
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 104

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 104

Espoo 2006 HUT-TCS-A104

AUTOMATA AND LINEAR TEMPORAL LOGIC: TRANSLATIONS

WITH TRANSITION-BASED ACCEPTANCE

Heikki Tauriainen

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 104

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 104

Espoo 2006 HUT-TCS-A104

AUTOMATA AND LINEAR TEMPORAL LOGIC: TRANSLATIONS

WITH TRANSITION-BASED ACCEPTANCE

Heikki Tauriainen

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of

the Department of Computer Science and Engineering, for public examination and debate in Auditorium

T2 at Helsinki University of Technology (Espoo, Finland) on the 27th of October, 2006, at 12 o’clock

noon.

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FI-02015 TKK, FINLAND

Tel. +358 9 451 1

Fax. +358 9 451 3369

E-mail: lab@tcs.tkk.fi

URL: http://www.tcs.tkk.fi/

©c Heikki Tauriainen

ISBN 951-22-8343-3

ISSN 1457-7615

Electronic Edition

September 2006

ABSTRACT: Automata theory provides powerful tools for designing and im-
plementing decision procedures for temporal logics and their applications to
the automatic verification of systems against their logical specifications. Im-
plementing these decision procedures by making use of automata built from
the systems and their specifications with translation procedures is challenging
in practice due to the tendency of the automata to grow easily unmanageably
large as the size of the systems or the logical specifications increases.

This thesis develops the theory of translating propositional linear time
temporal logic (LTL) into nondeterministic automata via self-loop alternat-
ing automata. Unlike nondeterministic automata, self-loop alternating au-
tomata are expressively equivalent to LTL and allow a conceptually simple
translation of LTL specifications into automata using a set of rules for build-
ing automata incrementally from smaller components. The use of general-
ized transition-based acceptance for automata throughout all constructions
gives rise to new optimized translation rules and facilitates designing heuris-
tics for the minimization of automata by making use of language contain-
ment tests combined with structural analysis of automata. The generalized
definition also supports the translation of self-loop alternating automata into
nondeterministic automata by essentially applying the standard subset con-
struction; this construction can be further simplified and optimized when
working with automata built from LTL formulas. The translation rules can
also be used to identify a syntactic subclass of LTL for which the exponential
increase caused by the subset construction in the number of states of the au-
tomaton can always be avoided; consequently, the satisfiability problem for
this subclass, which is shown to extend related subclasses known from the
literature, is NP-complete. Additionally, the emptiness of generalized non-
deterministic automata is shown to be testable without giving up generalized
transition-based acceptance by using a new variant of the well-known nested
depth-first search algorithm with improved worst-case resource requirements.

KEYWORDS: linear time temporal logic, alternating automata, nonde-
terministic automata, transition-based acceptance, minimization, nondeter-
minization, emptiness checking, nested depth-first search

TIIVISTELMÄ: Automaattiteorian avulla voidaan suunnitella ja toteuttaa
temporaalilogiikkojen ratkaisumenetelmiä sekä näiden menetelmien sovel-
lutuksia logiikoilla järjestelmistä esitettyjen oikeellisuusvaatimusten tietoko-
neavusteiseen verifiointiin. Käytännössä näiden ratkaisumenetelmien toteut-
taminen kääntämällä järjestelmät ja niiden oikeellisuusvaatimukset automaa-
teiksi on kuitenkin haasteellista, sillä näistä automaateista tulee järjestelmien
tai loogisten vaatimusten koon kasvaessa helposti niin suuria, ettei niitä enää
voida käsitellä.

Tässä väitöskirjassa kehitetään lineaarisen ajan temporaalilogiikan (LTL)
epädeterministisiksi automaateiksi kääntämisen teoriaa käyttämällä käännök-
sen apuna vain yhden tilan silmukoita sisältäviä alternoivia automaatteja, joil-
la – toisin kuin epädeterministisillä automaateilla – on sama ilmaisuvoima
kuin lineaarisen ajan temporaalilogiikalla. Tätä logiikkaa voidaan kääntää
näiksi automaateiksi soveltaen yksinkertaisia sääntöjä automaattien yhdistä-
miseksi vaiheittain keskenään yhä suuremmiksi automaateiksi. Käyttämällä
yleistettyä siirtymäpohjaista hyväksyvyyden määritelmää automaateille kai-
kissa käännöksen vaiheissa voidaan näin muodostettuja automaatteja sieven-
tää uusin tavoin käyttäen apuna automaattien hyväksymien kielten välisiä si-
sältyvyyssuhteita sekä automaattien rakenteellisia ominaisuuksia. Yleistetyn
määritelmän ansiosta vain yhden tilan silmukoita sisältävät alternoivat au-
tomaatit voidaan myös kääntää edelleen epädeterministisiksi automaateiksi
soveltamalla yleisesti tunnettua osajoukkokonstruktiota lähes sellaisenaan.
Tämä konstruktio voidaan edelleen tehdä yksinkertaisemmin ja tehokkaam-
min LTL-kaavoista muodostetuille automaateille. Automaattikäännöksessä
käytettävien sääntöjen avulla voidaan myös erottaa lineaarisen ajan tempo-
raalilogiikan syntaktinen osajoukko, jonka kaavat on mahdollista kääntää epä-
deterministisiksi automaateiksi ilman, että automaattien tilojen määrä kas-
vaa osajoukkokonstruktion tavoin eksponentiaalisesti. Tästä tuloksesta seu-
raa, että kyseisen LTL:n osajoukon toteutuvuusongelma on NP-täydellinen.
Osajoukko on samankaltaisia kirjallisuudessa aiemmin esiteltyjä osajoukko-
ja aidosti laajempi. Väitöskirjassa esitetään myös, kuinka epädeterministisen
automaatin hyväksymän kielen tyhjyys voidaan tarkastaa luopumatta yleis-
tetystä siirtymäpohjaisesta hyväksyvyyden määritelmästä käyttäen algoritmia,
joka on uusi, huonoimman tapauksen vaatimuksiltaan tehokkaampi muun-
nos tunnetusta sisäkkäisestä syvyyshakualgoritmista.

AVAINSANAT: lineaarisen ajan temporaalilogiikka, alternoivat automaatit,
epädeterministiset automaatit, siirtymäpohjainen hyväksyvyys, automaattien
sieventäminen, epädeterminisointi, tyhjyystarkastus, sisäkkäinen syvyyshaku

CONTENTS

Preface xi

1 Introduction 1

2 Definitions and Basic Results 11
2.1 Mathematical Concepts and Notation 11

2.1.1 Sequences . 11
2.1.2 ω-Regular Expressions 12

2.2 Propositional Linear Time Temporal Logic 13
2.2.1 Syntax . 14
2.2.2 Semantics . 14
2.2.3 Positive Normal Form 16

2.3 Alternating Automata . 18
2.3.1 Basic Concepts . 20
2.3.2 Properties of Runs of Alternating Automata 27
2.3.3 Semi-Runs . 31
2.3.4 Self-loop Alternating Automata 35

3 Basic Automaton Translation 40
3.1 Translation Rules . 41

3.1.1 Simple Observations 45
3.2 Sizes of Components in an Automaton Built from an LTL

Formula . 50
3.2.1 Number of States . 50
3.2.2 Number of Transitions 52
3.2.3 Number of Acceptance Conditions 54

3.3 Correctness of the Translation 54
3.4 Reverse Translation . 59

4 Nondeterminization of Self-loop Alternating Automata 68
4.1 Uniform Runs . 69
4.2 Nondeterminization Construction 74

4.2.1 Universal Subset Construction 75
4.2.2 Number of States and Transitions in a Nondetermin-

istic Automaton . 79
4.2.3 Number of Acceptance Conditions 80

4.3 Automata with Acceptance Synchronized Runs 83
4.3.1 Acceptance Synchronicity 84
4.3.2 A Simplified Nondeterminization Construction . . . 85
4.3.3 Sufficient Conditions for Acceptance Synchronization 86
4.3.4 Application to Translation of LTL into Nondetermin-

istic Automata . 91
4.4 Languages Accepted by Subautomata of a Nondeterministic

Automaton . 93
4.5 On-the-Fly Optimizations to Nondeterminization 94

CONTENTS vii

4.5.1 Detecting Redundant States Using Syntactic Impli-
cations . 95

4.5.2 Merging Syntactically Language-Equivalent States . . 97
4.6 The Subclass LTLCND . 103

4.6.1 Completion to Nondeterministic Automata 103
4.6.2 Closure Properties of Translation Rules 105
4.6.3 Definition of the Subclass 107
4.6.4 Relationships between Syntactic Subclasses of LTL . 108
4.6.5 A Remark on Satisfiability 114

5 Refining the Basic Translation Rules 117
5.1 Simple Optimizations . 117

5.1.1 Subformulas with Commutative Main Connectives . 117
5.1.2 Transition Guard Simplification 117

5.2 Language Containment Checking between Self-loop Alter-
nating Automata . 118

5.3 Rule Preprocessing Using Language Containment 122
5.4 The ∧ Connective . 123
5.5 Binary Temporal Connectives 136
5.6 Discussion . 146

5.6.1 Translation Example Revisited 146
5.6.2 Comparison of the Basic and the Refined Translation

Rules . 147
5.6.3 Extension of the Subclass LTLCND 151

6 Removing Redundant Transitions 156
6.1 Redundant Transitions and Language Containment 157
6.2 Detecting Redundant Initial Transitions by Transition Sub-

stitution . 159
6.2.1 Redundant Transitions and Runs of an Automaton . . 159
6.2.2 Transition Substitution 160
6.2.3 Substitutability and Redundant Initial Transitions of

Self-loop Automata 161
6.2.4 Reducing Language Containment Between Intersec-

tions of Languages to Language Emptiness 167
6.2.5 Compatibility with Nondeterminization of Automata

Built from LTL Formulas 168
6.2.6 Examples . 172

7 A High-Level Refined Translation Procedure 182

8 Language Emptiness Checking for Nondeterministic Automata 185
8.1 Terminology . 186
8.2 Degeneralization . 187
8.3 Emptiness Checking Algorithm 190

8.3.1 Resource Requirements 194
8.3.2 Correctness of the Algorithm 196
8.3.3 Compatibility with Enhancements of Classic Nested

Depth-First Search 205

viii CONTENTS

9 Conclusion 209

Bibliography 215

CONTENTS ix

x CONTENTS

PREFACE

This report is the result of my postgraduate studies at the Laboratory for The-
oretical Computer Science of Helsinki University of Technology. I wish to
thank my advisor, Docent Keijo Heljanko, who originally introduced me into
the theory of model checking. Without the many discussions with him my
apprehension of many concepts and techniques about this subject would be
much poorer. I continue to be amazed by his wealth of ideas and his insight
to see the correctness or falsehood of ideas outright without the need to jump
into details, which can always be filled in if necessary. Indeed, countless re-
sults in this work owe their inclusion directly to his insight. His comments
on the numerous drafts of this constantly expanding work (and the time he
sacrificed in reviewing it) are much appreciated.

I am thankful also to my supervisor, Prof. Ilkka Niemelä, for his patience
and support throughout my postgraduate studies and for letting me be a
member of his research group at the Laboratory of Theoretical Computer
Science. I thank also Prof. Emeritus Leo Ojala for guiding me in the first
steps of my postgraduate studies, in particular, through his challenging and
educational seminars. I am grateful also to my colleagues Dr. Sc. (Tech.)
Tommi Junttila and Dr. Sc. (Tech.) Timo Latvala for conversations and co-
operation, Alexandre Duret-Lutz for discussions on explicit state language
emptiness checking algorithms and transition-based acceptance, and to Prof.
Orna Kupferman and Dr. Stephan Merz for their thorough pre-examination
reviews of this work. Finally, I wish to express my deepest thanks to my par-
ents, without whose tireless support and friendship I would not have had the
strength to finish this effort.

This work was supported financially by Helsinki Graduate School in Com-
puter Science and Engineering (HeCSE), Academy of Finland (Project
numbers 47754, 53695 and 211025), Finnish Funding Agency for Technol-
ogy and Innovation (TEKES), Department of Computer Science and En-
gineering at Helsinki University of Technology, and a personal grant from
Nokia Foundation. I wish to thank these institutions for making my full-time
postgraduate studies possible.

CONTENTS xi

1 INTRODUCTION

Automata on infinite objects link the theory of reasoning about the correct-
ness of finite-state reactive and concurrent systems to the design of concrete
decision procedures for checking the satisfiability or validity of specifications
given in formal logic, and for the automatic verification of systems against
such specifications [Clarke and Emerson 1982a,b; Queille and Sifakis 1982;
Lichtenstein and Pnueli 1985] (a task commonly known as model checking).
The logical specifications define constraints on the computations of the sys-
tem, which are seen as infinite trees or sequences of finite sets of truth-valued
assertions that record the internal state of the system at discrete consecutive
instants of time. The connection between automata and logic arises from
the classic interpretation of automata as acceptors of sequences (words) or
trees, which are in this case identified with word or tree models of formulas
in the logic. For example, testing whether a system meets its specification
can be decided by checking that no computation of the system is accepted
by a finite automaton that distinguishes exactly those computations that do
not satisfy the specification from all possible computations [Vardi and Wolper
1986]. Such an automaton can be obtained automatically from the logical
specification by using a translation procedure for the logic. This general
approach to verification has led to the introduction of a wide variety of au-
tomata and corresponding translation and verification procedures designed
for capturing the expressive power of many linear and branching time logics
(see, for example, [Wolper et al. 1983; Vardi and Wolper 1986; Muller et al.
1988; Emerson and Jutla 1991; Emerson et al. 1993, 2001; Bernholtz et al.
1994; Vardi and Wolper 1994; Vardi 1996; Kupferman et al. 2000, 2001]).

The automatic analysis of structures built from formal descriptions of sys-
tems is challenging in practice, because the construction of the structures is
extremely sensitive to combinatorial explosion (known as the state space ex-
plosion problem; see, for example, the survey by Valmari [1998]). This same
problem concerns also the translation of specifications into automata, and its
severity depends on the expressiveness of the chosen specification logic. The
increasing computational complexity of working with increasingly expressive
(but still decidable) logics is reflected in automata translation procedures as
combinatorial explosion, the worst-case complexity of which can range from
polynomial to nonelementary in the length of the logical specification. The
struggle against the combinatorial explosion, which limits the size and scope
of specifications that can be realistically handled within the resources avail-
able in practice, has presented a need for translation procedures that aim to
avoid the worst case behavior in as many cases as possible.

This work focuses on automata translation and verification procedures
for specifications given as formulas of classic future-time propositional linear
time temporal logic (LTL) using special classes of alternating automata on
infinite words with generalized transition-based acceptance throughout all
constructions. The classic automata-theoretic verification procedure for LTL
can be seen as a series of translations as shown in Fig. 1.1. The connection
between automata and LTL, this verification procedure, and the concepts
used in it are briefly introduced below.

1. INTRODUCTION 1

LTL spec-
ification

alternating
automaton

nondeterministic
automaton

verifi-
cation

system(simplification) (simplification)(simplification)

Fig. 1.1: The verification procedure for LTL as a series of translations

Background and Related Work

Logic, automata on infinite objects, and the LTL verification procedure.
The connection between logics and automata on infinite objects was first
used in the 1960s by Büchi [1962] and Rabin [1969] to prove decidabil-
ity results for monadic second-order theories of one and many successors,
respectively (see, for example, [Thomas 1990], for a survey of the classic re-
sults). In the 1980s, these automata were used to obtain decision procedures
for modal and temporal logics of programs. Streett [1981, 1982] applied
automata to the decision problem of extended propositional dynamic logic;
Wolper et al. [1983] and Vardi and Wolper [1994] used automata-theoretic
techniques for deciding linear time temporal logics based on the extended
temporal logic of Wolper [1981, 1983]; and Emerson and Sistla [1984a,b]
proposed an automata-theoretic decision procedure for the branching time
temporal logic CTL? introduced by Emerson and Halpern [1983, 1986].
As a special case of their own construction for translating extended tempo-
ral logic into automata [Wolper et al. 1983; Vardi and Wolper 1994], Vardi
and Wolper [1986] proposed also an explicit decision and verification proce-
dure for propositional linear time temporal logic [Pnueli 1977; Gabbay et al.
1980; Pnueli 1981], which supports reasoning about the properties of non-
terminating, nonbranching computation paths in a system using invariants,
future-time assertions, and qualitative causality and fairness constraints on
the occurrence of certain states in the computations. The automata-theoretic
verification procedure for this logic (Fig. 1.1) works by translating formulas
in the logic in one or more intermediate steps into nondeterministic finite
ω-automata, i.e., nondeterministic automata on infinite words, whose accep-
tance is determined, for instance, by a set of designated states that an automa-
ton should visit infinitely often when reacting to its input (a concept known as
Büchi acceptance after Büchi [1962]). The automata built from formulas are
then composed with finite models of systems to compare the behavior of the
systems against the logical specifications. The automata-theoretic approach
to LTL model checking stimulated active research on techniques for trans-
lating LTL and related linear time logics efficiently into nondeterministic
automata [Wolper et al. 1983; Michel 1985; Vardi and Wolper 1986; de Jong
1992; Vardi and Wolper 1994; Gerth et al. 1995; Couvreur 1999; Daniele
et al. 1999; Somenzi and Bloem 2000; Geilen 2001; Schneider 2001; Wolper
2001; Giannakopoulou and Lerda 2002; Thirioux 2002; Latvala 2003; Seba-
stiani and Tonetta 2003].

Language emptiness checking and on-the-fly verification. The last step
in the verification procedure for LTL in Fig. 1.1 corresponds to checking the
set intersection of the computations (i.e., the “language”) of a given system

2 1. INTRODUCTION

with computations that violate a given LTL specification for emptiness by
analyzing an automaton obtained by combining the system with a nondeter-
ministic automaton built from the LTL specification. The same technique
applies to testing the satisfiability of the logical specification itself, in which
case the emptiness analysis is simply done on an automaton built from the
specification.

Instead of running the steps in the verification procedure sequentially one
after another, the verification procedure can be implemented using on-the-
fly translation and emptiness checking algorithms [Courcoubetis et al. 1991,
1992; Gerth et al. 1995; Couvreur 1999; Hammer et al. 2005], which allow
running several steps of the procedure in an interleaved fashion without the
need to finish all previous phases of the procedure before proceeding to the
next one. This interleaving of the verification steps is often essential in prac-
tice in trying to find a violation of the given logical specification as quickly as
possible without generating and storing all intermediate results, which may
have prohibitively high resource requirements in the worst case. The state
space explosion problem has encouraged active research, in particular, on
efficient on-the-fly search algorithms for checking the set of words accepted
by a nondeterministic ω-automaton for emptiness. Although this problem
is in principle straightforward to solve using standard algorithms for detect-
ing cycles in a directed graph, much effort has nevertheless been put on
optimizing the performance of these algorithms and reducing their memory
usage in practical applications. The two main lines of state-of-the-art explicit
state emptiness checking algorithms for ω-automata using Büchi acceptance
can be divided into algorithms that analyze the maximal strongly connected
components of automata [Couvreur 1999; Couvreur et al. 2005; Gelden-
huys and Valmari 2004, 2005; Hammer et al. 2005]—usually, by extending
and optimizing the well-known algorithm of Tarjan [1971, 1972]—and al-
gorithms based on the nested depth-first search introduced by Courcoubetis
et al. [1991, 1992] (see, for example, [Godefroid and Holzmann 1993; Holz-
mann et al. 1997; Bošnački 2002, 2003; Gastin et al. 2004; Tauriainen 2004,
2006; Schwoon and Esparza 2005; Couvreur et al. 2005]).

Alternating automata. A useful observation on understanding the connec-
tion between logics and automata was made by Muller et al. [1988], who
showed temporal logics to be naturally translatable into subclasses of alter-
nating automata [Kozen 1976; Chandra and Stockmeyer 1976; Brzozowski
and Leiss 1980; Chandra et al. 1981] instead of the combinatorially more
complex nondeterministic automata. Alternation combines the nondeter-
ministic (existential) choice for the “next” state of an automaton with uni-
versal choice to allow an automaton to enter possibly several “next” states
at once while reading its input by spawning copies of itself that work inde-
pendently on the rest of the input. Muller et al. [1988] demonstrated their
approach with a translation from a branching time version of the extended
temporal logic of Wolper [1981, 1983] to weak alternating automata [Muller
et al. 1986, 1992]. As opposed to constructions for translating logics directly
into nondeterministic automata, the size of which may be exponential in the
length of the logical specifications, the opportunity to mix existential and
universal choice in automata gives rise to translation procedures which yield

1. INTRODUCTION 3

automata that have linear size in the length of the specifications. This con-
nection between logic and alternating automata led to the introduction of
another line of translation procedures from LTL and its extensions into au-
tomata [Isli 1994, 1996; Vardi 1994; Rohde 1997; Manna and Sipma 2000;
Gastin and Oddoux 2001, 2003; Fritz 2003; Tauriainen 2003; Hammer et al.
2005].

The seemingly obvious advantage of using alternating automata in place
of nondeterministic automata to avoid combinatorial explosion in verifica-
tion comes with a cost, however, since the extra succinctness in represen-
tation prevents working with alternating automata using the same algorith-
mic techniques that apply, for example, to language emptiness checking for
nondeterministic automata. This difficulty is traditionally overcome by first
translating alternating automata into nondeterministic ones by applying one
of the nondeterminization constructions proposed in the literature for alter-
nating automata on infinite words [Miyano and Hayashi 1984a,b; Lindsay
1988; Isli 1994, 1996; Rohde 1997; Gastin and Oddoux 2001; Fritz 2003;
Hammer et al. 2005; Fritz 2005] or trees [Muller et al. 1986, 1992; Emer-
son and Jutla 1991; Muller and Schupp 1995]. Even though the exponential
worst-case combinatorial cost of nondeterminization appears to void any ad-
vantages gained by translating LTL first into alternating automata, alternating
automata have nevertheless been argued to provide useful additional insight
into translation procedures from LTL into automata [Vardi 1995]. For ex-
ample, even though nondeterministic automata are in general strictly more
expressive than LTL, direct translation procedures from LTL into automata
do not usually concern themselves with any special properties of the con-
structed automata, missing a possible correspondence between LTL and a
subclass of nondeterministic automata. On the other hand, similarly to the
equally expressive formalisms such as the first-order theory of linear order
(whose expressiveness coincides further with star-free ω-languages [Thomas
1979], and counter-free ω-automata [Thomas 1981]), LTL has been shown
[Rohde 1997; Löding and Thomas 2000] to be expressively equivalent to a
simple subclass of alternating automata known as very weak [Isli 1994, 1996;
Rohde 1997; Gastin and Oddoux 2001], linear [Löding and Thomas 2000],
or linear weak [Merz and Sezgin 2003; Hammer et al. 2005] alternating au-
tomata. This strong correspondence between logic and automata allows to
optimize constructions for this special class of automata with techniques that
do not necessarily apply to the strictly more expressive nondeterministic or
alternating ω-automata, whose expressiveness matches that of the monadic
second-order theory of linear order, or, equivalently, regular ω-languages,
both in the nondeterministic [Büchi 1962; McNaughton 1966] and the al-
ternating case [Miyano and Hayashi 1984a,b; Lindsay 1988].

Generalized transition-based acceptance. In practice, the implementa-
tion of the verification procedure shown in Fig. 1.1 involves many decisions,
such as choosing definitions to be used for the underlying automata. To max-
imize the efficiency of an implementation, the chosen definitions should
facilitate expressing the automata succinctly (say, using as few states as possi-
ble) while still allowing efficient manipulation of the automata. Even simple
changes in the definitions are known to affect the opportunities for mini-

4 1. INTRODUCTION

mizing the number of states in the automata: examples include the choice
between single or multiple initial states, and various generalizations of the
notion of acceptance. For example, instead of specifying acceptance in an
automaton using a single set of designated “accepting” states that the au-
tomaton should visit infinitely often, many automata translation procedures
for LTL define acceptance using a family of state sets, all of which should
be visited infinitely often to make the automaton accept its input. This no-
tion of generalized Büchi acceptance was originally introduced to facilitate
the expression of simple liveness requirements—previously studied, e.g., in
branching time temporal logic verification [Clarke et al. 1983, 1986]—on
the behavior of systems modeled as synchronizing automata [Aggarwal et al.
1990]. Gerth et al. [1995] later used generalized acceptance as a concep-
tual aid in their translation procedure from LTL into nondeterministic au-
tomata for matching syntactic properties of LTL formulas directly with sets
of accepting states. Unlike previous constructions, which defined automata
as tableaux of the worst-case exponential size, the on-the-fly construction of
Gerth et al. [1995], which can itself be seen to be based on earlier work on
tableau methods for branching [Ben-Ari et al. 1981, 1983; Clarke and Emer-
son 1982a,b] and linear time [Wolper 1981, 1983; Manna and Wolper 1982,
1984; Wolper 1985] logics, provided an explicit procedure for constructing
only the actually relevant part of an automaton. This feature of the construc-
tion made it a popular source of many related translation procedures, from
direct improvements to the explicit tableau construction [Daniele et al. 1999;
Somenzi and Bloem 2000; Wolper 2001; Giannakopoulou and Lerda 2002;
Thirioux 2002; Sebastiani and Tonetta 2003] to translations geared towards a
symbolic representation of the automata [Couvreur 1999; Schneider 2001].

The multiple sets of accepting states also have a direct impact on the suc-
cinctness of the representation of automata, even though the additional sets
do not add to the expressive power of the automata [Emerson and Sistla
1984a,b; Courcoubetis et al. 1991, 1992]. Although still more succinct rep-
resentations are possible through further generalizations of acceptance with
no change in the expressiveness of the automata (see, for example, [Thomas
1997], for a survey of various classic notions of acceptance), such alternative
notions have been only rarely used in the context of translating LTL into
automata [Michel 1985; de Jong 1992].

Acceptance can also be generalized by associating it with the transitions
instead of the states of an automaton [Couvreur 1999; Gastin and Oddoux
2001; Giannakopoulou and Lerda 2002; Thirioux 2002; Tauriainen 2003].
As in the case of moving from one to many acceptance sets, this simple
change in the notion of acceptance does not add to the expressiveness of the
automata due to the interreducibility of state-based and transition-based ac-
ceptance (see, for example, Chapter 1 of the textbook [Perrin and Pin 2004]).
However, the transition-based notion for acceptance is again more succinct:
even though state-based acceptance can be reduced to transition-based ac-
ceptance without adding any new states or transitions to an automaton—
visiting a state infinitely often implies taking a transition leaving the state
infinitely often—the same does not hold for the converse reduction in the
general case. It can thus be said that transition-based acceptance general-
izes state-based acceptance (see, e.g., [Giannakopoulou and Lerda 2002] for

1. INTRODUCTION 5

LTL spec-
ification

alternating
automaton

nondeterminis-
tic automaton
(generalized
acceptance)

nondeterminis-

(Büchi ac-
ceptance)

tic automaton
verifi-
cation

[Vardi and Wolper 1986]

[Gerth et al. 1995]

[Hammer et al. 2005]

[Gastin and Oddoux 2001]

[Giannakopoulou and Lerda 2002]

[Couvreur 1999]

this work

state-based acceptance

transition-based acceptance

Fig. 1.2: Differences between automata-theoretic LTL verification procedures sug-
gested in the literature

examples). A similar asymmetry concerns the placement of labels, i.e., the
symbols that the automaton reads from its input, in the automata; again,
replacing single symbols with sets of symbols, or placing the labels on transi-
tions instead of states lead to more succinct definitions for automata.

The use of nondeterministic automata with generalized transition-based
acceptance for LTL verification was proposed by Couvreur [1999] and later
advocated by many other authors due to its simple benefits for minimizing
the representation of automata [Gastin and Oddoux 2001; Thirioux 2002;
Giannakopoulou and Lerda 2002; Duret-Lutz and Poitrenaud 2004]. Tau-
riainen [2003] considered extending the transition-based approach to alter-
nating automata. To take the best possible advantage of these automata in
the verification procedure, each verification step should preferably be imple-
mented with algorithms that are able to work directly with this definition to
avoid spending additional effort on converting between expressively equiva-
lent formalisms. Surprisingly, only few constructions [Couvreur 1999; Tauri-
ainen 2003; Hammer et al. 2005] strive to achieve this goal fully in practice:
most other translations suggested in the literature employ additional conver-
sions between formalisms to finally obtain automata with a classic Büchi ac-
ceptance condition specified using a set of states. Figure 1.2 illustrates some
of these conceptual differences between several automata-theoretic LTL ver-
ification procedures suggested in the literature. For simplicity, we list only a
single representative reference to literature on the various approaches.

6 1. INTRODUCTION

Minimization of automata. The verification procedure for LTL has also
raised interest in techniques for the minimization of ω-automata in general
to counter combinatorial explosion. In addition to techniques that exploit
special structural properties of automata [Rohde 1997; Etessami and Holz-
mann 2000; Somenzi and Bloem 2000; Gastin and Oddoux 2001; Thirioux
2002], constructions based on various simulation relations have also been
proposed for the minimization of both nondeterministic [Etessami and Holz-
mann 2000; Somenzi and Bloem 2000; Etessami et al. 2001, 2005; Etessami
2002; Gurumurthy et al. 2002] and alternating automata [Fritz and Wilke
2002, 2005; Fritz 2003]. On the other hand, the translation of LTL into
automata has been improved further by making use of syntactic techniques
such as simplifying LTL specifications by rewriting [Etessami and Holzmann
2000; Somenzi and Bloem 2000; Thirioux 2002]. These optimizations ap-
pear in Fig. 1.1 as the dashed loops “inside” each translation phase. Syntac-
tic optimization techniques have been applied also to the translation steps
between phases [Daniele et al. 1999; Giannakopoulou and Lerda 2002].

Symbolic tableau procedures. In addition to the explicit automata-based
approach to LTL verification, there exist also verification methods that per-
form their task using implicit “symbolic” representations of systems and ta-
bleaux built from logical specifications [Clarke et al. 1994, 1997; Kesten et al.
1998]. As a matter of fact, procedures suggested for the construction of such
tableaux [Lichtenstein and Pnueli 1985, 2000; Burch et al. 1992; Kesten et al.
1993; Clarke et al. 1994, 1997; Kesten et al. 1998] can easily be seen as an-
other line of automata translation procedures by identifying the nodes in
a tableau directly with the states of a nondeterministic automaton. How-
ever, due to the implicit representation used for the connections between
tableau nodes (which can analogously be identified with transitions of a cor-
responding automaton), the symbolic tableau constructions are not usually
concerned with questions such as the minimization of the number of nodes
in the tableaux.

Extensions to other logics. Although most translation procedures from
LTL into automata—including the one that will be presented in this work—
concentrate only on future time, also constructions for LTL extended with
past time connectives have been proposed in the literature, using both non-
deterministic [Vardi and Wolper 1986; Ramakrishna et al. 1992b; Schnei-
der 2001] and alternating automata [Manna and Sipma 2000; Kupferman
et al. 2001; Gastin and Oddoux 2003] in the translation. Extensions to
other specification formalisms include constructions for branching time log-
ics [Bernholtz et al. 1994; Kupferman et al. 2000], logics augmented with
extended operators [Vardi 1988; Vardi and Wolper 1994; Kupferman et al.
2001; Laroussinie et al. 2002; Bustan et al. 2005] or first-order quantifica-
tion [Etessami 1999], the propositional µ-calculus [Emerson and Jutla 1991;
Emerson et al. 1993, 2001], interval logics [Ramakrishna et al. 1992a, 1996],
and temporal logics on infinite traces instead of words [Gastin et al. 1998;
Bollig and Leucker 2001, 2003]. On the other hand, special constructions
targeted towards efficient automata translation of LTL safety properties have
also been proposed [Geilen 2001; Latvala 2003], together with constructions

1. INTRODUCTION 7

that aim to reduce nondeterministic choice between transitions in automata
[Thirioux 2002; Sebastiani and Tonetta 2003].

Organization and Contributions of This Work

This work presents a unified approach to translating future-time LTL into
automata and checking for the emptiness of the automata by making use
of special cases of a single definition of alternating ω-automata with gener-
alized transition-based acceptance throughout all constructions, advocating
(as many authors before) this type of acceptance as a concept well-suited for
both understanding and implementing the verification procedure. Some of
the presented results have previously appeared in [Tauriainen 2003, 2004,
2005, 2006].

The chosen type of generalized acceptance, which combines an “inverse”
interpretation of classic nongeneralized Büchi acceptance (previously used
in LTL-to-automata translation procedures by Gastin and Oddoux [2001])
with the intuitive connection between multiple “acceptance conditions” and
syntactic properties of LTL formulas [Gerth et al. 1995], is used to define
a translation procedure in which the introduction of new acceptance con-
ditions is completely transparent. Another technique used for simplifying
the presentation is to adopt a definition of alternating automata which sup-
ports direct representation of individual transitions, which are essential, for
example, for depicting automata as traditional state graphs; the concept of
a transition is also convenient for designing and explaining simplification
techniques for alternating automata. Similarly, a definition of runs of alter-
nating automata is used that allows many standard theoretical constructions
on runs of alternating automata (for example, obtaining a finite representa-
tion for the “levels” of a run after uniformization; see, for example, [Muller
and Schupp 1995]) to be viewed as direct transformations on runs of alternat-
ing automata. The basic definitions of infinite words, linear time temporal
logic and automata are reviewed in Ch. 2. This chapter also introduces self-
loop alternating automata, which can be seen as another “transition-based”
version of a subclass of alternating automata known as very weak alternating
[Isli 1994, 1996; Rohde 1997; Gastin and Oddoux 2001], alternating linear
[Löding and Thomas 2000], or linear weak alternating [Merz and Sezgin
2003; Hammer et al. 2005] automata. Throughout this work, the main con-
structions used in the transformation of automata and their runs are given full
correctness proofs by systematically using a basic toolset of simple results on
the properties of runs of generalized alternating automata. Also this toolset is
laid out in Ch. 2.

Chapter 3 reviews a basic translation procedure from LTL into self-loop
alternating automata. This procedure, which is based on the application of
simple translation rules for joining automata built for simple LTL formulas
incrementally into more complex automata, is closely related to the con-
struction of Gastin and Oddoux [2001] and satisfies the best known upper
bounds for the sizes of components in automata corresponding to LTL for-
mulas. Similarly to related constructions, however, this procedure needs ex-
ponential space in the length of the formula in the worst case due to the
explicit representation of transitions. This chapter also reviews the result of
Rohde [1997] and Löding and Thomas [2000] on the expressive equivalence

8 1. INTRODUCTION

of LTL and subclasses of alternating automata by presenting a reverse trans-
lation from self-loop alternating automata into LTL formulas and analyzing
its complexity.

Chapter 4 introduces constructions for translating self-loop alternating ω-
automata into nondeterministic ω-automata, again generalizing results pre-
sented by Gastin and Oddoux [2001]. Unlike alternating ω-automata in
general, self-loop alternating ω-automata with generalized acceptance can
be translated into nondeterministic automata using a construction that very
closely resembles the classic subset construction of Rabin and Scott [1959]
for determinizing automata on finite words. In general, however, the nonde-
terministic ω-automaton may have to use a more complex form of the gen-
eralized acceptance condition. This is nevertheless not necessary for a class
of alternating automata that have uniform acceptance synchronized runs (a
new concept introduced in Ch. 4) on all words that they recognize; in par-
ticular, all automata built from LTL formulas using the translation proce-
dure from Ch. 3 have this property. Moreover, the nondeterminization con-
struction can be optimized further for these automata by adapting syntactic
techniques known from direct translation procedures between LTL and au-
tomata [Daniele et al. 1999; Giannakopoulou and Lerda 2002]. In some
cases, it is possible to avoid the application of a subset construction entirely
if the formula to be translated into an automaton belongs to a special syntac-
tic subclass of LTL which translates directly into alternating automata that
support simple completion into nondeterministic automata. This subclass,
previously mentioned in the context of symbolic translation algorithms by
Schneider [1999], is shown to be closely related also to the syntactic subclass
LTLdet introduced by Maidl [2000a]. The satisfiability problem of formulas
in this subclass of LTL is shown to be NP-complete.

Chapter 5 studies the optimization of the basic translation rules presented
in Ch. 3 by making use of language containment relationships between self-
loop alternating automata. These relationships can also be used to design
refined translation rules that aim to simplify the transition structure of au-
tomata built with those basic rules which are the main cause of the expo-
nential worst-case space requirements in the basic translation procedure—
however, sometimes with a penalty on the number of states in the con-
structed automata. Some of the refined rules nevertheless prove to be ap-
plicable universally as replacements of the basic translation rules without a
need to apply computationally expensive tests for language containment re-
lationships. The automata built using the refined rules can still be translated
into nondeterministic automata without changing the form of generalized
acceptance by applying optimized constructions from Ch. 4. Furthermore,
the refined rules also lead to an extension of the syntactic subclass of LTL
which translates into automata that can be completed into nondeterminis-
tic automata without applying a general nondeterminization construction.
The satisfiability problem for this strictly more expressive subclass remains
NP-complete.

Chapter 6 focuses on the simplification of self-loop alternating automata
by making use of language containment tests to remove transitions from the
automata. The application of the presented simplification techniques and
the refined translation rules from Ch. 5 is illustrated with examples, which

1. INTRODUCTION 9

include a comparison against the translation procedure proposed by Gastin
and Oddoux [2001]. The optimization techniques discussed in Ch. 5 and
Ch. 6 are put together in Ch. 7 into a high-level refined translation procedure
from LTL into self-loop alternating automata.

Chapter 8 presents a new generalized version of the classic nested depth-
first search algorithm of Courcoubetis et al. [1991, 1992] for checking the
emptiness of nondeterministic automata with generalized transition-based
acceptance. The new algorithm improves the search algorithm’s worst-case
resource requirements, in particular, by reducing the number of additional
bits that need to be stored with every visited state (in a simple hash table
based implementation) from linear to logarithmic in the number of general-
ized acceptance conditions.

Finally, Ch. 9 concludes the work by highlighting the main results and
discussing directions for further work.

10 1. INTRODUCTION

2 DEFINITIONS AND BASIC RESULTS

2.1 MATHEMATICAL CONCEPTS AND NOTATION

We assume basic knowledge on sets, ordered tuples, graphs, trees, relations
and functions (mappings), and the principle of mathematical induction. We
also refer to basic concepts of computability theory (O-notation, decision
problems, deterministic and nondeterministic decision procedures, complex-
ity classes NP and PSPACE, hardness and completeness for complexity
classes) without presenting their formal definitions; see any textbook on com-
putability theory (for example, [Papadimitriou 1994]) for details.

We shall work with the set of natural numbers N
def
= {0, 1, 2, . . .} extended

with an element ω /∈ N. For notational simplicity, we shall not make use
of the formal theory of ordinals in this presentation; instead, we extend the
standard total ordering <⊆ N×N of the natural numbers into

(
N∪ {ω}

)
×(

N∪ {ω}
)

by defining ω to be an element that satisfies ω ≮ ω and n < ω for
all n ∈ N. Comparison between elements of N ∪ {ω} will often be denoted
also by the operators =, ≤, ≥ and>with their usual semantics. Furthermore,
we also extend addition on the natural numbers to (N ∪ {ω}) × (N ∪ {ω})

by defining ω + n
def
= n+ ω

def
= ω + ω

def
= ω.

Let X and Y be sets. The sets X and Y are equipollent if and only if (iff)
there exists a bijective mapping f : X → Y . If there exists a natural number
n ∈ N such that X is equipollent to the (possibly empty) set {1, 2, . . . , n} ⊆
N, we say that X is a finite set of size n (denoted by |X| = n). If X is
equipollent to the set of natural numbers N, we say that X is (countably)
infinite and define |X| = ω. The powerset of X (denoted by 2X) is defined

as the set of all subsets of X , i.e., 2X
def
= {Y | Y ⊆ X}.

If X is a subset of another set Y , we denote by Y \ X the complement

of X with respect to Y (i.e., Y \ X
def
= {x ∈ Y | x /∈ X}). When the set

Y is clear from the context, we often denote the complement of X by the
shorthand notation X .

2.1.1 Sequences

Let X be a nonempty set. A sequence (called occasionally also a word in
further discussion) x over X is a mapping x : I → X , from an index set

I
def
=

{
n ∈ N n < m for some m ∈ N ∪ {ω}

}
to X . For all i ∈ I , x(i)

is called the (i + 1)th element of x. We may also describe x by “listing its
elements” as x = (xi)i∈I = (x0, x1, x2, . . .) (more simply, x = x0x1x2 . . .)

where xi
def
= x(i) for all i ∈ I . We call |x|

def
= |I| the length of the sequence.

For all n ∈ N∪{ω}, we denote the class of all sequences overX of length n by
Xn. The unique sequence in X0 is called the empty sequence over X and is
denoted by εX . Each element of X can be treated as a sequence by applying

the obvious isomorphism between X and X1. The set X∗ def
=

⋃
0≤i<ωX

i

is the set of all finite sequences over X ; Xω denotes the set of all infinite
sequences.

Sequences can be used to define other sequences. Let x : I → X be a

2. DEFINITIONS AND BASIC RESULTS 11

sequence over X , let i ∈ I , and let 0 ≤ j ≤ |I|. The sequence x′ : I ′ → X ,

where I ′
def
= {n ∈ N | i ≤ n + i < j} and x′(k)

def
= x(k + i) for all k ∈ I ′, is

called a subsequence (alternatively, a subword) of x and denoted by x[i,j). If
i = 0, then x′ is a prefix of x; if j = |I|, then x′ is called a suffix. In this case
we usually refer to x[i,j) using the simpler notation xi. Clearly, the suffix xi

is infinite iff x is infinite. Two subsequences x1 = x[i1,j1) and x2 = x[i2,j2) of
a sequence x (0 ≤ i1, i2 < |x|, 0 ≤ j1, j2 ≤ |x|) are syntactically identical
(denoted x1 = x2) iff |x1| = |x2| holds, and x1(i) = x2(i) holds for all
0 ≤ i < |x1|; otherwise they are syntactically distinct (x1 6= x2).

If x1 : I1 → X1 and x2 : I2 → X2 are two sequences with |x1| < ω, the
concatenation of x1 and x2 (denoted x1x2) is the sequence x :

{
n ∈ N n <

|I1| + |I2|
}
→ X1 ∪X2 defined by

x(i)
def
=

{
x1(i) if 0 ≤ i < |I1|
x2(i− |I1|) if |I1| ≤ i < |I1| + |I2|

Because concatenation is an associative operation, i.e., because (xy)z =
x(yz) holds for all sequences x, y and z (|x| < ω, |y| < ω), we usually
write concatenations of sequences without parentheses.

2.1.2 ω-Regular Expressions

Let X be a nonempty set (called the alphabet). We shall often describe
subsets ofXω by means of ω-regular expressions over X . The set of ω-regular
expressions over X is the smallest set of finite sequences built from elements
of X and the symbols (,), ∪, ∗, ω (not included in X) such that the set
is closed under finite application of the following syntactic rules (formally
defined using concatenation of sequences; in the definition of the rules, we
also make use of an auxiliary set of r-expressions over X):

• Each element of X is an r-expression.

• If α and β are r-expressions, then (α∪β), (αβ) and α∗ are r-expressions.

• If α is an r-expression and β is an ω-regular expression, then αω and
(αβ) are ω-regular expressions.

• If α and β are ω-regular expressions, then (α ∪ β) is an ω-regular ex-
pression.

Each r-expression (ω-regular expression) α defines a set of finite (resp. infi-
nite) nonempty words over X . We denote the set of words defined by the
r-expression or ω-regular expression α by L(α) and call this set the language
of α. Formally, L(α) is defined for r-expressions and ω-regular expressions as
follows:

• L(α)
def
=

{
x : {0} → X x(0) = α

}
for all α ∈ X (i.e., the singleton

set containing the unique sequence of length 1 with α ∈ X as its first
element);

• L
(
(α∪β)

)
def
= L(α)∪L(β), where α and β are either both r-expressions

or both ω-regular expressions (the sequences that belong to either or
both of L(α) and L(β));

12 2. DEFINITIONS AND BASIC RESULTS

• L
(
(αβ)

)
def
=

{
xy x ∈ L(α), y ∈ L(β)

}
for any r-expression α and

any r-expression or ω-regular expression β (the sequences formed by
concatenating a sequence from L(β) to a sequence in L(α));

• L(α∗)
def
= {εX} ∪

⋃
1≤i<ω

{
x1x2 . . . xi xj ∈ L(α) for all 1 ≤ j ≤ i

}

for any r-expression α (the set of sequences obtained by finite concate-
nations of zero or more sequences in L(α))

• L(αω)
def
=

{
x1x2x3 . . . xi ∈ L(α) \ {εX} for all 1 ≤ i < ω

}
for any

r-expression α (the set of infinite sequences obtained by concatenating
nonempty sequences in the language of α).

Whenever the language of an ω-regular expression α is a singleton set, it
is conventional to identify the ω-regular expression with the unique word in
its language. In such cases we shall simply speak of the word α instead of
“the unique word in the language of α”. Similarly, we can also identify a
nonempty finite word w : I → X (0 < |I| < ω) with an r-expression and
write w∗ and wω to denote the languages obtained by finite (resp. infinite)
concatenations of the finite word w. In addition, we simplify the general no-
tation by omitting parentheses from r-expressions and ω-regular expressions
whenever possible by fixing the precedence of ∪, ∗, ω and concatenation such
that ∗ and ω have precedence over concatenation, which has precedence over
∪.

