fin-accepting. We conclude

that w € Lg,(A) holds. O

Alternating automata that have uniform fin-acceptance synchronized runs
on all words in their language can thus be translated into nondeterministic
automata using the universal subset construction without introducing new
acceptance conditions. Instead, the acceptance conditions of a transition in
the nondeterministic automaton can be defined simply as the union of the
conditions in its component transitions. Because the translation is based on
the universal subset construction, it is again easy to see that the nondeter-
ministic automaton built from an alternating automaton with n states and m
transitions has at most 2" states and 2™ transitions.

4.3.3 Sufficient Conditions for Acceptance Synchronization

86

In this section we define a subclass of alternating automata which are guaran-
teed to have uniform fin-acceptance synchronized runs on all words in their
language (and which can thus be translated into nondeterministic automata
using the construction of Theorem 4.3.2). We first introduce the class and
then show that all automata in the class have this property.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

Terminology
We use the following terminology for characterizing our class of alternating
automata. Let A = (X, Q, A, ¢r, F) be a fixed alternating automaton.

Let (q,T', F, Q') € A be a transition of A, and let f € F be an acceptance
condition. We say that the transition is f-closed iff f € F implies that @’
contains an f-state. The automaton A is f-closed iff all of its transitions are
f-closed. Intuitively, this means that every finite chain of f-transitions in A
can be extended into an infinite one. Finally, A is acceptance closed (with
respect to F) iff it is f-closed for all acceptance conditions f € F.

Example 4.3.3 The self-loop alternating automaton shown in Fig. 2.7 (p. 37)
is not e-closed, because it contains the transition (gg, {b}, {®}, {gs}) having
no e-states as its target states. The automaton is o-closed, however. The au-
tomaton obtained from this automaton by removing acceptance conditions
from its non-self-loop transitions (Fig. 2.8, p. 39) is both e- and o-closed and
therefore acceptance closed (with respect to the set of acceptance conditions

{e,0}).]

Let ¢ € Q). By Proposition 2.3.15, the subautomaton .A? fin-accepts a word
w € X¢ iff it has an initial transition (¢, ', F, Q") € A such that w(0) € T
holds, and (A9)7 (= A7) fin-accepts w' for all ¢ € Q'. We say that A9
fin-accepts w by avoiding an initial f-transition (notation: w € L} (A9))
if one of the transitions satisfying this condition is not an f-transition of A.
(Obviously, if ¢ is not an f-state of A, then ££ (A7) = Lg,(.A9) holds.)

Let f € F be an acceptance condition. We say that the state ¢ € @ is an
f-representative state iff ¢ is an f-state, and for all w € ¥¥,

o ifw e L] (A7) N L (A7) holds for some f-state ¢ € Q, then w €
L} (A7), and

e ifw e £} (A7) holds for some f-state ¢ € @, then there exists an
index 0 < i < w such that w’ € £} (.A9) holds.

Intuitively, if the alternating automaton A has an f-representative state for
one of its acceptance conditions f € F, then the f-states that occur as la-
bels of nodes in a fin-accepting run of A determine certain input positions
at which the active copies of the automaton could (but do not have to) “co-
operate” with respect to the condition f by not taking f-transitions. If a level
in the run contains a node labeled with an f-representative state such that
the edge starting from this node is not labeled with an f-transition, then all
active subautomata of the automaton could fin-accept the input from that
position onward by avoiding an initial f-transition. On the other hand, if the
run contains a node labeled with another (not necessarily f-representative)
f-state such that the edge starting from this node is not labeled with an f-
transition, then there exists a subsequent input position at which all active
copies of the automaton could avoid taking f-transitions. As we shall show
later in this section, the existence of an f-representative state in an f-closed
alternating automaton implies that every fin-accepting run of the automaton
can be synchronized with respect to the condition f.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 87

88

w(j) w(j")
1 " " 1

q
Tr 20> >0 »() u—®>0\

Je
Tr-» r--»O0—>» O -»0) Tr- >Q\O— »C)
ekl 2 :;—->o< O -»0)
ekl 2 O »O0—>0O- -»0) \)--PO/';

Fig. 4.4: Implications of the occurrence of e-states as node labels in a fin-accepting
run of an alternating automaton