Example 2.1.1 The ω-regular expression aω represents the infinite word
formed by repeating the symbol a indefinitely, the ω-regular expression aω ∪
b∗cω represents all infinite words formed either from an infinite sequence
of a’s, or a (possibly empty) finite sequence of b’s followed by an infinite
sequence of c’s, and the ω-regular expression (a ∪ b ∪ c)∗(ab∗)ω represents
the language of infinite words built from the letters a, b and c such that each
word in the language contains infinitely many a’s but only finitely many c’s.

�

2.2 PROPOSITIONAL LINEAR TIME TEMPORAL LOGIC

As seen in Ex. 2.1.1, ω-regular expressions provide a means for specifying
infinite sequences. However, the basic operations for building ω-regular ex-
pressions from simpler expressions are not always very convenient for defin-
ing languages in practice. For example, even though the languages defin-
able using ω-regular expressions over a given alphabet are closed under the
Boolean operations (union, intersection and complementation with respect
to the language of all infinite words over the given alphabet) [Büchi 1962;
McNaughton 1966], finding an ω-regular expression for a given Boolean
combination of languages defined by simpler expressions is often difficult in
practice (especially for complementation). This difficulty of combining sim-
ple expressions into more complex ones is clearly an undesirable property for
a language intended for specifying infinite sequences. Popular specification
languages are therefore usually based on alternative formalisms. In partic-
ular, languages based on formal logic support expressing Boolean combina-
tions of specifications directly by using the corresponding operations in the

2. DEFINITIONS AND BASIC RESULTS 13

logic. Among the best-known such logics suggested for reasoning about the
behavior of nonterminating systems is the propositional linear time temporal
logic (LTL) proposed by Pnueli [Pnueli 1977; Gabbay et al. 1980; Pnueli
1981]. Although this logic formally captures only a strict subset of the se-
quences specifiable using ω-regular expressions (see, for example, [Thomas
1990]), the logic nevertheless covers a class of specifications that is expressive
enough for many actual verification tasks [Manna and Pnueli 1992]. In this
section, we shall review the syntax and semantics of this logic.

2.2.1 Syntax

Let AP be a countable set of atomic propositions. The set LTL(AP) of
propositional linear time temporal logic formulas over the atomic propo-
sitions AP is the smallest set of finite sequences built from elements of
AP , parentheses “(” and “)”, the symbol >, propositional connectives (or
operators) ¬, ∨, and temporal connectives (operators) X and Us such that
LTL(AP) includes {>} ∪ AP as a subset (where we assume that AP does
not include any of the symbols listed above) and is closed under the finite
application of the syntactic rule

If ϕ, ψ ∈ LTL(AP), then ¬ϕ, (ϕ ∨ ψ), Xϕ, (ϕUs ψ) ∈ LTL(AP).

A subformula of a formula ϕ ∈ LTL(AP) is a subsequence of ϕ that belongs
to LTL(AP). The collection of all syntactically distinct subformulas of ϕ is
denoted by Sub(ϕ). It is easy to check (by induction on the length of ϕ) that
|Sub(ϕ)| ≤ |ϕ| holds for all ϕ ∈ LTL(AP).

The formula ϕ ∈ LTL(AP) is called a literal iff ϕ = p or ϕ = ¬p
holds for some atomic proposition p ∈ AP ; literals and the symbol > are
called atomic formulas. If ϕ /∈ {>} ∪ AP holds (i.e., ϕ = ◦ϕ1 for ◦ ∈
{¬,X}, or ϕ = (ϕ1 ◦ ϕ2), where ◦ ∈ {∨,Us}, and ϕ1, ϕ2 ∈ LTL(AP)),
ϕ is called a compound formula with main connective ◦, and ϕ1 and ϕ2

are the top-level subformulas of ϕ. The arity of a compound formula and
its main connective is the number of top-level subformulas in the formula;
formulas (connectives) of arity 1 and 2 are called unary and binary formulas
(connectives), respectively.

A formula ϕ ∈ LTL(AP) that does not contain any temporal connectives
is called a propositional (or Boolean) formula, otherwise it is a temporal
formula; the set of all propositional formulas over the atomic propositions
AP is denoted by PL(AP). The formula ϕ is called a pure temporal formula
iff ϕ = Xϕ1 or ϕ = (ϕ1 Us ϕ2) holds for some ϕ1, ϕ2 ∈ LTL(AP). We define
the set Temp(ϕ) as the maximal subset of Sub(ϕ) which contains only pure
temporal formulas.

2.2.2 Semantics

Basic operators
Linear time temporal logic formulas are interpreted over infinite sequences
of sets of atomic propositions chosen from AP , i.e., elements of the power-
set 2AP of AP . The semantics of linear time temporal logic in an infinite
sequence w ∈ (2AP)ω of subsets of AP is defined inductively using a binary
relation |= as follows:

14 2. DEFINITIONS AND BASIC RESULTS

• w |= >.

• If p ∈ AP , then w |= p iff p ∈ w(0).

• w |= ¬ϕ iff w |= ϕ does not hold (denoted also by w 6|= ϕ).

• w |= (ϕ ∨ ψ) iff w |= ϕ or w |= ψ.

• w |= Xϕ iff w1 |= ϕ. [Next time]

• w |= (ϕUs ψ) iff there exists an index 0 ≤ i < ω such that wi |= ψ
holds, and wj |= ϕ holds for all 0 ≤ j < i. [Strong Until]

We say that w ∈ (2AP)ω satisfies (alternatively, is a model of) the formula

ϕ ∈ LTL(AP) iff w |= ϕ holds. The set L(ϕ)
def
=

{
w ∈ (2AP)ω w |= ϕ

}

of all models of ϕ is called the language of ϕ. The formula ϕ is satisfiable
if L(ϕ) 6= ∅ holds and unsatisfiable otherwise. The formula ϕ is valid iff
¬ϕ is unsatisfiable. For all formulas ϕ1, ϕ2 ∈ LTL(AP), it is clear from the
definition of the semantics that L

(
(ϕ1 ∨ ϕ2)

)
= L(ϕ1) ∪ L(ϕ2), and the

complement L(ϕ1)
def
= (2AP)ω \ L(ϕ1) of the language of ϕ1 with respect to

(2AP)ω equals L(¬ϕ1). For a pair of formulas ϕ, ψ ∈ LTL(AP), we write
ϕ ≡ ψ as a shorthand for L(ϕ) = L(ψ); in this case we say that ϕ and ψ
are logically equivalent. Clearly, two syntactically identical LTL formulas
are always logically equivalent, but the converse does not hold in general (for
example, ϕ ≡ ¬¬ϕ holds for all formulas ϕ ∈ LTL(AP), but ϕ 6= ¬¬ϕ).
If ϕ ∈ LTL(AP) is an LTL formula with a subformula ψ ∈ Sub(ϕ), then
it is easy to check from the semantics of propositional linear time temporal
logic that ϕ′ ≡ ϕ holds for the formula ϕ′ ∈ LTL(AP) obtained from ϕ by
substituting a formula ψ′ ∈ LTL(AP) for any occurrence of the subformula
ψ in ϕ whenever ψ′ ≡ ψ holds.

If ϕ ∈ PL(AP), we project the satisfaction relation from infinite se-
quences in (2AP)ω to subsets of AP and use the traditional notation σ |= ϕ
(σ ⊆ AP) for propositional satisfiability. (Formally, using the above def-
inition, σ |= ϕ is equivalent to the statement that w |= ϕ holds for all
w ∈ (2AP)ω with w(0) = σ.)

Derived operators
The set of linear time temporal logic formulas is often extended by introduc-
ing derived constants or connectives expressible in terms of the basic con-
stants and connectives > (“true”), ¬ (negation), ∨ (disjunction), X (Next
Time) and Us (Strong Until). The derived connectives allow more flex-
ible expression of LTL properties without changing the expressiveness of
the logic. Standard extensions include the Boolean constant ⊥ (“false”:

⊥
def

≡ ¬>), the propositional connectives ∧ (conjunction: (ϕ1 ∧ ϕ2)
def

≡

¬(¬ϕ1 ∨ ¬ϕ2)), → (implication: (ϕ1 → ϕ2)
def

≡ (¬ϕ1 ∨ ϕ2)), ↔ (equiva-

lence1: (ϕ1 ↔ ϕ2)
def

≡
(
(ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

)
) and ⊕ (exclusive dis-

junction: (ϕ1 ⊕ ϕ2)
def

≡ ¬(ϕ1 ↔ ϕ2)) as well as temporal connectives such
as

1Although ≡ and ↔ both capture logical equivalence between formulas, we do not con-
sider the operator ≡ to be part of the (extended) syntax of the logic. This operator will be
mainly used for separating different steps in derivations of logically equivalent LTL formulas.

2. DEFINITIONS AND BASIC RESULTS 15

• F: w |= Fϕ iff w |= (>Us ϕ). [Finally]

• G: w |= Gϕ iff w |= ¬F¬ϕ. [Globally]

• Uw: w |= (ϕUw ψ) iff w |=
(
Gϕ ∨ (ϕUs ψ)

)
. [Weak Until]

• Rw: w |= (ϕRw ψ) iff w |= ¬(¬ϕUs ¬ψ), [Weak Release]
equivalently, iff w |=

(
ψ Uw (ϕ ∧ ψ)

)
.

• Rs: w |= (ϕRs ψ) iff w |= ¬(¬ϕUw ¬ψ), [Strong Release]
equivalently, iff w |=

(
ψ Us (ϕ ∧ ψ)

)
.

The sets of propositional and temporal formulas are extended in the obvious
way. We also extend the satisfaction relation |= to disjunctions and conjunc-
tions over sets of LTL formulas in the traditional way: for any finite subset
Φ ⊆ LTL(AP) and any w ∈ (2AP)ω, w |=

∨
ϕ∈Φ ϕ (w |=

∧
ϕ∈Φ ϕ) holds

iff w |= ϕ holds for some (for all) ϕ ∈ Φ. (By convention, w 6|=
∨
ϕ∈∅ ϕ

and w |=
∧
ϕ∈∅ ϕ hold for all w ∈ (2AP)ω.) For convenience, we shall oc-

casionally abuse the notation
∨
ϕ∈Φ ϕ and

∧
ϕ∈Φ ϕ to denote any (arbitrarily

parenthesized) LTL formula formed by joining the elements in the set of for-
mulas Φ ⊆ LTL(AP) in some order with either the ∨ or the ∧ connective,
respectively. (By the commutativity and associativity of these connectives,
all such formulas are logically equivalent.) For example, this notation can be
used to define conjunctive and disjunctive normal forms of propositional for-
mulas as formulas of the form

∧
1≤i≤n

∨
1≤j≤mi

`i,j and
∨

1≤i≤n

∧
1≤j≤mi

`i,j,
respectively, where `i,j is a literal (i.e., `i,j ∈ {p,¬p} for some p ∈ AP) for
all 1 ≤ i ≤ n and 1 ≤ j ≤ mi (0 ≤ n < ω, 0 ≤ mi < ω for all 1 ≤ i ≤ n).

In this work, we assume all LTL formulas to be written using atomic
propositions, Boolean constants > and ⊥, and the (extended) set of connec-
tives {¬,∨,∧,X,Us,Uw,Rs, Rw}. All other connectives are assumed to be
substituted with their definitions. The subscripts s and w used in the U and
R connectives denote the strength of the connectives; a formula having one
of these connectives as its main connective is called a strong (s) or weak (w)
temporal eventuality, respectively. The subscripts will sometimes be omitted
if the strength of a connective is not relevant in the context.

The models of the temporal eventualities are infinite sequences over 2AP

that have an infinite suffix satisfying a designated top-level subformula (or
both top-level subformulas) of the eventuality. The strong temporal even-
tualities (Us and Rs) require the existence of such a suffix unconditionally;
their weak variants relax this requirement by permitting models in which an-
other top-level subformula (determined by the type of the connective) holds
throughout the entire sequence.2 In our notation, Us and Rw correspond to
the traditional Until and Release connectives commonly used in the litera-
ture (see, for example, [Clarke et al. 1999]).

2.2.3 Positive Normal Form

We shall present most of our constructions involving LTL formulas using a
syntactically restricted subset of LTL formulas in which the use of negation

2For this reason, weak temporal eventualities are sometimes referred to as invariance
properties in the literature.

16 2. DEFINITIONS AND BASIC RESULTS

Table 2.1: LTL operators and their duals

◦ ∨ ∧ Us Uw Rs Rw

◦̃ ∧ ∨ Rw Rs Uw Us

is allowed only immediately before atomic propositions. Formally, we define
this set LTLPNF(AP) of LTL formulas (over a set AP of atomic propositions)
in positive normal form as

LTLPNF(AP)
def
=

{
ϕ ∈ LTL(AP) for all 0 ≤ i < |ϕ| − 1 :

if ϕ(i) = ¬, then ϕ(i+ 1) ∈ AP
}

.

The restriction to LTLPNF(AP) does not reduce the expressive power of
the logic when using the extended set of LTL operators fixed above: any
formula ϕ ∈ LTL(AP) can be written as a logically equivalent LTL formula
[ϕ]PNF in positive normal form defined recursively as follows:

[ϕ]PNF def
= ϕ if ϕ is an atomic formula

[¬>]PNF def
= ⊥

[¬⊥]PNF def
= >

[¬¬ϕ1]
PNF def

= [ϕ1]
PNF

[Xϕ1]
PNF def

= X[ϕ1]
PNF

[¬Xϕ1]
PNF def

= X[¬ϕ1]
PNF

[
(ϕ1 ◦ ϕ2)

]PNF def
=

(
[ϕ1]

PNF ◦ [ϕ2]
PNF

)
[
¬(ϕ1 ◦ ϕ2)

]PNF def
=

(
[¬ϕ1]

PNF ◦̃ [¬ϕ2]
PNF

)

where ϕ1, ϕ2 ∈ LTL(AP) are the top-level subformulas of ϕ if ϕ is a com-
pound formula, ◦ ∈ {∨,∧,Us,Uw,Rs,Rw}, and ◦̃ is the dual operator of ◦
defined as shown in Table 2.1.

It is easy to check (by induction on |ϕ|) that [ϕ]PNF is in positive normal
form. Similarly, [ϕ]PNF ≡ ϕ holds since each case in the definition of [ϕ]PNF

is based on some LTL identity (in particular, the “generalized” De Morgan
law ¬(ϕ1 ◦ ϕ2) ≡ (¬ϕ1 ◦̃ ¬ϕ2) holds for all ϕ1, ϕ2 ∈ LTL(AP) and ◦ ∈
{∨,∧,Us,Uw,Rs,Rw}). Furthermore, it is easy to see that [ϕPNF] < 2 · |ϕ|
holds, and thus Sub

(
[ϕ]PNF

)
≤ [ϕPNF] < 2 · |ϕ|. Similarly, because

the number of temporal operators in [ϕ]PNF is always equal to their number
in ϕ (as is again easily checked from the recursive definition), [ϕ]PNF has
at most twice as many syntactically distinct pure temporal subformulas as ϕ
(each pure temporal subformula of [ϕ]PNF either equals [ψ]PNF or [¬ψ]PNF

for some ψ ∈ Temp(ϕ)).

Example 2.2.1 We find the positive normal form of the LTL formula

ϕ
def
= ¬

((
(¬p1 Rw p2) ∧ ¬(⊥Rw ¬p1)

)
∧ Xp2

)
∈ LTL

(
{p1, p2}

)
.

2. DEFINITIONS AND BASIC RESULTS 17

Applying the recursive definition, we get

[ϕ]PNF =
[
¬
(
((¬p1 Rw p2) ∧ ¬(⊥Rw ¬p1)) ∧ Xp2

)]PNF

=
([
¬((¬p1 Rw p2) ∧ ¬(⊥Rw ¬p1))

]PNF
∨ [¬Xp2]

PNF
)

=
((

[¬(¬p1 Rw p2)]
PNF ∨ [¬¬(⊥Rw ¬p1)]

PNF
)
∨ X[¬p2]

PNF
)

=
((

([¬¬p1]
PNF Us [¬p2]

PNF) ∨ [(⊥Rw ¬p1)]
PNF

)
∨ X¬p2

)

=
((

([p1]
PNF

Us ¬p2) ∨ ([⊥]PNF
Rw [¬p1]

PNF)
)
∨ X¬p2

)

=
((

(p1 Us ¬p2) ∨ (⊥Rw ¬p1)
)
∨ X¬p2

)
.

�

For all formulas ϕ ∈ LTLPNF(AP), we define the node size of ϕ (denoted
by NSize(ϕ)) and the set of node subformulas of ϕ (NSub(ϕ)) as follows:

NSize(ϕ)
def
= 1 +

{
0 ϕ atomic∑

ψ∈{ψ′∈Sub(ϕ)|ψ′ top-level} NSize(ψ) otherwise

NSub(ϕ)
def
= {ϕ} ∪

{
∅ ϕ atomic⋃
ψ∈{ψ′∈Sub(ϕ)|ψ′ top-level} NSub(ψ) otherwise

Informally, NSize(ϕ) corresponds to the number of nodes in a nonempty la-
beled tree (labeled with subformulas of ϕ ∈ LTLPNF(AP)) such that the root
of the tree is labeled with ϕ itself, and each node labeled with a non-atomic
subformula ψ ∈ Sub(ϕ) has one or two children labeled with ψ’s top-level
subformulas. The set NSub(ϕ) ⊆ Sub(ϕ) can then be identified as the set of
syntactically distinct node labels occurring in the tree (alternatively, the set
of nodes in a directed acyclic graph obtained from the tree by merging nodes
with identical labels). Because ϕ is in positive normal form, no internal node
of the tree (i.e., a node with at least one child node) is labeled with a formula
of the form ¬ψ.

Clearly, NSize(ϕ) ≤ |ϕ| holds for all ϕ ∈ LTLPNF(AP), and for an arbi-
trary LTL formula ϕ ∈ LTL(AP),

NSub
(
[ϕ]PNF

)
≤ NSize

(
[ϕ]PNF

)
≤ [ϕPNF] < 2 · |ϕ|.

NSize(ϕ) and NSub(ϕ) will be useful for analyzing constructions involving
LTL formulas in positive normal form.

Example 2.2.2 Figure 2.1 shows the labeled tree representation of the LTL
formula

ψ
def
=

((
(p1 Us ¬p2) ∨ (⊥Rw ¬p1)

)
∨ X¬p2

)
∈ LTLPNF

(
{p1, p2}

)

defined in the previous example. From the tree representation it is easy to
verify that NSize(ψ) = 10, and |NSub(ψ)|=

{
ψ,

(
(p1Us¬p2) ∨ (⊥Rw¬p1)

)
,

(p1Us¬p2), p1,¬p2, (⊥Rw¬p1),⊥,¬p1,X¬p2

}
= 9. �

2.3 ALTERNATING AUTOMATA

As a third formalism for characterizing sets of infinite words we consider fi-
nite automata, i.e., finite state machines that are able to recognize words

18 2. DEFINITIONS AND BASIC RESULTS

``

(p1 Us ¬p2) ∨ (⊥Rw ¬p1)
´

∨ X¬p2

´

`

(p1 Us ¬p2) ∨ (⊥ Rw ¬p1)
´

X¬p2

(p1 Us ¬p2) (⊥ Rw ¬p1)

p1

¬p2

¬p2 ⊥ ¬p1

1

1111

2

33

7

10

Fig. 2.1: The LTL formula
((

(p1 Us ¬p2) ∨ (⊥Rw ¬p1)
)
∨ X¬p2

)
as a labeled tree.

The number beside a node corresponds to the value of NSize(ψ) for the LTL for-
mula ψ labeling the node

by reducing a given property of a word into a property of a state sequence
generated by the machine when given the word as input. The automaton
generates this state sequence by examining the word one symbol at a time,
choosing the next state to be generated from a finite (possibly empty) set of al-
ternatives determined by the most recently generated state and the next sym-
bol in the input. The concept of mixing this nondeterministic (existential)
choice between several alternatives with universal choice for the next state
to be generated (intuitively, choosing multiple “next” states at once) was first
proposed for finite automata working on finite words by Kozen [1976] and
Chandra and Stockmeyer [1976], who defined the expressively equal notions
of parallel and alternating finite automata, respectively (and later combined
their work in [Chandra et al. 1981]). The Boolean automata of Brzozowski
and Leiss [1980] provide another equivalent way to combine existential and
universal behavior in finite automata. This concept of alternation was later
extended to automata working on infinite words and trees by Miyano and
Hayashi [1984a,b] and Muller and Schupp [1985, 1987], respectively. Un-
like a nondeterministic automaton, which always generates at most one next
state at each step when working on its input, an alternating automaton can at
any step generate multiple “next” states at once and spawn copies of itself that
work independently on the remaining input. Thus, instead of mapping its in-
put to a single state sequence, an alternating automaton may generate a col-
lection of such sequences: whether the automaton recognizes (“accepts”) its
input is then determined from the properties of this collection of sequences.

In the case of finite words, alternation allows for a succinct representation
of “acceptable” sequences that does not add to the expressiveness of plain
nondeterministic automata: for every alternating automaton accepting a set
of finite words using n states, there exists a nondeterministic automaton that
accepts the same set of words. The nondeterministic automaton may have
an exponential number of states in n in the worst case, however, because the
minimal deterministic automaton simulating an alternating one may have
a doubly exponential number of states in n in the worst case [Kozen 1976;
Chandra and Stockmeyer 1976; Brzozowski and Leiss 1980; Chandra et al.
1981; Leiss 1981]. An analogous correspondence holds between classes of
alternating and nondeterministic automata on infinite words under many
notions of acceptance [Miyano and Hayashi 1984a,b; Lindsay 1988; Muller
and Schupp 1995]. Together with the expressive power of automata (which
can be made to coincide with that of the ω-regular expressions by using an

2. DEFINITIONS AND BASIC RESULTS 19

appropriate notion for acceptance [Büchi 1962; McNaughton 1966]) and the
suitability of automata for algorithmic analysis in general, the succinctness of
alternating automata provides the main motivation for applying them to the
specification and automatic verification of properties of infinite sequences.
In this section, we review the basic definitions and properties of alternating
automata on infinite words and some subclasses of the automata.

2.3.1 Basic Concepts

The combination of existential and universal choice between states of al-
ternating automata can be captured by encoding the transitions of the au-
tomata as arbitrary Boolean functions (formulas) on the states of the au-
tomata [Kozen 1976; Chandra and Stockmeyer 1976; Brzozowski and Leiss
1980; Chandra et al. 1981]; however, it is common to restrict the use of nega-
tion [Chandra and Stockmeyer 1976] especially when working with infinite
inputs [Muller and Schupp 1985, 1987; Vardi 1994]. Although the Boolean
representation is convenient for proving many fundamental properties of al-
ternating automata, such as their eligibility to an elegant complementation
construction based on syntactic manipulation of the Boolean functions and
“dualization” of the notion of acceptance [Muller and Schupp 1985, 1987],
the notion of a single transition is not always explicit in the Boolean repre-
sentation. Such a notion is nevertheless useful, for example, for representing
automata graphically as traditional state graphs. As we shall see later in Ch. 6,
an explicit representation for the transitions is also convenient for the simpli-
fication of the automata. For these reasons, we adopt a definition similar
to the one used previously by Gastin and Oddoux [2001]; in this definition,
the individual transitions leaving a state correspond to the disjuncts in the
disjunctive normal form of a corresponding Boolean function built from the
Boolean constants, the states of the automaton and the ∨ and the ∧ connec-
tives.

Formally, an alternating automaton is a tuple A=〈Σ, Q,∆, qI ,F〉, where
Σ is a finite set called the alphabet, Q is the finite set of states, qI ∈ Q is the
initial state, ∆ ⊆ Q × 2Σ × 2F × 2Q is the transition relation and F is the
finite set of acceptance conditions.

Individual elements in the transition relation ∆ are called transitions of
the automaton. The components of a transition t = 〈q,Γ, F,Q′〉 ∈ ∆ (for
some q ∈ Q, Γ ⊆ Σ, F ⊆ F , Q′ ⊆ Q) are called the source state, the
guard, the acceptance conditions, and the target states of t, respectively. The
transition t is an initial transition of A iff the source state of t is the initial
state of the automaton A (q = qI), a self-loop iff it includes its own source
state in its target states (q ∈ Q′), and (for an acceptance condition f ∈ F)
an f -transition iff it includes the condition f in its acceptance conditions
(f ∈ F). A state q′ ∈ Q is an f -state iff it is the source state of an f -transition
in A.

The well-known class of nondeterministic finite automata arises as a spe-
cial case of alternating automata in which |Q′| = 1 holds for every transition
〈q,Γ, F,Q′〉 ∈ ∆. In other words, an alternating automaton is nondeter-
ministic iff its every transition has exactly one target state. Many questions
about properties of nondeterministic automata can be answered using graph-

20 2. DEFINITIONS AND BASIC RESULTS

{a}

{b, c}
{a}

{a, c}

{c}

{b}

{a, d}{b}

{b, d}

{d}
q1

q2

q3

q4

q5
{a, c}

{c}

{b}

{a, d}

{b, d}

q4

q5

(a) (b)

Fig. 2.2: (a) The alternating automaton A =
〈
{a, b, c, d}, {q1 , q2, q3, q4, q5},{〈

q1,{a},∅,{q2, q4}
〉
,
〈
q1,{d},∅,∅

〉
,
〈
q2,{b},∅,{q1}

〉
,
〈
q2,{b, c},∅,{q3}

〉
,
〈
q3,{a},∅,{q2}

〉
,〈

q4,{a, d},{•}, {q4}
〉
,

〈
q4,{b},{•},{q4, q5}

〉
,

〈
q4,{c},∅,{q4}

〉
,

〈
q5,{a, c},{◦},{q5}

〉
,

〈
q5,

{b, d},∅,{q5}
〉}
, q1, {•, ◦}

〉
;

(b) The subautomaton Aq4 =
〈
{a, b, c, d}, {q4 , q5},

{〈
q4,{a, d},{•},{q4}

〉
,
〈
q4,{b},

{•},{q4, q5}
〉
,
〈
q4,{c},∅,{q4}

〉
,
〈
q5,{a, c},{◦},{q5}

〉
,
〈
q5,{b, d},∅,{q5}

〉}
, q4, {•, ◦}

〉

theoretic decision procedures. We shall discuss the construction and analysis
of such automata in Ch. 4 and Ch. 8.

Example 2.3.1 We illustrate our conventions for drawing alternating au-
tomata in Fig. 2.2 (a). The states of the automata are drawn as circles (with
the initial state of the automaton marked by a small arrowhead), and the
transitions of the automata are represented by sets of arrows connecting the
circles. We occasionally omit the labels of the states if they are not relevant in
the context. For each transition 〈q,Γ, F,Q′〉 ∈ ∆ with a nonempty set of tar-
get states (i.e., if |Q′| = n holds for some 1 ≤ n < ω), we draw n arrows from
the state q to each state in Q′. It is also permissible for a transition to have
no target states (in which case Q′ = ∅ holds): every such transition (such
as the transition with guard {d} starting from the state qI in Fig. 2.2 (a))
is represented with a single arrow connected only to the transition’s source
state. Arrows associated with the same transition are drawn in the same line
style; since the source of each transition is unique, the same line styles can
be reused in each state of the automaton without ambiguity as far as the
correspondence between arrows and transitions is concerned. Acceptance
conditions in F are represented by small shaded circles on the transition ar-
rows; each different shade corresponds to a different acceptance condition.
To simplify the figures, we usually place the transition guards near only one
of the arrows associated with a particular transition. We nevertheless repeat
the acceptance conditions of the transition on each of these arrows. �

Successors, Paths, Descendants and Subautomata
Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton, and let q ∈ Q. A
state q′ ∈ Q is a successor of q if there exists a transition 〈q,Γ, F,Q′〉 ∈ ∆
such that q′ ∈ Q′. A path in A is a nonempty sequence x = (qi)0≤i<n ∈ Qn,
where 1 ≤ n ≤ ω, and qi is a successor of qi−1 for all 1 ≤ i < n. If n = 1, the
path is trivial ; if n < ω, the path is a finite path from q0 to qn−1; otherwise
the path is infinite. The length of the path is the length of the sequence x,
i.e., the number of states in the sequence. The path visits the state q ∈ Q iff
qi = q holds for some 0 ≤ i < n. The path is simple iff qi 6= qj holds for all

2. DEFINITIONS AND BASIC RESULTS 21

0 ≤ i, j < n (i 6= j), and it is a loop (alternatively, a cycle) iff it is a finite
nontrivial path with qn−1 = q0. The cycle is simple iff (q0, q1, . . . , qn−2) is
a simple path. We reuse the terminology introduced for the transitions of A
and call a loop of length 2 a self-loop. (A self-loop transition always defines a
path that is a self-loop, but the converse does not hold in the general case.)
A state q′ ∈ Q is a descendant of q ∈ Q iff there exists a finite nontrivial path
from q to q′ in the automaton; in this case we also say that q′ is reachable
from q in A.

Let t1 = 〈q1,Γ1, F1, Q
′
1〉 ∈ ∆ and t2 = 〈q2,Γ2, F2, Q

′
2〉 ∈ ∆ be two

transitions of A. The transition t2 is consecutive to the transition t1 iff the
source state of t2 is a target state of t1 (i.e., iff q2 ∈ Q′

1 holds). A transition
chain is a (possibly empty) sequence of transitions (ti)0≤i<n ∈ ∆n (0 ≤ n ≤
ω) such that ti is consecutive to ti−1 for all 1 ≤ i < n. We say that the
chain is maximal if the chain cannot be concatenated with a transition (in
either order) to obtain another chain of transitions. Analogously to paths, the
length of the chain is the number of transitions (n) in the chain, the chain
is finite if n < ω and infinite otherwise, the chain visits a state q ∈ Q iff q is
the source state of ti for some 0 ≤ i < n, and it is simple iff ti 6= tj holds for
all 0 ≤ i, j < n (i 6= j).

Example 2.3.2 In Fig. 2.2 (a), the successors of q1 are the states q2 and q4; the

descendants of q1 include also the states q3 and q5, because x1
def
= (q1, q2, q3)

and x2
def
= (q1, q4, q5, q5) are finite nontrivial paths (of lengths 3 and 4) from q1

to q3 and q5, respectively. Because x1 does not visit any of the states q1, q2 or q3
twice, x1 is simple; this does not hold, however, for the path x2 that includes

a self-loop (q5, q5) from q5 to itself. The path x3
def
= (q2, q3, q2, q3, q2, q3, . . .)

is an infinite path that begins with a cycle (q2, q3, q2) that is not a self-loop.

The infinite transition chain y
def
=

(〈
q1, {a}, ∅, {q2, q4}

〉
,
〈
q4, {c}, ∅, {q4}

〉
,〈

q4, {c}, ∅, {q4}
〉
,
〈
q4, {c}, ∅, {q4}

〉
, . . .

)
visits the states q1 and q4. �

Let q ∈ Q be a state in the automaton A. The subautomaton of A with
initial state q (denoted Aq) is the alternating automaton obtained from A
by changing its initial state to q, removing all states that are different from
q but that are not descendants of q from the resulting automaton and re-
stricting the transition relation ∆ to the remaining set of states. The sub-
automaton shares its set of acceptance conditions with the original automa-

ton. We also say that Aq is rooted at the state q ∈ Q. Formally, Aq def
=

〈Σ, Qq,∆q, qqI ,F
q〉, where Qq def

= {q} ∪ {q′ ∈ Q | q′ is a descendant of q},

∆q def
=

{
〈q′,Γ, F,Q′〉 ∈ ∆ {q′} ∪Q′ ⊆ Qq

}
, qqI

def
= q, and F q def

= F . It is easy
to see that if Aq is a subautomaton of A and q′ ∈ Qq, then (Aq)q

′
= Aq′, i.e.,

each subautomaton of Aq is also a subautomaton of A.
When taking subautomata of alternating automata, we sometimes also

project the acceptance conditions of A into another given set of acceptance
conditions F ′. Formally, for a set F ′, we denote by Aq,F ′

the automaton

〈Σ, Qq,∆q,F ′
, qqI ,F

′〉, where Qq and qqI are defined as above, and ∆q,F ′ def
={

〈q′,Γ, F ∩ F ′, Q′〉 〈q′,Γ, F,Q′〉 ∈ ∆, {q′} ∪Q′ ⊆ Qq
}

.

Example 2.3.3 Figure 2.2 (b) shows the subautomaton Aq4 obtained from
the automaton A depicted in Fig. 2.2 (a). �

22 2. DEFINITIONS AND BASIC RESULTS

Runs
A run of an alternating automaton A = 〈Σ, Q,∆, qI ,F〉 on an infinite word
w ∈ Σω is a directed labeled acyclic graph (DAG) G = 〈V,E, L〉, where
the set of nodes V , the set of (hyper)edges E and the labeling function L :
V ∪ E → Q ∪ ∆ satisfy the following conditions (for X ⊆ V ∪ E, we write
L(X) as a shorthand for {L(x) | x ∈ X}):

• The set of nodes V can be partitioned into finite pairwise disjoint levels
Vi ⊆ V (i.e., V =

⋃
0≤i<ω Vi, Vi ∩ Vj 6= ∅ for all 0 ≤ i, j < ω, i 6= j)

such that V0 = {v0} is a singleton, and E ⊆
⋃

0≤i<ω(Vi × 2Vi+1).
[Partitioning to levels]

• For all v ∈ V , there exists a unique edge 〈v, V ′〉 ∈ E.
[Forward causality]

• For all v′ ∈ V \ V0, there exists an edge 〈v, V ′〉 ∈ E such that v′ ∈ V ′.
[Backward causality]

• L(v0) = qI , and for all 0 ≤ i < ω and e = 〈v, V ′〉 ∈ E ∩ (Vi × 2Vi+1),
there exists a transition t = 〈q,Γ, F,Q′〉 ∈ ∆ such that L(e) = t,
L(v) = q, w(i) ∈ Γ, and L(V ′) = Q′. [Consistency of labeling]

Let e = 〈v, V ′〉 ∈ E. Reusing the terminology defined for alternating
automata, we call each element v′ ∈ V ′ a successor of v; source and target
nodes of edges, descendants of a node, paths in a run, consecutive edges, and
chains and maximal chains of edges are defined in the obvious way.

Graph- vs. tree-based runs. Note that, although every individual level of a
run is required to be finite, we do not require the maximum number of nodes
in a level of a run to be finitely bounded. Therefore, the above graph-based
definition of runs subsumes (but is no more general than) the more common
definition of runs as finitely branching labeled trees (see, for example, [Vardi
1995]) in which the partitioning and backward causality properties follow im-
plicitly from the properties of trees. The graph-based definition is convenient
for expressing results on runs simply as transformations between runs without
a need to introduce additional concepts such as “run DAGs” (as often used
in the literature [Isli 1994, 1996; Kupferman and Vardi 1997, 2001]).

Example 2.3.4 Figure 2.3 illustrates the construction of the first few levels
of (one possible) run for the alternating automaton in Fig. 2.2 (a) on an
input word that begins with the symbols acabacababdcd . Again, we represent
nodes of the run with circles and edges with (sets) of arrows connecting the
nodes; we first draw the node corresponding to the level V0 of the run (the
leftmost node in the figure) and label this node with the initial state q1 of the
automaton. On the first input symbol a, the automaton spawns two copies of
itself that then process the next symbol of the input, starting from the states
q2 and q4, respectively. The spawning of the two copies is represented by
drawing arrows from the node labeled with the state q1 to two new nodes
labeled with these states in the figure; these nodes form level V1 of the run.
Nodes on the same level are always drawn horizontally aligned (with their
labels shown beside the nodes themselves). Subsequent levels of the run

2. DEFINITIONS AND BASIC RESULTS 23

q1q1

q1

q1

q2q2q2

q2 q2

q3

q3

q4

q4q4q4

q4

q4 q4q4q4

q4q4q4q4q4q4 q5q5 q5q5q5

q5q5q5q5q5q5q5q5q5

aaaaa bbb ccc dd

{a}

{a}

{a}
{a}

{a} {b}{b}

{b} {b}

{b}{b}

{c}

{c}

{c}

{c}

{d}

{a,c}

{a,c}{a,c}{a,c}{a,c} {a,c}

{a,d}{a,d}

{a,d}{a,d}{a,d}

{a,d}
{a,d}

{b,c}

{b,c}

{b,d}

{b,d}

{b,d}

{b,d}

{b,d}{b,d}

{b,d}

Fig. 2.3: First few levels of a run of the alternating automaton in Fig. 2.2 (a) formed
by reading the input acabacababdcd

of the automaton are defined in a similar manner so that the labels of the
successors of each node always match the target states of some transition
that starts from the state labeling the node itself and includes the next input
symbol (shown at the top of the figure) in its guard.

The nodes in a level of the run represent the copies of the automaton
which are “active” at the corresponding position of the input. As seen in the
figure, the number of active copies (of which several may be in the same state
of the automaton) can change while the automaton processes its input: the
automaton may spawn new copies of itself, some of the copies may “merge
together”, or a copy of the automaton may “die” by taking a transition with an
empty set of target states. Note that the structural properties of a run do not
enforce the merging of copies; nor do they enforce any global finite upper
bound on the number of copies of a particular subautomaton (or the total
number of active copies of the automaton) spawned at any position of the
input.

The arrows leaving each node constitute the unique (hyper)edge starting
from the node. Formally, each of these edges is labeled with a transition of
the automaton. We mark only the guards and the acceptance conditions of
these transitions in the figure; the exact label of each edge in the run can
nevertheless be determined uniquely from this information together with the
labels of the nodes. �

Infinite Branches and Their Properties

Let G = 〈V,E, L〉 be a run of an alternating automaton A = 〈Σ, Q,∆,
qI ,F〉 on an infinite word w ∈ Σω. We call each maximal chain of edges
in G a branch of G; by the partitioning and backward causality, it is easy to
see that each branch of G begins with the unique edge 〈v0, V1〉 ∈ E. In
particular, we denote the set of infinite branches in G by B(G) and define,
for each infinite branch β = (ei)0≤i<ω ∈ B(G),

inf(β)
def
=

{
f ∈ F ∀i ≥ 0 : ∃j ≥ i : L(ej) is an f -transition of A

}

and

fin(β)
def
=

{
f ∈ F ∃i ≥ 0 : ∀j ≥ i : L(ej) is an f -transition of A

}
.

24 2. DEFINITIONS AND BASIC RESULTS

The sets inf(β) and fin(β) are called the infinity set and the final set of β,
respectively; inf(β) collects the acceptance conditions occurring in the label
of infinitely many edges in the branch β, and fin(β) is the maximal set of
conditions that are missing from the labels of only finitely many edges in the
branch. It is easy to see that if fin(β) 6= ∅, then inf(β) 6= ∅, and furthermore,
if inf(β) 6= ∅, then, for all f ∈ inf(β), there exists an f -transition tf ∈ ∆
such that L(ei) = tf holds for infinitely many i, because ∆ is finite.

Acceptance Modes and the Language of an Automaton

Let G = 〈V,E, L〉 be a run of an alternating automaton A = 〈Σ, Q,∆,
qI ,F〉 on an infinite word w ∈ Σω, and let B(G) be the set of infinite
branches in G. A branch β ∈ B(G) is inf-accepting iff inf(β) = F and fin-
accepting iff fin(β) = ∅. The run G is inf- (fin-)accepting iff every branch
β ∈ B(G) is inf- (fin-)accepting, respectively. (If all branches of G are finite,
then B(G) = ∅, and thus G is trivially both inf- and fin-accepting.)

We say that A inf-accepts (fin-accepts) w ∈ Σω iff A has an inf-accepting
(fin-accepting) run on w. We call the set of infinite words accepted by A
in a fixed acceptance mode the language of A and denote it by Linf(A)
or Lfin(A), where the acceptance mode is given in the subscript. The au-
tomaton A inf- or fin-recognizes a language L ⊆ Σω iff L = Linf(A) or
L = Lfin(A), respectively. The automaton is inf- (fin-)empty iff it inf-
(fin-)recognizes the empty language. We call two automata inf- (fin-)equiva-
lent iff they inf- (fin-)recognize the same language.

Transition- vs. state-based acceptance. In the literature, acceptance is of-
ten characterized by associating acceptance conditions with states instead of
the transitions of an automaton and defining (for an infinite branch β in
a run of the automaton) inf(β) (fin(β)) to be the union of the acceptance
conditions associated with those states in the automaton that occur as labels
of the source nodes of infinitely many (resp. all except for finitely many)
edges in β. We shall refer to this form of acceptance as state-based (inf- or
fin-)acceptance to distinguish it from the above notion of transition-based ac-
ceptance. It is a well-known fact that state-based inf-acceptance can always
be reduced to transition-based inf-acceptance without altering the state set of
the automaton, but the converse reduction may necessitate duplicating some
states of the automaton to preserve its language; the results on nondetermin-
istic automata (see, for example, [Perrin and Pin 2004]) generalize easily to
alternating automata with multiple acceptance conditions.

Relation to generalized Büchi acceptance. Our notion of inf-acceptance
is equivalent to classic (generalized) Büchi acceptance commonly used in
the literature (see, for example, the survey article by Thomas [1990]). As
a matter of fact, fin-acceptance can be seen merely as a way to rephrase
the notion of inf-acceptance, because inf- and fin-acceptance can be eas-
ily reduced to each other: an alternating automaton A = 〈Σ, Q,∆, qI ,F〉
fin- (inf-)recognizes the language L ⊆ Σω iff the automaton obtained from
A by complementing the set of acceptance conditions of every transition
of A with respect to F inf- (fin-)recognizes the same language. (That is,
Lfin(A) = Linf(A

′) holds for the automaton A′ = 〈Σ, Q,∆′, qI ,F〉 having

2. DEFINITIONS AND BASIC RESULTS 25

q4q4q4

q5q5q5

aa

{a,c}{a,c}

{a,d}{a,d}

q4q4q4

q5q5q5

a b

{b}

{a,c}

{a,d}

{b,d}

q4q4q4

q5q5q5

c d

{c}

{a,c}

{a,d}

{b,d}

(a) (b) (c)

Fig. 2.4: Possible extensions of the graph in Fig. 2.3 into a run of the alternating
automaton shown in Fig. 2.2 (a). (a) Extension on the input aω ; (b) Extension on
the input (ab)ω; (c) Extension on the input (cd)ω

the transition relation ∆′ def
=

{
〈q,Γ,F \ F,Q′〉 〈q,Γ, F,Q′〉 ∈ ∆

}
; as a mat-

ter of fact, if |F| = 1 holds, then fin-acceptance coincides with a notion of
acceptance commonly known as co-Büchi acceptance.) Nevertheless, fin-
acceptance provides a convenient way to identify a collection of transitions
that an automaton is forbidden to take indefinitely in any infinite branch of
a fin-accepting run on an input w ∈ Σω belonging to the language of the
automaton. Obviously, this requirement resembles the characteristic proper-
ties of models of strong temporal eventualities of LTL: recall that an infinite
word does not satisfy a strong temporal eventuality if some designated LTL
property remains unsatisfied in all suffixes of the word. We shall make use of
this connection between the semantics of LTL and fin-acceptance in Ch. 3.
Additionally, with fin-acceptance one can freely add new acceptance condi-
tions to an automaton without modifying its transition relation to preserve
the language of the automaton.

Because the different acceptance modes are reducible to each other as de-
scribed above, each theorem on alternating automata working in one accep-
tance mode corresponds to a theorem on automata working in the opposite
acceptance mode. We shall prove most of our results for only one acceptance
mode and shall not deal with the opposite mode explicitly.

Example 2.3.5 Consider again the initial fragment of a run of the automaton
from Ex. 2.3.1 on the input acabacababdcd (Fig. 2.3). This run fragment ends
in a level having two nodes labeled with the states q4 and q5, respectively. We
investigate inf- and fin-acceptance in several runs of the automaton obtained
via simple infinite extensions of the input.

Concatenating the word aω to the input allows us to extend the graph
in Fig. 2.3 into a run ending in, for example, an infinite number of identi-
cal levels shown in Fig. 2.4 (a). It is easy to see that the run formed in this
way contains a finite number of infinite branches, and all of these branches
end in an infinite suffix of identically labeled edges (labeled either with the
transition

〈
q4, {a, d}, {•}, {q4}

〉
or the transition

〈
q5, {a, c}, {◦}, {q5}

〉
). Be-

cause neither of these transitions is both a •- and a ◦-transition, it follows that
the conditions • and ◦ cannot both belong to the infinity set of any infinite
branch, and thus the run is not inf-accepting. On the other hand, the run is
not fin-accepting, either, because the final set of every infinite branch always
includes one of the conditions • or ◦.

26 2. DEFINITIONS AND BASIC RESULTS

Figure 2.4 (b) shows another extension for the graph in Fig. 2.3 obtained
by concatenating the word (ab)ω with the original input. The run now con-
tains infinitely many infinite branches: intuitively, after traversing a chain
of edges that ends in an edge labeled with a self-loop starting from the state
q4, we always have the opportunity of extending this chain with an edge la-
beled either with another self-loop starting from q4, or a self-loop that starts
from q5. Nevertheless, it is easy to see that all infinite branches again end in
an infinite suffix of edges labeled with self-loops starting from a fixed state
of the automaton. More precisely, the edge labels will eventually alternate
between the transitions

〈
q4, {a, d}, {•}, {q4}

〉
and

〈
q4, {b}, {•}, {q4, q5}

〉
, or

the transitions
〈
q5, {a, c}, {◦}, {q5}

〉
and

〈
q5, {b, d}, ∅, {q5}

〉
in every infinite

branch of the run. Similarly to the first case, no infinite branch has {•, ◦}
as its infinity set, and the run is not inf-accepting. Although the final set of
all infinite branches ending in a suffix labeled with self-loops starting from
q5 is empty, the run is nevertheless not fin-accepting, either, because the ac-
ceptance condition • will eventually repeat indefinitely in the edge labels of
every infinite branch that ends in an infinite suffix of edges corresponding to
self-loops starting from the state q4.

Finally, extending the graph in Fig. 2.3 into a run by reading the in-
put (cd)ω can be done as shown in Fig. 2.4 (c). As above, the run is not
inf-accepting; however, in this case all infinite branches of the run contain
infinitely many edges labeled with transitions having no acceptance condi-
tions as seen in the figure. Therefore the automaton fin-accepts the word
acabacababdcd(cd)ω. �

2.3.2 Properties of Runs of Alternating Automata

In this section we list several basic facts about runs of alternating automata.
These facts will be used mainly as tools in the proofs of subsequent results.
We begin by establishing an obvious correspondence between reachability in
a run of an alternating automaton and reachability in the automaton itself;
compare this result with Fig. 2.2 (a) and Fig. 2.3.

Proposition 2.3.6 Let G = 〈V,E, L〉 be a run of an alternating automaton
A = 〈Σ, Q,∆, qI ,F〉 on an infinite word w ∈ Σω. Let v ∈ Vi be a node in
G at some level 0 ≤ i < ω. If v′ ∈ V is a descendant of v in G, then L(v′) is
a descendant of L(v) in A.

Proof: Because of the partitioning of V , each descendant of v in G is an
element of Vi+j for some 1 ≤ j < ω. If v′ ∈ Vi+1 is a successor of v, then v
is the source state of an edge that includes v′ in its target nodes, and because
G is a run, the consistency of the labeling implies that L(v′) is a successor
(hence, a descendant) of L(v) in A.

Assume that the result holds for all descendants v′ ∈ Vi+j of v for some
1 ≤ j < ω, and let v′′ ∈ Vi+j+1 be a descendant of v. Thus G contains
a finite nontrivial path from v to v′′, and, because E contains edges only
between consecutive levels of G, there exists a descendant v′ ∈ Vi+j of v and
an edge e = 〈v′, V ′〉 ∈ E such that v′′ ∈ V ′ holds. Because the labeling L is
consistent, L(v′′) is a successor of L(v′) in A, and thus L(v′′) is a descendant
of L(v) by the induction hypothesis. �

2. DEFINITIONS AND BASIC RESULTS 27

qIqIqIqIqIqIqI qI

qI

qIqI

qIqI

qI

q1

q2

q3

self -loo
p

self -loo
p

self -loo
p

n
o
n

-self -loo
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

Fig. 2.5: Every run of an alternating automaton contains a chain of edges labeled
with initial self-loops of the automaton such that the sequence is either infinite, or it
can be extended with an edge labeled with an initial transition that is not a self-loop

Consider the construction of a run for an alternating automaton A.
Clearly, the only way to extend a finite (possibly empty) chain of edges la-
beled with initial self-loops of the automaton with a new edge starting from
a node labeled with the initial state of the automaton in a consistent way
is to label the new edge with another initial transition of the automaton.
Therefore, every run of the automaton contains either a finite chain of edges
labeled with initial transitions of the automaton such that all edges except
the last one correspond to self-loops of the automaton, or an infinite chain of
edges, all edges of which are labeled with initial self-loops of the automaton
(see Fig. 2.5). Because we shall often rely on the existence of such a chain of
edges in a run of an alternating automaton, we state this simple fact formally
here for further reference.

Proposition 2.3.7 Let G = 〈V,E, L〉 be a run of an alternating automaton
A = 〈Σ, Q,∆, qI ,F〉. There exists an index 0 ≤ i ≤ ω and a chain of edges
(ej)0≤j<i+1, ej ∈ E ∩ (Vj × 2Vj+1), such that L(ej) is an initial self-loop of A
for all 0 ≤ j < i, and either i = ω, or L(ei) is an initial transition of A that is
not a self-loop.

Proof: Because G is a run, L(v0) = qI , and v0 has the unique outgoing edge
e = 〈v0, V1〉 ∈ E ∩ (V0 × 2V1) such that L(e) is an initial transition of A. If
qI /∈ L(V1), then L(e) is not a self-loop, and thus i = 0 can be chosen as the
index referred to in the proposition.

Assume that G contains a chain of edges (ej)0≤j≤k, ej ∈ E ∩ (Vj ×2Vj+1),
for some 0 ≤ k < ω such that L(ej) is an initial self-loop of A for all 0 ≤
j ≤ k. Let ek = 〈v, V ′〉 for some v ∈ Vk and V ′ ⊆ Vk+1. Because L(ek)
is an initial self-loop of A, there exists a node v′ ∈ V ′ such that L(v′) = qI .
Due to forward causality, v′ has the unique outgoing edge ek+1 = 〈v′, V ′′〉 ∈
E ∩ (Vk+1 × 2Vk+2) for some V ′′ ⊆ Vk+2, and because L is consistent, ek+1 is
labeled with an initial transition of A. Clearly, ek and ek+1 are consecutive.
As above, if qI /∈ L(V ′′), then L(ek+1) is not a self-loop, and (ej)0≤j≤k+1 is a
chain of edges that satisfies the criteria given in the proposition. Otherwise
(ej)0≤j≤k+1 is another chain of edges labeled with initial self-loops of A. By
induction, it follows that G contains a chain of edges satisfying the required
criteria. �

The following proposition proves the fact that each run of an alternating
automaton A on an infinite word w ∈ Σω is built from the runs of its subau-

28 2. DEFINITIONS AND BASIC RESULTS

tomata on suffixes of w; compare this result again with Fig. 2.3.

Proposition 2.3.8 Let G = 〈V,E, L〉 be a run of an alternating automaton
A = 〈Σ, Q,∆, qI ,F〉 on an infinite word w ∈ Σω. Let v ∈ Vi be a node
in G at some level 0 ≤ i < ω with L(v) = q ∈ Q. Define the graph
Gv = 〈V v, Ev, Lv〉, where

• V v def
= {v} ∪ {v′ ∈ V | v′ is a descendant of v in G},

• Ev def
=

{
〈v′, V ′〉 ∈ E {v′} ∪ V ′ ⊆ V v

}
, and

• Lv : (V v ∪Ev) → (Q∪∆) is defined by the rule Lv(x)
def
= L(x) for all

x ∈ V v ∪Ev.

The graph Gv is a run of the subautomaton Aq = 〈Σ, Qq,∆q, q,F q〉 on the
suffix wi of w.

Proof: We check that Gv satisfies the properties required of a run of the sub-
automaton Aq on wi.

(Partitioning) V v can be partitioned into finite disjoint levels V v
j

def
= V v ∩

Vi+j (0 ≤ j < ω). Clearly, V v
0 = {v}, and Ev ⊆

⋃
0≤j<ω(V

v
j × 2V

v
j+1).

(Causality) If v′ ∈ V v, then v′ = v or v′ is a descendant of v in G, and
because G is a run, there exists a unique edge e = 〈v′, V ′〉 ∈ E. Clearly,
every node in V ′ is a descendant of v. Therefore, {v′} ∪ V ′ ⊆ V v, and
e ∈ Ev is the unique edge starting from v′ also in Ev.

If v′ ∈ V v \ {v}, then v′ is either a successor of v, or a successor of a node
that is itself a descendant of v inG. In either case, there exists a node v′′ ∈ V v

and an edge e = 〈v′′, V ′′〉 ∈ E such that v′ ∈ V ′′ holds. Obviously, all nodes
in V ′′ are descendants of v. Thus {v′′} ∪ V ′′ ⊆ V v holds, and e ∈ Ev.

(Consistency of Lv) By the definitions of Gv and Aq, Lv(v) = L(v) = q is
the initial state of Aq. Let v′ ∈ V v

j ⊆ Vi+j for some 0 ≤ j < ω. By causality,
there exists a unique edge e = 〈v′, V ′〉 ∈ Ev ⊆ E (with V ′ ⊆ Vi+j+1), and
by consistency of L, L(e) =

〈
L(v′),Γ, F, L(V ′)

〉
∈ ∆ holds for some Γ ⊆ Σ

and F ⊆ F such that w(i+ j) ∈ Γ. Because Lv(x) = L(x) holds for all x ∈
V v ∪ Ev, then obviously

〈
L(v′),Γ, F, L(V ′)

〉
=

〈
Lv(v′),Γ, F, Lv(V ′)

〉
=

Lv(e) holds. It remains to check that
〈
L(v′),Γ, F, L(V ′)

〉
∈ ∆q . Clearly, if

v′ = v, then L(v′) = L(v) = q ∈ Qq. Otherwise v′ is a descendant of v in
G, and thus L(v′) is a descendant of L(v) = q in A by Proposition 2.3.6. In
either case, all states in L(V ′) are descendants of L(v), and thus L

(
{v′} ∪

V ′
)
⊆ Qq. Because F ⊆ F = F q holds by the definition of Aq, it follows

that
〈
L(v′),Γ, F, L(V ′)

〉
∈ ∆q holds.

We conclude that Gv is a run of Aq on
(
w(i+ j)

)
0≤j<ω

= w[i,ω) = wi. �

By focusing only on inf- or fin-accepting runs of alternating automata,
Proposition 2.3.8 leads to the result that any inf- or fin-accepting run of an al-
ternating automaton consists of inf- or fin-accepting runs of its subautomata,
respectively.

2. DEFINITIONS AND BASIC RESULTS 29

Proposition 2.3.9 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton
working in acceptance mode µ ∈ {inf, fin}, and let G = 〈V,E, L〉 be a µ-
accepting run of A on w ∈ Σω. For all 0 ≤ i < ω and v ∈ Vi, the run Gv

obtained from G using the construction in Proposition 2.3.8 is a µ-accepting
run of AL(v) on wi. More generally, if G = 〈V,E, L〉 is a µ-accepting run of
A on w, then AL(v) µ-accepts wi for all 0 ≤ i < ω and v ∈ Vi.

Proof: By Proposition 2.3.8, Gv is a run of the subautomaton AL(v) on wi. If
there exists an infinite path through Gv starting from the node v, then this
path is a suffix of some infinite path through G that begins from the node
v0 ∈ V0 and visits the node v. (This follows directly from backward causality
and the fact that V v ⊆ V and Ev ⊆ E hold.) It follows that also each infinite
branch βv = (evj)0≤j<ω ∈ B(Gv) in Gv is a suffix of an infinite branch
β = (ej)0≤j<ω ∈ B(G) in G (where evj = ei+j for all 0 ≤ j < ω). Because
G is a µ-accepting run of A, β is µ-accepting. Thus, either inf(β) = F
(µ = inf), or fin(β) = ∅ (µ = fin). Since βv is an infinite suffix of β,
β contains only finitely many edges not contained in βv, and thus either
inf(βv) = inf(β) = F = FL(v), or fin(βv) = fin(β) = ∅ holds. It follows
that Gv is a µ-accepting run of AL(v) on wi. �

Proposition 2.3.9 has the following immediate consequence on the non-
occurrence of nodes and edges labeled with certain states or transitions of an
alternating automaton in an inf- or fin-accepting run of the automaton.

Proposition 2.3.10 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton
working in acceptance mode µ ∈ {inf, fin}. Let q∅ ∈ Q be a state of the
automaton such that Lµ(Aq∅) = ∅ holds, or let t∅ = 〈q,Γ, F,Q′〉 ∈ ∆
(q ∈ Q, Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q) be a transition such that Γ = ∅,
or

⋂
q′∈Q′Lµ(A

q′) = ∅ holds. For all w ∈ Lµ(A), no µ-accepting run of
A on w contains a node (edge) labeled with the state q∅ (the transition t∅,
respectively).

Proof: Let G = 〈V,E, L〉 be a µ-accepting run of A on some w ∈ Σω. If
there exists a node v ∈ Vi (0 ≤ i < ω) such that L(v) = q∅ holds, then
wi ∈ Lµ(A

q∅) holds by Proposition 2.3.9. But then Lµ(A
q∅) is not empty. It

follows that G has no nodes labeled with the state q∅.
Let e = 〈v, V ′〉 ∈ E ∩ (Vi × 2Vi+1) (0 ≤ i < ω) be an edge in G.

Because the labeling L is consistent, the guard of the transition L(e) ∈ ∆
cannot be nonempty (it contains the symbol w(i)), and the target nodes V ′

of e are labeled with the target states of L(e). Because V ′ ⊆ V holds, it
follows by Proposition 2.3.9 that Aq′ µ-recognizes wi+1 for all q′ ∈ L(V ′),
i.e., wi+1 ∈

⋂
q′∈L(V ′) Lµ(A

q′) holds. But then
⋂
q′∈L(V ′) Lµ(A

q′) 6= ∅. It is
easy to see that t∅ cannot be the label of e. �

Consequently, it is safe to remove a state (transition) from an alternating
automaton if the subautomaton rooted at the state inf- or fin-recognizes the
empty language (respectively, if the intersection of the languages recognized
by the subautomata rooted at the transition’s target states is empty).

Corollary 2.3.11 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton
working in acceptance mode µ ∈ {inf, fin}, let Q∅ ⊆ Q be a set of states

30 2. DEFINITIONS AND BASIC RESULTS

such that Lµ(Aq) = ∅ holds for all q ∈ Q, and let ∆∅ ⊆ ∆ be a set of transi-
tions such that Γ = ∅ or

⋂
q′∈Q′Lµ(A

q′) = ∅ holds for all 〈q,Γ, F,Q′〉 ∈ ∆∅

(q ∈ Q, Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q). Let A′ = 〈Σ, Q′,∆′, qI ,F〉 be the

alternating automaton obtained from A by defining Q′ def
= Q \

(
Q∅ \ {qI}

)

and ∆′ def
=

{
〈q,Γ, F,Q′′〉 ∈ ∆ \ ∆∅ {q} ∪ Q′′ ⊆ Q′

}
. The automata A and

A′ are µ-equivalent.

Proof: Clearly, Q′ ⊆ Q and ∆′ ⊆ ∆ holds. Because A and A′ share their
initial state and their acceptance conditions, it is easy to see that every µ-
accepting run of A′ on some w ∈ Σω is also a µ-accepting run of A on w.
The converse result follows because no µ-accepting run of A on any w ∈
Σω contains nodes or edges labeled with states from Q∅ or ∆∅, respectively
(Proposition 2.3.10). We conclude that A and A′ are µ-equivalent. �

Proposition 2.3.9 implies also that the language inf- or fin-recognized by
an alternating automaton depends only on the structure of the subautomaton
rooted at the initial state of the automaton. Consequently, given an alternat-
ing automaton, we can always remove all its non-initial states that are not
reachable from its initial state (and the transitions having such states as their
source state or in their target states) without changing the language of the
automaton.

Proposition 2.3.12 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton
working in acceptance mode µ ∈ {inf, fin}. For all w ∈ Σω, A µ-accepts w
iff AqI µ-accepts w.

Proof: By the definition of AqI , the set of states (transitions) of AqI forms
a subset of the states (transitions) of A, and because A and AqI share their
initial state and the set of acceptance conditions, every µ-accepting run of
AqI on some w ∈ Σω is also a µ-accepting run of A on w.

Conversely, if G = 〈V,E, L〉 (with V0 = {v0}) is a µ-accepting run of A
on w ∈ Σω, then it follows immediately by Proposition 2.3.9 that Gv0 = G is
a µ-accepting run of AL(v0) = AqI on w0 = w. �

Example 2.3.13 Consider again the alternating automaton depicted in
Fig. 2.2 (a) (p. 21). If we choose q4 instead of q1 as the initial state of this
automaton, then, by Proposition 2.3.12, we know that the language of the
automaton is completely determined by the subautomaton Aq4 shown in
Fig. 2.2 (b), and thus the modified automaton and Aq4 (obtained from it
by removing the states q1, q2 and q3) recognize the same language. �

2.3.3 Semi-Runs

In this section we define a class of graph structures which will be convenient
for proving many results on alternating automata via transformation of runs
of the automata. Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton,
and let w ∈ Σω. We call a directed labeled acyclic graph G = 〈V,E, L〉 a
semi-run of A on w iff V , E and L satisfy the partitioning, backward causality
and the consistency properties defined for runs of A (p. 23) together with a
relaxed forward causality condition defined as

2. DEFINITIONS AND BASIC RESULTS 31

w(0) w(1) w(2) w(3) w(4) w(5)

q1

q1

q2

q2

q3

q3

w(0) w(1) w(2) w(3) w(4) w(5)

q1

q1

q2

q3

q2

q3

(a) (b)

Fig. 2.6: Extending a semi-run of an automaton on an input w into a run of the
automaton using runs of the automaton’s subautomata. (a) A semi-run of an au-
tomaton on w together with runs of its subautomata on suffixes of w; (b) The run
(black nodes and edges) obtained by joining the runs of the subautomata with the
semi-run of the automaton)

For all v ∈ V , there exists at most one edge 〈v, V ′〉 ∈ E.
[Forward semi-causality]

Thus, all nodes of a semi-run do not need to have any outgoing edges (but
each edge starting from a node is still unique). The concepts of an infinite
branch and acceptance extend to semi-runs in an obvious way: a semi-run G
is called an inf- or fin-accepting semi-run iff each infinite branch through G
is inf- or fin-accepting, respectively.

An inf- (fin-)accepting semi-run of A on w can be extended into an inf-
(fin-)accepting run of A on w provided that it is possible to “attach” an inf-
(fin-)accepting run of a subautomaton of A on a suffix of w to each node of
the semi-run with no outgoing edges. This fact is formalized in the following
proposition; see also Fig. 2.6.

Proposition 2.3.14 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton
working in acceptance mode µ ∈ {inf, fin}, and let G = 〈V,E, L〉 be a µ-

accepting semi-run of A on w ∈ Σω. Let V̂i
def
=

{
v ∈ Vi E ∩ ({v}× 2Vi+1) =

∅
}

denote the set of nodes at level 0 ≤ i < ω of G with no outgoing edges,
and assume that AL(v̂) has a µ-accepting run on wi for all 0 ≤ i < ω and
v̂ ∈ V̂i. The automaton A µ-accepts w.

Proof: For all 0 ≤ i < ω and all v̂ ∈ V̂i, let Gv̂ = 〈V v̂, E v̂, Lv̂〉 (with V v̂
0 =

{vv̂0}) be a µ-accepting run of AL(v̂) on wi. Without loss of generality, we

may assume that V v̂ ∩ V v̂′ = ∅ holds for all pairs of nodes v̂, v̂′ ∈
⋃

0≤i<ω V̂i

(v̂ 6= v̂′) and V v̂ ∩ V = ∅ holds for all v̂ ∈
⋃

0≤i<ω V̂i. Define the graph
G′ = 〈V ′, E ′, L′〉, where

• V ′ def
= V ∪

⋃
0≤i<ω

⋃
v̂∈bVi

(V v̂ \ {vv̂0}),

• E ′ def
= E ∪

⋃
0≤i<ω

⋃
v̂∈bVi

(
(E v̂ \ {〈vv̂0 , V

v̂
1 〉}) ∪ {〈v̂, V v̂

1 〉}
)
, and

32 2. DEFINITIONS AND BASIC RESULTS

• the labeling function L′ is given by

L′(v)
def
=

{
L(v) if v ∈ V

Lv̂(v) if v ∈ V v̂ \ {vv̂0} for some v̂ ∈
⋃

0≤i<ω V̂i

L′(e)
def
=





L(e) if e ∈ E

Lv̂(e) if e ∈ E v̂ \
{
〈vv̂0 , V

v̂
1 〉

}
, v̂ ∈

⋃
0≤i<ω V̂i

Lv̂
(
〈vv̂0 , V

v̂
1 〉

)
if e = 〈v̂, V v̂

1 〉 for some v̂ ∈
⋃

0≤i<ω V̂i

We show that G′ is a µ-accepting run of A on w by checking that G′

satisfies all properties required of an accepting run.

(Partitioning) V ′ can be partitioned into finite disjoint levels by defining

V ′
i

def
= Vi ∪

⋃
0≤j<i

⋃
v∈bVj

V v
i−j; then also E ′ ⊆

⋃ω
i=0(V

′
i × 2V

′
i+1) holds. In

addition, because G is a semi-run of A, V ′
0 = V0 is a singleton.

(Forward causality) Let v ∈ V ′. If v ∈ V , and v has an outgoing edge in
G, then forward causality follows because E ⊆ E ′ holds. Otherwise, if v ∈ V

has no outgoing edges in G, then v ∈ V̂i for some 0 ≤ i < ω, and by the
definition ofG′, 〈v, V v̂

1 〉 is the unique edge starting from v in this case. In the

remaining case, v ∈ V v̂\{vv̂0} holds for some 0 ≤ i < ω and v̂ ∈ V̂i. Because
Gv̂ is a run of AL(v̂) on wi, there exists a unique edge e = 〈v, V ′〉 ∈ E v̂, and
because v 6= vv̂0 , e ∈ E ′ holds by the definition of G′.

(Backward causality) Let v′ ∈ V ′ \ V ′
0 . If v′ ∈ V , then, because G is a

semi-run, there exists (in G) a node v ∈ V and an edge e ∈ E that starts from
v and includes v′ in its target nodes. Because V ⊆ V ′ and E ⊆ E ′, the same
still holds in G′. If v′ ∈ V v̂ \ {vv̂0} for some v̂ ∈

⋃
0≤i<ω V̂i, then v′ ∈ V v̂

j for
some 1 ≤ j < ω. Because Gv̂ is a run, there exists (in Gv̂) a node v ∈ V v̂

j−1

and an edge e ∈ E v̂ that starts from v and includes v′ in its target nodes. If
j > 1, then v ∈ V v̂\{vv̂0} ⊆ V ′ and e ∈ E v̂\

{
〈vv̂0 , V

v̂
1 〉

}
⊆ E ′, and backward

causality follows. If j = 1, then v′ is a successor of a node v ∈
⋃

0≤i<ω V̂i by
the definition of G′, and G′ has the backward causality property also in this
case.

(Consistency of L′) Because V ′
0 = V0 = {v0} and L is consistent, L′(v0) =

L(v0) = qI .
Let e ∈ E ′. Clearly, e ∈ V ′

i × 2V
′
i+1 for some 0 ≤ i < ω. If e ∈ E

holds, then e = 〈v, V ′〉 ∈ Vi × 2Vi+1 holds by the definition of G′. Because
L is consistent, it follows from the definition of G′ that L′(e) = L(e) =〈
L(v),Γ, F, L(V ′)

〉
∈ ∆ holds in G for some Γ ⊆ Σ and F ⊆ F such that

w(i) ∈ Γ. The labeling L′ is now consistent because
〈
L(v),Γ, F, L(V ′)

〉
=〈

L′(v),Γ, F, L′(V ′)
〉
.

If e = 〈v̂, V v̂
1 〉 holds for some v̂ ∈ V̂i, then, by the definition of G′ and

the consistency of Lv̂, L′(e) = Lv̂
(
〈vv̂0 , V

v̂
1 〉

)
=

〈
Lv̂(vv̂0),Γ, F, L

v̂(V v̂
1)

〉
∈

∆ holds for some Γ ⊆ Σ and F ⊆ F such that wi(0) = w(i) ∈ Γ.
Then also the labeling L′ is consistent, because

〈
Lv̂(vv̂0),Γ, F, L

v̂(V v̂
1)

〉
=〈

L(v̂),Γ, F, Lv̂(V v̂
1)

〉
=

〈
L′(v̂),Γ, F, L′(V v̂

1)
〉
.

Finally, if e = 〈v, V ′〉 ∈ E v̂ \
{
〈vv̂0 , V

v̂
1 〉

}
holds for some v̂ ∈ V̂i (0 ≤ i <

ω), then e ∈ V v̂
j × 2V

v̂
j+1 ⊆ V ′

i+j × 2V
′
i+j+1 holds for some 1 ≤ j < ω (and

{v} ∪ V ′ ⊆ V v̂ \ {vv̂0}). Because Gv̂ is a run of AL(v̂) on wi, the labeling
Lv̂ is consistent, and thus L′(e) = Lv̂(e) =

〈
Lv̂(v),Γ, F, Lv̂(V ′)

〉
∈ ∆ holds

2. DEFINITIONS AND BASIC RESULTS 33

for some Γ ⊆ Σ and F ⊆ F such that wi(j) = w(i + j) ∈ Γ. Because〈
Lv̂(v),Γ, F, Lv̂(V ′)

〉
=

〈
L′(v),Γ, F, L′(V ′)

〉
, L′ is consistent also in this

case.

(Acceptance) Clearly, G′ is µ-accepting if all branches of G′ are finite.
Otherwise let β ∈ B(G′) be an infinite branch in G′. If β is contained in
G, then β is µ-accepting by assumption. Otherwise the branch consists of a
finite (possibly empty) chain of edges in G followed by an edge of the form
e = 〈v̂, V v̂

1 〉 for some v̂ ∈
⋃

0≤i<ω V̂i and V v̂
1 ⊆ V v̂, which is then followed

by an infinite chain of edges through Gv̂. Clearly, this chain is a suffix of
an infinite branch β v̂ in Gv̂. Since the number of edges in β preceding
this suffix is finite, it follows that inf(β) = inf(β v̂) and fin(β) = fin(β v̂), and
since either inf(β v̂) = F or fin(β v̂) = ∅ (depending on the acceptance mode
µ), it follows that also inf(β) = F or fin(β) = ∅ holds. We conclude that G′

is a µ-accepting run of A on w. �

Proposition 2.3.14 provides a simple method for constructing accepting
runs for alternating automata by first finding an accepting semi-run for the
automaton, and then extending it with accepting runs for the automaton’s
subautomata. We shall make extensive use of this result in later chapters.
As a first example of an application of the result, we establish a simple cor-
respondence between a single step of operation of an alternating automa-
ton and inf- (fin-)acceptance. More precisely, an alternating automaton inf-
(fin-)accepts its input only if all copies of the automaton spawned by the first
transition taken by the automaton inf- (fin-)accept the input that remains af-
ter the first input symbol; conversely, the automaton can always be made to
accept its input if it has such an initial transition whose guard contains the
first symbol of the input.

Proposition 2.3.15 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton
working in acceptance mode µ ∈ {inf, fin}, and let w ∈ Σω. The automaton
A µ-accepts w iff there exists a transition 〈qI ,Γ, F,Q

′〉 ∈ ∆ for some Γ ⊆ Σ,
F ⊆ F and Q′ ⊆ Q such that w(0) ∈ Γ holds, and for all q ∈ Q′, the
subautomaton Aq µ-accepts w1.

Proof: (Only if) Assume that A µ-accepts w. Then A has a µ-accepting

run G = 〈V,E, L〉 on w, and G contains a state v0 ∈ V0 labeled with the
initial state of A and an edge e = 〈v0, V1〉 ∈ E labeled with a transition
t = 〈qI ,Γ, F,Q

′〉 ∈ ∆ for some Γ ⊆ Σ and F ⊆ F such that w(0) ∈ Γ and
Q′ = L(V1) hold. By Proposition 2.3.8, we can extract from G a run of the
subautomaton Aq on w1 for all q ∈ Q′, and because G is µ-accepting, each
of these runs is µ-accepting by Proposition 2.3.9.

(If) Assume that there exists a transition t = 〈qI ,Γ, F,Q
′〉 ∈ ∆ for some

Γ ⊆ Σ, F ⊆ F and Q′ = {q1, . . . , qn} ⊆ Q (0 ≤ n < ω) such that
w(0) ∈ Γ holds, and the subautomaton Aqi has a µ-accepting run on w1 for
all 1 ≤ i ≤ n. Define the graph G = 〈V,E, L〉, where

• V
def
= {vI , v1, . . . , vn}, where vI 6= vi for all 1 ≤ i ≤ n, and vi 6= vj for

all 1 ≤ i, j ≤ n, i 6= j,

34 2. DEFINITIONS AND BASIC RESULTS

• E
def
=

{
〈vI , {v1, . . . , vn}〉

}
, and

• L(vI)
def
= qI , L(vi)

def
= qi for 1 ≤ i ≤ n, and L

(
〈vI , {v1, . . . , vn}〉

)
def
= t.

It is easy to see from the definitions that G is a semi-run of A on w: obvi-
ously, V is partitioned into finite disjoint levels V0 = {vI}, V1 = {v1, . . . , vn},
Vi = ∅ for all 2 ≤ i < ω (and E ⊆ V0 × 2V1), the edge starting from vI is
unique (and it is the only edge in E), each node v ∈ V \ {vI} is a successor
of vI , and the labeling L is consistent. Since G has no infinite branches, G is
trivially µ-accepting. Because L(v) ∈ {q1, . . . , qn} holds for all nodes v ∈ V
with no outgoing edges (i.e., for all v ∈ V1) and Aqi has a µ-accepting run on
w1 for all 1 ≤ i ≤ n by the assumption, we can apply Proposition 2.3.14 to
extend the semi-run G into a µ-accepting run of A on w. �

2.3.4 Self-loop Alternating Automata

In this work we concentrate on a restricted class of alternating automata
known to be closely related to linear time temporal logic in that every lan-
guage definable as the set of models of an LTL formula is also a language rec-
ognizable by an alternating automaton in this subclass and vice versa [Rohde
1997; Löding and Thomas 2000]. Since automata in general possess intu-
itively appealing “operational” characteristics, translating linear time tempo-
ral logic into finite automata provides a first step towards effective procedures,
for example, for checking the satisfiability of LTL formulas. By concentrating
on a subclass of automata that is equally expressive to LTL, the characteristic
properties of these automata allow making the procedures simpler and more
efficient. Because our basic definitions of automata and acceptance gener-
alize traditional definitions by allowing alternating automata to have multi-
ple acceptance conditions associated with their transitions, we shall rephrase
several basic results on this subclass of alternating automata in this and the
following chapter using the generalized definitions to provide explicit details
of various automata constructions. These details are needed, for example, for
transforming the formal constructions into an actual implementation.

Definition and Relation to Weak Alternating Automata

Formally, we call an alternating automaton A = 〈Σ, Q,∆, qI ,F〉 a self-loop
alternating automaton iff all its simple cycles (i.e., cycles that do not visit any
state except their first state twice) are self-loops.

Self-loop alternating automata share their structural properties with a sub-
class of alternating automata referred to as the class of very weak [Isli 1994,
1996; Rohde 1997; Gastin and Oddoux 2001], linear [Löding and Thomas
2000], linear weak [Merz and Sezgin 2003; Hammer et al. 2005] or one-
weak [Ben-David et al. 2005] alternating automata in the literature. The
usual terminology stems from the identification of the subclass with a special
case of the more general weak alternating automata introduced by Muller
et al. [1986, 1992]; however, we prefer the above direct definition to separate
the intuitive structural characterization of the automata in the subclass from
any particular (usually state-based) notion of acceptance that is implied by
the standard definition of weakness.

2. DEFINITIONS AND BASIC RESULTS 35

Weak alternating automata [Muller et al. 1986, 1992] have their state sets
partitioned into subsets arranged into a partially ordered hierarchy in which
no state in any subset of the hierarchy has a successor that belongs to a set that
is strictly higher in the hierarchy. In very weak automata, each of these sub-
sets consists of a single state of the automaton. The connection between this
structural property of very weak alternating automata and self-loop automata
is given in the following proposition.

Proposition 2.3.16 An alternating automaton A = 〈Σ, Q,∆, qI ,F〉 is a self-
loop alternating automaton iff there exists a mapping ρ : Q → N such that
for all transitions 〈q,Γ, F,Q′〉 ∈ ∆ (q ∈ Q, Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q),
ρ(q′) < ρ(q) holds for all q′ ∈ Q′ \ {q}.

Proof: (Only if) Assume that all simple cycles in the automaton A are self-

loops. Let Q0 ⊆ Q denote the set of states such that for all q ∈ Q0, q either
has no successors, or the only successor of q is q itself. We claim that for all
q ∈ Q, either q ∈ Q0 holds, or q has a descendant q′ ∈ Q0. If this were
not the case, there would exist a state q ∈ Q \ Q0 with no descendants in
Q0. Therefore, the automaton would contain an infinite path (qi)0≤i<ω with
q0 = q and qi 6= qi+1 for all 0 ≤ i < ω. Since Q is finite, there would
now exist two indices 0 ≤ n < m < ω such that qn+1 6= qn and qm = qn
hold. However, the automaton would then contain a simple cycle (from qn
to itself) that is not a self-loop, contrary to the assumption.

The above result shows that the mapping ρ : Q→ N,

ρ(q)
def
= max

{
|x| x is a simple path from q to a state q′ ∈ Q0

}

is well-defined on Q.
To show that this function satisfies the criterion given in the proposition,

suppose that A contains a state q ∈ Q and a transition 〈q,Γ, F,Q′〉 ∈ ∆ for
some Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q such that ρ(q′) ≥ ρ(q) holds for some
q′ ∈ Q′ \ {q}. Then there exists a simple path of length ρ(q′) from q′ to a
state q′′ ∈ Q0 in the automaton. However, because q′ 6= q is a successor of q,
there exists (due to the fact that all simple cycles of A are self-loops) a simple
path of length ρ(q′) + 1 from q to q′′. But then ρ(q) cannot be the maximal
length of a simple path from q to a state in Q0. Thus, ρ(q′) < ρ(q) holds.

(If) Assume that there exists a mapping ρ : Q → N satisfying the given

criterion. Let x = (qi)0≤i≤n (1 ≤ n < ω) be a simple cycle in A. Suppose
that the cycle is not a self-loop, i.e., n > 1 holds. Since qi+1 is a successor
of qi for all 0 ≤ i < n and all states {q0, . . . , qn−1} are distinct (and qn−1 6=
qn = q0), it follows that

ρ(q0) > ρ(q1) > · · · > ρ(qn−1) > ρ(qn) = ρ(q0),

which is clearly a contradiction. Therefore n = 1, and x is a self-loop. It
follows that A is a self-loop alternating automaton. �

Example 2.3.17 Figure 2.7 depicts a self-loop alternating automaton work-
ing over the alphabet {a, b, c}. The function ρ (defined in the proof of
Proposition 2.3.16) divides the state set of the automaton into four partitions

36 2. DEFINITIONS AND BASIC RESULTS

q1

q2 q3 q4

q5 q6

q7 q8 ρ = 1

ρ = 2

ρ = 3

ρ = 4

{a}

{a}

{a}

{a}

{a}

{a}

{b}

{b}

{b}

{b}
{b}

{c}

{c}

{c}

{a, c} {b, c}

{b, c}

{a, b, c}

Fig. 2.7: A self-loop alternating automaton

as shown in the figure. The structure defined by the states and transitions of a
self-loop alternating automaton can be considered to have been built from a
directed acyclic graph by adding to it edges including their own source state
in their target states. �

Convergence of Infinite Run Branches
Because every loop of a self-loop alternating automaton visits a single state,
the labels of the source states of the edges in an infinite branch of a run of
the automaton will eventually converge to a fixed state of the automaton.
In this case we simply say that the branch converges to a fixed state of the
automaton.

Proposition 2.3.18 Let G = 〈V,E, L〉 be a run of a self-loop alternating
automaton A = 〈Σ, Q,∆, qI ,F〉. For each infinite branch (ei)0≤i<ω =(
〈vi, V

′
i 〉

)
0≤i<ω

∈ B(G), there exists an index 0 ≤ j < ω and a state q ∈ Q

such that for all j ≤ k < ω, L(vk) = q holds, and L(ek) is a self-loop transi-
tion of A with source state q.

Proof: Let ρ : Q → N be a mapping satisfying the condition given in
Proposition 2.3.16. By the definition of a run, L(ei) is a transition of A
having source state L(vi) and including L(vi+1) in its target states for all
i. It follows that

(
ρ
(
L(vi)

))
0≤i<ω

is a nonincreasing infinite sequence of

nonnegative integers, and thus there exists an index 0 ≤ j < ω such that
ρ
(
L(vk)

)
= ρ

(
L(vj)

)
holds for all j ≤ k < ω. But then also L(vk) = L(vj)

holds for all j ≤ k < ω, since L(vi+1) is a successor of L(vi) in A for all
0 ≤ i < ω, and ρ(q′) is strictly less than ρ

(
L(vj)

)
for all successors q′ of

L(vj) other than L(vj) itself. Thus we may choose q = L(vj), and because
L(vk+1) = q is included in L(ek)’s target states for all j ≤ k < ω, it follows
that L(ek) is a self-loop of A with source state q for all j ≤ k < ω. �

A state q ∈ Q of a self-loop alternating automaton A = 〈Σ, Q,∆, qI ,F〉
working in fin-acceptance mode is a transient state iff all self-loops from this
state to itself share a common acceptance condition, formally, if there exists
an acceptance condition f ∈ F such that f ∈ F holds for all 〈q,Γ, F,Q′〉 ∈
∆ with q ∈ Q′. (This holds trivially if there are no self-loops starting from the
state.)

2. DEFINITIONS AND BASIC RESULTS 37

It is easy to show that every infinite branch of a fin-accepting run of a
self-loop alternating automaton will converge to a nontransient state of the
automaton.

Corollary 2.3.19 Let A = 〈Σ, Q,∆, qI ,F〉 be a self-loop alternating au-
tomaton, and let G = 〈V,E, L〉 be a run of A on w ∈ Σω. If G is a fin-
accepting run of A, then each infinite branch of G converges to a nontran-
sient state of A.

Proof: Let β = (ei)0≤i<ω =
(
〈vi, V

′
i 〉

)
0≤i<ω

∈ B(G) be an infinite branch in

G. By Proposition 2.3.18, there exists a state q ∈ Q and an index 0 ≤ j < ω
such that for all j ≤ k < ω, L(vk) = q, and L(ek) is a self-loop of A
with source state q. Because G is fin-accepting, fin(β) = ∅, and thus, for
all f ∈ F and j ≤ k < ω, there exists a k ≤ k′ < ω such that the self-
loop L(ek′) ∈ ∆ is not an f -transition of A. Because the same holds for
all acceptance conditions in F , it follows that q is a nontransient state of A.

�

Another corollary of Proposition 2.3.18 is that no acceptance condition
associated with a non-self-loop transition of a self-loop alternating automaton
affects the language recognized by the automaton. Thus, we can always re-
move all acceptance conditions from the transitions of the automaton which
are not self-loops.

Corollary 2.3.20 Let A = 〈Σ, Q,∆, qI ,F〉 be a self-loop alternating au-
tomaton. Define the self-loop alternating automaton A′ = 〈Σ, Q,∆′, qI ,F〉,
where ∆′ is obtained from ∆ by making the set of acceptance conditions

of all non-self-loops of ∆ empty (formally, ∆′ def
=

{
〈q,Γ, F,Q′〉 ∈ ∆ q ∈

Q′
}
∪

{
〈q,Γ, ∅, Q′〉 〈q,Γ, F,Q′〉 ∈ ∆ for some F ⊆ F , and q /∈ Q′

}
). The

automata A and A′ are fin-equivalent.

Proof: Let β = (ei)0≤i<ω ∈ B(G) be an infinite branch through a run
G of either of the automata. By Proposition 2.3.18, there exists an index
0 ≤ j < ω such that L(ei) is a self-loop of both automata for all j ≤ i < ω,
and thus β contains only finitely many edges labeled with non-self-loop tran-
sitions. Therefore, none of these transitions can contribute to the accep-
tance conditions occurring infinitely often in the labels of the edges of β,
i.e., inf(β) = inf

(
(ei)j≤i<ω

)
and fin(β) = fin

(
(ei)j≤i<ω

)
. The result now

follows since the definitions of A′ and A differ only in the acceptance condi-
tions associated with non-self-loop transitions. �

Example 2.3.21 Consider again the automaton shown in Fig. 2.7. By
Corollary 2.3.20, we can remove all acceptance conditions from the non-
self-loop transitions of the automaton. This simplification results in the au-
tomaton shown in Fig. 2.8. Because both the original and the simplified
automaton have no self-loops starting from the states q3 or q4, these states are
trivially transient. Also the states q2 and q6 are transient, because all self-loops
starting from these states share a common acceptance condition. Thus, by
Corollary 2.3.19, every infinite branch in a fin-accepting run of either au-
tomaton converges to one of the states q1, q5, q7 or q8. �

38 2. DEFINITIONS AND BASIC RESULTS

q1

q2 q3 q4

q5 q6

q7 q8

{a}

{a}

{a}

{a}

{a}

{a}

{b}

{b}

{b}

{b}
{b}

{c}

{c}

{c}

{a, c} {b, c}

{b, c}

{a, b, c}

Fig. 2.8: The self-loop alternating automaton of Fig. 2.7 after removing acceptance
conditions from its non-self-loop transitions

2. DEFINITIONS AND BASIC RESULTS 39

3 BASIC AUTOMATON TRANSLATION

The languages definable by linear time temporal logic formulas are known
to be recognizable by nondeterministic automata on infinite words, i.e., ev-
ery linear time temporal logic formula can be translated into a correspond-
ing nondeterministic automaton that accepts its models. This connection
between LTL and automata theory has stimulated active research towards
finding an efficient procedure for translating LTL and its subclasses or exten-
sions into automata. The proposed approaches can be roughly divided into
(i) procedures based on combining a “local automaton” with an “eventuality
automaton” [Wolper et al. 1983; Vardi and Wolper 1986; Ramakrishna et al.
1992b; Vardi and Wolper 1994], (ii) procedures that build on a tableau de-
cision procedure for LTL ([Manna and Wolper 1982, 1984; Wolper 1985])
[Gerth et al. 1995; Couvreur 1999; Daniele et al. 1999; Somenzi and Bloem
2000; Wolper 2001; Giannakopoulou and Lerda 2002; Thirioux 2002], and
(iii) translation procedures that build an automaton incrementally by com-
bining automata built for subformulas of an LTL formula into more com-
plex automata, using nondeterministic [Michel 1985; de Jong 1992; Schnei-
der 2001; Fritz 2005] or alternating [Isli 1994, 1996; Vardi 1994; Rohde
1997; Manna and Sipma 2000; Gastin and Oddoux 2001; Fritz 2003; Ham-
mer et al. 2005] automata as the target formalism. The translation proce-
dures have been improved with techniques for the minimization of automata
[Etessami and Holzmann 2000; Somenzi and Bloem 2000; Etessami et al.
2001, 2005; Etessami 2002; Fritz and Wilke 2002, 2005; Gurumurthy et al.
2002] and heuristics for reducing nondeterminism in the generated automata
[Thirioux 2002; Sebastiani and Tonetta 2003]. The procedures have also
been specialized for LTL safety properties [Geilen 2001; Latvala 2003].

The language of any LTL formula can be recognized by a nondeterminis-
tic automaton having exponentially many states in the length of the formula
[Wolper et al. 1983; Vardi and Wolper 1994], and this upper bound is tight
(see, for example, [Wolper 2001]). Muller et al. [1988] proposed using weak
alternating automata as a succinct automata-theoretic formalism for work-
ing with many temporal logics, showing (using the extended temporal logic
of Wolper [1981, 1983] interpreted over tree models as an example) them
to be translatable into automata with only a linear number of states in the
length of a formula; the special case for LTL has since been discussed in
many sources [Isli 1994, 1996; Vardi 1994; Rohde 1997; Manna and Sipma
2000; Gastin and Oddoux 2001; Fritz 2003; Hammer et al. 2005]. Although
all translations from LTL to alternating automata are very similar, they use
slightly different strategies for dealing with negations in the input formulas.
Common approaches include working directly with the closure of the input
formula [Isli 1994, 1996; Vardi 1994] (i.e., a set of formulas obtained from
the subformulas of the formula and their negations), rewriting the formula
in positive normal form before translation [Manna and Sipma 2000; Gastin
and Oddoux 2001; Fritz 2003], or using a complementation procedure for
alternating automata [Rohde 1997].

In this chapter we describe a translation from linear time temporal logic to
self-loop alternating automata working in fin-acceptance mode. Borrowing

40 3. BASIC AUTOMATON TRANSLATION

ideas from known translation procedures [Rohde 1997; Gastin and Oddoux
2001], we use a set of rules to construct a self-loop alternating automaton
Aϕ that recognizes the language of a given LTL formula ϕ (Sect. 3.1). The
translation proceeds in a bottom-up manner by joining automata built recur-
sively for subformulas of (the positive normal form of) ϕ into increasingly
complex automata. This intuitive “modular” approach to building automata
was proposed already in some studies on translating LTL formulas directly
into nondeterministic automata [Michel 1985; de Jong 1992] (and applied
also by Schneider [2001] and Fritz [2005]); however, these constructions
are made complicated by the intricacies of working with nondeterministic
infinite word automata in general, such as the difficulty of their complemen-
tation. These complexities do not arise when using alternating automata as
the target formalism.

We show that the worst-case number of states in the automaton built using
our translation rules meets the best upper bound known for similar transla-
tions presented in the literature (Sect. 3.2) and show the correctness of the
translation (Sect. 3.3). Although formally only a matter of preference, using
fin-acceptance instead of inf-acceptance (a direct generalization of the idea
of using co-Büchi acceptance as suggested by Gastin and Oddoux [2001])
gives a simple explanation for the introduction of new acceptance condi-
tions during the translation. Finally, we shall review the connection between
the expressiveness of LTL and self-loop alternating automata [Rohde 1997;
Löding and Thomas 2000] by discussing a reverse translation from self-loop
alternating automata to LTL and analyzing its complexity (Sect. 3.4).