Example 4.3.4 Figure 4.4 depicts parts of a fin-accepting run of an alternat-
ing automaton A with a e-representative state ¢, on an input w. The states
¢ and ¢” are two nonrepresentative e-states of the automaton; the circled
levels identify input positions at which copies of the automaton in any e-
state could (but do not need to) avoid taking a e-transition. The justification
for this is given by the transition corresponding to the rightmost thick edge
that starts from the same or a preceding level of the run. Formally, because
w' € L3 (A?) N Lan(AT) N Lan(AT") and w? € L3, (A7) hold, it follows
from the definition of representative states that w € £ (AY) N L (AY")
and w’" € L3 (A%) hold (in which case also w?" € £, (A7) holds). |

Guaranteeing the Existence of Acceptance Synchronized Runs
Our main result in this section is the following:

Proposition 4.3.5 Let A = (X,Q,A,qr,F) be an acceptance closed al-
ternating automaton such that for all acceptance conditions f € F, it A
has an f-state, then it has also an f-representative state. For all w € ¥¥,
w € Lgn(A) holds iff A has a uniform fin-acceptance synchronized run on
w.

To prove the proposition, we need one additional definition and a related
result. Let f € F be an acceptance condition of an f-closed alternating
automaton A = (3, Q, A, q7, F) with an f-representative state g5 € Q. Let
L4z : %% — 2 be a function defined, for all w € X%, by the rule

Ligy(w) 2 {0 <i<w|w e £ (A7)},

Intuitively, the function 74 ; maps every word w € ¢ to the set of indices i
that identify the exact set of suffixes of the word w that are fin-recognized by
the subautomaton A% by avoiding an initial f-transition. This function is ob-
viously well-defined because one of w’ € £ (A%) or w’ ¢ L1 (AY) always
holds for all w € ¥ and 0 < i < w (however, it need not be computable for
all w in a finite number of steps). Clearly, if |14 s(w)| < w holds, then the
set {0} U 14 s(w) contains a maximal element. In this case it also follows that
every subautomaton rooted at an f-state of A fin-accepts only finitely many
suffixes of w:

Lemma 4.3.6 Let A = (X,Q, A, q;, F) be an f-closed alternating automa-
ton with an f-representative state ¢y € @) for some f € F, and letw € X*.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

If |14, (w)| < w holds, then w' ¢ Lg,(A?) holds for all f-states ¢ € @ and
indices max ({0} U L4 f(w)) < i < w.

Proof: Because 4 f(w) is finite, & = max ({0} U Iy s(w)) < w exists. Sup-
pose that the subautomaton A? fin-accepts w' for some f-state ¢ € Q and
k <i<w,andlet G = (V, E, L) be a fin-accepting run of .A? on w".

Let (¢,T,F,Q") € A?(I' C ¥, F C Fand @ C Q) be the initial
transition of A? labeling the edge between the first two levels of G. If f ¢ F
holds, then w' € £ (A?) holds. Because ¢y is an f-representative state of A,
there exists an index 0 < j < w such that the subautomaton A% fin-accepts
(w')? = w"™ by avoiding an initial f-transition. But then i + j € I4 (w)
holds, which contradicts the assumption that i > &k = max ({0} U 14 s(w))
holds. Therefore the transition (g, I', F), ') is an f-transition.

Because A is f-closed, Q' contains an f-state ¢’ € Q. Because L is con-
sistent, the node vy at level 0 of G has a successor v; € V; labeled with ¢;
furthermore, the subgraph of G rooted at v; is a fin-accepting run of (A?)¢
(= A7) on (w)! by Proposition 2.3.9. Because ¢ is an f-state of A, a sim-
ilar reasoning shows that also the edge starting from v; is labeled with an
f-transition of A, and v has a successor labeled with an f-state of A. By in-
duction, it follows that G contains an infinite branch, all edges of which are
labeled with f-transitions. But then B(G) contains an infinite branch that is
not fin-accepting, and thus G cannot be fin-accepting, either, contrary to our

assumption. Therefore w' ¢ Lg,(.A?) holds. O

Proof of Proposition 4.3.5 (Only if): Without loss of generality, we may as-

sume that A has an f-transition (hence, an f-state) for all acceptance condi-
tions f € F: obviously, acceptance conditions not occurring in any tran-
sition of A can be discarded without affecting fin-acceptance. Let w €
Ln(A). If A has no acceptance conditions (F = (), then w € Lg,(A)
holds iff A has a run on w, iff A has a uniform run on w (Proposition 4.1.1),
and every run of A is trivially fin-acceptance synchronized. We may thus
assume that F = {f1, fa,..., fu} holds for some 1 < n < w such that A has
an f;-representative state ¢, € @ forall 1 < i < n. We define a uniform
fin-acceptance synchronized run G = (V, E| L) of A on w.

(Definition of G) ~ We define the levels of G inductively: first, let V, =

{vo.1} and L(vo1) = qr. For each level V; in G (0 < i < w), we define
also a set of edges E; starting from nodes in V;, and an integer 0 < ¢; < n
that is used to guide the inductive construction. To guarantee that G is fin-
acceptance synchronized, we need to ensure that G is fin-synchronized with
respect to all acceptance conditions f € F. The integers ¢; are used to make
sure that each acceptance condition is treated fairly in the construction: for
all 4, ¢; will either have the special value 0, or it identifies an acceptance con-
dition f., € F for which we should try to define a level having no outgoing
edges labeled with f, -transitions. Let ¢y % 0.

Assume that V; ={v; 1, vi2,...,vin,}, L(Vi)={di1, G2, - - -, Gin, } (Where
0 <n; <w, L(v;j) = qij and L(v; ;) # L(v;) hold forall 1 < j. k < n,,
J # k), and ¢; have already been defined for some 0 < i < w, and assume
also that w' € Lg,(A%9) holds for all 1 < j < n,. (This is clear if i = 0,
because L(Vp) = {qr}, and w® = w € Lg,(A) = L, (AY).)

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 89

Because A% fin-accepts w' for all 1 < j < ny, there exist transitions
ti,j = <Qi,j71—‘i,jaF’i,ja ;,j> € A% C A (fOT some Pi,j C 3, F;‘J‘ cCF and
i C QM - @) such that w(i) € I'; ; holds for all 1 < j < n;, and AY
fin-accepts w'*! forall ¢’ € U, ;. Q;; (Proposition 2.3.15). Furthermore,
if ¢; # 0, and g;; is not an f.,-state orif i € 14, (w) holds (in which case
w' € LI (AY) holds for the f, -representative state qr.,), it follows that
A% fin-accepts w' by avoiding an initial f-transition, and thus the transition
t;; can be chosen so that f., ¢ F;; holds. In other words, if i € L4y, (w)
holds, then we can choose the transitions ¢; ; such that f., € U,<;<,, Fi

holds.

Let U1§jgni Qi = {G+1.1, %112, Qv p (Where 0 < njy < w,
and the states ¢;+1 ; are pairwise distinct). Define V;44 as a set of n;4; new

7j

HOdGS ‘/H—l déf {’l}i+171, Vit1,2y- - - 7vi+17ni+1}7 and 1€t L(’UH_L]‘) g qi+1,5 fOT 3]]
1 < j < niy1. By construction, no two nodes in V; ;1 have the same label,
and because L(V;y1) = Ulgjgm i.i» it follows that for every 1 < j < n,,
there exists a unique subset V;/; C Vi such that L(V/;) = Q] ; holds. Let
E < {(vm,Vifﬁ ‘ 1<5< ni}, and forall 1 < j < n;, let L((vi7j,\/ifj>) =
tl'J'. Fina]ly, 1€t

Ci ife; #0, [{ay, (w)| =wand
def g

Cit1 = i ¢ Loy, (w)
(¢; +1) mod (|F|+1) otherwise.
This completes the inductive definition of V;i;, E; and ¢;4q; clearly, the
construction ensures also that w™! € Lg, (A*®) holds for all v € V. ;. We
then define V < Uo<icy, Viand £ “ Uo<icw Ei-
(G is a uniform run of A on w) It is clear that each level of G consists of

nodes with distinct labels, and thus G satisfies the constraint required of uni-
form runs of A. We check that G is a run of A on w.

(Partitioning) ~ Obviously Vi = {wp} is a singleton, and E consists of
edges connecting pairwise disjoint consecutive levels of G by definition.
(Forward causality) Letwv € V; for some 0 < ¢ < w. Then v = v;;
holds for some 1 < j < n;. Clearly, E; C E contains the edge (v; ;, V),
and this is the only edge starting from v; ; in G.