3.1 TRANSLATION RULES

In this section we introduce rules for translating LTL formulas into self-loop
alternating automata. We first review the notation that is customarily used
to simplify the representation of transition guards of automata working on
inputs over the fixed alphabet 2AP . With this alphabet, the transition guards
will be elements of the set 22AP

, i.e., families of sets of atomic propositions.
Since there is a simple correspondence between these families and Boolean
formulas, it is convenient to express the guards with these formulas. More
specifically, for any family Γ = {σ1, σ2, . . . , σn} ∈ 22AP

(0 ≤ n < ω), where
σ ⊆ AP for all 1 ≤ i ≤ n, there exists a characteristic Boolean formula
θΓ, for example, θΓ

def
=

∨n
i=1

(
(
∧
p∈σi

p) ∧ (
∧
p∈AP\σi

¬p)
)
, such that, given a

subset σ ⊆ AP , σ |= θΓ holds iff σ ∈ Γ; conversely, each Boolean formula θ

is characteristic for the family of its models Γθ
def
= {σ ⊆ AP | σ |= θ} ∈ 22AP

.
Therefore, when considering the runs of an alternating automaton, the fact
that σ ∈ Γ holds for some σ ⊆ AP and some guard Γ ∈ 22AP

of some
transition is equivalent to the condition that σ |= θ holds for a characteristic
Boolean formula θ of Γ. This notation will be used in further discussion
whenever dealing with automata having the fixed alphabet 2AP .

Let ϕ ∈ LTL(AP) be an LTL formula. By the discussion in Sect. 2.2.3,
we may assume that ϕ is in positive normal form (by first replacing ϕ with
[ϕ]PNF if necessary). We construct from ϕ an alternating automaton Aϕ by
applying the following rules recursively to the subformulas of ϕ. See Fig. 3.1

3. BASIC AUTOMATON TRANSLATION 41

for illustration on the application of each rule.

Atomic Formulas
Let ϕ ∈ {>,⊥} or ϕ ∈ {p,¬p} for some atomic proposition p ∈ AP . The

automaton for ϕ is defined as Aϕ = 〈2AP , Q,∆, qI ,F〉, where Q
def
= {qI} for

some new state qI ,

∆
def
=

{{
〈qI , ϕ, ∅, ∅〉

}
if ϕ ∈ {>, p,¬p} (p ∈ AP)

∅ otherwise

and F
def
= ∅.

Next Time
Let ϕ = Xϕ1. Given the definition of the automaton Aϕ1 = 〈2AP , Q1,∆1,
qI1,F1〉 for the subformula ϕ1, the automaton Aϕ = 〈2AP , Q,∆, qI ,F〉 for
ϕ has the components

• Q
def
= Q1 ∪ {qI} (where qI is a state not included in Q1);

• ∆
def
= ∆1 ∪

{
〈qI ,>, ∅, {qI1}〉

}
; and

• F
def
= F1.

Binary Connectives
Let ϕ = (ϕ1◦ϕ2) for some binary connective ◦ ∈ {∨,∧,Us,Uw,Rs,Rw}. Let
Aϕ1 = 〈2AP , Q1,∆1, qI1,F1〉 and Aϕ2 = 〈2AP , Q2,∆2, qI2,F2〉 be already
defined for the top-level subformulas ϕ1 and ϕ2 of ϕ, respectively, such that
Aq,F1∪F2
ϕ1

= Aq,F1∪F2
ϕ2

holds for all q ∈ Q1 ∩ Q2 (i.e., if the two automata
share a state, then they share all states and transitions reachable from this
state). The automaton Aϕ = 〈2AP , Q,∆, qI ,F〉 for the formula ϕ is built by
defining

• Q
def
= Q1 ∪Q2 ∪ {qI}, where qI is a new state not included in Q1 ∪Q2;

• ∆
def
= ∆1 ∪ ∆2 ∪ ∆◦; and

• F
def
= F1 ∪ F2 ∪ F◦

where the definitions of ∆◦ and F◦ for each binary connective are given in
Table 3.1.

Example 3.1.1 We illustrate the use of the translation rules by building an
automaton for the LTL formula

((
GFp1 ∧ GFp2) ∨

(
p3 Rw (p4 Rs p5)

))
∈ LTL

(
{p1, . . . , p5}

)
.

Because we do not have explicit translation rules for the F and G connectives,
we first rewrite the subformulas with F or G as their main connective in terms
of the basic connectives via the LTL identities

Fϕ ≡ (>Us ϕ) and Gϕ ≡ (⊥Rw ϕ).

42 3. BASIC AUTOMATON TRANSLATION

qI

ϕ

ϕ ∈ {>, p,¬p} (p ∈ AP)

(a)

qI

⊥

(b)

θ1

A1

θ2

θ3

A2qI1 qI2

(c)

θ1

A1

qI

qI1

>

X

(d)

θ1

θ1

A1
θ2

θ2

θ3

A2

qI

qI1 qI2

θ3

∨

(e)

θ1

A1

θ2

θ3

A2

qI

qI1 qI2

(θ1∧θ3)

(θ1∧θ2)

∧

(f)

θ1

θ1

A1
θ2

θ2

θ3

A2

qI

qI1 qI2

θ3

Us

(g)

θ1

θ1

A1
θ2

θ2

θ3

A2

qI

qI1 qI2

θ3

Uw

(h)

θ1

A1

θ2

θ2

θ3

A2

qI

qI1 qI2

(θ1∧θ2)

(θ1∧θ3)

θ3

Rs

(i)

θ1

A1

θ2

θ2

θ3

A2

qI

qI1 qI2

(θ1∧θ2)

(θ1∧θ3)

θ3

Rw

(j)

Fig. 3.1: Automata built using translation rules. (a) Automaton built from an atomic
formula ϕ ∈ {>, p,¬p} (p ∈ AP); (b) Automaton built for the atomic formula ⊥;
(c) Two component automata A1 and A2; (d) Automaton built from A1 with the
Next Time rule; (e)–(j) Automata built from A1 and A2 using the translation rules
given for the ∨, ∧, Us, Uw, Rs and Rw connectives, respectively

3. BASIC AUTOMATON TRANSLATION 43

Table 3.1: Definitions of F◦ and ∆◦ for the binary connectives (θ1, θ2 conjunctions
of atomic formulas over AP , F1 ⊆ F1, F2 ⊆ F2, Q′

1 ⊆ Q1, Q′
2 ⊆ Q2, and f is

a new acceptance condition not yet used in the application of another translation
rule)

◦ F◦ ∆◦

{
〈qI , θ1, ∅, Q

′
1〉 〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∨ ∅
∪

{〈
qI , θ2, ∅, Q

′
2

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∧ ∅

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}

{〈
qI , θ1, {f}, Q

′
1 ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

Us {f}
∪

{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

{〈
qI , θ1, ∅, Q

′
1 ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

Uw ∅
∪

{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

{〈
qI , θ2, {f}, Q

′
2 ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

Rs {f}
∪

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}

{〈
qI , θ2, ∅, Q

′
2 ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

Rw ∅
∪

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}

44 3. BASIC AUTOMATON TRANSLATION

Thus, the formula can be rewritten as the logically equivalent formula
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]
;

this formula is clearly in positive normal form. Because the main connec-
tive ∨ of the formula is a binary connective, we first have to find automata

for the formulas ϕ
def
=

((
⊥Rw (>Us p1)

)
∧

(
⊥Rw (>Us p2)

))
and ψ

def
=

(
p3 Rw (p4 Rs p5)

)
before we can apply the translation rule for the ∨ con-

nective. Proceeding recursively towards the subformulas of the formula ϕ,
we first build automata shown in Fig. 3.2 (a) for the subformulas ⊥, >, p1

and p2 of ϕ. We can then define automata for the subformulas (>Us p1)
and (>Us p2) by applying the translation rule given for the Us connective
first to A> and Ap1 , and then to A> and Ap2 ; see Fig. 3.2 (b). Because the
subformulas are strong temporal eventualities, we associate a unique accep-
tance condition with each compound automaton. (To simplify these and the
following figures, we shall always omit the states not reachable from the ini-
tial states of the constructed automata, since they can be removed from the
automata by Proposition 2.3.12 without changing their languages.)

We then apply the Rw translation rule to the automata A⊥ and A(>Us p1),
and then to A⊥ and A(>Us p2), to obtain the automata shown in Fig. 3.2 (c).
Because Rw is a weak temporal eventuality, no new acceptance conditions
are added to the automata. (Because the automaton A⊥ has no initial tran-
sitions, the initial transitions of A(⊥Rw (>Us pi)) are completely determined by
the automaton A(>Us pi) for all i ∈ {1, 2}.)

We next merge the automata built for the top-level subformulas of ϕ into
the automaton shown in Fig. 3.2 (d) for the formula ϕ itself by using the ∧
translation rule.

The translation of the subformula
(
p3 Rw (p4 Rs p5)

)
proceeds similarly.

We start from the automata built for the atomic subformulas (see Fig. 3.3 (a))
and apply the Rs translation rule to Ap4 and Ap5 to obtain an automaton for
the formula (p4 Rs p5) (Fig. 3.3 (b)). Again, because (p4 Rs p5) is a strong
temporal eventuality, we add a new acceptance condition to the automaton.
We then apply the Rw rule to Ap3 and A(p4 Rs p5) to construct an automaton
for the formula ψ (Fig. 3.3 (c)).

We finally apply the ∨ translation rule to Aϕ and Aψ to build the automa-
ton shown in Fig. 3.4 for the formula

[((
⊥Rw (>Us p1)

)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]
.

�

3.1.1 Simple Observations

Correspondence between node subformulas of ϕ and states of Aϕ. The
construction of an automaton Aϕ for the given LTL formula ϕ (in positive
normal form) is guided by the structure of ϕ, which completely determines
the set of rules that need be applied for translating the formula into an au-
tomaton. Even though the particular application order of the rules may re-
main partially unspecified (i.e., automata for any pair of subformulas of ϕ

3. BASIC AUTOMATON TRANSLATION 45

A⊥

>

A>

p1

Ap1

p2

Ap2

(a)

>p1

A(>Us p1)

> p2

A(>Us p2)

(b)

>

>p1

p1

A(⊥ Rw (>Us p1))

>

> p2

p2

A(⊥ Rw (>Us p2))

(c)

> >

(> ∧ p2) (p1 ∧ >)

>p1

p1

p2

(p1 ∧ p2)

p2
(> ∧>)

>

Aϕ

(d)

Fig. 3.2: Building an automaton for the LTL formula ϕ
def
=

((
⊥Rw (>Us p1)

)
∧

(
⊥Rw (>Us p2)

))
. (a) Automata for the atomic subformulas of ϕ; (b) Au-

tomata for the formulas (>Us p1) and (>Us p2); (c) Automata for the formulas(
⊥Rw (>Us p1)

)
and

(
⊥Rw (>Us p2)

)
; (d) Automaton for the formula ϕ

p3

Ap3

p4

Ap4

p5

Ap5

p5
(p4 ∧ p5)

A(p4 Rs p5)

p5 (p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

(p4 ∧ p5)

Aψ

(a) (b) (c)

Fig. 3.3: Building an automaton for the formula ψ
def
=

(
p3 Rw (p4 Rs p5)

)
. (a) Au-

tomata for the atomic subformulas of ψ; (b) Automaton for the formula (p4 Rs p5);
(c) Automaton for the formula ψ

46 3. BASIC AUTOMATON TRANSLATION

> >

(> ∧ p2)
(p1 ∧ >)

>p1

p1

p2

(p1 ∧ p2)

p2
(> ∧>)

>
(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5

(p4 ∧ p5)

(p4 ∧ p5)

(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

p5

Fig. 3.4: Automaton for the LTL formula
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]

that do not share any subformulas can be constructed in either order), au-
tomata built for two syntactically identical subformulas of ϕ are nevertheless
easily seen to be isomorphic (i.e., one can be obtained from the other by re-
naming its states and acceptance conditions). It is therefore possible to reuse
the structure of the automata constructed during the translation by direct-
ing the transitions added in the application of a translation rule to previously
added states whenever possible. Because the recursive translation rules treat
the atomic subformulas of ϕ as the base case, it follows that the number
of rule applications required equals the number of node subformulas of ϕ.
Therefore, because NSub(ϕ) is finite, the translation always terminates, and,
because each step of the translation adds exactly one new state to the result,
there is a bijective correspondence between NSub(ϕ) and the set of states in
the automaton built for the formula ϕ.

Interpretation of the translation rules. The correspondence between
NSub(ϕ) and the states of the automaton Aϕ gives a simple interpretation
of each translation rule. Intuitively, each translation rule gives instructions
on how to recognize the language of an LTL formula ϕ by either giving an au-
tomaton for ϕ directly (the rules for the atomic formulas), or describing how
to run the automata built for the top-level subformula(s) of a non-atomic for-
mula ϕ to recognize the language L(ϕ). Thus, for example, the translation
rule for constructing an automaton A(ϕ1∧ϕ2) for the language L

(
(ϕ1 ∧ ϕ2)

)

interprets to first building the automata Aϕ1 and Aϕ2 for the languages L(ϕ1)
and L(ϕ2) and then creating an automaton that, in effect, runs Aϕ1 and Aϕ2

in parallel on any given input. The translation rule makes the first admissi-
ble transition in any run of A(ϕ1∧ϕ2) mimic a pair of initial transitions taken
synchronously by each of the component automata. As a result, the initial
transition in any run of A(ϕ1∧ϕ2) corresponds to spawning both Aϕ1 and Aϕ2

on the same input. However, since this initial transition already synchronizes
by itself with the first symbol of the input, the target states of the transition
need be adjusted so that the set of copies of the automaton which are active
after the transition matches the copies of Aϕ1 and Aϕ2 that would be active
after a synchronous pair of initial transitions. This is the reason for not in-
cluding the initial states of the component automata in the target states of

3. BASIC AUTOMATON TRANSLATION 47

the initial transitions of A(ϕ1∧ϕ2) unless the transitions are self-loops, which
are thus unrolled in the application of the translation rule.

A corresponding adjustment of target states is needed for defining the ini-
tial transitions of automata built for any other connective, except for the Next
Time operator X; namely, the purpose of the Next Time translation rule is to
modify an automaton built for an LTL formula ϕ into an automaton that, in
effect, postpones the checking of ϕ by one initial step.

For the binary temporal connectives Us and Uw, the definition of ∆◦ in
the translation rules is a direct automata-based encoding of the well-known
LTL identity

(ϕ1 Uϕ2) ≡
(
ϕ2 ∨

(
ϕ1 ∧ X(ϕ1 Uϕ2)

))

where U is an Until connective of the same strength on both sides of the
identity. Thus, for example, the translation of the formula (ϕ1 Us ϕ2) into an
automaton corresponds to first building automata for the top-level subformu-
las and then joining them into an automaton that verifies that either ϕ2 holds
in the infinite suffix of the input beginning at the current input position, or
that ϕ1 holds in this suffix and (ϕ1 Us ϕ2) still holds in the infinite suffix be-
ginning at the next input position. In the latter case, the automaton spawns
two independent copies of itself, one of which checks whether the infinite
suffix beginning at the current input position belongs to L(ϕ1), whereas the
other proceeds to check whether (ϕ1 Us ϕ2) still holds from the next input
position onward.

The rules for the Release connectives can be derived from the rules intro-
duced for the ∧ and Until connectives via the identities

(ϕ1 Rs ϕ2) ≡
(
ϕ2 Us (ϕ1 ∧ ϕ2)

)
and (ϕ1 Rw ϕ2) ≡

(
ϕ2 Uw (ϕ1 ∧ ϕ2)

)
.

Formally, the combination of the rules introduced for the ∧ and the Until
connectives defines an automaton with a state that is unreachable from the
initial state of the automaton, namely, the initial state of the automaton con-
structed for the formula (ϕ1∧ϕ2). However, this state can be safely discarded
by Proposition 2.3.12 without changing the language of the automaton. This
simplification then gives the direct rules shown in Table 3.1.

Loop structure. Building an automaton for a compound formula ϕ from
one or two component automata constructed for the top-level subformula(s)
of ϕ is done by taking a new initial state for the automaton and then adding
transitions from this state to itself and the states of the component automata
as instructed by the translation rules. Since no rule manipulates the tran-
sition relation of any component automaton, it follows (by induction) that
every state q of the automaton Aϕ constructed for an LTL formula ϕ will
always remain unreachable from all of its descendants except possibly q it-
self. Thus, all loops in the transition structure of the final automaton will
be self-loops, which may arise in the application of the translation rules to
subformulas of ϕ with a binary temporal main connective. By these observa-
tions, it follows that the automaton constructed by the translation rules is a
self-loop alternating automaton.

48 3. BASIC AUTOMATON TRANSLATION

Structure of transition guards. The guard of the only transition in an au-
tomaton built for any atomic formula different from ⊥ is simply the formula
itself, encoding the subsets of AP that satisfy it: for >, all subsets of AP ;
for literals, all subsets of AP that (for negative literals, do not) include the
proposition in the literal. The guards of the initial transitions of any com-
pound automaton are either > (the Next Time operator), or they are built
from the guards of the initial transitions of the component automata. It is
easy to see that each new transition either inherits its guard directly from
another transition, or the guard is built as the conjunction of two previously
defined guards. By induction, it follows that all guards in the final automaton
will be finite conjunctions of one or more atomic formulas, corresponding to
finite intersections of one or more subsets of 2AP by the semantics of ∧. This
very restricted form allows for efficient checking of propositional implica-
tions between the guards, which is needed for the automaton simplification
constructions discussed in Ch. 6.

Acceptance conditions. New acceptance conditions are introduced to the
constructed automaton whenever applying one of the translation rules to a
subformula having either of the strong binary temporal operators (Us or Rs) as
its main connective. Intuitively, because the conditions are interpreted as fin-
acceptance conditions, they will prevent the automaton from remaining in a
state corresponding to an unsatisfied strong temporal eventuality indefinitely
along any path through a fin-accepting run of the automaton. Therefore, the
acceptance of an input requires the eventual satisfaction of each strong tem-
poral eventuality along the input as required by the semantics of the strong
temporal operators. This intuition will be made formal in the correctness
proof of Sect. 3.3.

As seen from the translation rules, the transitions added to the automaton
at each step never inherit any acceptance conditions from previously defined
transitions. Since each translation rule adds at most one acceptance condi-
tion to the automaton, it follows that the set of acceptance conditions of each
transition of the final automaton will be either an empty or a singleton set.
Since all transitions with a nonempty set of acceptance conditions are self-
loops of the automaton, the final automaton is easily seen to be constructed
simplified in the sense of Corollary 2.3.20. Additionally, it is easy to see from
the translation rules that all transitions of the final automaton having a partic-
ular acceptance condition in their set of acceptance conditions always have
the same source state.1

1Actually, this fact can be used (together with Proposition 2.3.18) to show that it is not
necessary to associate a unique acceptance condition with each strong temporal eventual-
ity, i.e., all eventualities could share the same acceptance condition as in the translation of
Gastin and Oddoux [2001]. We shall not do this here, however, since the correctness of
many heuristics for improving the translation (to be presented in the following chapters) re-
lies on the strict correspondence between acceptance conditions and temporal eventualities.

3. BASIC AUTOMATON TRANSLATION 49

3.2 SIZES OF COMPONENTS IN AN AUTOMATON BUILT FROM AN LTL FOR-

MULA

In this section we consider upper bounds for sizes of components of an
automaton built from (the positive normal form) of an LTL formula ϕ ∈
LTL(AP). The sizes of the components of the subautomaton AqI

ϕ rooted at
the initial state of the automaton Aϕ (built from [ϕ]PNF using the translation
rules of Sect. 3.1) satisfy the inequalities

• |Q| ≤ 1 + Temp
(
[ϕ]PNF

)
≤ 1 + 2 · |Temp(ϕ)| (Sect. 3.2.1),

• |∆| ≤ 2NSize([ϕ]PNF)−1 < 22·|ϕ|−1 (Sect. 3.2.2), and

• |F| ≤
{
(ϕ1 ◦ ϕ2) ∈ Sub([ϕ]PNF) : ◦ ∈ {Us,Rs}

}
. (Sect. 3.2.3)

3.2.1 Number of States

As noted previously, an LTL formula ϕ (in positive normal form) can be
translated into an automaton in |NSub(ϕ)| applications of a translation rule.
Since the rules build the automaton one state at a time, the translation ends
after exactly |NSub(ϕ)| states have been defined. Therefore, the size of
NSub(ϕ) also gives a simple upper bound for the number of states in an
automaton recognizing the language of the formula ϕ.

As seen already in Ex. 3.1.1, the application of a translation rule to de-
fine an alternating automaton from smaller component automata may leave
some states in the component automata unreachable from the initial state
of the newly constructed automaton. However, this fact is not taken into ac-
count when using the number of translation steps as an upper bound for the
number of states in an automaton Aϕ built for a given LTL formula. Because
the language of an alternating automaton depends only on those states of the
automaton that are actually reachable from the initial state of the automa-
ton (Proposition 2.3.12), a tighter bound can be given by considering the
number of states in the subautomaton AqI

ϕ obtained from the result of the
translation by restricting it to the smallest set of states that includes the state
qI and the states actually reachable from qI . For this purpose, we examine the
translation rules to find the exact conditions under which a state introduced
during the translation will still be reachable from the initial state of the final
automaton.

Each translation rule for building a compound automaton either adds a
transition to an initial state of a component automaton (the Next Time rule),
or it uses the initial transitions of the component automata as a basis for
defining the initial transitions of the compound automaton (rules for the bi-
nary connectives). It is clear from the translation rules that all target states of
each initial transition of a component automaton will be included as target
states of some transition of the compound automaton. Additionally, since
none of the rules ever change—or even refer to—the non-initial transitions
of any component automaton, it follows that a state reachable from the initial
state of a component automaton will remain reachable from the initial state
of any automaton obtained from it by any number of translation rules. By
examining the translation rules, we find that the initial state qI of some com-
ponent automaton will still be included in the subautomaton rooted at the

50 3. BASIC AUTOMATON TRANSLATION

initial state of the final automaton at least if it satisfies one of the following
conditions:

• qI is the initial state of the final automaton built for the LTL formula
ϕ. Clearly, because qI is the last state to be added into the automaton,
the final automaton is never used as a component automaton in any
translation rule.

• qI has a self-loop transition to itself, which is possible (by the definition
of the translation rules) only if qI is the initial state of an automaton
built for a binary pure temporal subformula (i.e., a subformula with
either Us, Uw, Rs or Rw as its main connective).

• qI is the initial state of an automaton corresponding to a subformula
ϕ1, and Xϕ1 ∈ NSub(ϕ). (Since Xϕ1 ∈ NSub(ϕ), the Next Time rule
will be applied to the automaton Aϕ1 in the translation; the application
of the rule then results in an automaton with an initial transition to qI .)

We show that the three above conditions actually describe the exact set of
states in the subautomaton rooted at the initial state of the final automaton.
Assume that qI is the initial state of an automaton (corresponding to a formula
ϕ1 ∈ NSub(ϕ)) such that qI satisfies none of the above conditions. Then, ϕ
has a non-atomic compound subformula with ϕ1 as a top-level subformula.
Because Xϕ1 /∈ NSub(ϕ), all such subformulas are binary subformulas of ϕ.
Let ϕ′ be any of these formulas. When a translation rule is applied to con-
struct the automaton Aϕ′ , the state qI will not be connected to the initial state
of Aϕ′ , because qI has no self-loop transitions. Because Xϕ1 /∈ NSub(ϕ), it
follows that qI cannot be connected to the initial state of another automaton
constructed later in the procedure, and thus qI will remain unreachable from
the initial state of the final automaton. We have thus proved the following
result:

Proposition 3.2.1 Let Aϕ be the alternating automaton built for the LTL
formula ϕ ∈ LTLPNF(AP) using the translation rules, and let AqI

ϕ (with
state set Q) be the subautomaton rooted at the initial state of Aϕ. Then,

|Q| =
{ϕ}
∪

{
(ϕ1 ◦ ϕ2) ∈ NSub(ϕ) : ◦ ∈ {Us,Uw,Rs,Rw}

}

∪
{
ϕ1 ∈ NSub(ϕ) : Xϕ1 ∈ NSub(ϕ)

}

This result leads to the following upper bound for the number of states in an
alternating automaton constructed from any LTL formula (that is not neces-
sarily in positive normal form). The upper bound is essentially the same as
the one that is implicit in the translation of Gastin and Oddoux [2001].

Corollary 3.2.2 Let ϕ ∈ LTL(AP) be any LTL formula built from the ele-
ments of AP , the Boolean constants > and ⊥, and the connectives {¬,∨,∧,
X,Us,Uw,Rs,Rw}. The language of the formula ϕ can be recognized by an
alternating automaton on the alphabet 2AP with at most 1+ Temp

(
[ϕ]PNF

)

≤ 1 + 2 · |Temp(ϕ)| states (1 + |Temp(ϕ)| states, if ϕ itself is in positive nor-
mal form). (If ϕ is a binary pure temporal formula, the upper bound reduces
to Temp

(
[ϕ]PNF

)
states.)

3. BASIC AUTOMATON TRANSLATION 51

Proof: As noted in Sect. 2.2.3, the formula [ϕ]PNF (which is in positive nor-
mal form) has at most twice as many pure temporal subformulas as ϕ, i.e.,
Temp

(
[ϕ]PNF

)
≤ 2 · |Temp(ϕ)|, and L

(
[ϕ]PNF

)
= L(ϕ). By applying

the translation to [ϕ]PNF, the result follows directly from Proposition 3.2.1 by
observing that

{
(ϕ1 ◦ ϕ2) ∈ NSub

(
[ϕ]PNF

)
: ◦ ∈ {Us,Uw,Rs,Rw}

}

∪
{
ϕ1 ∈ NSub

(
[ϕ]PNF

)
: Xϕ1 ∈ NSub

(
[ϕ]PNF

)} ≤ Temp
(
[ϕ]PNF

)
.

�

3.2.2 Number of Transitions

By Corollary 3.2.2, any LTL formula can be translated into an alternating
automaton with a linear number of states in the number of pure temporal
subformulas in the formula. However, it is not difficult to see that there is
a price to pay for the explicit representation of transitions: an automaton
built using the translation rules may have exponentially many transitions in
the length of the formula in the worst case. First, it is easy to show that
the number of transitions defined in the translation of (the positive normal
form of) an LTL formula ϕ ∈ LTL(AP) into an automaton is exponentially
bounded by NSize

(
[ϕ]PNF

)
:

Proposition 3.2.3 Let Aϕ be an alternating automaton built from (the pos-
itive normal form of) an LTL formula ϕ ∈ LTL(AP) using the translation
rules presented in Sect. 3.1. The automaton Aϕ has at most 2NSize([ϕ]PNF)−1 <
22·|ϕ|−1 transitions.

Proof: We first prove the result for formulas in positive normal form. Let

ϕ ∈ LTLPNF(AP), and let ∆ be the set of transitions of Aϕ. If NSize(ϕ) = 1,
then ϕ is an atomic formula. By the translation rules, ∆ contains at most one
element, and because 2NSize(ϕ)−1 = 20 = 1, the result holds in this case.

Assume that the result holds for all LTL formulas whose node size is less
than or equal to some fixed 1 ≤ k < ω, and let ϕ be a compound formula
with node size k + 1. Then, ϕ = Xϕ1 or ϕ = (ϕ1 ◦ ϕ2) for some ◦ ∈
{∨,∧,Us,Uw,Rs,Rw} and ϕ1, ϕ2 ∈ LTLPNF(AP) such that NSize(ϕ1) ≤ k
and NSize(ϕ2) ≤ k hold. Let A1 = 〈2AP , Q1,∆1, qI1,F1〉 and A2 =
〈2AP , Q2,∆2, qI2,F2〉 be the automata built using the translation rules for
the formulas ϕ1 and ϕ2, respectively. Additionally, let ∆qI1

1 ⊆ ∆1 and ∆qI2
2 ⊆

∆2 denote the initial transitions of A1 and A2, respectively (i.e., ∆qIi
i

def
={

〈q, θ, F,Q′〉 ∈ ∆i q = qIi
}

for all i ∈ {1, 2}). There are the following
cases:

(ϕ = Xϕ1)

|∆| = |∆1| + 1 (translation rule for the X connective)

≤ 2NSize(ϕ1)−1 + 1 (induction hypothesis)

≤ 2NSize(ϕ1)−1 + 2NSize(ϕ1)−1 (NSize(ϕ1) ≥ 1)

= 2NSize(ϕ1)

= 2NSize(ϕ)−1 (definition of NSize(ϕ))

52 3. BASIC AUTOMATON TRANSLATION

(ϕ = (ϕ1 ◦ ϕ2), ◦ ∈ {∨,Us,Uw})

|∆| ≤ |∆1| + |∆2| + |∆qI1
1 | + |∆qI2

2 | (translation rules)

≤ |∆1| + |∆2| + |∆1| + |∆2|
= 2 ·

(
|∆1| + |∆2|

)

≤ 2 ·
(
2NSize(ϕ1)−1 + 2NSize(ϕ2)−1

)
(induction hypothesis)

= 2NSize(ϕ1) + 2NSize(ϕ2)

≤ 2NSize(ϕ1) · 2NSize(ϕ2) (NSize(ϕ1),NSize(ϕ2) ≥ 1)

= 2NSize(ϕ1)+NSize(ϕ2)

= 2NSize(ϕ)−1 (definition of NSize(ϕ))

(ϕ = (ϕ1 ∧ ϕ2))

|∆| ≤ |∆1| + |∆2| + |∆qI1
1 | · |∆qI2

2 | (translation rules)

≤ |∆1| + |∆2| + |∆1| · |∆2|
≤ 2NSize(ϕ1)−1 + 2NSize(ϕ2)−1 + 2NSize(ϕ1)−1 · 2NSize(ϕ2)−1

(induction hypothesis)

≤ 22 · 2NSize(ϕ1)−1 · 2NSize(ϕ2)−1 (NSize(ϕ1),NSize(ϕ2) ≥ 1)

= 2NSize(ϕ1)+NSize(ϕ2)

= 2NSize(ϕ)−1 (definition of NSize(ϕ))

(ϕ = (ϕ1 ◦ ϕ2), ◦ ∈ {Rs,Rw})

|∆| ≤ |∆1| + |∆2| + |∆qI2
2 | + |∆qI1

1 | · |∆qI2
2 | (translation rules)

≤ |∆1| + |∆2| + |∆2| + |∆1| · |∆2|
≤ 2NSize(ϕ1)−1 + 2 · 2NSize(ϕ2)−1 + 2NSize(ϕ1)−1 · 2NSize(ϕ2)−1

(induction hypothesis)

≤ 22 · 2NSize(ϕ1)−1 · 2NSize(ϕ2)−1 (NSize(ϕ1),NSize(ϕ2) ≥ 1)

= 2NSize(ϕ1)+NSize(ϕ2)

= 2NSize(ϕ)−1 (definition of NSize(ϕ))

By induction on |ϕ|, it follows that the automaton built from any formula ϕ ∈
LTLPNF(AP) using the translation rules has at most 2NSize(ϕ)−1 transitions. If
ϕ ∈ LTL(AP) is not in positive normal form, then the result follows because
NSize([ϕ]PNF) < 2 · |ϕ| holds. �

On the other hand, for every 1 ≤ n < ω, it is possible to find an LTL
formula ϕ such that NSize(ϕ) ∈ O(n) holds, but an automaton built from ϕ
using the translation rules has 2O(n) transitions (even when restricted to the
subautomaton rooted at its initial state).

Example 3.2.4 Let {ϕn}1≤n<ω (where ϕn is an LTL formula over n atomic
propositions {p1, p2, . . . , pn} for all 1 ≤ n < ω) be a set of LTL formulas
defined inductively as

ϕ1
def
= (>Us p1), and

ϕn+1
def
=

(
ϕn ∧ (>Us pn+1)

)
for all 1 ≤ n < ω.

Clearly, ϕn is in positive normal form for all 1 ≤ n < ω, and NSize(ϕn) =
4n − 1 ∈ O(n) holds for all 1 ≤ n < ω (NSize(ϕ1) = NSize

(
(>Us p1)

)
=

3 = 4 · 1 − 1, and if NSize(ϕk) = 4k − 1 holds for some 1 ≤ k < ω, then
NSize(ϕk+1) = 1 + NSize(ϕk) + NSize

(
(>Us pk+1)

)
= 1 + (4k − 1) + 3 =

4(k + 1) − 1).
Let qIn be the initial state of Aϕn . By Proposition 3.2.3, Aϕn has at most

2NSize(ϕn)−1 ∈ 2O(n) transitions. We show that Aϕn has at least 2n initial

3. BASIC AUTOMATON TRANSLATION 53

transitions. It is easy to see that the automaton built for any of the subformulas
of the form (>Us pn) using the translation rules has two initial transitions. If
Aϕk

has 2k initial transitions for some 1 ≤ k < ω, then Aϕk+1
has 2k · 2 =

2k+1 initial transitions by the definition of the translation rule given for the ∧
connective. Obviously, these transitions remain in the subautomaton rooted
at the initial state of Aϕk+1

, and it follows that A
qIn
ϕn has 2O(n) transitions for

all 1 ≤ n < ω. �

From the above example it follows that the result of the translation proce-
dure from LTL to self-loop alternating automata based on the rules presented
in Sect. 3.1 may need exponential space in the node size of the given formula
in the worst case. Clearly, the translation will in such cases require also at
least exponential time in the node size of the formula. This worst-case behav-
ior is caused by the cumulative effect of applying translation rules defined for
the ∧ and R connectives to LTL formulas containing nested occurrences of
these connectives: to define the initial transitions in a compound automaton
built using one of these rules, it is always necessary to enumerate all pairwise
combinations of initial transitions of the component automata.

3.2.3 Number of Acceptance Conditions

Let Aϕ = 〈2AP , Q,∆, qI ,F〉 be a self-loop alternating automaton built for
the positive normal form of an LTL formula ϕ ∈ LTL(AP) using the trans-
lation rules. As noted already at the end of Sect. 3.1, new acceptance condi-
tions are introduced during the translation whenever applying a translation
rule to a subformula corresponding to a strong temporal eventuality (i.e., a
formula with Us or Rs as its main connective), and thus

|F| ≤
{
(ϕ1 ◦ ϕ2) ∈ Sub([ϕ]PNF) : ◦ ∈ {Us,Rs}

}
.

3.3 CORRECTNESS OF THE TRANSLATION

In this section we show the correctness of the translation. We start by proving
a lemma that characterizes fin-acceptance in a self-loop alternating automa-
ton built using the translation rules for an LTL formula having Us or Uw

as its main connective and establishes a direct correspondence between the
semantics of LTL and the behavior of these automata.

Lemma 3.3.1 Let ϕ = (ϕ1 ◦ ϕ2) ∈ LTLPNF(AP) (◦ ∈ {Us,Uw}), and let
A = 〈2AP , Q,∆, qI ,F〉, A1 = 〈2AP , Q1,∆1, qI1,F1〉 and A2 = 〈2AP , Q2,
∆2, qI2,F2〉 be the self-loop alternating automata constructed using the trans-
lation rules for ϕ, ϕ1 and ϕ2, respectively. For all w ∈ (2AP)ω,

A fin-accepts w iff there exists an index 0 ≤ i < ω such that A2 fin-
accepts wi, and for all 0 ≤ j < i, A1 fin-accepts wj

or
◦ = Uw, and A1 fin-accepts wi for all 0 ≤ i < ω.

Proof: (Only if) Assume that A fin-accepts w ∈ (2AP)ω. Then, A has a

fin-accepting run G = 〈V,E, L〉 on w. By Proposition 2.3.7, there exists

54 3. BASIC AUTOMATON TRANSLATION

an index 0 ≤ i ≤ ω and a chain of edges (ej)0≤j<i+1, ej = 〈vj , V
′
j 〉 ∈

E ∩ (Vj × 2Vj+1), such that L(ej) is an initial self-loop of A for all 0 ≤ j < i,
and if i < ω, then L(ei) is an initial transition of A that is not a self-loop.

Because L(ej) is an initial self-loop of A for all 0 ≤ j < i, it follows from
the translation rules that for each such self-loop there exists a corresponding
initial transition of A1 for all 0 ≤ j < i. Furthermore, if i < ω, the transition
L(ei) (which is not a self-loop of A) corresponds to some initial transition of
A2. Let 0 ≤ j < i+ 1, and let L(ej) = L

(
〈vj, V

′
j 〉

)
= t = 〈qI , θ, F,Q

′〉 ∈ ∆
for some θ ∈ PL(AP), F ⊆ F and Q′ ⊆ Q. Because G is a run, w(j) |= θ
and Q′ = L(V ′

j) hold. We consider the above two cases separately.

• If t is a self-loop of A, there exists a transition 〈qI1, θ, F1, Q
′
1〉 ∈ ∆1 for

some F1 ⊆ F1 and Q′
1 ⊆ Q1 such that Q′ = Q′

1 ∪ {qI} holds.

BecauseG is fin-accepting, each subautomaton AL(v′) has a fin-accept-
ing run on wj+1 = (wj)1 for all v′ ∈ V ′

j by Proposition 2.3.9, and

because Q′
1 ⊆ Q′ = L(V ′

j) holds and Lfin(A
q′) = Lfin(A

q′,F1) =

Lfin(A
q′

1) holds for all q′ ∈ Q1, Aq′

1 has a fin-accepting run on wj+1

for all q′ ∈ Q′
1. Moreover, because w(j) = (wj)(0) |= θ holds,

Proposition 2.3.15 shows that A1 has a fin-accepting run on wj.

• If t is not a self-loop of A, then t corresponds to an initial transi-
tion 〈qI2, θ, F2, Q

′〉 ∈ ∆2 of A2 for some F2 ⊆ F2, and thus Q′ ⊆
Q2 holds. Similarly to the self-loop case, the subautomaton AL(v′),

which is fin-equivalent to A
L(v′)
2 , fin-accepts wj+1 for all v′ ∈ V ′

j by
Proposition 2.3.9. Because Q′ = L(V ′

j) and w(j) |= θ hold, it follows
that A2 fin-accepts wj (Proposition 2.3.15).

Thus, because L(ej) is a self-loop of A for all 0 ≤ j < i, it follows that
A1 fin-accepts wj for all 0 ≤ j < i, and furthermore, if i < ω, then A2

fin-accepts wi by the above discussion. It remains to show that the case i = ω
is impossible if ◦ = Us. If this were the case, then β = (ej)0≤j<i would be
an infinite branch in G having all of its edges labeled with initial self-loops
of A. However, because all of these self-loops share a common acceptance
condition if ◦ = Us, fin(β) would be nonempty, which would contradict the
assumption that G is a fin-accepting run of A on w. Therefore, if ◦ = Us,
then i < ω holds, and the result follows.

(If) Assume that there either exists an index 0 ≤ i < ω such that A2 fin-

accepts wi and for all 0 ≤ j < i, A1 fin-accepts wj, or that ◦ = Uw holds,
and A1 fin-accepts wi for all 0 ≤ i < ω. That is, assume that there exists an
index 0 ≤ i ≤ ω such that A1 fin-accepts wj for all 0 ≤ j < i, and if i < ω,
then A2 fin-accepts wi.

By Proposition 2.3.15, the automaton A1 has an initial transition tj,1 =
〈qI1, θj,1, Fj,1, Q

′
j,1〉 ∈ ∆1 for some θj,1 ∈ PL(AP), Fj,1 ⊆ F1 and Q′

j,1 ⊆ Q1

for all 0 ≤ j < i such that w(j) |= θj,1 holds, and Aq′

1 fin-accepts wj+1 for all
q′ ∈ Q′

j,1. Additionally, if i < ω holds, an analogous result holds for an initial
transition ti,2 = 〈qI2, θi,2, Fi,2, Q

′
i,2〉 ∈ ∆2 of A2.

By the definition of A, there now exists a transition tj = 〈qI , θj, Fj , Q
′
j〉 ∈

∆, where θj = θj,1, Fj = {f} for some new acceptance condition f (◦ = Us)

3. BASIC AUTOMATON TRANSLATION 55

w(0) w(1) w(2) w(3) w(4) w(5)

v0

v0,1

v0,2

v1

v1,1

v2

v2,1

v3

v3,1

v3,2

v4 v5 v5,1

v5,2

(a)

w(0) w(1) w(2) w(3) w(4) w(5)

qI

q0,1

q0,2

qI

q1,1

qI

q2,1

qI

q3,1

q3,2

qI qI q5,1

q5,2

θ0

θ1 θ2 θ3 θ4 θ5

(b)

Fig. 3.5: Construction of a semi-run in Lemma 3.3.1 (◦ = Us, i = 5). (a) Node and
edge structure; (b) Labeling of nodes and edges

or Fj = ∅ (◦ = Uw), and Q′
j = Q′

j,1 ∪ {qI} for all 0 ≤ j < i. Furthermore, if
i < ω holds, then there exists also a transition ti = 〈qI , θi, ∅, Q

′
i〉 ∈ ∆, where

θi = θi,2 and Q′
i = Q′

i,2. It is easy to see that, for all 0 ≤ j < i + 1 and

q′ ∈ Q′
j \ {qI}, w(j) |= θj holds, and Aq′ fin-accepts wj+1 (because Q′

j \

{qI} = Q′
j,1 ⊆ Q1 and wj+1 ∈ Lfin(A

q′

1) = Lfin(A
q′,F1∪F
1) = Lfin(A

q′) hold
for all 0 ≤ j < i and q′ ∈ Q′

j,1 by the definition of A; an analogous result
holds for Q′

i,2 and the automaton A2 if i < ω holds). Using the transitions tj ,
we define a fin-accepting semi-run of A on w.

(Definition of G) Write Q′
j \ {qI} = {qj,1, qj,2, . . . , qj,nj

} ⊆ Q for all 0 ≤
j < i + 1 (0 ≤ nj < ω, qj,k 6= qj,` for all 1 ≤ k, ` ≤ nj , k 6= `). Define the
graph G = 〈V,E, L〉, where

• V0
def
= {v0}, Vj+1

def
= {vj+1, vj,1, . . . , vj,nj

} for all 0 ≤ j < i, and if

i < ω, let Vi+1
def
= {vi,1, . . . , vi,ni

} and Vj
def
= ∅ for all i+ 1 < j < ω;

• E
def
=

⋃
0≤j<i+1

{
〈vj , Vj+1〉

}
;

• L(vj)
def
= qI , L(vj,k)

def
= qj,k, and L

(
〈vj , Vj+1〉

)
def
= tj for all 0 ≤ j < i+1

and 1 ≤ k ≤ nj.

Figure 3.5 illustrates a possible structure for G with ◦ = Us and i = 5.

(G is a fin-accepting semi-run of A on w) We check that G is a fin-accept-
ing semi-run of A on w.

(Partitioning) V0 = {v0}, and V is partitioned into finite disjoint levels
(with edges only between successive levels) by construction.

(Causality) Let v ∈ Vj for some 0 ≤ j < ω. Then v either has no
outgoing edges, or v = vj . In this case vj has the unique outgoing edge
e = 〈vj , Vj+1〉 ∈ E. On the other hand, if v ∈ Vj for some 1 ≤ j < ω,
then v is a successor of the node vj−1 ∈ Vj−1. It follows that G satisfies
both the forward semi-causality and the backward causality constraints.

(Consistency of L) Clearly, L(v0) = qI holds. Let e ∈ E. By construc-
tion, e = 〈vj , Vj+1〉 holds for some 0 ≤ j < i + 1. Because L(e) = tj =
〈qI , θj , Fj, Q

′
j〉 =

〈
L(vj), θj , Fj, L(Vj+1)

〉
∈ ∆ and w(j) |= θj hold, it

follows that the labeling L is consistent.

(Acceptance) If i < ω, then the edge set E is finite. Therefore B(G) =

∅, and G is trivially fin-accepting. Otherwise G contains a unique infinite
branch, all edges in which are labeled with initial self-loops of A. Because

56 3. BASIC AUTOMATON TRANSLATION

i = ω implies that ◦ = Uw, the set of acceptance conditions of each initial
self-loop of A is empty. It follows that the branch is fin-accepting, and
thus G is a fin-accepting semi-run of A on w.

(G can be extended into a fin-accepting run) Let v ∈ V be a node in G

with no outgoing edges. Then v = vj,k ∈ Vj+1 holds for some 0 ≤ j < i+ 1
and 1 ≤ k ≤ nj . Because L(v) ∈ Q′

j \ {qI} holds, and because Aq′ fin-
accepts wj for all q′ ∈ Q′

j \ {qI}, it follows that G can be extended into a
fin-accepting run of A on w by Proposition 2.3.14, and thus w ∈ Lfin(A)
holds. �

Using the above lemma together with Proposition 2.3.15, we can now give
a simple inductive proof of the correctness of the translation.

Theorem 3.3.2 Let ϕ ∈ LTLPNF(AP) be an LTL formula in positive nor-
mal form, and let Aϕ be an automaton constructed from ϕ using the transla-
tion rules. For all w ∈ (2AP)ω, Aϕ fin-accepts w iff w |= ϕ holds.

Proof: We proceed by induction on the node size of the formula ϕ. If
NSize(ϕ) = 1, ϕ is an atomic formula. If ϕ = ⊥, then it is easy to see from
the definition of Aϕ that Aϕ has no runs on any input, and thus Lfin(Aϕ) =
∅ = L(⊥). Otherwise Aϕ has exactly one initial transition (with guard ϕ),
and it follows from Proposition 2.3.15 that Aϕ has a fin-accepting run on w
iff w(0) |= ϕ holds, which is equivalent to w |= ϕ in this case, because ϕ is a
Boolean formula.

Assume that the result holds for all LTL formulas (in positive normal form)
of node size less than or equal to some fixed 1 ≤ k < ω, and let ϕ be a non-
atomic LTL formula in positive normal form such that NSize(ϕ) = k + 1.
We split the proof in separate cases based on the main connective of ϕ:

(ϕ = Xϕ1)

Aϕ fin-accepts w

iff there exists a transition 〈qI , θ, F,Q
′〉 ∈ ∆ such that w(0) |= θ and for

all q ∈ Q′, Aq
ϕ fin-accepts w1 (Proposition 2.3.15)

iff w(0) |= > and Aϕ1 fin-accepts w1 (definition of Aϕ)

iff w(0) |= > and w1 |= ϕ1 (induction hypothesis)

iff w |= Xϕ1 (semantics of LTL)

(ϕ = (ϕ1 ∨ ϕ2))

Aϕ fin-accepts w

iff there exists a transition 〈qI , θ, F,Q
′〉 ∈ ∆ such that w(0) |= θ and for

all q ∈ Q′, Aq
ϕ fin-accepts w1 (Proposition 2.3.15)

iff there exists a transition 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1 such that w(0) |= θ1

and for all q ∈ Q′
1, Aq

ϕ (= Aq
ϕ1

) fin-accepts w1

or
there exists a transition 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2 such that w(0) |= θ2

and for all q ∈ Q′
2, Aq

ϕ (= Aq
ϕ2

) fin-accepts w1 (definition of Aϕ)

iff Aϕ1 fin-accepts w or Aϕ2 fin-accepts w (Proposition 2.3.15)

3. BASIC AUTOMATON TRANSLATION 57

iff w |= ϕ1 or w |= ϕ2 (induction hypothesis)

iff w |= (ϕ1 ∨ ϕ2) (semantics of LTL)

(ϕ = (ϕ1 ∧ ϕ2))

Aϕ fin-accepts w

iff there exists a transition 〈qI , θ, F,Q
′〉 ∈ ∆ such that w(0) |= θ and for

all q ∈ Q′, Aq
ϕ fin-accepts w1 (Proposition 2.3.15)

iff there exist transitions 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1 and 〈qI2, θ2, F2, Q

′
2〉 ∈

∆2 such that w(0) |= (θ1∧θ2) and for all q ∈ Q′
1∪Q

′
2, Aq

ϕ fin-accepts
w1 (definition of Aϕ)

iff there exists a transition 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1 such that w(0) |= θ1

and for all q ∈ Q′
1, Aq

ϕ (= Aq
ϕ1

) fin-accepts w1

and
there exists a transition 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2 such that w(0) |= θ2

and for all q ∈ Q′
2, Aq

ϕ (= Aq
ϕ2

) fin-accepts w1

iff Aϕ1 fin-accepts w and Aϕ2 fin-accepts w (Proposition 2.3.15)

iff w |= ϕ1 and w |= ϕ2 (induction hypothesis)

iff w |= (ϕ1 ∧ ϕ2) (semantics of LTL)

(ϕ = (ϕ1 Us ϕ2) or ϕ = (ϕ1 Uw ϕ2))

Aϕ fin-accepts w

iff there exists an index 0 ≤ i < ω such that Aϕ2 fin-accepts wi and for
all 0 ≤ j < i, Aϕ1 fin-accepts wj

or
ϕ = (ϕ1 Uw ϕ2), and for all 0 ≤ i < ω, Aϕ1 fin-accepts wi

(Lemma 3.3.1)

iff there exists an index 0 ≤ i < ω such that wi |= ϕ2 and for all 0 ≤
j < i, wj |= ϕ1

or
ϕ = (ϕ1 Uw ϕ2), and for all 0 ≤ i < ω, wi |= ϕ1 (induction hypothesis)

iff w |= ϕ (semantics of LTL)

(ϕ = (ϕ1 Rs ϕ2) or ϕ = (ϕ1 Rw ϕ2))

Aϕ fin-accepts w

iff A(ϕ2◦(ϕ1∧ϕ2)) fin-accepts w, where ◦ is an Until connective of the
same strength as the main connective of ϕ (definition of Aϕ)

iff there exists an index 0 ≤ i < ω such that A(ϕ1∧ϕ2) fin-accepts wi and
for all 0 ≤ j < i, Aϕ2 fin-accepts wj

or
◦ = Uw, and Aϕ2 fin-accepts wi for all 0 ≤ i < ω (Lemma 3.3.1)

iff there exists an index 0 ≤ i < ω such that wi |= (ϕ1 ∧ ϕ2) and for all
0 ≤ j < i, wj |= ϕ2

or
◦ = Uw, and wi |= ϕ2 for all 0 ≤ i < ω

(case “∧” and the induction hypothesis)

58 3. BASIC AUTOMATON TRANSLATION

iff w |=
(
ϕ2 ◦ (ϕ1 ∧ ϕ2)

)
(semantics of LTL)

iff w |= ϕ (semantics of LTL)

The result holds by induction for all formulas ϕ ∈ LTLPNF(AP). �

3.4 REVERSE TRANSLATION

In this section we verify that, for any self-loop alternating automaton A over
an alphabet Σ with 2n elements for some n ∈ N (i.e., a set that is equipollent
to a powerset of some finite set S with n elements), there exists an LTL for-
mula ϕ over the atomic propositions S such that for allw ∈ Σω, A fin-accepts
w iff w |= ϕ holds. Together with Theorem 3.3.2, this result establishes
the expressive equivalence between self-loop alternating automata and LTL.
Proofs for this result (based on slightly different basic definitions and notions
of acceptance) have previously been presented by Rohde [1997], and Löding
and Thomas [2000]; in this section, we prove the result directly for automata
having multiple acceptance conditions on transitions instead of states. Addi-
tionally, we consider also the complexity of the reverse translation by finding
upper bounds for the number of subformulas and temporal subformulas in
the LTL formulas built from self-loop alternating automata via reverse trans-
lation.

As noted by Rohde [1997], the expressive equivalence of self-loop alter-
nating automata and LTL generalizes to self-loop alternating automata over
an arbitrary (finite) nonempty alphabet Σ in the sense that for any self-loop
alternating automaton A with alphabet Σ, there exists a finite set S, a one-
to-one mapping α : Σ → 2S and an LTL formula ϕ ∈ LTL(S) such that
for all w ∈ Σω, A fin-accepts w iff

(
α(w(i))

)
0≤i<ω

|= ϕ holds. It is easy to

define a one-to-one mapping α by taking S to be any finite set with at least
dlog2 |Σ|e elements. The claim then follows by applying the basic correspon-
dence between LTL and self-loop alternating automata whose alphabet’s size
is a power of 2 to the self-loop alternating automaton (over the alphabet 2S)
obtained from A by replacing each element of each transition guard of A
with its image under α.

We begin by characterizing in LTL the behavior of a copy of a (subau-
tomaton of a) self-loop alternating automaton A = 〈2S, Q,∆, qI ,F〉 along a
path in a fin-accepting run of the automaton on some input w ∈ (2S)ω. In-
terpreting the path as the description of the stepwise behavior of the copy of
the automaton, we see (cf. Fig. 2.5, p. 28) that the copy either “stays” in the
state q ∈ Q labeling the first node in the path for a finite number of steps and
then exits the state (without ever entering it again, because A is a self-loop
alternating automaton), or remains in the state indefinitely by taking only
self-loop transitions (i.e., spawning a new copy of itself at every step). Be-
cause the run is fin-accepting, the infinite chain formed from these self-loops
corresponds to a fin-accepting branch of the run. Hence, for all acceptance
conditions f ∈ F , the copy of the automaton takes infinitely many self-loops,
none of which is an f -transition of A.

To formalize this intuition, we first introduce some notation. Assume that
q is the source state of the ith consecutive edge (labeled with a transition t =

3. BASIC AUTOMATON TRANSLATION 59

〈q,Γ, F,Q′〉 ∈ ∆) in a chain through the fin-accepting run of A. Because q
is the initial state of some subautomaton of A, it follows by Proposition 2.3.15
that the guard of t contains the input symbol w(i) ∈ 2S (i.e., w(i) |= θ holds
for the characteristic Boolean formula θ of Γ), and all subautomata rooted at
the states in Q′ fin-accept wi+1. Suppose that the language accepted by each
subautomaton rooted at a target state q′ ∈ Q′ \ {q} of t coincides with the
language of some LTL formula ϕq′ , i.e., wi+1 |= ϕq′ holds. We thus find that

wi |= µ
(
〈q, θ, F,Q′〉

)
def
= (θ ∧

∧

q′∈Q′\{q}

Xϕq′).

Using µ, the implications of a copy of A (that is in state q ∈ Q) taking a
self-loop, a non-self-loop, or a self-loop that is not an f -transition of A can
now be written as the LTL formulas

ψself-loop(q)
def
=

∨

〈q,θ,F,Q′〉∈∆,

q∈Q′

µ
(
〈q, θ, F,Q′〉

)
, ψnon-self-loop(q)

def
=

∨

〈q,θ,F,Q′〉∈∆,

q /∈Q′

µ
(
〈q, θ, F,Q′〉

)

and
ψavoid(q, f)

def
=

∨

〈q,θ,F,Q′〉∈∆,

q∈Q′, f /∈F

µ
(
〈q, θ, F,Q′〉

)
.

We can now give a characterization of the above description of the looping
behavior of A in LTL. Assuming the existence of LTL formulas correspond-
ing to the successors of the state q of the alternating automaton A (excluding
q itself), we can apply the following lemma to find an LTL formula, the
language of which coincides with the language fin-accepted by the subau-
tomaton Aq.

Lemma 3.4.1 Let A = 〈Σ, Q,∆, qI ,F〉 be a self-loop alternating automaton
over the alphabet Σ = 2S for some finite set S, and let q ∈ Q. Assume that for
all successors q′ of q in A, excluding q itself, there exists an LTL formula ϕq′
such that for all w ∈ Σω, the subautomaton (Aq)q

′
fin-accepts w iff w |= ϕq′

holds. For all w ∈ Σω, Aq fin-accepts w iff w satisfies the formula

ϕq
def
=

((
ψself-loop(q) Us ψnon-self-loop(q)

)
∨ G

(
ψself-loop(q) ∧

∧

f∈F

Fψavoid(q, f)
))

.

Proof: (Only if) Let G = 〈V,E, L〉 be a fin-accepting run of Aq on some

w ∈ Σω. By Proposition 2.3.7, there exists an index 0 ≤ i ≤ ω and a chain
of edges (ej)0≤j<i+1, ej = 〈vj , V

′
j 〉 ∈ E ∩ (Vj × 2Vj+1), such that L(ej) is an

initial self-loop of Aq for all 0 ≤ j < i, and if i < ω, then L(ei) is an initial
transition of Aq that is not a self-loop. It is clear that L(vj) = q holds for all
0 ≤ j < i+ 1.

Let 0 ≤ j < i + 1. Because G is a run, the edge ej = 〈vj, V
′
j 〉 is labeled

with a transition tj = 〈q, θj, Fj , Q
′
j〉 ∈ ∆ such that w(j) |= θj and Q′

j =
L(V ′

j) hold. Because θj is a Boolean formula, it follows that wj |= θj holds,

and because G is fin-accepting, (Aq)q
′
fin-accepts wj+1 for all q′ ∈ Q′

j by
Proposition 2.3.9. By assumption, this implies that wj+1 |= ϕq′ holds for all

60 3. BASIC AUTOMATON TRANSLATION

q′ ∈ Q′
j \{q}. Therefore wj |=

(
θj ∧

∧
q′∈Q′

j\{q}
Xϕq′

)
, i.e., wj |= µ(tj) holds

by the semantics of LTL.
Because L(ej) is an initial self-loop of Aq for all 0 ≤ j < i, it follows from

the definition of ψself-loop(q) that wj |= ψself-loop(q) holds for all 0 ≤ j < i. If
i < ω, then, because L(ei) is an initial transition of Aq that is not a self-loop,
also wi |= ψnon-self-loop(q) holds. But then w |=

(
ψself-loop(q) Us ψnon-self-loop(q)

)

holds by the semantics of LTL, which implies that w |= ϕq.

If i = ω, then the chain β
def
= (ej)0≤j<i is an infinite branch, all edges of

which are labeled with initial self-loops of Aq. As seen above, wj |= µ(tj)
and wj |= ψself-loop(q) hold for all 0 ≤ j < ω. Fix 0 ≤ j < ω, and let f ∈ F .
Because G is fin-accepting, fin(β) = ∅, and thus there exists an index j ≤
k < ω such that L(ek) is not an f -transition of A. Because wk |= µ(tk) holds,
and L(ek) is an initial self-loop of Aq, it follows that wk |= ψavoid(q, f) holds.
But then, because k ≥ j, wj |= Fψavoid(q, f) holds, and because f is arbitrary
and wj |= ψself-loop(q), it follows that wj |=

(
ψself-loop(q) ∧

∧
f∈F Fψavoid(q, f)

)

holds. Since j is arbitrary, we conclude that w |= ϕq holds also in this case.

(If) Assume that w |= ϕq holds. Then w satisfies at least one of the formu-

las
(
ψself-loop(q) Us ψnon-self-loop(q)

)
and G

(
ψself-loop(q)∧

∧
f∈F Fψavoid(q, f)

)
, and

there necessarily exists a maximal index 0 ≤ i ≤ ω such thatwj |= ψself-loop(q)
and wj 6|= ψnon-self-loop(q) hold for all 0 ≤ j < i, and if i < ω, then
wi |= ψnon-self-loop(q). From the definition of ψself-loop(q) it follows that the

set of initial self-loop transitions Tj
def
=

{
〈q, θ, F,Q′〉 ∈ ∆ q ∈ Q′, wj |=

µ
(
〈q, θ, F,Q′〉

)}
is nonempty for all 0 ≤ j < i. Our goal is to choose self-

loops tj
def
= 〈q, θj , Fj, Q

′
j〉 ∈ Tj for all 0 ≤ j < i (and if i < ω, an additional

non-self-loop transition ti
def
= 〈q, θi, Fi, Q

′
i〉 ∈ ∆ such that wi |= µ(ti) holds;

ti exists because wi |= ψnon-self-loop(q) holds in this case) and construct a fin-
accepting semi-run G of Aq on w by forming a (possibly infinite) chain of
edges labeled with these transitions. For this purpose, we fix a total order ≺
on the set of acceptance conditions F ; because F is finite, every nonempty
subset of F then contains a minimal element under ≺.

(Definition of the transitions tj) Let t0 ∈ T0 be any element of T0. As-
sume that the transitions tj = 〈q, θj, Fj, Q

′
j〉 have already been defined

for all 0 ≤ j < k for some 1 ≤ k < i. Let αk
def
= min

(
{k − 1} ∪{

0 ≤ ` < k
⋂
`≤j≤k−1 Fj 6= ∅

})
be the minimal index strictly less than

k such that all transitions tαk
, tαk+1, . . . , tk−1 share a common acceptance

condition in F if such a condition exists (and let αk
def
= k − 1 otherwise).

Let F̃k
def
=

⋂
αk≤j≤k−1Fj be the set of all acceptance conditions shared by

these transitions, and define f̃k
def
= min≺ F̃k for every nonempty F̃k. Now, let

tk
def
= 〈q, θk, Fk, Q

′
k〉 be any transition t = 〈q, θ, F,Q′〉 ∈ Tk such that f̃k /∈ F

if F̃k 6= ∅ and such a transition exists in Tk; otherwise let tk be any transition
in the set Tk.

(Definition of G) Without loss of generality, we may write Q′
j \ {q} as a

finite set of distinct states Q′
j = {qj,1, qj,2, . . . , qj,nj

} for some 0 ≤ nj < ω
and all 0 ≤ j < i+ 1. Let G = 〈V,E, L〉, where

• V0
def
= {v0}, Vj+1

def
= {vj+1, vj,1, . . . , vj,nj

} for all 0 ≤ j < i, and if

i < ω, let Vi+1
def
= {vi,1, . . . , vi,ni

} and Vj
def
= ∅ for all i+ 1 < j < ω;

3. BASIC AUTOMATON TRANSLATION 61

• E
def
=

⋃
0≤j<i+1

{
〈vj , Vj+1〉

}
;

• L(vj)
def
= q, L(vj,k)

def
= qj,k, and L

(
〈vj , Vj+1〉

)
def
= tj for all 0 ≤ j < i+1

and 1 ≤ k ≤ nj.

(The structure of the graph G is identical to the graph defined in the proof
of the “If” direction of Lemma 3.3.1; see also Fig. 3.5.)

(G is a semi-run of Aq on w) We check that G satisfies all constraints re-
quired of a semi-run of Aq on w.

(Partitioning) V0 = {v0}, and V is partitioned into finite disjoint levels
(with edges between successive levels of G) by construction.

(Causality) Let v ∈ Vj for some 0 ≤ j < ω. Then v either has no
outgoing edges, or v = vj and j < i + 1. In this case v has the unique
outgoing edge e = 〈vj, Vj+1〉 ∈ E. On the other hand, because the target
node set of the only edge starting from a node at level 0 ≤ j < i+1 covers
all nodes in Vj+1, it is clear that each node in Vj for some 1 ≤ j < ω is a
successor of some node at level j − 1.

(Consistency of L) Obviously, L(v0) = q holds. Let e ∈ E. By con-

struction, e = 〈vj, Vj+1〉 holds for some 0 ≤ j < i+ 1. Since wj |= µ(tj)
holds (i.e., wj |=

(
θj ∧

∧
q′∈Q′

j\{q}
Xϕq′

)
holds), w(j) |= θj holds, and

because L(e) = tj = 〈q, θj, Fj , Q
′
j〉 =

〈
L(vj), θj , Fj, L(Vj+1)

〉
holds, the

labeling L is consistent.

(G is fin-accepting) We check that G is fin-accepting. If i < ω (i.e., if
w |= (ψself-loop(q) Us ψnon-self-loop(q)) holds), then the edge set E is finite. This
implies that B(G) = ∅, and thus G is trivially a fin-accepting semi-run of Aq

on w. Otherwise B(G) contains a unique infinite branch β
def
= (ej)0≤j<ω,

where ej = 〈vj, Vj+1〉 for all 0 ≤ j < ω.
Assume that β is not fin-accepting. Therefore, there exists a minimal index

0 ≤ k < ω such that all transitions L(ej) = tj = 〈q, θj, Fj, Q
′
j〉 share a

nonempty set of acceptance conditions from F for all k ≤ j < ω. Let
fmin be the ≺-minimal acceptance condition among the maximal set of such
conditions. Because k is minimal, there exists another index k ≤ k′ < ω
such that fmin is also the minimal element of F̃j for all k′ < j < ω.

Because i = ω, w 6|=
(
ψself-loop(q) Us ψnon-self-loop(q)

)
. Therefore it is nec-

essarily the case that w |= G
(
ψself-loop(q) ∧

∧
f∈F Fψavoid(q, f)

)
holds, and

thus there exists an index k′ < ` < ω such that w` |= ψavoid(q, fmin) =∨
〈q,θ,F,Q′〉∈∆

q∈Q′, fmin /∈F

µ
(
〈q, θ, F,Q′〉

)
. It now follows that T` has a nonempty subset

T of transitions, none of which includes fmin in its acceptance conditions.
Because fmin is the minimal element of F̃`, it follows that t` was chosen from
the set T . But then fmin cannot be one of the acceptance conditions shared
by all transitions tj for all k ≤ j < ω, which is a contradiction. It follows that
β is fin-accepting, and G is a fin-accepting semi-run of Aq on w.

(G can be extended into a fin-accepting run of Aq on w) Let v ∈ V be a
node with no outgoing edges in G. Then v = vj,k ∈ Vj+1 holds for some
0 ≤ j < i + 1 and 1 ≤ k ≤ nj such that L(v) = qj,k ∈ Q′

j \ {q}. Because
wj |= µ(tj) holds, that is, wj |=

(
θj ∧

∧
q′∈Q′

j\{q}
Xϕq′

)
holds, it follows that

62 3. BASIC AUTOMATON TRANSLATION

wj+1 |= ϕq′ for all q′ ∈ Q′
j \ {q}. In particular, (Aq)qj,k now has a fin-

accepting run on wj+1 by assumption. Since v is an arbitrary node of G with
no outgoing edges, it follows that G can be extended to a full fin-accepting
run of Aq on w by Proposition 2.3.14, and thus Aq fin-accepts w. �

We can now establish the main result of this section by a straightfor-
ward inductive proof on the structure of self-loop alternating automata, using
Lemma 3.4.1 for proving the induction step.

Theorem 3.4.2 Let A = 〈Σ, Q,∆, qI ,F〉 be a self-loop alternating automa-
ton over the alphabet Σ = 2S for some finite set S. There exists an LTL
formula ϕ over the atomic propositions S such that for all w ∈ Σω, A fin-
accepts w iff w |= ϕ holds.

Proof: Because A is a self-loop alternating automaton, there exists a function
ρ : Q → N such that for all transitions 〈q,Γ, F,Q′〉 ∈ ∆, ρ(q′) < ρ(q) holds
for all q′ ∈ Q′ \ {q}. In particular, as seen in the proof of Proposition 2.3.16,
ρ(q) can be defined as

ρ(q)
def
= max

{
|x| x is a simple path from q to a state q′ ∈ Q0

}

where Q0
def
=

{
q ∈ Q for all 〈q,Γ, F,Q′〉 ∈ ∆, Q′ ⊆ {q}

}
. We proceed

by induction on ρ(q). If ρ(q) = 1, then the result follows immediately for
the subautomaton Aq by Lemma 3.4.1, since q has no successors different
from itself (and thus the assumption needed in Lemma 3.4.1 holds trivially).
Assume that the result holds for all subautomata Aq, where q ∈ Q satisfies
ρ(q) ≤ i for some 1 ≤ i < ω. Let q ∈ Q be a state for which ρ(q) =
i + 1. Then, ρ(q′) ≤ i holds for all successors of q excluding q itself, and
the result follows again for the subautomaton Aq by Lemma 3.4.1 and the
induction hypothesis. By induction, we conclude that the result holds also
for the subautomaton AqI , because ρ(qI) is finite, and therefore also for the
automaton A, because A and AqI are fin-equivalent (Proposition 2.3.12). �

The proof of Theorem 3.4.2 gives an inductive procedure for finding an
LTL formula that corresponds to a given self-loop alternating automaton by
repeatedly using the formula given in Lemma 3.4.1 as a pattern for defin-
ing LTL formulas corresponding to states with increasing values of ρ. We
illustrate the reverse translation with the following example.

Example 3.4.3 Consider again the self-loop alternating automaton working
on the alphabet Σ = {a, b, c} from Ex. 2.3.21 (repeated in Fig. 3.6 with the
values of the function ρ used in Theorem 3.4.2). Because the alphabet Σ
consists of three distinct symbols, the automaton can be translated into an

LTL formula over two atomic propositions AP
def
= {p1, p2} by defining (as

described in the beginning of this section) a mapping α : Σ → 2AP with

(for example) α(a)
def
= {p1}, α(b)

def
= {p2} and α(c)

def
= {p1, p2}. Under this

mapping, the guards of transitions in the automaton can be represented with

3. BASIC AUTOMATON TRANSLATION 63

q1

q2 q3 q4

q5 q6

q7 q8 ρ = 1

ρ = 2

ρ = 3

ρ = 4

{a}

{a}

{a}

{a}

{a}

{a}

{b}

{b}

{b}

{b}
{b}

{c}

{c}

{c}

{a, c} {b, c}

{b, c}

{a, b, c}

Fig. 3.6: The self-loop alternating automaton of Fig. 2.8 with the values of the func-
tion ρ displayed

the characteristic Boolean formulas

θ{a}
def
= (p1 ∧ ¬p2),

θ{b}
def
= (¬p1 ∧ p2),

θ{c}
def
= (p1 ∧ p2),

θ{a,c}
def
=

(
(p1 ∧ ¬p2) ∨ (p1 ∧ p2)

)
≡ p1,

θ{b,c}
def
=

(
(¬p1 ∧ p2) ∨ (p1 ∧ p2)

)
≡ p2, and

θ{a,b,c}
def
=

(
(p1 ∧ ¬p2) ∨

(
(¬p1 ∧ p2) ∨ (p1 ∧ p2)

))
≡ (p1 ∨ p2)

In the following, we shall use the above θ formulas instead of writing the
characteristic Boolean formulas explicitly to simplify the notation. We shall
also omit parentheses from formulas whenever it is possible to do so without
semantic ambiguity.

The reverse translation can be started from any state q with ρ(q) = 1, for
example, the state q7. For this state, we define

ψself-loop(q7)
def
=

∨
〈q7,θ,F,Q′〉∈∆,

q7∈Q′

µ
(
〈q7, θ, F,Q

′〉
)

= µ
(
〈q7, θ{a}, {◦}, {q7}〉

)
∨ µ

(
〈q7, θ{b}, {•}, {q7}〉

)

∨ µ
(
〈q7, θ{c}, {•, ◦}, {q7}〉

)

=
(
θ{a} ∧

∧
q′∈∅ Xϕq′

)
∨

(
θ{b} ∧

∧
q′∈∅ Xϕq′

)

∨
(
θ{c} ∧

∧
q′∈∅ Xϕq′

)

≡ (θ{a} ∧ >) ∨ (θ{b} ∧ >) ∨ (θ{c} ∧>)

≡ θ{a} ∨ θ{b} ∨ θ{c},

ψnon-self-loop(q7)
def
=

∨
〈q7,θ,F,Q′〉∈∆,

q7 /∈Q′

µ
(
〈q7, θ, F,Q

′〉
)
≡ ⊥,

ψavoid(q7, •)
def
=

∨
〈q7,θ,F,Q′〉∈∆,

q7∈Q′, • /∈F

µ
(
〈q7, θ, F,Q

′〉
)

= µ
(
〈q7, θ{a}, {◦}, {q7}〉

)

= θ{a} ∧
∧
q′∈∅ Xϕq′

≡ θ{a}, and

64 3. BASIC AUTOMATON TRANSLATION

Table 3.5: ψself-loop-, ψnon-self-loop- and ψavoid-formulas built during reverse translation

State q ψself-loop(q) ψnon-self-loop(q) ψavoid(q, •) ψavoid(q, ◦)

q7 θ{a} ∨ θ{b} ∨ θ{c} ⊥ θ{a} θ{b}

q8 θ{a,b,c} ⊥ θ{a,b,c} θ{a,b,c}

q5 θ{b,c} θ{a} ∧ Xϕq7 ∧ Xϕq8 θ{b,c} θ{b,c}

q6 θ{a} ∨ θ{c} θ{b} ∧ Xϕq8 ⊥ θ{c}

q2 θ{a,c} ∧ Xϕq5 θ{b} ∧ Xϕq6 θ{a,c} ∧ Xϕq5 ⊥
q3 ⊥ (θ{a}∧Xϕq5∧Xϕq6) ∨ (θ{b}∧Xϕq7) ⊥ ⊥
q4 ⊥ (θ{a} ∧ Xϕq6) ∨ θ{b,c} ⊥ ⊥
q1 (θ{b}∧Xϕq3) ∨ θ{c} θ{a} ∧ Xϕq2 ∧ Xϕq4 θ{c} θ{b}∧Xϕq3

ψavoid(q7, ◦)
def
=

∨
〈q7,θ,F,Q′〉∈∆,

q7∈Q′, ◦ /∈F

µ
(
〈q7, θ, F,Q

′〉
)

= µ
(
〈q7, θ{b}, {•}, {q7}〉

)

= θ{b} ∧
∧
q′∈∅ Xϕq′

≡ θ{b}.

Applying Lemma 3.4.1, we get the formula

ϕq7
def
=

(
ψself-loop(q7)Us ψnon-self-loop(q7)

)

∨ G
(
ψself-loop(q7) ∧

∧
f∈{•,◦} Fψavoid(q7, f)

)

≡
(
(θ{a} ∨ θ{b} ∨ θ{c})Us ⊥

)
∨ G

(
(θ{a} ∨ θ{b} ∨ θ{c}) ∧ Fθ{a} ∧ Fθ{b}

)

≡ ⊥ ∨ G
(
(θ{a} ∨ θ{b} ∨ θ{c}) ∧ Fθ{a} ∧ Fθ{b}

)

≡ G
(
(θ{a} ∨ θ{b} ∨ θ{c}) ∧ Fθ{a} ∧ Fθ{b}

)
.

Table 3.5 and Table 3.6 show (simplified) formulas built by repeating the
reverse translation in the states q8, q5, q6, q2, q3, q4 and q1 (where the order is
determined by increasing values of ρ). No (simplified) formula correspond-
ing to a transient state of the automaton has a top-level subformula having
G as its main connective. By the discussion at the beginning of this sec-
tion and Theorem 3.4.2, the automaton fin-accepts a word w ∈ {a, b, c}ω iff(
α(w(i))

)
0≤i<ω

|= ϕq1 holds. �

It is easy to see from the previous example that the length of the for-
mulas obtained by repeated applications of Lemma 3.4.1 grows rapidly as
the value of ρ increases (in the example, we did not even try to write the
ϕq-formulas in explicit form for states with ρ(q) > 1). There is neverthe-
less some sharing between the subformulas: in the remainder of this sec-

Table 3.6: ϕq-formulas built during reverse translation

State q ϕq

q7 G
`
(θ{a} ∨ θ{b} ∨ θ{c}) ∧ Fθ{a} ∧ Fθ{b}

´

q8 Gθ{a,b,c}

q5
`
θ{b,c} Us (θ{a} ∧ Xϕq7 ∧ Xϕq8)

´
∨ Gθ{b,c}

q6 (θ{a} ∨ θ{c})Us (θ{b} ∧ Xϕq8)
q2 (θ{a,c} ∧ Xϕq5)Us (θ{b} ∧ Xϕq6)
q3 (θ{a} ∧ Xϕq5 ∧ Xϕq6) ∨ (θ{b} ∧ Xϕq7)
q4 (θ{a} ∧ Xϕq6) ∨ θ{b,c}

q1
`
((θ{b} ∧ Xϕq3) ∨ θ{c})Us (θ{a} ∧ Xϕq2 ∧ Xϕq4)

´

∨ G
`
((θ{b} ∧ Xϕq3) ∨ θ{c}) ∧ Fθ{c} ∧ F(θ{b} ∧ Xϕq3)

´

3. BASIC AUTOMATON TRANSLATION 65

tion, we shall investigate the behavior of the simple reverse translation pro-
cedure based on Lemma 3.4.1 by determining upper bounds for the number
of subformulas and pure temporal subformulas in a formula ϕ obtained by
applying the procedure to a self-loop alternating automaton A. In particu-
lar, the upper bound for the number of pure temporal subformulas can be
used as a coarse measure for the efficiency of the reverse translation: because
the formula ϕ could be translated back into an automaton having at most
1 + |Temp(ϕ)| states (Corollary 3.2.2), |Temp(ϕ)| should ideally not exceed
the number of states |Q| in A. However, because the formula pattern de-
fined in Lemma 3.4.1 includes explicit quantification over the acceptance
conditions F of the automaton A, the upper bound for the number of pure
temporal subformulas will actually depend on the product of |Q| and |F|.
Even worse, the upper bound for the number of subformulas in ϕ depends
explicitly also on the number of transitions in A (which may be exponential
in |Q|), and therefore reverse translation using the simple strategy based on
the repeated application of Lemma 3.4.1 is unlikely to be feasible in practice
except for very small problem instances.

Proposition 3.4.4 Let A = 〈Σ, Q,∆, qI ,F〉 be a self-loop alternating au-
tomaton with |Q| 6= ∅ and |∆| 6= ∅ over the alphabet Σ = 2S for some finite

set S, and let ϕ
def
= ϕqI be the LTL formula obtained from A by repeated

applications of Lemma 3.4.1 to states in A as described in Theorem 3.4.2.

Let c
def
= max

{
|Sub(θ)| : 〈q, θ, F,Q′〉 ∈ ∆

}
≥ 1 be the maximum number

of (syntactically distinct) subformulas in any Boolean formula occurring as
the guard of a transition in ∆. Then,

(a) |Sub(ϕ)| ∈ O
(
(c+ |F|) · |Q| · |∆|

)
, and

(b) |Temp(ϕ)| ∈ O
(
(1 + |F|) · |Q|

)
.

Proof: (a) Clearly, |Sub(ϕ)| cannot exceed the number of subformulas cre-

ated in repeated applications of Lemma 3.4.1. We find an upper bound for
the number of these formulas. It follows directly from Theorem 3.4.2 and the
definitions of µ, ϕq and the various ψ formulas that a subformula ϕ′ built in
reverse translation will have one of the following forms:

(1) ϕ′ = ϕq for some q ∈ Q; (Theorem 3.4.2)

(2) ϕ′ = Xϕq for some q ∈ Q; (definition of µ)

(3) ϕ′ ∈ Sub
(∧

q′∈Q′\{q} Xϕq′
)
\

⋃
q′∈Q Sub(Xϕq′) for some transition

〈q, θ, F,Q′〉 ∈ ∆; (—)

(4) ϕ′ ∈ Sub(θ) for some transition 〈q, θ, F,Q′〉 ∈ ∆ (—)

(5) ϕ′ = µ(t) for some transition t ∈ ∆ (definitions of the ψ formulas)

(6) ϕ′ ∈ Sub
(
ψself-loop(q)

)
\

⋃
t∈∆ Sub

(
µ(t)

)
for some q ∈ Q; (def. of ϕq)

(7) ϕ′ ∈ Sub
(
ψnon-self-loop(q)

)
\

⋃
t∈∆ Sub

(
µ(t)

)
for some q ∈ Q; (—)

(8) ϕ′ ∈ Sub
(
ψavoid(q, f)

)
\

⋃
t∈∆ Sub

(
µ(t)

)
for some q ∈ Q and f ∈ F ;

(—)

(9) ϕ′ = Fψavoid(q, f) for some q ∈ Q and f ∈ F ; (—)

(10) ϕ′ ∈ Sub
(∧

f∈F Fψavoid(q, f)
)
\

⋃
q′∈Q

⋃
f ′∈F Sub

(
Fψavoid(q

′, f ′)
)

for
some q ∈ Q; (—)

(11) ϕ′ =
(
ψself-loop(q) ∧

∧
f∈F Fψavoid(q, f)

)
for some q ∈ Q; (—)

66 3. BASIC AUTOMATON TRANSLATION

(12) ϕ′ = G
(
ψself-loop(q) ∧

∧
f∈F Fψavoid(q, f)

)
for some q ∈ Q; (—)

(13) or ϕ′ =
(
ψself-loop(q) Us ψnon-self-loop(q)

)
for some q ∈ Q. (—)

The total number of subformulas of type (1), (2), (11), (12) and (13) is
clearly less than or equal to 5 · |Q|. Similarly, there are at most |∆| subfor-
mulas of type (5) and at most c · |∆| subformulas of type (4) (each guard of a
transition in A has at most c syntactically distinct subformulas). The number
of subformulas of type (9) is obviously bounded by |Q| · |F|.

It is straightforward to check that any formula of the form
∧
ϕ∈Φ ϕ or∨

ϕ∈Φ ϕ for a finite Φ ⊆ LTL(AP) has no more than |Φ| subformulas not
appearing as a subformula of any ϕ ∈ Φ, independently of the way in which
the conjunction or the disjunction is parenthesized. Therefore, the num-
ber of subformulas of type (3) or (10) cannot exceed |Q| · |∆| and |Q| · |F|,
respectively.

Finally, it is easy to see that, for all q ∈ Q and f ∈ F , ψself-loop(q),

ψnon-self-loop(q) or ψavoid(q, f) is of the form
∨
t∈∆′ µ(t) for some ∆′ ⊆ ∆q

def
=(

{q}× 2Σ × 2F × 2Q
)
∩∆. Clearly, Sub

(∨
t∈∆′ µ(t)

)
\

⋃
t∈∆ Sub

(
µ(t)

)
≤

Sub
(∨

t∈∆q
µ(t)

)
≤ |∆q| holds (for any q ∈ Q) by the above discussion.

It follows that at most
∑

q∈Q |∆q| = |∆| subformulas of type (6) or (7) and∑
q∈Q |∆q| · |F| = |∆| · |F| subformulas of type (8) are created in reverse

translation.
Adding the numbers of the subformulas, we find that |Sub(ϕqI)| ≤

(
5 +

2 · |F|) · |Q| + (3 + c+ |F|) · |∆| + |Q| · |∆| ∈ O
(
(c+ |F|) · |Q| · |∆|

)
.

(b) By the classification of subformulas of ϕ in (a), all pure temporal sub-

formulas built in reverse translation are of the form (2), (9), (12) or (13).
Therefore, |Temp(ϕ)| ≤

(
3 + |F|

)
· |Q| ∈ O

(
(1 + |F|) · |Q|

)
. �

3. BASIC AUTOMATON TRANSLATION 67

4 NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTO-
MATA

In this chapter we study the translation of self-loop alternating automata into
nondeterministic automata. Because nondeterministic automata are equally
expressive to alternating automata on both finite [Kozen 1976; Chandra and
Stockmeyer 1976; Brzozowski and Leiss 1980; Chandra et al. 1981] and infi-
nite inputs (under many notions of acceptance, using the same mode of ac-
ceptance for both types of automata) [Miyano and Hayashi 1984a,b; Lindsay
1988; Muller and Schupp 1995], checking whether an alternating automaton
recognizes the empty language can be reduced to the corresponding question
on a nondeterministic automaton that is equivalent to the alternating one. In
the worst case, however, the number of states in the smallest such nondeter-
ministic automaton is exponential in the number of states in the alternating
automaton. Nevertheless, the language emptiness problem of alternating au-
tomata is usually solved in practice via some form of (explicit or implicit)
nondeterminization.

In general, the key to translating an alternating automaton into a finite
nondeterministic one is to find a finite encoding for the information that is
needed to distinguish accepting branches from non-accepting ones in a run
of the automaton. It is well-known that this can be done under very general
notions of acceptance by merging branches together in a systematic way to
keep the number of active copies at each level of the run of the automaton
bounded. We begin this chapter by reviewing this process of run uniformiza-
tion for self-loop alternating automata working in fin-acceptance mode in
Sect. 4.1. The uniformization of runs leads to a construction for translating
self-loop alternating automata working in fin-acceptance mode into nonde-
terministic automata working in the same mode (Sect. 4.2). This construc-
tion is very similar to the one previously proposed by Gastin and Oddoux
[2001]. Because of our more general notion of acceptance, however, a trans-
lation procedure (from LTL into nondeterministic automata) based on the
construction has inferior performance to Gastin and Oddoux’s construction
due to its greater worst-case impact on the number of new acceptance con-
ditions required for the nondeterministic automaton. We show in Sect. 4.3
that there is nevertheless no need for the introduction of new acceptance
conditions during nondeterminization for a special class of automata which
have accepting runs that satisfy certain restrictions on the occurrence of tran-
sitions associated with acceptance conditions of the automaton. It occurs
that all automata obtained from the translation presented in Ch. 3 trivially
belong to this class of automata.

Of course, there are also cases in which an alternating automaton can
be translated into a nondeterministic one without an exponential blow-up in
the number of states. In Sect. 4.6, we review a simple syntactic subclass of
LTL that translates directly into nondeterministic automata using the rules
presented in Sect. 3.1. Consequently, any formula in this subclass can be
translated into a nondeterministic automaton with a linear number of states
in the number of pure temporal subformulas in the formula. This subclass
of LTL was previously considered by Schneider [1999] in the context of sym-

68 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

bolic translation algorithms between LTL and nondeterministic automata.
We show that the subclass is very closely related also to the syntactic subclass
LTLdet introduced by Maidl [2000a]. We also observe that deciding formula
satisfiability in this restricted subset of LTL is NP-complete.

4.1 UNIFORM RUNS

In this section, we review a classic technical result that will allow us to restrict
the search for an accepting run for a self-loop alternating automaton into a
restricted subset of runs in which the number of nodes in each level of a
run remains bounded by the number of states in the automaton. This result
then leads to a construction for translating self-loop alternating automata into
nondeterministic automata (to be discussed in Sect. 4.2).

Merging Run Branches

The only restriction on the size of levels in a run of an alternating automaton
is that each level of the run should be finite. The number of nodes in a level
of a run may nevertheless grow without any finite bound as the automaton
keeps spawning new copies of its subautomata when working on its input.
Because the automaton has only finitely many states, however, any level with
more nodes than there are states in the automaton represents a situation in
which some active copies of the automaton are in the same state. If the
run is accepting, then all subgraphs rooted at identically labeled nodes at
the level are accepting runs of the same subautomaton on the remaining
input (cf. Proposition 2.3.9). A simple idea to reduce the size of the level
is to force all copies in the same state to behave identically on the rest of
the input by choosing a representative node among the identically labeled
nodes and redirecting each edge that covers any of the nonrepresentative
nodes as a target node to cover the representative node instead, cutting off the
subgraphs originally rooted at the other nodes. Obviously, this transformation
causes some branches in the original run to be merged. Repeating the same
consideration for each collection of identically labeled nodes at the level
would then allow reducing the size of the level to at most as many nodes as
there are states in the automaton.

In general, we call a systematic method for merging branches to keep a
level of a run finitely bounded a uniformization strategy. When applied to
the possibly infinite number of levels in the run, however, a uniformization
strategy should also preserve the acceptance and non-acceptance of runs in
order be useful in considerations on the existence of accepting runs for the
automaton. Instead of simply merging branches at their identically labeled
nodes, the decision on whether the merging of branches is permissible may
in the general case need to be based on additional information (that is, a
memory) about the past evolution of the individual branches. Despite the
possibly unbounded growth in the number of levels that precede another
level in a run, the information needed for uniformization can be shown to
be representable under very general notions of acceptance using only a fi-
nite amount of memory by appealing to the “forgetful determinacy” results
of Gurevich and Harrington [1982] (see [Lindsay 1988; Emerson and Jutla

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 69

1991; Muller and Schupp 1995]). For example, in the case of automata with
a single inf-acceptance condition, this information can be thought of as be-
ing annotated directly in the label of each node in the run to make branches
which have different memories distinguishable (see, for example, [Isli 1994,
1996]).1 Ultimately, the finiteness of the memory needed for uniformization
will then allow the alternating automaton to be translated into a nondeter-
ministic one which “implements” the uniformization strategy.

As will be shown below, however, no branches ending in the same state
need ever be distinguished in runs of self-loop alternating automata with inf-
or fin-acceptance, since—similarly to weak [Muller et al. 1986, 1992] or,
indeed, very weak [Rohde 1997] automata—the acceptance of an infinite
branch in a run of such an automaton is determined by the branch’s conver-
gence properties (which, intuitively, do not depend on the past). Therefore,
we can use an explicit run-based definition of uniformity. (Instead of rea-
soning directly about runs of automata, uniformization results are usually
presented in a game-theoretic setting by arguing about the existence of finite
memory winning strategies for infinite acceptance games played on alternat-
ing automata. We refer the reader to the article by Muller and Schupp [1995]
for a general methodology for constructing such strategies under a variety of
notions of acceptance.)

Uniform Runs for Self-loop Automata
Formally, we call a run G = 〈V,E, L〉 (where V is partitioned into finite
disjoint levels V =

⋃
0≤i<ω Vi as usual) of an alternating automaton A =

〈Σ, Q,∆, qI ,F〉 uniform iff, for all 0 ≤ i < ω, L(v) 6= L(v′) holds for all
v, v′ ∈ Vi, v 6= v′. (Because L is consistent, then obviously L(v), L(v′) ∈ Q
holds, and it follows that the size of each level of G is bounded, i.e., |Vi| ≤
|Q| holds.) We say that an alternating automaton A has uniform inf- (resp.
fin-)accepting runs iff it has a uniform inf- (fin-)accepting run on all words
in its language.

Intuitively, an alternating automaton with uniform inf- (fin-)accepting
runs is able to accept all words in its language without spawning more than
one copy of any of its subautomata at any step when working on an input be-
longing to the language. Of course, the exact set of subautomata to spawn at
a particular step is not necessarily unique due to the possibility of combining
initial transitions of the currently active subautomata in several consistent
ways, and some of the combinations may fail to give rise to an accepting
run for the automaton. Nevertheless, the automaton always has at least one
“successful” way to choose the subautomata to spawn at each step whenever
the input given for the automaton belongs to the language of the automa-
ton. On the other hand, no such way exists if the input does not belong to
this language. This intuition, which is easily seen to apply also to nondeter-
ministic automata and, in fact, all alternating automata with no acceptance
conditions, is made formal below.

Proposition 4.1.1 Let A = 〈Σ, Q,∆, qI ,F〉 be a nondeterministic automa-
ton, a self-loop alternating automaton, or an alternating automaton with

1In our graph-based definition of runs, this may necessitate duplicating some nodes in
the run to ensure that every node will be uniquely labeled.

70 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

F = ∅. For all w ∈ Σω, A fin-accepts w iff A has a uniform fin-accepting
run on w.