(Backward causality) Letv’ € V; for some 1 < i < w. Then there exists
a transition t = (q,I', F, Q') forsome I' C ¥, FF C F and Q' C @ such
that L(v") € @ holds, and V;_; contains a node v with L(v) = ¢. By the
definition of E, the node v has the outgoing edge (v, V') € E such that
L(V") = @' holds. Because no two nodes at level V; have the same label,
it follows that v* € V' holds, and thus v’ is a successor of the node v at
level V;_1 in G.

(Consistency of L)~ Clearly L(vo,1) = qr. Lete = (v; ;,V/;) € E be an
edge in E forsome 0 < i < wand 1 < j < n,;. By the definition of L, this
edge is labeled with the transition t; ; = (g; ;, i, Fi;, Q; ;) € A such
that w(i) € T';; holds. The definition also guarantees that ¢; ; = L(v; ;)
and Q; ; = L(V/;) hold, and thus the labeling L is consistent.

(G is fin-acceptance synchronized) ~ We show that G is fin-acceptance syn-

chronized. First, it is easy to see that ¢;;; # ¢; holds for infinitely many

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

indices 0 < ¢ < w: otherwise there would exist an index 0 < 7 < w such
that ¢; = ¢; and f.; = f., = f hold forall i < j < w. By the definition of
the integers ¢;, it follows that ¢; = ¢; # 0, |14 s(w)| = wand j ¢ 14 ¢(w)
hold for all i < j < w. But this is impossible, because the assumption that
J & L4 r(w)holds forall i < j < w would imply that |14 s(w)| < w holds, a
contradiction. Therefore, ¢; 11 # ¢; holds for infinitely many 4, and because
the integers ¢; are defined incrementally modulo |F| + 1, it follows that for
all f € F, there are infinitely many indices 0 < i < w such that ¢; # 0 and
fe; = f hold.

Let f € F. If |4 s(w)| < w holds, then k = max ({0} U Iaf(w)) <w
exists. Suppose that E; contains an edge labeled with an f-transition of A
for some k < ¢ < w. Because the labeling L is consistent, the source node
v € V; of this edge is labeled with an f-state of A, and AL fin-accepts w’ by
the inductive definition of G. However, this is impossible by Lemma 4.3.6.
Therefore G contains only finitely many levels with an outgoing edge labeled
with an f-transition of A, and thus G is fin-synchronized with respect to the
acceptance condition f.

Otherwise |14 ¢(w)| = w holds. Let 0 < i < w be any of the (infinitely
many) indices such that ¢; # 0 and f., = f hold, and leti < j < w be
the least index greater than or equal to ¢ for which ¢; 11 # ¢; holds. By the
definition of ¢;1, it follows that j € 14 s(w) holds in this case. But then the
definition of G guarantees that £; has no edges labeled with an f-transition
of A. It follows that G is fin-synchronized with respect to the acceptance
condition f.

Because f is arbitrary, G is fin-synchronized with respect to all of its ac-
ceptance conditions, and thus G is a uniform fin-acceptance synchronized
run of A on w.

(If) ~ This direction follows immediately from Proposition 4.3.1. O

The following result is an immediate consequence of Proposition 4.3.5.

Corollary 4.3.7 Let A = (X,Q, A, g1, F) be an acceptance closed alternat-
ing automaton that has an f-representative state for all acceptance conditions
in F for which it has an f-state. The automaton A can be translated into a
fin-equivalent nondeterministic automaton without introducing new accep-
tance conditions by applying the construction presented in Theorem 4.3.2.

Proof: By Proposition 4.3.5, A fin-accepts a word w € X¢ iff A has a uni-
form fin-acceptance synchronized run on w. Obviously, this is exactly the
precondition for applying Theorem 4.3.2. O

4.3.4 Application to Translation of LTL into Nondeterministic Automata

As a simple first example on using the optimized nondeterminization con-
struction of Theorem 4.3.2, we consider automata built from LTL formulas
using the translation rules presented in Sect. 3.1. (The results of this section
are needed further in Ch. 5 where we consider alternative translation rules.)
It is easy to see that all automata built using the rules are acceptance closed
alternating automata that have representative states for all of their acceptance
conditions.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 91

92

Lemma 4.3.8 Let A = (247,Q, A, q;1, F) be a self-loop alternating automa-
ton built from an LTL formula ¢ € LTL"™ (AP) using the translation rules
presented in Sect. 3.1. The automaton A is an acceptance closed automaton
that has an f-representative state for every acceptance condition f € F.