Proof: (Only if) Let G = 〈V,E, L〉 be a fin-accepting run of A on w. If

A is nondeterministic, then, because every transition of A has exactly one
target state, all branches in G are infinite due to forward causality and the
consistency of L. Let

(
〈vi, V

′′
i 〉

)
0≤i<ω

∈ B(G) be an infinite branch in G

(where 〈vi, V
′′
i 〉 ∈ E ∩ (Vi × 2Vi+1) and vi+1 ∈ V ′′

i hold for all 0 ≤ i <

ω). It is easy to check that the graph G′ = 〈V ′, E ′, L′〉, where V ′
i

def
= {vi},

L′(vi)
def
= L(vi) (0 ≤ i < ω), E ′ def

=
⋃

0≤i<ω

{
〈vi, V

′
i+1〉

}
and L′

(
〈vi, V

′
i+1〉

)
def
=

L
(
〈vi, V

′′
i 〉

)
(0 ≤ i < ω) is a uniform run of A on w (to show that L′ is

consistent, observe that all nodes in V ′′
i have the same label in G for all

0 ≤ i < ω, because A is nondeterministic). Obviously, G′ contains the
unique infinite branch

(
〈vi, V

′
i+1〉

)
0≤i<ω

; because fin
(
(〈vi, V

′
i+1〉)0≤i<ω

)
=

fin
(
(〈vi, V

′′
i 〉)0≤i<ω

)
= ∅ holds, G′ is fin-accepting.

If A is an alternating automaton, we apply a uniformization strategy to G
to define a uniform fin-accepting run G′ = 〈V ′, E ′, L′〉 of A on w. Intu-
itively, we choose for each level of G a set of transitions (labeling a subset
of edges starting from the level) and define the next level of G′ as a set of
representative nodes for each distinct state of A that is a target state of one of
these transitions. These representatives then guide the selection of another
set of transitions.

Clearly, forming each level of G′ from nodes labeled with distinct states of
A already guarantees that the condition that characterizes uniform runs is sat-
isfied. However, the requirement that G′ should be a fin-accepting run of A
restricts the choice of transitions used for defining the successive levels of G′.
Namely, we have to ensure that the collection of levels thus defined does not
contain an infinite branch that violates the fin-acceptance condition. More
precisely, these levels should not include an infinite chain of edges labeled
with transitions of A that share an acceptance condition in F .

(Uniformization strategy and definition of G′) We now give the formal in-

ductive definition ofG′. Let V ′
0

def
= {v′0}, and let L′(v′0)

def
= qI . We assume that

the acceptance conditions in the finite set F are totally ordered by a relation
≺ ⊆ F × F . In addition to defining the levels V ′

i , we shall also define a
function F̃i : Q → 2F for all 0 ≤ i < ω; intuitively, f ∈ F̃i(q) shall hold for
some acceptance condition f ∈ F only if the most recently defined levels of
G′ include a nonempty chain of edges labeled with self-loops starting from
the state q, all of which have the condition f in their acceptance conditions.

Let F̃0(q)
def
= ∅ for all q ∈ Q. It is clear that each nonempty F̃i(q) contains a

≺-minimal element.
Let Ti : Q → 2∆ (for each level 0 ≤ i < ω of G) be a function which

collects the transitions of A that label the edges starting from a node labeled
with the state q at level i of G; formally,

Ti(q)
def
=

{
L
(
〈v, V ′〉

)
∈ ∆ ∃〈v, V ′〉 ∈ E ∩ (Vi × 2Vi+1) : L(v) = q

}
.

(Because G is a run, G satisfies the forward causality requirement, and thus
Ti(q) 6= ∅ holds for all 0 ≤ i < ω and q ∈ L(Vi).) We divide Ti(q) further

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 71

into three pairwise disjoint (possibly empty) partitions Ti,1(q), Ti,2(q) and
Ti,3(q) by defining

Ti,1(q)
def
=

{
t ∈ Ti(q) t is not a self-loop of A

}
,

Ti,2(q)
def
=

{
t ∈ Ti(q) \ Ti,1(q) t is not a min≺ F̃i(q)-transition

}
, and

Ti,3(q)
def
= Ti(q) \

(
Ti,1(q) ∪ Ti,2(q)

)
.

(If F̃i(q) = ∅, then we consider no transition in Ti(q) to be a min≺ F̃i(q)-
transition in the definition of Ti,2(q).)

Assume that V ′
i and F̃i have already been defined for some 0 ≤ i < ω, and

assume also that the labels of the nodes at level i of G′ form a subset of the
node labels at the corresponding level of G, i.e., L′(V ′

i) ⊆ L(Vi) (this clearly
holds for the level V ′

0 of G′). We now choose for all q ∈ L′(V ′
i) a transition

ti,q = 〈q,Γi,q, Fi,q, Q
′
i,q〉 ∈ Ti,k(q), where k ∈ {1, 2, 3} is the least index of

a nonempty partition of Ti(q) (because Ti(q) 6= ∅ holds, such a partition
always exists). That is, we choose ti,q from Ti(q) by preferring non-self-loops

over self-loops and self-loops that are not min≺ F̃i(q)-transitions over other
self-loops.

Write
⋃
q∈L′(V ′

i)Q
′
i,q = {qi,1, . . . , qi,ni

} for some 0 ≤ ni < ω (where qi,j 6=

qi,k for all 1 ≤ j, k ≤ ni, j 6= k). Define the level i + 1 of G′ as a set of ni
new nodes V ′

i+1
def
= {vi,1, . . . , vi,ni

}, and let L′(vi,j)
def
= qi,j for all 1 ≤ j ≤ ni.

Because the labeling L is consistent in G, it follows immediately that
L′(V ′

i+1) ⊆ L(Vi+1), and thus we can repeat the same inductive construc-

tion at level i + 1 of G′ after first defining the function F̃i+1. For all q ∈ Q,
let

F̃i+1(q)
def
=






Fi,q if q ∈ L′(V ′
i) ∩Q

′
i,q and F̃i(q) = ∅

Fi,q ∩ F̃i(q) if q ∈ L′(V ′
i) ∩Q

′
i,q and F̃i(q) 6= ∅

∅ otherwise.

In the first two cases, the transition ti,q is well-defined (because q ∈ L′(V ′
i)

holds), and it is a self-loop of A starting from the state q (q ∈ Q′
i,q). If

F̃i(q) = ∅ holds, then F̃i(q) has no ≺-minimal element. In this case we
simply initialize F̃i+1(q) with the acceptance conditions of ti,q: clearly, (ti,q)
is then a nonempty chain of self-loops through q that trivially share all accep-
tance conditions in Fi,q.

Otherwise, if F̃i(q) 6= ∅ already contains a ≺-minimal element, then the
most recently defined levels of G′ contain a nonempty chain of edges corre-
sponding to a chain of self-loops through q that share all acceptance condi-
tions in F̃i(q). The second case of the definition now guarantees that F̃i+1(q)

will contain a condition f ∈ F̃i(q) only if also the self-loop ti,q includes f in

its acceptance conditions. Therefore, F̃i+1(q) has the intended meaning at
level i+ 1 of G′.

Finally, if q /∈ L′(V ′
i) ∩ Q

′
i,q holds, then no transition chosen from Ti(q)

starts or extends a chain of self-loops with source state q. In this case we
define F̃i+1(q) to be empty.

This completes the inductive definitions of V ′
i and F̃i. To define the edges

72 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

of G′, we let

E ′ def
=

⋃

0≤i<ω

{
〈v, V ′′〉 ∈ V ′

i × 2V
′
i+1 L′(V ′′) = Q′

i,L′(v)

}

and for all e = 〈v, V ′′〉 ∈ E ′ ∩ (V ′
i × 2V

′
i+1) (0 ≤ i < ω), L′(e)

def
= ti,L′(v).

(G′ is a uniform run of A on w) We check that G′ is a uniform run of A
on w. It is easy to see that each level of G′ consists of uniquely labeled nodes
by construction, and thusG′ satisfies the constraint required of uniform runs.
It remains to be checked that G′ is a run of A on w.

(Partitioning) It follows directly from the definitions of V ′ and E ′ that
V ′

0 is a singleton, V ′ is partitioned into finite disjoint levels, and the edges
of E ′ lie between successive levels of G′.

(Forward causality and consistency of L′) Clearly L′(v′0) = qI holds.
Let v ∈ V ′

i for some 0 ≤ i < ω. Because L′(v) ∈ L′(V ′
i) ⊆ L(Vi)

holds, G contains at least one node at level i labeled with the state L′(v),
and because G satisfies the forward causality constraint, each such node
has an outgoing edge labeled with a transition in Ti(q). Therefore the
transition ti,q = 〈q,Γi,q, Fi,q, Q

′
i,q〉 ∈ Ti(q) is well-defined (i.e., ti,q = L(e)

for some e ∈ E). By the definition of G′, Q′
i,q ⊆ L′(V ′

i+1) holds, and thus

there exists an edge e′ = 〈v, V ′′〉 ∈ E ′ ∩ (V ′
i × 2V

′
i+1). This edge is unique

in E ′, because all nodes at level i+ 1 of G′ are labeled with distinct states
of A. Furthermore, because L′(e′) = ti,q = L(e) holds and because L is
consistent, it follows that also the labeling L′ is consistent.

(Backward causality) If v′ ∈ V ′
i for some 1 ≤ i < ω, then there exists a

state q ∈ L′(V ′
i−1) ⊆ L(Vi−1) and a transition t = 〈q,Γ, F,Q′〉 ∈ Ti−1(q)

such that L′(v′) ∈ Q′ holds. Therefore, there exists a node v ∈ V ′
i−1 and

an edge e = 〈v, V ′′〉 ∈ E ′ such that L′(v) = q and L′(V ′′) = Q′ hold.
Because no two nodes in V ′

i have the same label, it follows that v′ ∈ V ′′,
and thus v′ is a successor of v in G′.

We conclude that G′ is a uniform run of A on w.

(G′ is fin-accepting) If F = ∅, then fin(β) = ∅ obviously holds for all
β ∈ B(G′), and thus G′ is trivially fin-accepting.

Assume that F 6= ∅ holds, and G′ is not fin-accepting. Then G′ contains
an infinite branch (ei)0≤i<ω ∈ B(G′) that violates the fin-acceptance condi-
tion, and there exists a minimal index 0 ≤ j < ω such that the transitions
L′(ei) (j ≤ i < ω) share an acceptance condition f ∈ F .

On the other hand, if A is a self-loop alternating automaton, there exists a
minimal index 0 ≤ k < ω such that all transitions L′(ei) are self-loops of A
having a common source state q ∈ Q for all k ≤ i < ω (Proposition 2.3.18).
It now follows from the definition of G′ that for all k ≤ i < ω, the transition
L′(ei) is the transition chosen by the uniformization strategy from Ti(q) at
level i, i.e., L′(ei) = ti,q = 〈q,Γi,q, Fi,q, Q

′
i,q〉 holds. Furthermore, because

L′ is consistent, q ∈ L′(V ′
i) ∩Q

′
i,q holds for all k ≤ i < ω.

Let `
def
= max{j, k}. Obviously, f ∈

⋂
`≤i<ω Fi,q holds by the assumption.

Furthermore, there exists an index ` ≤ `′ < ω such that F̃i(q) 6= ∅ holds for
all `′ ≤ i < ω: for if F̃i(q) = ∅ holds for some ` ≤ i < ω, then, because

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 73

q ∈ L′(V ′
i)∩Q

′
i,q holds, it follows from the definition of the function F̃i+1(q)

that F̃i+1(q) = Fi,q 3 f holds. Then, F̃i′(q) 6= ∅ holds by induction on i′ for

all i + 1 ≤ i′ < ω, because the assumption that f ∈ F̃i′(q) holds for some
i+1 ≤ i′ < ω implies (because of the fact that q ∈ L′(V ′

i′)∩Q
′
i′,q holds) that

F̃i′+1(q) = Fi′,q ∩ F̃i′(q) 3 f . We may thus choose `′
def
= i+ 1 in this case.

Because F̃i(q) 6= ∅ holds for all `′ ≤ i < ω, it is easy to see from the
definition of the functions F̃i(q) that F̃i+1(q) ⊆ F̃i(q) holds for all `′ ≤

i < ω. Because F̃`′(q) is finite, there exists an index `′ ≤ `′′ < ω and a
nonempty set of acceptance conditions F ⊆ F such that F̃i(q) = F holds
for all `′′ ≤ i < ω. Furthermore, F ⊆ Fi,q also holds for all `′′ ≤ i < ω. Let

fmin
def
= min≺ F be the ≺-minimal acceptance condition in F .

Let `′′ ≤ i < ω, and let v ∈ Vi be a node in G labeled with the state q
(such a node exists, because q ∈ L′(V ′

i) ⊆ L(Vi) holds). Because ti,q is a
self-loop of A that is also an fmin-transition, so is the transition labeling the
edge that starts from the node v in G (otherwise the uniformization strategy
would have preferred this transition when choosing a transition from Ti(q)).
Because the labeling L is consistent, the node v has a successor in G that is
labeled with the state q. By induction on i, it follows that G contains an infi-
nite branch with an infinite suffix of edges labeled with fmin-transitions of A.
But thenG cannot be a fin-accepting run of A onw, which is a contradiction.
It follows that G′ is a uniform fin-accepting run of A on w.

(If) The result follows in this direction immediately because all uniform

fin-accepting runs of A on w are obviously fin-accepting. �

4.2 NONDETERMINIZATION CONSTRUCTION

The expressive equivalence of alternating and nondeterministic automata on
finite words follows already from the first results on alternation [Kozen 1976;
Chandra and Stockmeyer 1976; Brzozowski and Leiss 1980; Chandra et al.
1981]. Miyano and Hayashi [1984a,b] showed that this expressive equiva-
lence carries over to infinite words for automata working in inf-acceptance
mode using a single acceptance condition associated with states of the au-
tomaton. Isli [1994, 1996] used a construction similar to the one of Miyano
and Hayashi to show that an alternating automaton with n states, m of which
are designated “accepting”, can be translated into a nondeterministic au-
tomaton with at most (2

3
)m · 3n states. The expressive equivalence of alter-

nating and nondeterministic automata under more general notions of accep-
tance and types of input was investigated (and proved) by Lindsay [1988],
Emerson and Jutla [1991] and Muller and Schupp [1995].

On the other hand, the translation of alternating automata into nonde-
terministic automata was considered also for automata with structural con-
straints. Muller et al. [1986, 1992] presented a construction for translating
weak alternating automata on infinite trees into nondeterministic automata
working in inf-acceptance mode. Very weak automata on words were further
studied by Rohde [1997], who proposed a construction for translating very
weak alternating automata working on transfinite words into nondeterminis-
tic automata, and Gastin and Oddoux [2001], who showed that every very

74 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

weak alternating automaton on infinite words (with n states, m of which are
associated with a single inf- or fin-acceptance condition) can be translated
into an equivalent nondeterministic automaton having at most 2n states and
m inf-acceptance conditions on transitions. As a matter of fact, this construc-
tion applies directly also to automata with a relaxed notion of one-weakness
[Ben-David et al. 2005]; the knowledgeable reader may note the similarity
of the construction with a special case of the construction of Muller et al.
[1986, 1992]. Similar ideas can be found also in the construction of Fritz
[2005]. Hammer et al. [2005] use a nondeterminization construction that
preserves state-based acceptance; their construction is correct, however, only
for a subclass of very weak alternating automata they call simple linear weak
alternating automata.

In this section we generalize the result of Gastin and Oddoux [2001] to
self-loop alternating automata with multiple fin-acceptance conditions asso-
ciated with their transitions. Similarly to Gastin and Oddoux’s construction,
we build from a self-loop alternating automaton with n states an equivalent
nondeterministic automaton with 2n states. If the self-loop alternating au-
tomaton has m acceptance conditions, the nondeterministic automaton has
at most nm acceptance conditions. This worst-case upper bound is optimal
for our nondeterminization construction; special cases in which this blow-up
can be avoided (such as when the alternating automaton is built from an LTL
formula using the translation rules) are discussed in Sect. 4.3.

4.2.1 Universal Subset Construction

Consider a uniform run of a self-loop alternating automaton A. Because
each level of this run comprises a (possibly empty) set of nodes labeled with
distinct states of A, the labels of the nodes in the level form a subset of states
of A with no duplicates. Intuitively, this run can be seen as a run of an-
other automaton on the same input by collapsing each level of the run into
a single node and the edges between each pair of consecutive levels into a
single edge between the nodes representing the levels (see Fig. 4.1), and by
defining a labeling for these nodes and edges. The nonbranching nature of
the node sequence that emerges suggests that a transition labeling an edge in
the sequence should not have more than one target state to ensure the con-
sistency of the labeling. Because each uniform run of A can be identified
in a similar way with a nonbranching sequence of nodes, it follows that the
underlying automaton can actually be made nondeterministic. The states of
this automaton are subsets of states of A, and its transitions are obtained by
“synchronizing” transitions of A starting from a given subset of states.

The above intuition for simulating self-loop alternating automata with
nondeterministic automata resembles very closely the well-known subset
construction of Rabin and Scott [1959] used for simulating nondetermin-
istic automata on finite words with deterministic automata (i.e., automata
whose every state has a unique successor on each symbol of the alphabet). In
the case of alternating automata, however, the subsets consist of the current
states of the active copies of the alternating automaton, instead of possible
current states of a single copy of the automaton. The above intuitive con-
struction suggests combining a set of transitions taken at a particular level

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 75

Fig. 4.1: Collapsing the levels of a uniform run of an alternating automaton into a
nonbranching sequence of nodes

of a run by a collection of active copies of an alternating automaton into a
transition that simulates the change effected by the transitions in the set of
the active copies of the automaton. Because the labeling of the run is consis-
tent, all of these transitions include the current input symbol in their guard.
This fact suggests defining the guard of the simulating transition as the set
intersection of the guards of the individual transitions taken by the copies of
the alternating automaton. We sometimes refer to this principle of defining
the states and transitions of a nondeterministic automaton as the universal
subset construction for self-loop alternating automata (to distinguish it from
the classic “existential” construction for nondeterministic automata on finite
inputs).2

We have not yet considered how to define the acceptance conditions for
the transitions of the nondeterministic automaton. Similarly to the target
states and the guard of a transition that simulates a set of transitions, it would
seem possible to define the acceptance conditions of the simulating transi-
tion as a direct combination (such as the union) of the acceptance conditions
of the other transitions. This intuitive idea is not correct in the general case,
however. Below, we present a construction that introduces new acceptance
conditions for the nondeterministic automaton; the fact that these new accep-
tance conditions are indeed necessary for the universal subset construction
in the general case will be shown in Sect. 4.2.3.

Theorem 4.2.1 Let A = 〈Σ, Q,∆, qI ,F〉 be a self-loop alternating automa-
ton. Define the automaton A′ =

〈
Σ, 2Q,∆′, {qI}, Q × F

〉
, where, for all

Q′ ∈ 2Q, Γ ⊆ Σ, F ⊆ Q×F and Q ⊆ 2Q,

〈Q′,Γ, F,Q〉 ∈ ∆′ iff for all q ∈ Q′, there exists a transition 〈q,Γq,
Fq, Q

′
q〉 ∈ ∆ such that Γ =

⋂
q∈Q′ Γq, F =⋃

q∈Q′∩Q′
q

(
{q} × Fq

)
, and Q =

{ ⋃
q∈Q′ Q′

q

}

hold.

(In particular,
〈
∅,Σ, ∅, {∅}

〉
∈ ∆′.) The automaton A′ is nondeterministic,

and Lfin(A) = Lfin(A
′) holds.

2We note that there is no corresponding “existential” subset construction for translat-
ing arbitrary nondeterministic automata on infinite words into inf - or fin-equivalent deter-
ministic automata, because nondeterministic and deterministic automata are not expres-
sively equivalent under these notions of acceptance (see, for example, [Vardi 1996]): in
general, a more complex notion of acceptance is needed for the deterministic automaton
[McNaughton 1966; Safra 1988].

76 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

Proof: It is clear from the definition that the target states of each transition of
A′ are singletons (containing a subset ofQ), and thus A′ is nondeterministic.
We show that A and A′ are fin-equivalent.

(Lfin(A) ⊆ Lfin(A
′)) Let G = 〈V,E, L〉 be a uniform fin-accepting run of

A on w ∈ Σω. We construct a fin-accepting run G′ = 〈V ′, E ′, L′〉 of A′ on
w.

(Definition of G′) Let V ′ def
=

⋃
0≤i<ω{v

′
i} (with V ′

i

def
= {v′i} for all 0 ≤ i <

ω), E ′ def
=

⋃
0≤i<ω

{
〈v′i, V

′
i+1〉

}
, and L′(v′i)

def
= L(Vi) for all 0 ≤ i < ω. To

define the label of the edge starting from the node v′i (0 ≤ i < ω), we first
write Vi = {vi,1, . . . , vi,ni

} for some 0 ≤ ni < ω (where vi,j 6= vi,k holds for
all 1 ≤ j, k ≤ ni, j 6= k). Because G is uniform, L(vi,j) = qi,j 6= qi,k =
L(vi,k) holds for all 1 ≤ j, k ≤ ni (j 6= k), and thus there are ni distinct
transitions Ti ⊆ ∆ labeling edges starting from the nodes in Vi:

Ti
def
=

⋃

1≤j≤ni

{
L
(
〈vi,j, V

′′〉
)

〈vi,j, V
′′〉 ∈ E

}
=

⋃

1≤j≤ni

{
〈qi,j,Γi,j, Fi,j, Q

′
i,j〉

}
.

The label of the edge 〈v′i, V
′
i+1〉 (0 ≤ i < ω) is then given by L′

(
〈v′i, V

′
i+1〉

)
def
=〈 ⋃

1≤j≤ni
{qi,j},

⋂
1≤j≤ni

Γi,j,
⋃

1≤j≤ni
qi,j∈Q′

i,j

(
{qi,j} × Fi,j

)
,
{⋃

1≤j≤ni
Q′
i,j

}〉
.

(G′ is a run of A′ on w) We check that the graph G′ satisfies all constraints
required of a run of A′ on w.

(Partitioning) Obviously V ′
0 = {v′0} is a singleton, and G′ is partitioned

into finite disjoint levels with edges between consecutive levels.

(Causality) Clearly, each level of G′ contains only one node, and for all
0 ≤ i < ω, the node v′i ∈ V ′

i has the unique outgoing edge 〈v′i, V
′
i+1〉 ∈ E ′.

On the other hand, the node v′i ∈ V ′
i (1 ≤ i < ω) is a successor of the

node v′i−1 ∈ V ′
i−1.

(Consistency of L′) It is clear from the definition thatL′(v′0) = L(V0) =

L
(
{v0}

)
= {qI} holds. Let 0 ≤ i < ω, and let v = v′i ∈ V ′

i . Because Ti ⊆
∆ holds, it follows from the definition of A′ that ∆′ contains the transition〈 ⋃

1≤j≤nj
{qi,j},

⋂
1≤j≤ni

Γi,j,
⋃

1≤j≤ni
qi,j∈Q′

i,j

(
{qi,j}×Fi,j

)
,
{⋃

1≤j≤ni
Q′
i,j

}〉
=

L′
(
〈v′i, V

′
i+1〉

)
. Because G is a run, w(i) ∈ Γi,j holds for all 1 ≤ j ≤ ni,

and thusw(i) ∈
⋂

1≤j≤ni
Γi,j holds. Furthermore, because L is consistent,

it follows that
⋃

1≤j≤ni
{qi,j} =

⋃
1≤j≤ni

{
L(vi,j)

}
= L(Vi) = L′(v′i) and{ ⋃

1≤j≤ni
Q′
i,j

}
=

{
L(Vi+1)

}
=

{
L(v′i+1)

}
= L(V ′

i+1) hold. Therefore
also the labeling L′ is consistent.

We conclude that G′ is a run of A′ on w.

(G′ is fin-accepting) Suppose that G′ is not fin-accepting. Then there ex-
ists an index 0 ≤ j < ω and an acceptance condition 〈q, f〉 ∈ Q × F such
that for all j ≤ i < ω, the transition L′

(
〈v′i, V

′
i+1〉

)
∈ ∆′ is a 〈q, f〉-transition.

Let j ≤ i < ω. By the definition of L′, Ti contains an f -transition t ∈ ∆
(with source state q) that is a self-loop of A. Because t is the consistent label
of an edge starting from a node v ∈ Vi with L(v) = q, v has a successor
in Vi+1 that is also labeled with the state q. Furthermore, this successor is
the only node in Vi+1 that has q as its label, because G is uniform. By in-
duction on i, it follows that G contains an infinite branch with an infinite

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 77

suffix of edges labeled with f -transitions. This contradicts the assumption
that G is fin-accepting. Therefore G′ is a fin-accepting run of A′ on w, and
Lfin(A) ⊆ Lfin(A

′) holds.

(Lfin(A
′) ⊆ Lfin(A)) Let G′ = 〈V ′, E ′, L′〉 be a fin-accepting run of A′

on w ∈ Σω. Because A′ is nondeterministic, we may assume (without loss
of generality) that G′ is uniform (Proposition 4.1.1). Therefore, every level
V ′
i of G′ consists of a single node v′i for all 0 ≤ i < ω. Write L′(v′i) =

{qi,1, . . . , qi,ni
} ∈ 2Q for some 0 ≤ ni < ω (where qi,j 6= qi,k holds for all

1 ≤ j, k ≤ ni, j 6= k) for all 0 ≤ i < ω. Similarly to the other direction, we
define a fin-accepting run G = 〈V,E, L〉 of A on w.

(Definition of G) For all 0 ≤ i < ω, let Vi consist of ni new nodes Vi
def
=

{vi,1, . . . , vi,ni
}, and let L(vi,j)

def
= qi,j for all 1 ≤ j ≤ ni. Clearly, no two

nodes in Vi have the same label, and L(Vi) = L′(v′i) holds for all 0 ≤ i < ω.
Because G′ is a uniform run of a nondeterministic automaton, the node

v′i ∈ V ′ has the unique outgoing edge
〈
v′i, {v

′
i+1}

〉
∈ E ′ labeled with a

transition
〈
L′(v′i),Γi, Fi,

{
L′(v′i+1)

}〉
∈ ∆′ for some Γi ⊆ Σ and Fi ⊆ Q×F

for all 0 ≤ i < ω. By the definition of A′, there exist transitions ti,j =
〈qi,j,Γi,j, Fi,j, Q

′
i,j〉 ∈ ∆ for all 1 ≤ j ≤ ni such that Γi =

⋂
1≤j≤ni

Γi,j,

Fi =
⋃

1≤j≤ni
qi,j∈Q′

i,j

(
{qi,j} × Fi,j

)
and

{
L′(v′i+1)

}
=

{ ⋃
1≤j≤ni

Q′
i,j

}
hold.

Let v ∈ Vi for some 0 ≤ i < ω; thus L(v) = qi,j ∈ L′(v′i) for some

1 ≤ j ≤ ni. We now define ei,j
def
= 〈v, V ′′〉 ∈ Vi × 2Vi+1 by taking V ′′ to be

the unique subset of Vi+1 for which L(V ′′) = Q′
i,j holds (such a subset exists,

because Q′
i,j ⊆ L′(v′i+1) = L(Vi+1) holds, and it is unique, because all nodes

in Vi+1 have different labels). We then define E
def
=

⋃
0≤i<ω{ei,1, . . . , ei,ni

}

and L(ei,j)
def
= ti,j for all 0 ≤ i < ω and 1 ≤ j ≤ ni.

(G is a run of A on w) We check that G is a run of A on w.

(Partitioning) Because L′(v′0) = {qI}, n0 = 1 holds, and thus V0 is a
singleton. Because the nodes of G′ are labeled with subsets of the finite
set Q, Vi is finite for all 0 ≤ i < ω (and disjoint from all other levels of
G by definition). By the definition of E, G has edges only between its
consecutive levels.

(Causality) Let v = vi,j ∈ Vi for some 0 ≤ i < ω and 1 ≤ j ≤ ni. By
the definition of G, v has the unique outgoing edge ei,j = 〈v, V ′′〉 ∈ E.

On the other hand, if v′ ∈ Vi holds for some 1 ≤ i < ω, then L(v′) =
q′ ∈ L′(v′i) holds. Because G′ is a uniform run of a nondeterministic
automaton, v′i is a successor of the node v′i−1 ∈ V ′. Let t′ ∈ ∆′ be the
transition labeling the edge between these nodes in G′. Because L′(v′i) 6=
∅, it follows from the definition of A′ that L′(v′i−1) 6= ∅, and there exists a
transition t ∈ ∆ (with source state q ∈ L′(v′i−1)) which is a “component”
in the transition t′ and includes q′ in its target states. By the definition of
G, Vi−1 now contains a node v with L(v) = q, and the edge starting from
this node is labeled with the transition t. Thus v has a successor labeled
with the state q′. This successor is now necessarily the node v′, because
the labels of nodes in Vi are distinct by definition.

(Consistency of L) Clearly L(V0) = {qI} holds. Let v = vi,j ∈ V

for some 0 ≤ i < ω and 1 ≤ j ≤ ni. By the definition of G, the

78 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

edge ei,j ∈ E starting from this node is labeled with the transition ti,j =
〈qi,j,Γi,j, Fi,j, Q

′
i,j〉 ∈ ∆. Clearly, L(v) = qi,j holds, and L(V ′′) = Q′

i,j

holds by the definition of ei,j. Furthermore, because G′ is a run, w(i) ∈
Γi =

⋂
1≤k≤ni

Γi,k holds. In particular, w(i) ∈ Γi,j holds, and thus the
labeling L is consistent.

(G is fin-accepting) Assume that G is not fin-accepting. Then there exists
an index 0 ≤ j < ω, an acceptance condition f ∈ F and an infinite branch
(ei)0≤i<ω ∈ B(G) such that L(ei) is an f -transition for all j ≤ i < ω. Be-
cause A is a self-loop alternating automaton, we may choose j large enough
such that the transitions L(ei) are self-loops of A (with source state q ∈ Q) for
all j ≤ i < ω (Proposition 2.3.18). Because ei ∈ E holds for all j ≤ i < ω,
then L(ei) = ti,k = 〈q,Γi,k, Fi,k, Q

′
i,k〉 holds for some 1 ≤ k ≤ ni. But then,

because ti,k is a self-loop and f ∈ Fi,k holds, it follows from the definition of
A′ that the transition L′

(〈
v′i, {v

′
i+1}

〉)
is a 〈q, f〉-transition for all j ≤ i < ω,

which contradicts the assumption that G′ is fin-accepting. Therefore G is a
fin-accepting run of A on w, and Lfin(A

′) ⊆ Lfin(A). �

4.2.2 Number of States and Transitions in a Nondeterministic Automaton

It is easy to see that a nondeterministic automaton built from a self-loop al-
ternating automaton with n states using the construction in Theorem 4.2.1
has at most 2n states. By combining the translation from LTL to self-loop
alternating automata (Sect. 3.1) with the construction, we obtain the follow-
ing simple corollary on the complexity of translation of linear temporal logic
formulas into nondeterministic automata. This upper bound for the number
of states is essentially the same as in the translations of Couvreur [1999] and
Gastin and Oddoux [2001] with the exception of an additive constant (that
arises because our automata have a unique initial state).

Corollary 4.2.2 Let ϕ ∈ LTL(AP) be any LTL formula built from the ele-
ments of AP , the Boolean constants > and ⊥, and the connectives {¬,∨,∧,
X,Us,Uw,Rs,Rw}. The language of the formula ϕ can be recognized by
a nondeterministic automaton (working on the alphabet 2AP) with at most
1 + 2|Temp([ϕ]PNF)| ≤ 1 + 22·|Temp(ϕ)| = 1 + 4|Temp(ϕ)| states (1 + 2|Temp(ϕ)|

states, if ϕ itself is in positive normal form). (If ϕ is a binary pure temporal
formula, the upper bound reduces to 2|Temp([ϕ]PNF)| states.)

Proof: Let ϕ be an LTL formula in the given form. By Corollary 3.2.2, there
exists a self-loop alternating automaton A (working on the alphabet 2AP)
with at most 1 + Temp

(
[ϕ]PNF

)
states (or at most Temp

(
[ϕ]PNF

)
states if

ϕ is a binary pure temporal formula) such that Lfin(A) = L(ϕ) holds, and
this automaton can be built using the translation rules presented in Sect. 3.1.
By the construction in Theorem 4.2.1, there exists a nondeterministic au-
tomaton A′ that fin-accepts the same language. Because the subautomaton
rooted at the initial state of this automaton has at most 2|Q| states (where Q
is the state set of A), the result now follows immediately if ϕ is a binary pure
temporal formula.

If ϕ is not a binary pure temporal formula, then the construction pre-
sented in Theorem 4.2.1 yields a nondeterministic automaton with at most

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 79

21+|Temp([ϕ]PNF)| states. In this case, however, the alternating automaton A
has no self-loops starting from its initial state qI ; furthermore, because A is
a self-loop alternating automaton, no other transition of A can have qI as
its target state, either. It follows from the definition of A′ that the subau-
tomaton rooted at the initial state of A′ contains no states corresponding to
non-singleton subsets of Q that include the state qI . Therefore, the upper
bound for the size of the subautomaton reduces to 1 + 2|Temp([ϕ]PNF)| states,
and the result follows. �

We mention here that in the general case, the smallest nondeterministic
automaton (working on the alphabet 2AP) which recognizes the language of
an LTL formula (over the atomic propositions AP) always has exponentially
many states in the number of pure temporal subformulas of the formula. For
example [Wolper 2001], it is possible to express the behavior of an n-bit bi-
nary counter that resets itself infinitely often as an LTL formula over n atomic
propositions with O(n) pure temporal subformulas (hence, as a self-loop al-
ternating automaton withO(n) states), but a corresponding nondeterministic
automaton working on the same alphabet has no less than 2n states.

It is easy to see from the construction in Theorem 4.2.1 that every tran-
sition of the nondeterministic automaton built from a self-loop alternating
automaton is defined in terms of a subset of transitions of the self-loop alter-
nating automaton. Therefore, the nondeterministic automaton built from a
self-loop alternating automaton A = 〈Σ, Q,∆, qI ,F〉 cannot have more than
2|∆| transitions. Combining this upper bound directly with the exponential
(2O(|ϕ|)) upper bound for the number of transitions in a self-loop alternating
automaton built from an LTL formula ϕ ∈ LTL(AP) using the translation
rules presented in Sect. 3.1 (see Sect. 3.2.2) yields a doubly exponential up-
per bound (in |ϕ|) for the number of transitions in a nondeterministic au-
tomaton built for the formula ϕ. The number of transitions can nevertheless
be shown to be, in effect, only singly exponential in |ϕ|; the details follow in
Sect. 4.3.4.

4.2.3 Number of Acceptance Conditions

Given a self-loop alternating automaton A = 〈Σ, Q,∆, qI ,F〉, the construc-
tion of Theorem 4.2.1 gives a simple upper bound (|Q| · |F|) for the num-
ber of acceptance conditions in a fin-equivalent nondeterministic automaton
built from A by applying the universal subset construction. A more accu-
rate upper bound can be found by observing that the nondeterministic au-
tomaton built from A using the construction has a 〈q, f〉-transition (for some
〈q, f〉 ∈ Q × F) only if q ∈ Q is an f -state of A. Because the accep-
tance conditions for which no corresponding transitions exist do not affect
fin-acceptance (clearly, none of these conditions can appear in the label of
an edge in any infinite branch of a run of the automaton), these conditions
can be safely removed from the nondeterministic automaton without chang-
ing its language. A more accurate upper bound for the number of acceptance
conditions needed for the nondeterministic automaton is thus given by the
equation ∑

f∈F

|{q ∈ Q : q is an f -state of A}| ≤ |Q| · |F|.

80 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

The |Q| · |F| upper bound in nevertheless tight if the states and transitions
of the nondeterministic automaton are to be defined using the universal sub-
set construction.

Proposition 4.2.3 A nondeterministic automaton built from a self-loop al-
ternating automaton with 1 ≤ n < ω states and 1 ≤ m < ω acceptance
conditions (and an alphabet of at least nm symbols) using the universal sub-
set construction needs nm acceptance conditions to recognize the language
of the alternating automaton in the worst case.

Proof: Let Σ be a finite alphabet, and let w ∈ Σω. We use the notation

occ(w)
def
= {σ ∈ Σ | w(i) = σ for some 0 ≤ i < ω} for the set of symbols

occurring in w, and inf(w)
def
= {σ ∈ Σ | w(i) = σ for infinitely many

0 ≤ i < ω} for the set of symbols which occur in w infinitely many times.
Let {Σn,m}1≤n,m<ω be a family of alphabets, where the alphabet Σn,m

(1 ≤ n,m < ω) is the union of n pairwise disjoint m-symbol alphabets Σ′
i,m

(1 ≤ i ≤ n), i.e., Σn,m
def
=

⋃n
i=1 Σ′

i,m, where Σ′
i,m

def
= {σi,1, σi,2, . . . , σi,m},

and Σ′
i,m ∩ Σ′

j,m = ∅ holds for all 1 ≤ i, j ≤ n, i 6= j. Define also the corre-
sponding family of languages {Ln,m}1≤n,m<ω, where, for all 1 ≤ n,m < ω,

Ln,m
def
=

{
w ∈ Σω

n,m Σ′
1,m ⊆ inf(w), and if Σ′

i,m∩occ(w) 6= ∅ for
some 2 ≤ i < ω, then also Σ′

i,m ⊆ inf(w)
}

.

Let 1 ≤ n,m < ω be fixed. We show that the language Ln,m can be fin-
recognized by a self-loop alternating automaton (on the alphabet Σn,m) with
n states and m acceptance conditions, but a nondeterministic automaton
built from the alternating automaton using the universal subset construction
needs at least nm acceptance conditions to fin-recognize the same language.

Let 2 ≤ i ≤ n. It is easy to check that the language
{
w ∈ Σω

n,m Σ′
i,m ⊆

inf(w)
}

is fin-recognized by the single-state automaton Ai with m + 1 self-

loops and m acceptance conditions Fm
def
= {f1, f2, . . . , fm}; formally, Ai

def
=〈

Σn,m, {qi},∆i, qi,Fm

〉
, where

∆i
def
=

{〈
qi,{σi,j},Fm\{fj},{qi}

〉
1≤j≤m

}
∪

{〈
qi,Σn,m\Σ′

i,m,Fm,{qi}
〉}

.

Clearly, for all σ ∈ Σn,m, there is a unique transition in ∆i that includes σ in
its guard.

We now use the automata Ai (2 ≤ i < ω) to build an automaton An,m

that fin-recognizes the language Ln,m. Similarly to the automata Ai, An,m

has an initial state q1 used for checking that the input of the automaton con-
tains infinitely many occurrences of each symbol in Σ′

1,m. Whenever the
automaton reads a symbol from some Σ′

i,m (2 ≤ i < ω), it spawns a copy
of the automaton Ai to check that the input contains also infinitely many
occurrences of each symbol in Σ′

i,m. The automaton always keeps a copy of

itself in its initial state. Formally, An,m
def
= 〈Σn,m, Qn,∆n,m, q1,Fm〉, where

Qn
def
= {q1, q2, . . . , qn} and

∆n,m
def
=

{〈
q1, {σ1,i},Fm \ {fi}, {q1}

〉
1 ≤ i ≤ m

}

∪
{〈
q1,Σ

′
i,m,Fm, {q1, qi}

〉
2 ≤ i ≤ n

}

∪
⋃n
i=2 ∆i.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 81

{σ1,1}

{σ2,1}

{σ2,1}

{σ3,1}

{σ3,1}

{σ1,1, σ2,1}{σ1,1, σ3,1}

q1

q2 q3

{σ1,1}{σ1,1}

{σ1,1}

{σ1,1}

{σ2,1}

{σ2,1}

{σ2,1}

{σ2,1}
{σ3,1}

{σ3,1}

{σ3,1}

{σ3,1}

{q1}

{q1, q2} {q1, q3}

{q1, q2, q3}

(a) (b)

Fig. 4.2: Examples of automata used in the proof of Proposition 4.2.3. (a) The
automaton A3,1. (b) State–transition structure of the nondeterministic automaton
obtained from A3,1 using the universal subset construction (transitions with empty
guards and states not reachable from the initial state omitted)

It is easy to see that An,m is a self-loop alternating automaton, because there
are no transitions from any state qi ∈ Qn (2 ≤ i ≤ n) to another state
q ∈ Qn \ {qi}. For illustration, see Fig. 4.2 (a) for the automaton A3,1.

Observe that, for all q ∈ Qn and σ ∈ Σn,m, ∆n,m again contains a unique
transition with source state q and σ in its guard. Thus the automaton has
a run on every w ∈ Σω

n,m, and the run on w is unique with respect to the
sets of states and transitions labeling the nodes at the levels and the edges
starting from the levels, respectively. Obviously, the run always contains an
infinite branch that stays in the state q1, and if Σ′

i,m ∩ occ(w) 6= ∅ holds for
some 2 ≤ i ≤ n, the run contains also an infinite branch that converges
to the state qi. It is therefore easy to see that the run is fin-accepting only if
w ∈ Ln,m holds. On the other hand, it is straightforward to check that all
runs of An,m on w are fin-accepting if w ∈ Ln,m, and thus the automaton
An,m fin-recognizes the language Ln,m.

Let A′
n,m be the nondeterministic automaton on the alphabet Σn,m ob-

tained from An,m by defining its states 2Qn and transitions ∆′
n,m using the

universal subset construction, where we deliberately give each transition of
A′
n,m an empty set of acceptance conditions (see Fig. 4.2 (b) for illustra-

tion). Observe again that for every subset Q′ ⊆ Qn and every symbol σ ∈
Σn,m, A′

n,m has a unique transition
〈
Q′,Γ, ∅, {Q′′}

〉
∈ ∆′

n,m (Γ ⊆ Σn,m,
Q′′ ⊆ Qn) such that σ ∈ Γ holds. In particular, A′

n,m contains the transition
chain

(〈
{q1, . . . , qi},Σ

i+1
m , ∅,

{
{q1, . . . , qi, qi+1}

}〉)
1≤i≤n−1

. Furthermore, it

is straightforward to check from the construction that for all σ ∈ Σn,m, ∆′
n,m

contains the transition
〈
Qn, {σ}, ∅, {Qn}

〉
(and these are the only transitions

with a nonempty guard starting from the state Qn).
Assume that there is a way to define the acceptance conditions of the

transitions of A′
n,m as subsets of a set F with less than nm elements such

that A′
n,m fin-recognizes the language Ln,m. Let u = σ1,1σ2,1 · · ·σn,1. It

follows by the above discussion that the nodes at any level greater than or
equal to n in a run of A′

n,m on an infinite word of the form uv (v ∈ Σω
n,m)

are all labeled with the state Qn. Because u contains a symbol from each
Σ′
i,m, uv ∈ Ln,m holds only if v contains infinitely many occurrences of

each symbol in Σn,m. Therefore, A′
n,m fin-accepts the language Ln,m only

82 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

if the subautomaton (A′
n,m)Qn fin-recognizes the language of infinite words

containing infinitely many occurrences of each symbol of the alphabet Σn,m.

The language fin-accepted by (A′
n,m)Qn is obviously empty if all self-loops〈

Qn, {σ}, ∅, {Qn}
〉
∈ ∆′

n,m (σ ∈ Σn,m) are f -transitions for some f ∈ F .
Thus there exists a set of at most |F| self-loops that includes for each f ∈ F a
self-loop that is not an f -transition. Because the guards of these self-loops are
singleton subsets of Σn,m, it follows that A′

n,m fin-accepts all words of the form
uwω for some permutation w of the symbols in the guards of these self-loops.
But then, because w = |F| < nm holds, uwω contains only finitely many
occurrences of some symbol σ ∈ Σn,m. This contradicts the assumption that
the automaton A′

n,m fin-recognizes the language Ln,m. Therefore, F must
have at least nm conditions (which is also sufficient by Theorem 4.2.1). �

4.3 AUTOMATA WITH ACCEPTANCE SYNCHRONIZED RUNS

The universal subset construction provides an intuitive way for translating
self-loop alternating automata into fin-equivalent nondeterministic automata
due to its resemblance to the classic existential subset construction for nonde-
terministic finite word automata. The construction is also essentially optimal
with respect to the blow-up in the number of states in the automaton. How-
ever, as shown in Sect. 4.2.3, translating a self-loop alternating automaton
with n states into an equivalent nondeterministic one using the construction
may necessitate an n-fold increase in the number of the automaton’s accep-
tance conditions. Consequently, the procedure obtained by combining the
rule-based translation of LTL into self-loop alternating automata (Sect. 3.1)
with the nondeterminization construction of Theorem 4.2.1 maps a formula
with n syntactically distinct pure temporal subformulas (m of which are bi-
nary temporal subformulas) into a nondeterministic automaton with O(nm)
acceptance conditions. However, most procedures for translating LTL into
nondeterministic automata with multiple inf- or fin-acceptance conditions
(beginning already with the procedure of Gerth et al. [1995] and, in partic-
ular, including that of Gastin and Oddoux [2001]) manage to do the transla-
tion using O(m) conditions for the nondeterministic automaton. The infe-
rior worst-case performance of the proposed construction appears to be a con-
sequence of associating acceptance with the transitions instead of the states
of the automata.