Proof: Let f € F be an acceptance condition. As observed in Sect. 3.1.1,
all f-transitions of A are self-loops of A, and they have the same source
state ¢y € @ (which corresponds to the initial state of a subautomaton built
for a binary pure temporal subformula of ¢ with a strong binary temporal
main connective). Therefore A is f-closed, and the state ¢ is trivially an
f-representative state, because it is the only f-state of A. The result follows
because the same holds for all acceptance conditions f € F. O

Consequently, the following result holds for the sizes of components in a
nondeterministic automaton built from an LTL formula.

Corollary 4.3.9 Let ¢ € LTL(AP) be an LTL formula. The language L(y)
can be fin-recognized by a nondeterministic automaton with at most 1 +
2Temp([el™) states (at most 2TemP(£)™) states if g is a binary pure temporal

formula), 290D transitions, and at most n = ‘{(gpl 0 pg) € Sub([go]PNF) :
o € {Us,Re} }| acceptance conditions.

Proof: Let A = (247 .Q, A, q;, F) be the selfloop alternating automaton
built from [p]"™™" using the translation rules presented in Sect. 3.1. It is
clear from the discussion in Sect. 3.2.3 that this automaton has at most n
acceptance conditions. By Lemma 4.3.8, A is an acceptance closed au-
tomaton with representative states for all of its acceptance conditions, and
it follows by Corollary 4.3.7 that A can be translated into a nondeterminis-
tic automaton with at most n acceptance conditions using the construction
of Theorem 4.3.2. Because this construction is based on the universal sub-
set construction, the upper bound for the number of states follows from the
discussion in Sect. 4.2.2.

By the definition of the construction in Theorem 4.3.2, every transition in
the nondeterministic automaton is an element of the set 29 x 22" x 27 x 22°
Because the target state set of every transition consists of only a single subset
of), however, it is easy to see that the size of the set of possible target state
sets is bounded by 2/¢l. Additionally, because the guards of transitions in
the alternating automaton A are conjunctions of atomic formulas (Boolean
constants or literals referring to atomic propositions that occur in the formula
[]PNF), also the guards in the nondeterministic automaton can be written
as such conjunctions. Furthermore, it is easy to see from the semantics of
LTL that no Boolean constant or a literal need occur in any conjunction
twice; therefore, because the order of the atomic formulas in a conjunction
is not relevant, either, the number of these conjunctions is bounded by 22141,
Because also |Q| € O(|¢|) and |F| = n € O(J¢|) hold, it follows that the

nondeterministic automaton has 2°2(¢D transitions as argued. O

Admittedly, the above result is almost embarrassingly trivial at this point in
light of the number of theoretical definitions and results we used to reach it.
As a matter of fact, we could have obtained this result by appealing directly

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

to the properties of the rules for translating LTL formulas into alternating au-
tomata: because the self-loop alternating automaton A = (247, Q, A, q7, F)
built from the positive normal form of an LTL formula ¢ € LTL(AP) has
only one f-state for every acceptance condition f € F (see Sect. 3.1.1), it
is easy to conclude by the discussion in Sect. 4.2.3 that no more than |F|
acceptance conditions are needed for the nondeterministic automaton built
from A, even if it were built using the general nondeterminization construc-
tion of Theorem 4.2.1. The results presented in this section will prove to be
useful in the next chapter, where we introduce new translation rules which
may sometimes increase the number of f-states (for an acceptance condi-
tion f) in the self-loop alternating automaton. By showing that the new rules
preserve acceptance closure and the existence of representative states for the
acceptance conditions, we can then appeal to Corollary 4.3.7 to conclude
that the automaton can still be translated into a nondeterministic automaton
by using the universal subset construction of Theorem 4.3.2.

As a further theoretical curiosity, we note (analogously to Hammer et al.
[2005]) that acceptance closed self-loop alternating automata with represen-
tative states for their acceptance conditions provide a “normal form” for self-
loop alternating automata. A naive effective procedure for translating any
self-loop alternating automaton into this form can be obtained by first trans-
lating the automaton into a linear temporal logic formula (Sect. 3.4) and then
translating this formula back into an alternating automaton using the transla-
tion rules of Sect. 3.1; this automat