In this section, we shall introduce a subclass of alternating automata that
can be translated into nondeterministic automata without any blow-up in the
number of acceptance conditions. The subclass is characterized by a combi-
nation of structural and semantic properties that guarantee the existence of
a special kind of accepting runs that allows simplifying the universal subset
construction. It occurs that the self-loop alternating automata built from LTL
formulas using the translation rules presented in Sect. 3.1 trivially belong to
this subclass of automata. Therefore, these automata can be translated into
nondeterministic automata with at most as many acceptance conditions as
in automata built using previously known constructions. In principle, our
result is analogous to that of Hammer et al. [2005]: whereas they identify
a subclass of automata which can be translated into nondeterministic au-

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 83

Fig. 4.3: Principle of fin-acceptance synchronization. A level labeled on top of the
figure with the symbol • (resp. ◦) contains no edges labeled with the acceptance
condition • (◦); a fin-acceptance synchronized run has infinitely many such levels
for both conditions

tomata without giving up state-based acceptance, our subclass of self-loop
alternating automata (with transition-based acceptance) admits translation
into nondeterministic automata without introducing new acceptance condi-
tions. Furthermore, similarly to the simple linear weak alternating automata
of Hammer et al. [2005], our subclass is not less expressive than the class of
self-loop alternating automata since its expressiveness captures all of LTL.

4.3.1 Acceptance Synchronicity

As seen in Sect. 4.1, the question on the existence of an accepting run for
a self-loop alternating automaton can be answered by considering only the
uniform runs of the automaton. The key to optimizing the nondeterminiza-
tion construction of Sect. 4.2 is to identify an even smaller subset of runs that
satisfy certain requirements on the occurrence of transitions associated with
acceptance conditions. We define this subset formally as follows.

Let G = 〈V,E, L〉 be a run of an alternating automaton A = 〈Σ, Q,∆,
qI ,F〉 on an infinite word w ∈ Σω over the alphabet Σ (where V consists
of disjoint finite levels Vi as usual), and let f ∈ F be an acceptance con-
dition. We say that the run G is fin-synchronized with respect to f iff there
exist infinitely many 0 ≤ i < ω such that no transition that labels an edge
starting from a node at level i of G is an f -transition of A. The run G is
fin-acceptance synchronized iff G is fin-synchronized with respect to all ac-
ceptance conditions in F . (The definition of inf-synchronicity with respect to
a condition f ∈ F is analogous: we simply require that G contain infinitely
many levels, all edges starting from which are labeled with f -transitions. As
before, we nevertheless consider only fin-acceptance in the following to sim-
plify the discussion.)

Intuitively, if a fin-acceptance synchronized run of A on w is interpreted
(in the standard way) as a description of the behavior of A’s copies working
in parallel on the input w, then, although every copy of the automaton works
independently of the other copies, the copies nevertheless “cooperate” in
this run with respect to every acceptance condition f ∈ F by avoiding f -
transitions at certain (infinitely many) positions of the input (see Fig. 4.3 for
illustration). It is easy to see that every fin-acceptance synchronized run of A
is a fin-accepting run of A.

Proposition 4.3.1 Let G = 〈V,E, L〉 be a run of an alternating automaton
A = 〈Σ, Q,∆, qI ,F〉 on some w ∈ Σω. If G is fin-acceptance synchronized,

84 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

then w ∈ Lfin(A) holds.

Proof: If B(G) = ∅, then the claim holds trivially. Otherwise let β =

(ei)0≤i<ω ∈ B(G) (ei ∈ E ∩ (Vi × 2Vi+1)) be an infinite branch in G. We
show that fin(β) = ∅ holds, that is, f /∈ fin(β) holds for all acceptance con-
ditions f ∈ F . This is clear for the condition f ∈ F if no edge in β is
labeled with an f -transition; otherwise, if L(ej) is an f -transition for some
0 ≤ j < ω, then, because G is fin-acceptance synchronized, there exists an
index j < k < ω such that no edge in E ∩ (Vk × 2Vk+1) is labeled with
an f -transition. In particular, this implies that L(ek) is not an f -transition.
Because j is arbitrary, β contains infinitely many edges not labeled with an
f -transition, and thus f /∈ fin(β) holds. Because the same reasoning applies
to all acceptance conditions, it follows that fin(β) = ∅ holds, and thus β is
fin-accepting. Because β is arbitrary, it follows that G is a fin-accepting run
of A on w. �

4.3.2 A Simplified Nondeterminization Construction

By Proposition 4.3.1, an alternating automaton A working on infinite words
over the alphabet Σ fin-accepts a word w ∈ Σω whenever A has a fin-
acceptance synchronized run on w. The same result clearly holds in par-
ticular for uniform fin-acceptance synchronized runs on w. If A has also the
converse property, i.e., if A has a uniform fin-acceptance synchronized run
on all words w ∈ Lfin(A), then A can be translated into a fin-equivalent
nondeterministic automaton that uses the same number of acceptance con-
ditions as A. Such an automaton can again be built using the universal subset
construction. Actually, A need not even be a self-loop alternating automaton
(however, it must have uniform fin-accepting runs in the sense of Sect. 4.1).

Theorem 4.3.2 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton, and
assume that, for all w ∈ Σω, w ∈ Lfin(A) holds iff A has a uniform fin-
acceptance synchronized run on w. Define the automaton A′ =

〈
Σ, 2Q,∆′,

{qI},F
〉
, where, for all Q′ ∈ 2Q, Γ ⊆ Σ, F ⊆ F and Q ⊆ 2Q,

〈Q′,Γ, F,Q〉 ∈ ∆′ iff for all q ∈ Q′, there exists a transition 〈q,Γq,
Fq, Q

′
q〉 ∈ ∆ such that Γ =

⋂
q∈Q′ Γq, F =⋃

q∈Q′ Fq, and Q =
{ ⋃

q∈Q′ Q′
q

}
hold.

The automaton A′ is nondeterministic, and Lfin(A
′) = Lfin(A) holds.

Proof: The proof is similar to that of Theorem 4.2.1 (p. 76); clearly, the def-
inition of A′ differs from the construction presented in Theorem 4.2.1 only
in the definition of the acceptance conditions. The assumption on the ex-
istence of uniform fin-acceptance synchronized runs is needed for showing
that all words fin-accepted by A are included in the language fin-recognized
by the automaton A′ (which is obviously nondeterministic by definition).

(Lfin(A) ⊆ Lfin(A
′)) Let w ∈ Lfin(A). By the assumption, A has a uni-

form fin-acceptance synchronized run G = 〈V,E, L〉 on w. Let G′ =
〈V ′, E ′, L′〉, V ′

i (the levels of G′ for all 0 ≤ i < ω) and Ti ⊆ ∆ (the
transitions that label edges starting from nodes at level 0 ≤ i < ω of G,

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 85

Ti =
⋃

1≤j≤ni

{
〈qi,j,Γi,j, Fi,j, Q

′
i,j〉

}
) be as defined in the corresponding

direction in the proof of Theorem 4.2.1 with the exception that we define

the label of the edge 〈v′i, V
′
i+1〉 ∈ E ′ (0 ≤ i < ω) as L′

(
〈v′i, V

′
i+1〉

)
def
=〈 ⋃

1≤j≤ni
{qi,j},

⋂
1≤j≤ni

Γi,j,
⋃

1≤j≤ni
Fi,j,

{ ⋃
1≤j≤ni

Q′
i,j

}〉
to make the

edge labels match the transitions of A′, which have their acceptance con-
ditions chosen directly from the set F . Similarly to Theorem 4.2.1, it is then
straightforward to check thatG′ is a run of A′ on w. Note that this check does
not require assuming that A is a self-loop alternating automaton.

Suppose thatG′ is not fin-accepting. Then there exists an index 0 ≤ j < ω
and an acceptance condition f ∈ F such that the transition L′

(
〈v′i, V

′
i+1〉

)

is an f -transition for all j ≤ i < ω, and thus Ti contains an f -transition for
all j ≤ i < ω. But then G has only finitely many levels with no outgoing
edges labeled with f -transitions. This contradicts the assumption that G is
fin-acceptance synchronized (in particular, fin-synchronized with respect to
f). Therefore G′ is fin-accepting, and w ∈ Lfin(A

′) holds.

(Lfin(A
′) ⊆ Lfin(A)) Let w ∈ Lfin(A

′). It is again easy to check that the

graph G = 〈V,E, L〉 defined in the corresponding direction of the proof of
Theorem 4.2.1 (from a uniform fin-accepting run G′ = 〈V ′, E ′, L′〉 of the
nondeterministic automaton A′ on w) is a run of A on w. (Because G′ is a
uniform run of a nondeterministic automaton, then V ′

i = {v′i} is a singleton
for all 0 ≤ i < ω.)

If G is not fin-accepting, then there exists an infinite branch (ei)0≤i<ω ∈
B(G), an acceptance condition f ∈ F , and an index 0 ≤ j < ω such that the
transition L(ei) is an f -transition for all j ≤ i < ω. Because L(ei) ∈ ∆ is (by
definition of A′) a “component” in the transition L′

(〈
v′i, {v

′
i+1}

〉)
that labels

the edge between levels i and i+ 1 of G′ (cf. the proof of Theorem 4.2.1), it
follows that L′

(〈
v′i, {v

′
i+1}

〉)
is also an f -transition for all j ≤ i < ω. This is

a contradiction, because G′ was assumed to be fin-accepting. We conclude
that w ∈ Lfin(A) holds. �

Alternating automata that have uniform fin-acceptance synchronized runs
on all words in their language can thus be translated into nondeterministic
automata using the universal subset construction without introducing new
acceptance conditions. Instead, the acceptance conditions of a transition in
the nondeterministic automaton can be defined simply as the union of the
conditions in its component transitions. Because the translation is based on
the universal subset construction, it is again easy to see that the nondeter-
ministic automaton built from an alternating automaton with n states and m
transitions has at most 2n states and 2m transitions.

4.3.3 Sufficient Conditions for Acceptance Synchronization

In this section we define a subclass of alternating automata which are guaran-
teed to have uniform fin-acceptance synchronized runs on all words in their
language (and which can thus be translated into nondeterministic automata
using the construction of Theorem 4.3.2). We first introduce the class and
then show that all automata in the class have this property.

86 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

Terminology

We use the following terminology for characterizing our class of alternating
automata. Let A = 〈Σ, Q,∆, qI ,F〉 be a fixed alternating automaton.

Let 〈q,Γ, F,Q′〉 ∈ ∆ be a transition of A, and let f ∈ F be an acceptance
condition. We say that the transition is f -closed iff f ∈ F implies that Q′

contains an f -state. The automaton A is f -closed iff all of its transitions are
f -closed. Intuitively, this means that every finite chain of f -transitions in A
can be extended into an infinite one. Finally, A is acceptance closed (with
respect to F) iff it is f -closed for all acceptance conditions f ∈ F .

Example 4.3.3 The self-loop alternating automaton shown in Fig. 2.7 (p. 37)
is not •-closed, because it contains the transition

〈
q6, {b}, {•}, {q8}

〉
having

no •-states as its target states. The automaton is ◦-closed, however. The au-
tomaton obtained from this automaton by removing acceptance conditions
from its non-self-loop transitions (Fig. 2.8, p. 39) is both •- and ◦-closed and
therefore acceptance closed (with respect to the set of acceptance conditions
{•, ◦}). �

Let q ∈ Q. By Proposition 2.3.15, the subautomaton Aq fin-accepts a word
w ∈ Σω iff it has an initial transition 〈q,Γ, F,Q′〉 ∈ ∆ such that w(0) ∈ Γ
holds, and (Aq)q

′
(= Aq′) fin-accepts w1 for all q′ ∈ Q′. We say that Aq

fin-accepts w by avoiding an initial f -transition (notation: w ∈ Lffin(A
q))

if one of the transitions satisfying this condition is not an f -transition of A.
(Obviously, if q is not an f -state of A, then Lffin(A

q) = Lfin(A
q) holds.)

Let f ∈ F be an acceptance condition. We say that the state q ∈ Q is an
f -representative state iff q is an f -state, and for all w ∈ Σω,

• if w ∈ Lffin(A
q) ∩ Lfin(A

q′) holds for some f -state q′ ∈ Q, then w ∈

Lffin(A
q′), and

• if w ∈ Lffin(A
q′) holds for some f -state q′ ∈ Q, then there exists an

index 0 ≤ i < ω such that wi ∈ Lffin(A
q) holds.

Intuitively, if the alternating automaton A has an f -representative state for
one of its acceptance conditions f ∈ F , then the f -states that occur as la-
bels of nodes in a fin-accepting run of A determine certain input positions
at which the active copies of the automaton could (but do not have to) “co-
operate” with respect to the condition f by not taking f -transitions. If a level
in the run contains a node labeled with an f -representative state such that
the edge starting from this node is not labeled with an f -transition, then all
active subautomata of the automaton could fin-accept the input from that
position onward by avoiding an initial f -transition. On the other hand, if the
run contains a node labeled with another (not necessarily f -representative)
f -state such that the edge starting from this node is not labeled with an f -
transition, then there exists a subsequent input position at which all active
copies of the automaton could avoid taking f -transitions. As we shall show
later in this section, the existence of an f -representative state in an f -closed
alternating automaton implies that every fin-accepting run of the automaton
can be synchronized with respect to the condition f .

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 87

q•

q•

q•q•

q′q′

q′

q′′q′′q′′q′′

q′′

w(i) w(j) w(j′)

Fig. 4.4: Implications of the occurrence of •-states as node labels in a fin-accepting
run of an alternating automaton

Example 4.3.4 Figure 4.4 depicts parts of a fin-accepting run of an alternat-
ing automaton A with a •-representative state q• on an input w. The states
q′ and q′′ are two nonrepresentative •-states of the automaton; the circled
levels identify input positions at which copies of the automaton in any •-
state could (but do not need to) avoid taking a •-transition. The justification
for this is given by the transition corresponding to the rightmost thick edge
that starts from the same or a preceding level of the run. Formally, because
wi ∈ L•

fin(A
q•) ∩ Lfin(A

q′) ∩ Lfin(A
q′′) and wj ∈ L•

fin(A
q′) hold, it follows

from the definition of representative states that wi ∈ L•
fin(A

q′) ∩ L•
fin(A

q′′)
and wj

′
∈ L•

fin(A
q•) hold (in which case also wj

′
∈ L•

fin(A
q′′) holds). �

Guaranteeing the Existence of Acceptance Synchronized Runs
Our main result in this section is the following:

Proposition 4.3.5 Let A = 〈Σ, Q,∆, qI ,F〉 be an acceptance closed al-
ternating automaton such that for all acceptance conditions f ∈ F , if A
has an f -state, then it has also an f -representative state. For all w ∈ Σω,
w ∈ Lfin(A) holds iff A has a uniform fin-acceptance synchronized run on
w.

To prove the proposition, we need one additional definition and a related
result. Let f ∈ F be an acceptance condition of an f -closed alternating
automaton A = 〈Σ, Q,∆, qI ,F〉 with an f -representative state qf ∈ Q. Let
IA,f : Σω → 2N be a function defined, for all w ∈ Σω, by the rule

IA,f(w)
def
=

{
0 ≤ i < ω wi ∈ Lffin(A

qf)
}

.

Intuitively, the function IA,f maps every word w ∈ Σω to the set of indices i
that identify the exact set of suffixes of the word w that are fin-recognized by
the subautomaton Aqf by avoiding an initial f -transition. This function is ob-
viously well-defined because one of wi ∈ Lffin(A

qf) or wi /∈ Lffin(A
qf) always

holds for all w ∈ Σω and 0 ≤ i < ω (however, it need not be computable for
all w in a finite number of steps). Clearly, if |IA,f(w)| < ω holds, then the
set {0}∪IA,f(w) contains a maximal element. In this case it also follows that
every subautomaton rooted at an f -state of A fin-accepts only finitely many
suffixes of w:

Lemma 4.3.6 Let A = 〈Σ, Q,∆, qI ,F〉 be an f -closed alternating automa-
ton with an f -representative state qf ∈ Q for some f ∈ F , and let w ∈ Σω.

88 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

If |IA,f(w)| < ω holds, then wi /∈ Lfin(A
q) holds for all f -states q ∈ Q and

indices max
(
{0} ∪ IA,f (w)

)
< i < ω.

Proof: Because IA,f (w) is finite, k
def
= max

(
{0} ∪ IA,f (w)

)
< ω exists. Sup-

pose that the subautomaton Aq fin-accepts wi for some f -state q ∈ Q and
k < i < ω, and let G = 〈V,E, L〉 be a fin-accepting run of Aq on wi.

Let 〈q,Γ, F,Q′〉 ∈ ∆q (Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q) be the initial
transition of Aq labeling the edge between the first two levels of G. If f /∈ F
holds, then wi ∈ Lffin(A

q) holds. Because qf is an f -representative state of A,
there exists an index 0 ≤ j < ω such that the subautomaton Aqf fin-accepts
(wi)j = wi+j by avoiding an initial f -transition. But then i + j ∈ IA,f (w)
holds, which contradicts the assumption that i > k = max

(
{0} ∪ IA,f(w)

)

holds. Therefore the transition 〈q,Γ, F,Q′〉 is an f -transition.
Because A is f -closed, Q′ contains an f -state q′ ∈ Q′. Because L is con-

sistent, the node v0 at level 0 of G has a successor v1 ∈ V1 labeled with q′;
furthermore, the subgraph of G rooted at v1 is a fin-accepting run of (Aq)q

′

(= Aq′) on (wi)1 by Proposition 2.3.9. Because q′ is an f -state of A, a sim-
ilar reasoning shows that also the edge starting from v1 is labeled with an
f -transition of A, and v1 has a successor labeled with an f -state of A. By in-
duction, it follows that G contains an infinite branch, all edges of which are
labeled with f -transitions. But then B(G) contains an infinite branch that is
not fin-accepting, and thus G cannot be fin-accepting, either, contrary to our
assumption. Therefore wi /∈ Lfin(A

q) holds. �

Proof of Proposition 4.3.5 (Only if): Without loss of generality, we may as-

sume that A has an f -transition (hence, an f -state) for all acceptance condi-
tions f ∈ F : obviously, acceptance conditions not occurring in any tran-
sition of A can be discarded without affecting fin-acceptance. Let w ∈
Lfin(A). If A has no acceptance conditions (F = ∅), then w ∈ Lfin(A)
holds iff A has a run on w, iff A has a uniform run on w (Proposition 4.1.1),
and every run of A is trivially fin-acceptance synchronized. We may thus
assume that F = {f1, f2, . . . , fn} holds for some 1 ≤ n < ω such that A has
an fi-representative state qfi

∈ Q for all 1 ≤ i ≤ n. We define a uniform
fin-acceptance synchronized run G = 〈V,E, L〉 of A on w.

(Definition of G) We define the levels of G inductively: first, let V0
def
=

{v0,1} and L(v0,1)
def
= qI . For each level Vi in G (0 ≤ i < ω), we define

also a set of edges Ei starting from nodes in Vi, and an integer 0 ≤ ci ≤ n
that is used to guide the inductive construction. To guarantee that G is fin-
acceptance synchronized, we need to ensure that G is fin-synchronized with
respect to all acceptance conditions f ∈ F . The integers ci are used to make
sure that each acceptance condition is treated fairly in the construction: for
all i, ci will either have the special value 0, or it identifies an acceptance con-
dition fci ∈ F for which we should try to define a level having no outgoing

edges labeled with fci -transitions. Let c0
def
= 0.

Assume that Vi={vi,1, vi,2, . . . , vi,ni
}, L(Vi)={qi,1, qi,2, . . . , qi,ni

} (where
0 ≤ ni < ω, L(vi,j) = qi,j and L(vi,j) 6= L(vi,k) hold for all 1 ≤ j, k ≤ ni,
j 6= k), and ci have already been defined for some 0 ≤ i < ω, and assume
also that wi ∈ Lfin(A

qi,j) holds for all 1 ≤ j ≤ ni. (This is clear if i = 0,
because L(V0) = {qI}, and w0 = w ∈ Lfin(A) = Lfin(A

qI).)

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 89

Because Aqi,j fin-accepts wi for all 1 ≤ j ≤ ni, there exist transitions
ti,j = 〈qi,j ,Γi,j, Fi,j, Q

′
i,j〉 ∈ ∆qi,j ⊆ ∆ (for some Γi,j ⊆ Σ, Fi,j ⊆ F and

Q′
i,j ⊆ Qqi,j ⊆ Q) such that w(i) ∈ Γi,j holds for all 1 ≤ j ≤ ni, and Aq′

fin-accepts wi+1 for all q′ ∈
⋃

1≤j≤ni
Q′
i,j (Proposition 2.3.15). Furthermore,

if ci 6= 0, and qi,j is not an fci -state or if i ∈ IA,fci
(w) holds (in which case

wi ∈ Lffin(A
qfci) holds for the fci -representative state qfci

), it follows that
Aqi,j fin-accepts wi by avoiding an initial f -transition, and thus the transition
ti,j can be chosen so that fci /∈ Fi,j holds. In other words, if i ∈ IA,fci

(w)
holds, then we can choose the transitions ti,j such that fci /∈

⋃
1≤j≤ni

Fi,j
holds.

Let
⋃

1≤j≤ni
Q′
i,j = {qi+1,1, qi+1,2, . . . , qi+1,ni+1

} (where 0 ≤ ni+1 < ω,
and the states qi+1,j are pairwise distinct). Define Vi+1 as a set of ni+1 new

nodes Vi+1
def
= {vi+1,1, vi+1,2, . . . , vi+1,ni+1

}, and let L(vi+1,j)
def
= qi+1,j for all

1 ≤ j ≤ ni+1. By construction, no two nodes in Vi+1 have the same label,
and because L(Vi+1) =

⋃
1≤j≤ni

Q′
i,j , it follows that for every 1 ≤ j ≤ ni,

there exists a unique subset V ′
i,j ⊆ Vi+1 such that L(V ′

i,j) = Q′
i,j holds. Let

Ei
def
=

{
〈vi,j, V

′
i,j〉 1 ≤ j ≤ ni

}
, and for all 1 ≤ j ≤ ni, let L

(
〈vi,j, V

′
i,j〉

)
def
=

ti,j. Finally, let

ci+1
def
=






ci if ci 6= 0, |IA,fci
(w)| = ω and

i /∈ IA,fci
(w)

(ci + 1) mod
(
|F| + 1

)
otherwise.

This completes the inductive definition of Vi+1, Ei and ci+1; clearly, the
construction ensures also that wi+1 ∈ Lfin(A

L(v)) holds for all v ∈ Vi+1. We

then define V
def
=

⋃
0≤i<ω Vi and E

def
=

⋃
0≤i<ω Ei.

(G is a uniform run of A on w) It is clear that each level of G consists of
nodes with distinct labels, and thus G satisfies the constraint required of uni-
form runs of A. We check that G is a run of A on w.

(Partitioning) Obviously V0 = {v0,1} is a singleton, and E consists of
edges connecting pairwise disjoint consecutive levels of G by definition.

(Forward causality) Let v ∈ Vi for some 0 ≤ i < ω. Then v = vi,j
holds for some 1 ≤ j ≤ ni. Clearly, Ei ⊆ E contains the edge 〈vi,j, V

′
i,j〉,

and this is the only edge starting from vi,j in G.

(Backward causality) Let v′ ∈ Vi for some 1 ≤ i < ω. Then there exists
a transition t = 〈q,Γ, F,Q′〉 for some Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q such
that L(v′) ∈ Q′ holds, and Vi−1 contains a node v with L(v) = q. By the
definition of E, the node v has the outgoing edge 〈v, V ′〉 ∈ E such that
L(V ′) = Q′ holds. Because no two nodes at level Vi have the same label,
it follows that v′ ∈ V ′ holds, and thus v′ is a successor of the node v at
level Vi−1 in G.

(Consistency of L) Clearly L(v0,1) = qI . Let e = 〈vi,j, V
′
i,j〉 ∈ E be an

edge in E for some 0 ≤ i < ω and 1 ≤ j ≤ ni. By the definition of L, this
edge is labeled with the transition ti,j = 〈qi,j,Γi,j, Fi,j, Q

′
i,j〉 ∈ ∆ such

that w(i) ∈ Γi,j holds. The definition also guarantees that qi,j = L(vi,j)
and Q′

i,j = L(V ′
i,j) hold, and thus the labeling L is consistent.

(G is fin-acceptance synchronized) We show that G is fin-acceptance syn-
chronized. First, it is easy to see that ci+1 6= ci holds for infinitely many

90 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

indices 0 ≤ i < ω: otherwise there would exist an index 0 ≤ i < ω such
that cj = ci and fcj = fci = f hold for all i ≤ j < ω. By the definition of
the integers cj, it follows that cj = ci 6= 0, |IA,f(w)| = ω and j /∈ IA,f (w)
hold for all i ≤ j < ω. But this is impossible, because the assumption that
j /∈ IA,f (w) holds for all i ≤ j < ω would imply that |IA,f(w)| < ω holds, a
contradiction. Therefore, ci+1 6= ci holds for infinitely many i, and because
the integers ci are defined incrementally modulo |F| + 1, it follows that for
all f ∈ F , there are infinitely many indices 0 ≤ i < ω such that ci 6= 0 and
fci = f hold.

Let f ∈ F . If |IA,f(w)| < ω holds, then k
def
= max

(
{0} ∪ IA,f (w)

)
< ω

exists. Suppose that Ei contains an edge labeled with an f -transition of A
for some k < i < ω. Because the labeling L is consistent, the source node
v ∈ Vi of this edge is labeled with an f -state of A, and AL(v) fin-acceptswi by
the inductive definition of G. However, this is impossible by Lemma 4.3.6.
ThereforeG contains only finitely many levels with an outgoing edge labeled
with an f -transition of A, and thus G is fin-synchronized with respect to the
acceptance condition f .

Otherwise |IA,f(w)| = ω holds. Let 0 ≤ i < ω be any of the (infinitely
many) indices such that ci 6= 0 and fci = f hold, and let i ≤ j < ω be
the least index greater than or equal to i for which cj+1 6= ci holds. By the
definition of cj+1, it follows that j ∈ IA,f (w) holds in this case. But then the
definition of G guarantees that Ej has no edges labeled with an f -transition
of A. It follows that G is fin-synchronized with respect to the acceptance
condition f .

Because f is arbitrary, G is fin-synchronized with respect to all of its ac-
ceptance conditions, and thus G is a uniform fin-acceptance synchronized
run of A on w.

(If) This direction follows immediately from Proposition 4.3.1. �

The following result is an immediate consequence of Proposition 4.3.5.

Corollary 4.3.7 Let A = 〈Σ, Q,∆, qI ,F〉 be an acceptance closed alternat-
ing automaton that has an f -representative state for all acceptance conditions
in F for which it has an f -state. The automaton A can be translated into a
fin-equivalent nondeterministic automaton without introducing new accep-
tance conditions by applying the construction presented in Theorem 4.3.2.

Proof: By Proposition 4.3.5, A fin-accepts a word w ∈ Σω iff A has a uni-
form fin-acceptance synchronized run on w. Obviously, this is exactly the
precondition for applying Theorem 4.3.2. �

4.3.4 Application to Translation of LTL into Nondeterministic Automata

As a simple first example on using the optimized nondeterminization con-
struction of Theorem 4.3.2, we consider automata built from LTL formulas
using the translation rules presented in Sect. 3.1. (The results of this section
are needed further in Ch. 5 where we consider alternative translation rules.)
It is easy to see that all automata built using the rules are acceptance closed
alternating automata that have representative states for all of their acceptance
conditions.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 91

Lemma 4.3.8 Let A = 〈2AP , Q,∆, qI ,F〉 be a self-loop alternating automa-
ton built from an LTL formula ϕ ∈ LTLPNF(AP) using the translation rules
presented in Sect. 3.1. The automaton A is an acceptance closed automaton
that has an f -representative state for every acceptance condition f ∈ F .

Proof: Let f ∈ F be an acceptance condition. As observed in Sect. 3.1.1,
all f -transitions of A are self-loops of A, and they have the same source
state qf ∈ Q (which corresponds to the initial state of a subautomaton built
for a binary pure temporal subformula of ϕ with a strong binary temporal
main connective). Therefore A is f -closed, and the state qf is trivially an
f -representative state, because it is the only f -state of A. The result follows
because the same holds for all acceptance conditions f ∈ F . �

Consequently, the following result holds for the sizes of components in a
nondeterministic automaton built from an LTL formula.

Corollary 4.3.9 Let ϕ ∈ LTL(AP) be an LTL formula. The language L(ϕ)
can be fin-recognized by a nondeterministic automaton with at most 1 +
2|Temp([ϕ]PNF)| states (at most 2|Temp([ϕ]PNF)| states if ϕ is a binary pure temporal

formula), 2O(|ϕ|) transitions, and at most n
def
=

{
(ϕ1 ◦ ϕ2) ∈ Sub

(
[ϕ]PNF

)
:

◦ ∈ {Us,Rs}
}

acceptance conditions.

Proof: Let A = 〈2AP , Q,∆, qI ,F〉 be the self-loop alternating automaton
built from [ϕ]PNF using the translation rules presented in Sect. 3.1. It is
clear from the discussion in Sect. 3.2.3 that this automaton has at most n
acceptance conditions. By Lemma 4.3.8, A is an acceptance closed au-
tomaton with representative states for all of its acceptance conditions, and
it follows by Corollary 4.3.7 that A can be translated into a nondeterminis-
tic automaton with at most n acceptance conditions using the construction
of Theorem 4.3.2. Because this construction is based on the universal sub-
set construction, the upper bound for the number of states follows from the
discussion in Sect. 4.2.2.

By the definition of the construction in Theorem 4.3.2, every transition in
the nondeterministic automaton is an element of the set 2Q×22AP

×2F×22Q
.

Because the target state set of every transition consists of only a single subset
of Q, however, it is easy to see that the size of the set of possible target state
sets is bounded by 2|Q|. Additionally, because the guards of transitions in
the alternating automaton A are conjunctions of atomic formulas (Boolean
constants or literals referring to atomic propositions that occur in the formula
[ϕ]PNF), also the guards in the nondeterministic automaton can be written
as such conjunctions. Furthermore, it is easy to see from the semantics of
LTL that no Boolean constant or a literal need occur in any conjunction
twice; therefore, because the order of the atomic formulas in a conjunction
is not relevant, either, the number of these conjunctions is bounded by 22·|ϕ|.
Because also |Q| ∈ O

(
|ϕ|

)
and |F| = n ∈ O

(
|ϕ|

)
hold, it follows that the

nondeterministic automaton has 2O(|ϕ|) transitions as argued. �

Admittedly, the above result is almost embarrassingly trivial at this point in
light of the number of theoretical definitions and results we used to reach it.
As a matter of fact, we could have obtained this result by appealing directly

92 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

to the properties of the rules for translating LTL formulas into alternating au-
tomata: because the self-loop alternating automaton A = 〈2AP , Q,∆, qI ,F〉
built from the positive normal form of an LTL formula ϕ ∈ LTL(AP) has
only one f -state for every acceptance condition f ∈ F (see Sect. 3.1.1), it
is easy to conclude by the discussion in Sect. 4.2.3 that no more than |F|
acceptance conditions are needed for the nondeterministic automaton built
from A, even if it were built using the general nondeterminization construc-
tion of Theorem 4.2.1. The results presented in this section will prove to be
useful in the next chapter, where we introduce new translation rules which
may sometimes increase the number of f -states (for an acceptance condi-
tion f) in the self-loop alternating automaton. By showing that the new rules
preserve acceptance closure and the existence of representative states for the
acceptance conditions, we can then appeal to Corollary 4.3.7 to conclude
that the automaton can still be translated into a nondeterministic automaton
by using the universal subset construction of Theorem 4.3.2.

As a further theoretical curiosity, we note (analogously to Hammer et al.
[2005]) that acceptance closed self-loop alternating automata with represen-
tative states for their acceptance conditions provide a “normal form” for self-
loop alternating automata. A naive effective procedure for translating any
self-loop alternating automaton into this form can be obtained by first trans-
lating the automaton into a linear temporal logic formula (Sect. 3.4) and then
translating this formula back into an alternating automaton using the transla-
tion rules of Sect. 3.1; this automaton is in the normal form by Lemma 4.3.8.
If the original automaton has n states and m acceptance conditions, then,
by Proposition 3.4.4 and Corollary 3.2.2, the automaton obtained via this
construction has O

(
n(1 +m)

)
states and as many acceptance conditions.

4.4 LANGUAGES ACCEPTED BY SUBAUTOMATA OF A NONDETERMINIS-

TIC AUTOMATON

We note here a simple consequence of Theorem 4.2.1 and Theorem 4.3.2
that extends them into subautomata of the nondeterministic automaton ob-
tained by applying the construction of Theorem 4.2.1 to a self-loop alternat-
ing automaton, or the construction of Theorem 4.3.2 to an acceptance closed
alternating automaton that has representative states for all of its acceptance
conditions.

Proposition 4.4.1 Let A = 〈Σ, Q,∆, qI ,F〉 be a self-loop alternating au-
tomaton, or an acceptance closed alternating automaton with an f -represen-
tative state for all acceptance conditions f ∈ F for which it has an f -state,
and let And =

〈
Σ, 2Q,∆nd, {qI},Fnd

〉
be the nondeterministic automaton

obtained from A using the construction of Theorem 4.2.1 or Theorem 4.3.2,
respectively. For all Q′ ⊆ Q,

⋂
q∈Q′ Lfin(A

q) = Lfin

(
(And)

Q′)
holds.

Proof: The result obviously holds if Σ = ∅ (in this case
⋂
q∈Q′ Lfin(A

q) =

Lfin

(
(And)

Q′)
= ∅). Assume that Σ 6= ∅ holds. Let σ ∈ Σ be a fixed symbol

of the alphabet Σ.

Let A+ def
= 〈Σ, Q+,∆+, q+

I ,F〉 be the alternating automaton obtained

from A by definingQ+ def
= Q∪{q+

I } for some new state q+
I not included inQ,

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 93

and ∆+ def
= ∆∪

{
〈q+
I , {σ}, ∅, Q

′〉
}

. Because no transition of A+ includes the
state q+

I in its target states, A+ has the same loops as A, and thus A+ is a self-
loop alternating automaton if A is such an automaton. For the same reason,
it is easy to see that (A+)q = Aq holds for all q ∈ Q. Furthermore, because
q+
I is not an f -state for any f ∈ F , A+ has the same f -states, f -transitions,

and subautomata rooted at an f -state as A for all acceptance conditions f ∈
F . Therefore, if A is an acceptance closed alternating automaton with f -
representative states for all f ∈ F for which it has an f -state, then so is A+.

It follows that the automaton A+ can be translated into a fin-equivalent
nondeterministic automaton A+

nd =
〈
Σ, 2Q

+
,∆+

nd, {q
+
I },F

+
nd

〉
by applying

the same construction that was used to build the nondeterministic automa-
ton And from A. It is easy to see that A+

nd has the unique initial transition〈
{q+

I }, {σ}, ∅, {Q
′}

〉
∈ ∆+

nd, and the target state of every transition of A+
nd is

a subset ofQ (A+ has no transitions having q+
I as a target state). Furthermore,

(A+
nd)

Q′′
= (And)

Q′′
holds for all Q′′ ⊆ Q.

Let w ∈ Σω. Now, w ∈
⋂
q∈Q′ Lfin(A

q) holds
iff w ∈ Lfin(A

q) holds for all q ∈ Q′ (definition of set intersection)

iff Aq fin-accepts w for all q ∈ Q′ (definition of Lfin(Aq))

iff (A+)q fin-accepts w for all q ∈ Q′ ((A+)q = Aq for all q ∈ Q ⊇ Q′)

iff there exists a transition
〈
q+
I ,Γ, F,Q

′′
〉
∈ ∆+ for some Γ ⊆ Σ, F ⊆ F

and Q′′ ⊆ Q+ such that σ ∈ Γ holds, and (A+)q fin-accepts w for all
q ∈ Q′′ (A+ has the unique initial transition

〈
q+I , {σ}, ∅, Q

′
〉
)

iff A+ fin-accepts σw (Proposition 2.3.15)

iff A+
nd fin-accepts σw (Lfin(A

+
nd) = Lfin(A+))

iff there exists a transition
〈
{q+

I },Γ, F,Q
〉
∈ ∆+

nd for some Γ ⊆ Σ, F ⊆

F+
nd and Q ⊆ 2Q

+
such that σ ∈ Γ holds, and (A+

nd)
Q′′

fin-accepts w for
all Q′′ ∈ Q (Proposition 2.3.15)

iff (A+
nd)

Q′
fin-accepts w

(A+
nd has the unique initial transition

〈
{q+I }, {σ}, ∅, {Q

′}
〉
∈ ∆+

nd)

iff (And)
Q′

fin-accepts w ((A+
nd)

Q′

= (And)Q
′

)

iff w ∈ Lfin

(
(And)

Q′)
holds. (definition of Lfin

(
(And)Q

′
)
)

�

Proposition 4.4.1 reduces the problem of checking for the fin-emptiness
of the intersection of languages fin-recognized by subautomata of a self-loop
alternating automaton (with properties given in the proposition) to checking
for the fin-emptiness of the language of a nondeterministic automaton which
can be found by applying the universal subset construction of Theorem 4.2.1
or Theorem 4.3.2.

4.5 ON-THE-FLY OPTIMIZATIONS TO NONDETERMINIZATION

In practice, the standard way to apply the universal subset construction used
in Theorem 4.2.1 and Theorem 4.3.2 to build a nondeterministic automaton
that recognizes the language of an alternating automaton (or an intersection
of languages of its subautomata, cf. Sect. 4.4) is to build only that part of the

94 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

nondeterministic automaton, the state set of which includes the initial state
of the automaton and is closed under the automaton’s transition relation.
This phase is usually combined with on-the-fly heuristics to avoid generating
some transitions [Gastin and Oddoux 2001; Fritz 2005] and to merge states
with identical sets of outgoing transitions [Gastin and Oddoux 2001]; accord-
ing to Gastin and Oddoux [2001], even such simple optimizations work well
in practice to simplify the nondeterministic automaton. As formal evidence
of this fact, Fritz [2005] showed a heuristic similar to the one suggested by
Gastin and Oddoux [2001] for avoiding the generation of transitions in the
nondeterministic automaton to cover comparable optimizations that are im-
plicit in the tableau-based algorithm of Daniele et al. [1999] for translating
LTL directly into nondeterministic automata.

Formally, Gastin and Oddoux’s nondeterminization construction for very
weak alternating automata implicitly uses the following result to avoid gener-
ating some transitions in the construction. We state this result without proof
only for completeness.

Proposition 4.5.1 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton,
and let A′ =

〈
Σ, 2Q,∆′, {qI},F

′
〉

be the nondeterministic automaton ob-
tained from A using one the universal subset constructions of Theorem 4.2.1
or Theorem 4.3.2. Assume that the nondeterministic automaton A′ has two
transitions t1 =

〈
Q′

1,Γ1, F1, {Q
′′
1}

〉
∈ ∆′ and t2 =

〈
Q′

2,Γ2, F2, {Q
′′
2}

〉
∈ ∆′

(for some Q′
1, Q

′
2, Q

′′
1, Q

′′
2 ⊆ Q, Γ1,Γ2 ⊆ Σ and F1, F2 ⊆ F ′) such that

Γ2 ⊇ Γ1, F2 ⊆ F1 and Q′′
2 ⊆ Q′′

1 hold. The automaton A′ is fin-equivalent

to the automaton A′′ def
=

〈
Σ, 2Q,∆′ \ {t1}, {qI},F

′
〉

obtained from A′ by
removing the transition t1 from ∆′.

Intuitively, Proposition 4.5.1 implies that a nondeterminization construc-
tion does not need to generate a transition t1 from a set of “component”
transitions starting from a given set of states of the alternating automaton
if the combination of another set of “component” transitions starting from
these states corresponds to a transition t2 such that t1 and t2 satisfy the above
constraints.

We shall not consider the removal of transitions further in this section;
instead, we review syntactic techniques originally proposed for direct trans-
lation algorithms between LTL and nondeterministic automata [Gerth et al.
1995; Daniele et al. 1999; Giannakopoulou and Lerda 2002] to illustrate
their applications to reducing the size of the state set of the nondetermin-
istic automaton obtained via the universal subset construction from a self-
loop alternating automaton built from an LTL formula in positive normal
form. These applications follow from the correspondence between the states
of the alternating automaton and the node subformulas of the formula; by
Proposition 4.4.1, every state of a nondeterministic automaton obtained from
the alternating automaton corresponds to the conjunction of a collection of
such subformulas.

4.5.1 Detecting Redundant States Using Syntactic Implications

By Corollary 2.3.11, the language recognized by any automaton remains the
same after removing from the automaton all states, the subautomata rooted

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 95

at which recognize the empty language. Given a self-loop alternating au-
tomaton built from an LTL formula ϕ ∈ LTLPNF(AP), it follows directly
from this observation that the universal subset construction can ignore states
which correspond to unsatisfiable conjunctions of node subformulas of ϕ.
Whether a conjunction of a finite set of LTL formulas Φ ⊆ LTLPNF(AP) is
unsatisfiable can be estimated heuristically with simple syntactic checks. For
example, the formula

∧
ψ∈Φ ψ is easily seen to be unsatisfiable if one of the

following conditions holds:

• ⊥ ∈ Φ, or [¬ψ]PNF ∈ Φ for some ψ ∈ Φ;

•
{
[¬ψ1]

PNF, [¬ψ2]
PNF

}
⊆ Φ for some (ψ1 ◦ ψ2) ∈ Φ (◦ ∈ {∨,Us,Uw});

• [¬ψ1]
PNF ∈ Φ for some (ψ1 ∧ ψ2) ∈ Φ; or

• [¬ψ2]
PNF ∈ Φ for some (ψ1 ◦ ψ2) ∈ Φ (◦ ∈ {∧,Rs,Rw}).

To increase the likelihood of detecting a conjunction of a set of formulas to
be unsatisfiable using syntactic checks, Daniele et al. [1999] suggested first
extending this set with formulas that follow by syntactic implication from
the formulas in the set. Such formulas can again be found by using simple
rules to add formulas to the set. Formally, given a finite collection Φ′ ⊆
LTLPNF(AP) of LTL formulas in positive normal form, Daniele et al. [1999]
use a function SI : 2Φ′

→ 2Φ′∪{>} that maps every subset Φ ⊆ Φ′ to the
minimal subset of Φ′ ∪ {>} that is closed under the following rules:

• Φ ∪ {>} ⊆ SI(Φ).

• If (ψ1 ∨ ψ2) ∈ Φ′ and ψ1 ∈ SI(Φ) hold, then (ψ1 ∨ ψ2) ∈ SI(Φ).

• If (ψ1 ◦ψ2) ∈ Φ′ and ψ2 ∈ SI(Φ) hold for some ◦ ∈ {∨,Us,Uw}, then
(ψ1 ◦ ψ2) ∈ SI(Φ).

• If (ψ1 ◦ ψ2) ∈ Φ′ and
{
ψ1,X(ψ1 ◦ ψ2)

}
⊆ SI(Φ) hold for some ◦ ∈

{Us,Uw} then (ψ1 ◦ ψ2) ∈ SI(Φ).

• If (ψ1◦ψ2) ∈ Φ′ and {ψ1, ψ2} ⊆ SI(Φ) hold for some ◦ ∈ {∧,Rs,Rw},
then (ψ1 ◦ ψ2) ∈ SI(Φ).

• If (ψ1 ◦ ψ2) ∈ Φ′ and
{
ψ2,X(ψ1 ◦ ψ2)

}
⊆ SI(Φ) hold for some ◦ ∈

{Rs,Rw} then (ψ1 ◦ ψ2) ∈ SI(Φ).

(Of course, the domain and range of SI need be restricted to finite sets
of formulas only to ensure that the computation of SI(Φ) will eventually
terminate; every LTL formula has infinitely many logically equivalent LTL
formulas that differ from each other syntactically.)

The above rules can be used to infer the satisfaction of compound sub-
formulas of Φ′ from the satisfaction of other formulas. If Φ′ is closed under
taking of node subformulas (i.e., if NSub(ψ) ⊆ Φ′ holds for all ψ ∈ Φ′), syn-
tactic implication can be extended also in the converse direction by adding
the following closure rules that are (except for the first one) actually part of
the standard procedure of computing “covers” of LTL formulas, a basic oper-
ation used in tableau-based decision procedures for LTL [Manna and Wolper
1982, 1984; Wolper 1985] and related algorithms for translating LTL directly
into nondeterministic automata [Gerth et al. 1995; Daniele et al. 1999]:

96 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

• If
{
(ψ1 ◦ψ2), [¬ψi]

PNF
}
⊆ SI(Φ) holds for some ◦ ∈ {∨,Us,Uw} and

i ∈ {1, 2}, then ψ3−i ∈ SI(Φ).

• If (ψ1 ∧ ψ2) ∈ SI(Φ) holds, then ψ1, ψ2 ∈ SI(Φ).

• If (ψ1 ◦ ψ2) ∈ SI(Φ) holds for some ◦ ∈ {Rs,Rw}, then ψ2 ∈ SI(Φ).

It is straightforward to check (by induction on the number of closure rules
applied to a set of formulas Φ) from the semantics of LTL that

∧
ψ∈Φ ψ ≡∧

ψ∈SI(Φ) ψ holds. Therefore, if the conjunction of the formulas in SI(Φ) is
unsatisfiable, then so is the conjunction of formulas in Φ. In our application
of translating an LTL formula ϕ ∈ LTLPNF(AP) into a nondeterministic
automaton via a self-loop alternating automaton, it is natural to use the set of
ϕ’s node subformulas (NSub(ϕ)) as the set Φ′.

4.5.2 Merging Syntactically Language-Equivalent States

Let SI be the function (with a domain 2Φ′
for some finite set of formulas

Φ′ ⊆ LTLPNF(AP)) defined in the previous section. Clearly, if SI(Φ1) =
SI(Φ2) holds for two sets of LTL formulas Φ1,Φ2 ⊆ Φ′, then also

∧
ψ∈Φ1

ψ ≡∧
ψ∈SI(Φ1) ψ ≡

∧
ψ∈SI(Φ2) ψ ≡

∧
ψ∈Φ2

ψ holds. Therefore, if Φ1 and Φ2 cor-
respond to two different states in a nondeterministic automaton built from
an LTL formula ϕ ∈ LTLPNF(AP) via a self-loop alternating automaton, it
follows that the subautomata rooted at these states recognize the same lan-
guage. The fact that the function SI thus induces an equivalence relation
between states of the automaton hints at a possibility to reduce the number of
states in the nondeterministic automaton by “merging” language-equivalent
states (formally referred to as quotienting in the literature).

When working with automata on infinite words, language equivalence
between two subautomata of a nondeterministic automaton is in general too
weak a relation to guarantee that the automaton obtained by quotienting
remains equivalent to the original automaton (see, for example, [Somenzi
and Bloem 2000]). Therefore, algorithms for minimization by quotienting
are usually based on equivalences under stronger simulation relations which
guarantee the correctness of a quotient construction directly [Etessami and
Holzmann 2000; Somenzi and Bloem 2000; Etessami et al. 2001, 2005; Etes-
sami 2002], or admit checking whether it is safe to apply a quotient construc-
tion without resorting to a full language equivalence test between the original
and the minimized automaton [Gurumurthy et al. 2002]. (Not all simulation
equivalences can be safely used for quotienting, either—see, e.g., [Etessami
et al. 2001, 2005; Bustan and Grumberg 2002, 2004] for discussion and ex-
amples.) We shall show that the function SI induces one of the simpler
type of these equivalences: two states can be safely merged whenever they
are found to be language-equivalent by computing syntactic implications.
Instead of applying an explicit quotient construction to a nondeterministic
automaton built using the universal subset construction of Theorem 4.3.2,
we embed the construction directly into the definition of a nondeterministic
automaton.

The idea of using equivalences based on syntactic implication to merge
language-equivalent states in a nondeterministic automaton is well-known

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 97

from tableau-based direct translation algorithms between LTL and nondeter-
ministic automata [Daniele et al. 1999; Giannakopoulou and Lerda 2002].
The details of using syntactic implications to optimize nondeterminization
constructions for alternating automata have not been considered in the liter-
ature, however. Our approach to minimization is nevertheless very similar to
the more general approach of Fritz [2003], who used simulation relations on
alternating automata [Fritz and Wilke 2002, 2005] (computed as an indepen-
dent step without making use of correspondences between states and LTL
formulas) for optimizing the nondeterminization construction of Miyano and
Hayashi [1984a,b]. The simulation relations used in the approach are, how-
ever, targeted for alternating automata with state-based acceptance using a
single acceptance condition (and an explicit partitioning of the states into
“existential” and “universal” states [Miyano and Hayashi 1984a,b]) and are
thus not directly compatible with our definition of alternating automata.

Optimizing Nondeterminization Using Syntactic Implications
In the following, let A = 〈2AP , Q,∆, qI ,F〉 be a fixed alternating automaton
built from a given LTL formula ϕ ∈ LTLPNF(AP) using the translation
procedure outlined in Sect. 3.1. By the discussion in Sect. 3.1.1, there exists
a bijective correspondence γ : Q → NSub(ϕ) between the states of A and
the node subformulas of ϕ such that (by the correctness of the translation
procedure, Theorem 3.3.2) for all q ∈ Q, Lfin(A

q) = L
(
γ(q)

)
holds. Let

ι : 2NSub(ϕ) → 2NSub(ϕ) be a function that maps every set of node subformulas
of ϕ to another set of node subformulas of ϕ such that

Φ ⊆ ι(Φ) and L
(∧

ψ∈Φ

ψ
)
⊆ L

(∧

ψ∈ι(Φ)

ψ
)

hold for all subsets Φ ⊆ NSub(ϕ). (Obviously, the first of these properties
implies by the semantics of LTL that the second condition is in fact equiv-
alent to the condition

∧
ψ∈Φ ψ ≡

∧
ψ∈ι(Φ) ψ.) For example, it is easy to see

that the function SI defined in the previous section has these properties
(technically, because > ∈ SI(Φ) always holds, we may need to replace the
formula ϕ with e.g. the logically equivalent formula (ϕ ∧ >) to ensure that
SI is closed with respect to 2NSub(ϕ)). To simplify the notation, we treat the
function ι as a mapping from 2Q to 2Q by writing (for a subset Q′ ⊆ Q) ι(Q′)
in place of {

γ−1(ψ) ψ ∈ ι
(
{γ(q) | q ∈ Q′}

)}

(where γ−1 is the inverse of γ). In this notation, it follows from the properties
of the functions ι and γ that

Q′ ⊆ ι(Q′) and
⋂

q∈Q′

Lfin(A
q) =

⋂

q∈ι(Q′)

Lfin(A
q)

hold for all subsets Q′ ⊆ Q.
We intend to prove the following result:

Proposition 4.5.2 Let A = 〈2AP , Q,∆, qI ,F〉 and ι : 2NSub(ϕ) → 2NSub(ϕ)

be an alternating automaton (built from an LTL formula ϕ ∈ LTLPNF(AP))
and a function (respectively) satisfying the above assumptions. Define the

98 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

automaton Aι =
〈
2AP ,

{
ι(Q′) Q′ ⊆ Q

}
,∆ι, ι

(
{qI}

)
,F

〉
, where, for all

Q′ ∈
{
ι(Q′′) Q′′ ⊆ Q

}
, Γ ⊆ 2AP , F ⊆ F and Q ⊆

{
ι(Q′′) Q′′ ⊆ Q

}
,

〈
Q′,Γ, F,Q

〉
∈ ∆ι iff for all q ∈ Q′, there exists a transition 〈q,Γq,

Fq, Q
′
q〉 ∈ ∆ such that Γ =

⋂
q∈Q′ Γq, F =⋃

q∈Q′ Fq, and Q =
{
ι
(⋃

q∈Q′ Q′
q

)}
hold.

The automaton Aι is nondeterministic, and Lfin(Aι) = Lfin(A) holds.

The definition of the automaton Aι is otherwise identical to the defini-
tion of a nondeterministic automaton in the universal subset construction of
Theorem 4.3.2 except for changes used to ensure that the initial state and
the transition relation of Aι refer to elements of the state set

{
ι(Q′) Q′ ⊆

Q
}
⊆ 2Q; it is easy to see that the automaton Aι is nondeterministic. Intu-

itively, instead of defining the target states of transitions of Aι as unions of
the target states of their component transitions (from A) as in the universal
subset construction of Theorem 4.3.2, the construction in Proposition 4.5.2
uses the function ι to direct transitions to states that are equivalent under the
relation induced by ι into a single representative state; also the initial state of
the automaton is replaced with its representative. More precisely, the transi-
tions of the automaton Aι are related in the following way to the transitions
of the automaton defined from A using the construction in Theorem 4.3.2:

Lemma 4.5.3 Let Aι and And (with transitions ∆ι and ∆nd, respectively) be
the nondeterministic automata obtained from the self-loop alternating au-
tomaton A using the constructions of Proposition 4.5.2 and Theorem 4.3.2,
respectively. For all transitions

〈
Q′
ι,Γι, Fι, {Q

′′
ι }

〉
∈ ∆ι and all subsets Q′ ⊆

Q′
ι, the automaton And has a transition

〈
Q′,Γnd, Fnd, {Q

′′
nd}

〉
∈ ∆nd such

that Γnd ⊇ Γι, Fnd ⊆ Fι and Q′′
nd ⊆ Q′′

ι hold.

Proof: Let
〈
Q′
ι,Γι, Fι, {Q

′′
ι }

〉
∈ ∆ι be a transition of Aι, and let Q′ ⊆

Q′
ι. By the definition of Aι, there exists, for all q ∈ Q′

ι, a transition tq =
〈q,Γq, Fq, Q

′
q〉 ∈ ∆ such that Γι =

⋂
q∈Q′

ι
Γq, Fι =

⋃
q∈Q′

ι
Fq and Q′′

ι =

ι
(⋃

q∈Q′
ι
Q′
q

)
hold. Because Q′ ⊆ Q′

ι holds, the collection of transitions {tq |

q ∈ Q′} defines (in the automaton And) a transition
〈
Q′,Γnd, Fnd, {Q

′′
nd}

〉
=〈

Q′,
⋂
q∈Q′ Γq,

⋃
q∈Q′ Fq,

{⋃
q∈Q′ Q′

q

}〉
∈ ∆nd, and the result follows be-

cause

Γnd =
⋂
q∈Q′ Γq ⊇

(⋂
q∈Q′ Γq

)
∩

(⋂
q∈Q′

ι\Q
′ Γq

)
=

⋂
q∈Q′

ι
Γq = Γι,

Fnd =
⋃
q∈Q′ Fq ⊆

(⋃
q∈Q′ Fq

)
∪

(⋃
q∈Q′

ι\Q
′ Fq

)
=

⋃
q∈Q′

ι
Fq = Fι, and

Q′′
nd =

⋃
q∈Q′ Q′

q ⊆
(⋃

q∈Q′ Q′
q

)
∪

(⋃
q∈Q′

ι\Q
′ Q′

q

)
=

⋃
q∈Q′

ι
Q′
q

⊆ ι
(⋃

q∈Q′
ι
Q′
q

)
= Q′′

ι

hold. �

It is now easy to show that the automaton Aι defined in Proposition 4.5.2
from the alternating automaton A fin-recognizes no more words than A.

Lemma 4.5.4 Let A and Aι be the automata specified in Proposition 4.5.2.
For all w ∈ Lfin(Aι), w ∈ Lfin(A) holds.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 99

Proof: Let w ∈ Lfin(Aι). Because Lfin(And) = Lfin(A) holds for the non-
deterministic automaton And (with transitions ∆nd) obtained from the au-
tomaton A using the construction of Theorem 4.3.2, we prove the result by
showing that w ∈ Lfin(And) holds.

Let G = 〈V,E, L〉 be a fin-accepting run of Aι on w. Because Aι is a
nondeterministic automaton, we may assume that G is a uniform run of Aι

(Proposition 4.1.1). Therefore, V consists of an infinite number of levels Vi,
each of which contains a single node vi ∈ Vi (0 ≤ i < ω), andG contains the
unique infinite chain of edges (ei)0≤i<ω =

(〈
vi, {vi+1}

〉)
0≤i<ω

. We define

a relabeling L′ of V and E to obtain a fin-accepting run G′ = 〈V,E, L′〉 of

And on w. Let L′(v0)
def
= {qI}.

Assume that L′(vi) has been defined for some 0 ≤ i < ω, and assume also
that L′(vi) ⊆ L(vi) holds (clearly, because G is a consistently labeled run
of Aι, this assumption holds for i = 0 because L′(v0) = {qI} ⊆ ι

(
{qI}

)
=

L(v0) holds). Because G is a run of Aι, the edge ei =
〈
vi, {vi+1}

〉
is labeled

with the transition
〈
L(vi),Γi, Fi,

{
L(vi+1)

}〉
∈ ∆ι (for some Γi ⊆ 2AP

and Fi ⊆ F) such that w(i) ∈ Γi holds. Because L′(vi) ⊆ L(vi) holds,
it follows by Lemma 4.5.3 that the automaton And has a transition ti =〈
L′(vi),Γ

′
i, F

′
i , {Q

′′}
〉
∈ ∆nd for some Γ′

i ⊇ Γi, F ′
i ⊆ Fi and Q′′ ⊆ L(vi+1).

We now define L′(ei)
def
= ti and L′(vi+1)

def
= Q′′; clearly, L′(vi+1) ⊆ L(vi+1)

holds, and we may complete the definition of the labeling L′ by induction
on i.

We claim that the graph G′ = 〈V,E, L′〉 is a fin-accepting run of And on
w. Clearly, because G′ shares its nodes and edges with the run G, G′ satisfies
the partitioning and causality constraints. Because w(i) ∈ Γi ⊆ Γ′

i and
L′(ei) = ti =

〈
L′(vi),Γ

′
i, F

′
i ,

{
L′(vi+1)

}〉
∈ ∆nd hold for all 0 ≤ i < ω, it

is easy to see that L′ is consistent. Furthermore, because fin
(
(ei)0≤i<ω

)
= ∅

holds in G and F ′
i ⊆ Fi holds for all 0 ≤ i < ω, it follows that G′ is a

fin-accepting run of And on w, and thus w ∈ Lfin(And) = Lfin(A) holds. �

The following lemma establishes language containment in the converse
direction.

Lemma 4.5.5 Let A and Aι be the automata specified in Proposition 4.5.2.
For all w ∈ Lfin(A), w ∈ Lfin(Aι) holds.

Proof: The proof relies on the fact that the automaton A is an acceptance
closed alternating automaton that has an f -representative state for all of its
acceptance conditions f ∈ F (Lemma 4.3.8). Using this result, a straightfor-
ward modification to the construction in the proof of Proposition 4.3.5 can be
used to find a fin-acceptance synchronized run of Aι onw; thusw ∈ Lfin(Aι)
follows by Proposition 4.3.1. The details are as follows.

As in the proof of Proposition 4.3.5, write F = {f1, f2, . . . , fn} for some
0 ≤ n < ω. By Lemma 4.3.8, A has an fi-representative state qfi

∈ Q for all
1 ≤ i ≤ n. Let w ∈ Lfin(A); we define a fin-acceptance synchronized run
G = 〈V,E, L〉 of Aι on w.

(Definition of G) Let V
def
=

⋃
0≤i<ω Vi =

⋃
0≤i<ω{vi} (where vi 6= vj holds

for all 0 ≤ i, j < ω, i 6= j) and E
def
=

⋃
0≤i<ω

{
〈vi, Vi+1〉

}
. Obviously, the

100 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

unlabeled graph 〈V,E〉 satisfies the partitioning and causality constraints.
We define the labeling L inductively as follows.

Let L(v0)
def
= ι

(
{qI}

)
. Identically to the proof of Proposition 4.3.5, we

define auxiliary integers c0, c1, c2, . . . (0 ≤ ci ≤ n for all 0 ≤ i < ω) to guide

the construction; let c0
def
= 0.

Assume that L(vi) has been defined for some 0 ≤ i < ω; write L(vi) =
{qi,1, qi,2, . . . , qi,ni

} for some 0 ≤ ni < ω such that qi,j 6= qi,k holds for all 1 ≤
j, k ≤ ni (j 6= k). Assume also that the labeling L is consistent up to level i
of G (i.e., for all nodes vj ∈ V , 0 ≤ j ≤ i, and edges 〈vk, Vk+1〉 ∈ E, 0 ≤
k < i), and that wi ∈ Lfin(A

q) holds for all q ∈ L(vi). These assumptions
clearly hold if i = 0: L(v0) = ι

(
{qI}

)
is the initial state of Aι, and because

w0 = w ∈ Lfin(A) = Lfin(A
qI) holds (Proposition 2.3.12), it follows from the

properties of the function ι and the definition of L(v0) that w0 ∈ Lfin(A
qI) =⋂

q∈{qI}
Lfin(A

q) =
⋂
q∈ι({qI})

Lfin(A
q) =

⋂
q∈L(v0) Lfin(A

q) holds, i.e., Aq

fin-accepts w0 for all q ∈ L(v0).
Because Aqi,j fin-accepts wi for all 1 ≤ j ≤ ni, there exist transitions

ti,j = 〈qi,j ,Γi,j, Fi,j, Q
′
i,j〉 ∈ ∆qi,j ⊆ ∆ (for some Γi,j ⊆ 2AP , Fi,j ⊆ F and

Q′
i,j ⊆ Qqi,j ⊆ Q) such that w(i) ∈ Γi,j holds for all 1 ≤ j ≤ ni, and Aq′

fin-accepts wi+1 for all q′ ∈
⋃

1≤j≤ni
Q′
i,j (Proposition 2.3.15). Furthermore,

if ci 6= 0, and qi,j is not an fci -state or if i ∈ IA,fci
(w) holds3, it follows from

the definition of f -representative states (Sect. 4.3.3) that Aqi,j fin-accepts wi

by avoiding an initial f -transition, and thus the transitions ti,j can be chosen
so that fci /∈

⋃
1≤j≤ni

Fi,j holds.
We now extend the labeling L by defining

L(vi+1)
def
= ι

(⋃
1≤j≤ni

Q′
i,j

)
,

L
(
〈vi, Vi+1〉

)
def
=

〈 ⋃
1≤j≤ni

{qi,j},
⋂

1≤j≤ni
Γi,j,

⋃
1≤j≤ni

Fi,j,{
ι
(⋃

1≤j≤ni
Q′
i,j

)}〉
,

and, as in the proof of Proposition 4.3.5,

ci+1
def
=






ci if ci 6= 0, |IA,fci
(w)| = ω and

i /∈ IA,fci
(w)

(ci + 1) mod
(
|F| + 1

)
otherwise.

Since wi+1 ∈
⋂
q′∈

S
1≤j≤ni

Q′
i,j
Lfin(A

q′) =
⋂
q′∈ι(

S
1≤j≤ni

Q′
i,j)

Lfin(A
q′) holds

by the properties of the function ι, it follows that Aq′ fin-accepts wi+1 for all
q′ ∈ ι

(⋃
1≤j≤ni

Q′
i,j

)
. Moreover, it is easy to see from the definition of Aι

that L
(
〈vi, Vi+1〉

)
∈ ∆ι holds, and because w(i) ∈

⋂
1≤j≤ni

Γi,j, L(vi) =⋃
1≤j≤ni

{qi,j} and L(Vi+1) =
{
L(vi+1)

}
=

{
ι
(⋃

1≤j≤ni
Q′
i,j

)}
hold, the

labeling of the node vi+1 and the edge 〈vi, Vi+1〉 is consistent. It follows that
the assumptions used in the inductive construction hold at level i + 1 of G,
and we may repeat the construction. This completes the inductive definition
of L and the integers ci; by the inductive argument, it follows that the graph
G = 〈V,E, L〉 is a run of Aι on w.

3As in Sect. 4.3.3, we define IA,f (w′)
def

=
{
0 ≤ i < ω Aqf fin-accepts (w′)i by avoiding

an initial f -transition
}

for all f ∈ F and w′ ∈ (2AP)ω .

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 101

The reasoning used in the proof of Proposition 4.3.5 applies directly to
show that ci = f holds for infinitely many indices 0 ≤ i < ω for all accep-
tance conditions f ∈ F . Similarly, if IA,f (w) < ω holds for an acceptance
condition f ∈ F , then there exists an index 0 ≤ i < ω such that no state
in L(vj) is an f -state for all i ≤ j < ω (Lemma 4.3.6), and thus (because
the transition starting from the node vj is formed from transitions of A whose
source states are in L(vj)) G is fin-acceptance synchronized with respect to
the condition f . Otherwise IA,f(w) = ω holds, in which case the induc-
tive construction of L guarantees that L

(
〈vi, Vi+1〉

)
is not an f -transition for

infinitely many 0 ≤ i < ω, and G is fin-acceptance synchronized with re-
spect to f also in this case. Because the same result holds for all acceptance
conditions, it follows that G is fin-acceptance synchronized, and therefore
fin-accepting (Proposition 4.3.1). We conclude that w ∈ Lfin(Aι) holds. �

Proposition 4.5.2 now follows from Lemma 4.5.4 and Lemma 4.5.5.

The Subautomaton AqI

Proposition 4.5.2 shows that the state set of the nondeterministic automaton
obtained using the universal subset construction from an alternating automa-
ton A built from an LTL formula ϕ ∈ LTLPNF(AP) using the translation
rules of Sect. 3.1 can be reduced by, in effect, merging states that have iden-
tical images under a function ι satisfying certain constraints; the function SI
defined in Sect. 4.5.1 provides a concrete example of such a function.

In practice, however, we are usually not interested in the full automaton
A, but instead the subautomaton AqI rooted at its initial state, and a non-
deterministic automaton obtained from AqI . As observed in Sect. 3.2.1, the
state set QqI of AqI consists of those states of A that correspond to (i) the
formula ϕ itself, (ii) a binary pure temporal subformula of ϕ, or (iii) a sub-
formula ψ ∈ NSub(ϕ) such that Xψ ∈ NSub(ϕ) holds. Consequently, all
states reachable from the initial state {qI} of the nondeterministic automaton
obtained from A using the universal subset construction of Theorem 4.3.2
correspond to conjunctions of these formulas. However, this correspondence
is not preserved in the nondeterminization construction of Proposition 4.5.2
when using the function SI to identify equivalent states of the nondetermin-
istic automaton: in the general case, there may exist subsets Q′ ⊆ QqI for
which SI(Q′) ⊆ QqI does not hold. For example, the subautomaton rooted
at the initial state of the nondeterministic automaton built for the formula
(p1 Rs p2) by applying Theorem 4.3.2 consists of a single state that corre-
sponds to the set of binary pure temporal formulas

{
(p1 Rs p2)

}
, but the ini-

tial state of the automaton built using the construction of Proposition 4.5.2
corresponds to the set of formulas SI

({
(p1 Rs p2)

})
=

{
(p1 Rs p2), p2,>

}
,

which contains also Boolean formulas. In more complex cases, it is not
even apparent (without further analysis of the function SI) from the nonde-
terminization construction of Proposition 4.5.2 why the construction could
not in fact yield a nondeterministic automaton having more states reachable
from its initial state than the automaton built using the standard universal
subset construction. Thus it is not obvious whether the upper bounds given
in Corollary 4.3.9 still hold for nondeterministic automata built using the
construction of Proposition 4.5.2.

The above technical difficulty can be avoided via a simple change to the

102 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

function SI to make it closed with respect to the set 2Q
qI by simply project-

ing the image SI(Q′) of any subset Q′ ⊆ QqI back to a subset of QqI . That
is, we may refine the function SI used in the nondeterminization construc-

tion into a function SI ′ : 2Q → 2Q by defining SI ′(Q′)
def
= SI(Q′) ∩ QqI

for all Q′ ⊆ QqI (and SI ′(Q′)
def
= SI(Q′) for all 2Q \ 2Q

qI); it is straight-
forward to check that the function SI ′ still has the properties required of a
function usable in the construction for every subset Q′ ⊆ Q. The states in
the subautomaton rooted at the initial state of the nondeterministic automa-
ton built by using the function SI ′ for nondeterminization can thus be seen
to be elements of the set

{
SI ′(Q′) Q′ ⊆ QqI

}
⊆ 2Q

qI . The size of this set
does not exceed the upper bound given in Corollary 4.3.9: as in the proof
of Corollary 4.2.2 (p. 79), we can consider the initial state of AqI to be an
element separate from QqI if the formula ϕ is not a binary pure temporal
formula. As a further possible advantage of using the function SI ′ instead of
the function SI in the construction, the fact that the values of SI ′ are sub-
sets of the corresponding values of SI may speed up the construction if the
transitions of the nondeterministic automaton are to be built explicitly: the
number of possible combinations of transitions starting from a state in the
nondeterministic automaton is in the worst case exponential in the number
of state components (i.e., the size of the state when seen as a subset of Q).

4.6 THE SUBCLASS LTLCND

We end this chapter by investigating a syntactic subclass of LTL for which
translation into self-loop alternating automata can be combined with a sim-
ple completion lemma to obtain a direct translation procedure from this sub-
class of LTL into nondeterministic automata. Essentially the same subclass
of LTL has previously been considered by Schneider [1999] in the context of
symbolic translation algorithms from LTL into automata. A closely related
approach was also taken by Maidl [2000a], who investigated translation of
another syntactic subclass of LTL into one-weak nondeterministic automata.
Although these two subclasses of LTL have different syntactic definitions and
use different translation rules, we shall show that the LTL subclass used by
Maidl actually coincides with an explicit version of the subclass of Schnei-
der. This version can be extracted from the translation procedure presented
in Sect. 3.1 by studying the closure properties of the rules. Because any for-
mula from this subclass can be translated into a self-loop nondeterministic
automaton with a set of states whose size is linear in the number of pure
temporal subformulas in the formula, each satisfiable formula in the subclass
has a model that can be represented in polynomial space in the length of the
formula. It follows that the decision problem of testing the satisfiability of
formulas in the subclass is NP-complete.

4.6.1 Completion to Nondeterministic Automata

By definition, a nondeterministic automaton is an alternating automaton,
all transitions of which have exactly one target state. Obviously, alternating
automata having no transitions with two or more target states “almost” satisfy

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 103

this condition with the possible exception of transitions whose target state set
is empty. It is straightforward to make these automata nondeterministic by
redirecting all such transitions to an additional “sink” state, the subautomaton
rooted at which always accepts its input.4

Lemma 4.6.1 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton such
that |Q′| ≤ 1 holds for all transitions 〈q,Γ, F,Q′〉 ∈ ∆. Let q̂ be a new state
not included in Q. The automaton A′ =

〈
Σ, Q ∪ {q̂},∆′, qI ,F

〉
, where

∆′ def
=

{
〈q,Γ, F,Q′〉 ∈ ∆ Q′ 6= ∅

}
∪

{
〈q,Γ, F, {q̂}〉 〈q,Γ, F, ∅〉 ∈ ∆

}
∪{

〈q̂,Σ, ∅, {q̂}〉
}

, is a nondeterministic automaton with Lfin(A) = Lfin(A
′),

and A′ is a self-loop automaton iff A is.

Proof: Because |Q′| ≤ 1 holds for all 〈q,Γ, F,Q′〉 ∈ ∆, it is easy to see from
the definition of A′ that every transition of A′ has exactly one target state,
and thus A′ is nondeterministic. Because the definition obviously preserves
all cycles of A and adds only a self-loop to the automaton, A′ is a self-loop
nondeterministic automaton if A is a self-loop alternating automaton and
vice versa. We check that A and A′ fin-accept the same language.

(Lfin(A) ⊆ Lfin(A
′)) Letw ∈ Σω be a word fin-accepted by the automaton

A, and let G = 〈V,E, L〉 be a fin-accepting run of A on w. Define the

graph G′ = 〈V ′, E ′, L′〉, where V ′ def
= V , E ′ def

=
{
〈v, V ′〉 ∈ E V ′ 6= ∅

}
, and

L′(x)
def
= L(x) for all x ∈ V ′ ∪ E ′. Because G is a run and V ′ ⊆ V and

E ′ ⊆ E, V ′
0 is a singleton, and V ′ is obviously partitioned into disjoint finite

levels such that E ′ contains edges only between successive levels of G′. For
the same reason, each node of V ′ has at most one outgoing edge, and each
node v′ ∈ V ′

i (1 ≤ i < ω) is a successor of another node inG′ (it is a successor
of another node in G, and E ′ includes all edges in E with a nonempty set
of target nodes). Furthermore, the labeling of v0 and each edge in E ′ is
consistent. Finally, because all infinite branches in G′ are obviously infinite
branches of the fin-accepting run G, the branches satisfy the fin-acceptance
condition, and it follows that G′ is a fin-accepting semi-run of A′ on w.

Let v ∈ V ′
i be a node with no outgoing edges for some 0 ≤ i < ω.

In G, this node has the unique outgoing edge e ∈ E with an empty set of
target nodes such that L(e) =

〈
L(v),Γ, F, ∅

〉
∈ ∆ holds for some Γ ⊆ Σ

and F ⊆ F , and w(i) ∈ Γ. By the definition of A′, (A′)L
′(v) = (A′)L(v)

now has an initial transition
〈
L′(v),Γ, F, {q̂}

〉
∈ ∆′. Furthermore, be-

cause Lfin

(
(A′)q̂

)
= Σω obviously holds, it follows that (A′)q̂ fin-accepts

wi+1, and therefore (A′)L
′(v) fin-accepts wi by Proposition 2.3.15. Since this

same result holds for all nodes of V ′ with no outgoing edges, we can apply
Proposition 2.3.14 to extend the semi-run G′ into a fin-accepting run of A′

on w, and thus w ∈ Lfin(A
′) holds.

(Lfin(A
′) ⊆ Lfin(A)) Let G′ = 〈V ′, E ′, L′〉 be a fin-accepting run of A′

on some w ∈ Σω. In this case we can define a fin-accepting semi-run G =
〈V,E, L〉 of A on w as follows:

4Alternatively, we could simply relax the definition of nondeterministic automata to per-
mit transitions with no target states. We nevertheless use the more traditional definition
of nondeterministic automata, which also saves us from the possible need to consider such
transitions a special case when working with nondeterministic automata.

104 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

• V
def
=

{
v ∈ V ′ L′(v) 6= q̂

}
;

• E
def
=

{
e ∈ E ′ L′(e) = 〈q,Γ, F,Q′〉 ∈ ∆′, q̂ /∈ {q} ∪Q′

}
; and

• L(x)
def
= L′(x) for all x ∈ V ∪ E.

As above, because V ⊆ V ′ and E ⊆ E ′, V can be partitioned into finite
disjoint levels such that V0 is a singleton (because q̂ /∈ L′(V0) = {qI} holds),
the edges of G lie between successive levels of V , and since E ⊆ E ′, each
node of v has at most one outgoing edge, and the labeling L is consistent for
all x ∈ V ∪E.

If there exists a node v′ ∈ V \ V0 that is not a successor of another node
in V , then, because G′ is a run, there exists a node v ∈ V ′ and an edge
e′ = 〈v, V ′′〉 ∈ E ′ that includes v′ in its target nodes. Because e′ /∈ E,
however, it follows that the transition L′(e′) ∈ ∆′ has q̂ either as its source
state or as one of its target states. By the definition of ∆′, q̂ is actually the only
target state of L′(e′), and thus all nodes of V ′′ are labeled with q̂ in G′. In
particular, L′(v′) = q̂ holds. This contradicts the fact that v′ ∈ V , however.
Therefore v′ is necessarily a successor of another node in V .

Because the infinite branches of G form a subset of the infinite branches
of G′ (all of which satisfy the fin-acceptance condition), it follows that G is a
fin-accepting semi-run of A on w.

If v ∈ Vi is a node in G with no outgoing edges for some 0 ≤ i < ω, then
L(v) = L′(v) 6= q̂, and there exists an edge e ∈ E ′ labeled with a transition〈
L′(v),Γ, F, {q̂}

〉
∈ ∆′ for some Γ ⊆ Σ and F ⊆ F such that w(i) ∈ Γ

holds. Because L′(v) = L(v) holds, it follows from the definition of A′ that〈
L(v),Γ, F, ∅

〉
∈ ∆ is an initial transition of AL(v). Because the target state

set of this transition is empty, Proposition 2.3.15 applies trivially, and thus
AL(v) fin-accepts wi. Because v is arbitrary, it follows by Proposition 2.3.14
that G can be extended into a fin-accepting run of A on w, and therefore
w ∈ Lfin(A) holds. �

4.6.2 Closure Properties of Translation Rules

Lemma 4.6.1 makes it possible to complete any alternating automaton hav-
ing no transitions with two or more target states into a nondeterministic au-
tomaton that fin-recognizes its language. Our goal is to identify a class of
LTL formulas which admit translation into alternating automata that can be
made nondeterministic simply by applying this lemma. A natural approach
is to consider the closure properties of the translation rules (cf. [Schneider
1999]), i.e., the conditions under which an automaton built using a trans-
lation rule can be made nondeterministic using Lemma 4.6.1 provided that
the automata to which the rule was applied had this property.

Clearly, an alternating automaton built from an atomic formula has at
most one transition, and this transition has no target states. Hence, this au-
tomaton can be completed into a nondeterministic automaton by applying
Lemma 4.6.1. The other translation rules have the following simple closure
properties.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 105

Lemma 4.6.2 Let A1 and A2 be two self-loop alternating automata having
no transitions with two or more distinct target states, and let A3 be a single-
state alternating automaton, all transitions of which have an empty set of
target states. All automata built from

(a) A1 with the translation rule for the X operator,

(b) A1 and A2 (or A2 and A1) with the translation rule for the ∨ operator,

(c) A1 and A3 (or A3 and A1) with the translation rule for the ∧ operator,

(d) A3 and A1 with one of the U translation rules (using the initial transi-
tions of A3 to define the initial self-loops of the compound automaton)

(e) A1 and A3 with one of the R translation rules (using the initial transi-
tions of A3 to define the initial self-loops of the compound automaton)

are self-loop alternating automata with no transitions having two or more
distinct target states.

Proof: It is clear by the discussion in Sect. 3.1.1 that an automaton built by
applying a translation rule to self-loop alternating automata is itself a self-
loop alternating automaton. We verify the claim that this automaton has no
transitions with two or more distinct target states.

(a) Applying the X translation rule to the automatonA1 adds one transition

to this automaton. Because the only target state of this transition is the initial
state of A1, the result follows from the assumption that all transitions of A1

have at most one target state.

(b) The translation rule for the ∨ operator creates transitions, each of

which shares its target states with some initial transition of A1 or A2. The
result now holds again by the assumption that A1 and A2 have no transitions
with two or more distinct target states.

(c) By the assumption, the target state set of each transition of A3 is empty.

Thus, because all transitions of A1 have at most one target state, the union of
the target state sets of any pair of transitions of A1 and A3 is a set containing at
most one state. The result now follows from the properties of A1 and A3 and
the fact that the target state sets of all transitions created by the ∧ translation
rule are formed in this way.

(d) Each transition created by one of the translation rules for the U con-

nectives either shares its target states with some initial transition of A1, or its
target states are formed by adding the initial state of the constructed automa-
ton to the (empty) target state set of some initial transition of A3. Because
no transition of A1 has two or more distinct target states, there are no such
transitions in the compound automaton, either.

(e) The translation rules for the R connectives form the target states of each

new transition either by augmenting the (empty) target state set of one of the
initial transitions of A3 with the initial state of the constructed automaton,
or by collecting the target states of a pair of A1’s and A3’s initial transitions.
It is easy to see from the properties of A1 and A3 that no transition of the
compound automaton will have two or more target states. �

106 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

4.6.3 Definition of the Subclass

Lemma 4.6.2 helps to isolate a simple syntactic fragment of LTL that can be
translated into self-loop alternating automata having no transitions with two
or more target states. Formally, for a countable set AP of atomic proposi-
tions, we define the set LTLCND(AP) (“subset of LTL for which the transla-
tion rules are closed under translation into nondeterministic automata”) as
the smallest set of formulas that is closed under the finite application of the
syntactic rule

If θ ∈ PL(AP) and ϕ1, ϕ2 ∈ LTLCND(AP), then
θ, Xϕ1, (ϕ1 ∨ ϕ2), (ϕ1 ∧ θ), (θ ∧ ϕ1), (θUϕ1), (ϕ1 R θ) ∈ LTLCND(AP)

(where U and R can be either weak or strong binary temporal connectives).
It is easy to see that [ϕ]PNF ∈ LTLCND(AP) holds for all formulas ϕ ∈

LTLCND(AP), because the syntactic definition allows negation to occur only
in propositional subformulas of ϕ (and the positive normal form of such
a subformula is also a propositional formula). Obviously, |Temp(ϕ)| =
Temp

(
[ϕ]PNF

)
then holds also.

Proposition 4.6.3 Let ϕ ∈ LTLCND(AP). The self-loop alternating automa-
ton built from [ϕ]PNF using the translation rules presented in Sect. 3.1 has
no transitions with two or more distinct target states.

Proof: Because ϕ ≡ [ϕ]PNF and [ϕ]PNF ∈ LTLCND(AP) hold, we may, with-
out loss of generality, assume that ϕ itself is in positive normal form. It is clear
from the basic translation rules that the result holds if ϕ is an atomic formula.
Assume that the result holds for all formulas in LTLCND(AP) of length less
than or equal to some 1 ≤ k < ω, and assume that ϕ is a non-atomic formula
of length k + 1. Due to the minimality of LTLCND(AP), ϕ is a compound
formula of one of the forms presented in the definition of the subclass, and
therefore ϕ has one or two top-level subformulas in LTLCND(AP) of length
at most k. By the induction hypothesis, these subformulas can be translated
into self-loop alternating automata with no transitions having two or more tar-
get states. The result now follows by induction, where the induction step can
be proved for each different kind of compound formula using Lemma 4.6.2.

For example, if ϕ is of the form (θUϕ1) for some θ ∈ PL(AP) and
ϕ1 ∈ LTLCND(AP), then there exist self-loop alternating automata having
the desired property for the formulas θ and ϕ1 by the induction hypothesis.
More precisely, because θ is a propositional formula, θ has a corresponding
self-loop alternating automaton, all transitions of which have an empty set
of target states. By Lemma 4.6.2 (d), it now follows that the compound au-
tomaton built from these automata using one of the translation rules for the
U connectives has no transitions with two or more target states. �

By combining Proposition 4.6.3 and Theorem 3.3.2 with Lemma 4.6.1,
we obtain an effective procedure for translating formulas from LTLCND(AP)
directly into nondeterministic automata. It follows that the number of states
in an automaton that recognizes the language of a formula in the subclass
LTLCND(AP) depends linearly on the number of syntactically distinct pure
temporal subformulas in the formula.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 107

Corollary 4.6.4 Let ϕ ∈ LTLCND(AP) be an LTL formula. The language
L(ϕ) can be fin-recognized by a self-loop nondeterministic automaton with
at most 2 + |Temp(ϕ)| states.

Proof: Let A be a self-loop alternating automaton built from [ϕ]PNF using
the basic translation rules, let qI be the initial state of the automaton, and
let QqI be the state set of the subautomaton AqI . By Proposition 4.6.3, A
has no transitions with two or more target states, and AqI has this same prop-
erty. If A is not nondeterministic, then A can be completed to an equiv-
alent nondeterministic automaton by applying Lemma 4.6.1. This modifi-
cation adds a new state to the automaton. The result then follows because
|QqI | ≤ 1+ Temp

(
[ϕ]PNF

)
= 1+|Temp(ϕ)| (Corollary 3.2.2) and because

A and AqI fin-accept the same language (Proposition 2.3.12). �

4.6.4 Relationships between Syntactic Subclasses of LTL

As a closely related approach, Maidl [2000a] defined a subclass of LTL called
LTLdet that consists of formulas whose negation can be translated into self-
loop nondeterministic automata. (The class LTLdet itself corresponds to the
set of LTL formulas, for each of which there exists a formula in the branching
time logic ∀CTL such that the model checking problems for these formulas
in any structure have the same solution [Maidl 2000a].) We denote the class
of negations of formulas in LTLdet (over a given set AP of atomic proposi-

tions) by LTLdet(AP); this subclass of LTL can be defined directly as the
smallest subset of LTL(AP) that is closed under the finite application of the
syntactic rule

If θ ∈ PL(AP) and ϕ1, ϕ2 ∈ LTLdet(AP), then
θ, Xϕ1, (ϕ1 ∨ ϕ2),

(
(θ ∨ ϕ1) ∧ (¬θ ∨ ϕ2)

)
, and(

(θ ∨ ϕ1) R (¬θ ∨ ϕ2)
)
∈ LTLdet(AP)

(where R can be either of the Release connectives).
The relationship between the expressive power of the syntactic subclasses

LTLCND(AP) and LTLdet(AP) is not immediately obvious from the syn-

tactic definitions of the subclasses. For example, the subclass LTLdet(AP)
includes binary pure temporal formulas, both top-level subformulas of which
are temporal formulas. As we shall show below, the subclasses in fact describe
the same LTL properties equally succinctly in the number of syntactically
distinct pure temporal subformulas. We first define sets of recursive rules

for rewriting formulas in LTLCND(AP) and LTLdet(AP). We then show

that the rules define mappings between LTLCND(AP) and LTLdet(AP) that
preserve the logical equivalence of formulas (Proposition 4.6.6). Finally, we
show that the mappings do not increase the number of syntactically distinct
pure temporal subformulas (Proposition 4.6.9).

Translations between LTLCND(AP) and LTLdet(AP)

Let ϕ ∈ LTLCND(AP). We associate with ϕ the formula [ϕ]det obtained
from ϕ by applying the following recursive rewrite rules (where ϕ1, ϕ2 ∈

108 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

LTLCND(AP) and θ ∈ PL(AP)):

[ϕ]det def
= ϕ if ϕ ∈ PL(AP), and for formulas not in PL(AP),

[Xϕ1]
det def

= X[ϕ1]
det

[
(ϕ1 ∨ ϕ2)

]det def
=

(
[ϕ1]

det ∨ [ϕ2]
det

)
[
(ϕ1 ∧ θ)

]det def
=

(
(θ ∨ ⊥) ∧ (¬θ ∨ [ϕ1]

det)
)

[
(θ ∧ ϕ1)

]det def
=

(
(θ ∨ ⊥) ∧ (¬θ ∨ [ϕ1]

det)
)

[
(θUϕ1)

]det def
=

(
(¬θ ∨ [ϕ1]

det) R (¬(¬θ) ∨ [ϕ1]
det)

)
[
(ϕ1 R θ)

]det def
=

(
(¬θ ∨ [ϕ1]

det) R (¬(¬θ) ∨⊥)
)

Conversely, we also associate with each formula ϕ ∈ LTLdet(AP) the for-
mula [ϕ]CND defined recursively as follows:

[ϕ]CND def
= ϕ if ϕ ∈ PL(AP); and otherwise

[Xϕ1]
CND def

= X[ϕ1]
CND

[
(ϕ1 ∨ ϕ2)

]CND def
=

(
[ϕ1]

CND ∨ [ϕ2]
CND

)
[(

(θ ∨ ϕ1) ∧ (¬θ ∨ ϕ2)
)]CND def

=
(
(¬θ ∧ [ϕ1]

CND) ∨ (θ ∧ [ϕ2]
CND)

)
[(

(θ ∨ ϕ1) R (¬θ ∨ ϕ2)
)]CND def

=
(
¬θ U ((¬θ ∧ [ϕ1]

CND) ∨ (θ ∧ [ϕ2]
CND))

)

(In rules involving binary temporal connectives, the binary temporal connec-
tives always have the same strength on both sides of the definition.)

Expressive Equivalence of LTLCND(AP) and LTLdet(AP)

To show that the above rewrite rules define mappings between the subclasses

LTLCND(AP) and LTLdet(AP) such that the mappings preserve the logical
equivalence of formulas, we first list the following simple LTL identities for
reference.

Lemma 4.6.5 The following identities hold for all LTL formulas ϕ1, ϕ2 ∈
LTL(AP) (where the temporal connectives in an identity are of the same
strength on both sides of the identity):

(a) (ϕ1 Uϕ2) ≡
(
(ϕ1 ∨ ϕ2) Uϕ2);

(b) (ϕ1 Uϕ2) ≡
(
(¬ϕ1 ∨ ϕ2) R (ϕ1 ∨ ϕ2)

)
;

(c) (ϕ1 Rϕ2) ≡
(
(¬ϕ2 ∨ ϕ1) Rϕ2

)
.

Proof: Let w ∈ (2AP)ω. We check that the identities hold by the semantics
of LTL.

(a) w |= (ϕ1 Uϕ2)

iff there exists an index 0 ≤ i < ω such that wi |= ϕ2 holds, and wj |= ϕ1

holds for all 0 ≤ j < i (or if U = Uw, and wi |= ϕ1 holds for all
0 ≤ i < ω) (semantics of U)

iff there exists a least index 0 ≤ i < ω such that wi |= ϕ2 holds, and
wj |= ϕ1 holds for all 0 ≤ j < i (or if U = Uw, and wi |= ϕ2 does not
hold for any, but wi |= ϕ1 holds for all 0 ≤ i < ω)

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 109

iff there exists a least index 0 ≤ i < ω such that wi |= ϕ2 holds, and
wj |= (ϕ1 ∨ ϕ2) holds for all 0 ≤ j < i (or if U = Uw, and wi |= ϕ2

does not hold for any, but wi |= (ϕ1 ∨ ϕ2) holds for all 0 ≤ i < ω)

iff there exists an index 0 ≤ i < ω such that wi |= ϕ2 holds, and wj |=
(ϕ1 ∨ ϕ2) holds for all 0 ≤ j < i (or if U = Uw, and wi |= (ϕ1 ∨ ϕ2)
holds for all 0 ≤ i < ω)

iff w |=
(
(ϕ1 ∨ ϕ2) Uϕ2

)
. (semantics of U)

(b) w |= (ϕ1 Uϕ2)

iff w |=
(
(ϕ1 ∨ ϕ2) Uϕ2

)
(by (a))

iff w |=
(
(ϕ1 ∨ ϕ2) U (⊥∨ ϕ2)

)
(ϕ2 ≡ (⊥ ∨ ϕ2))

iff w |=
(
(ϕ1 ∨ ϕ2) U ((ϕ1 ∧ ¬ϕ1) ∨ ϕ2)

)
(⊥ ≡ (ϕ1 ∧ ¬ϕ1))

iff w |=
(
(ϕ1 ∨ ϕ2) U ((ϕ1 ∨ ϕ2) ∧ (¬ϕ1 ∨ ϕ2))

)

(
(
(ϕ1 ∧ ¬ϕ1) ∨ ϕ2

)
≡

(
(ϕ1 ∨ ϕ2) ∧ (¬ϕ1 ∨ ϕ2)

)
)

iff w |=
(
(¬ϕ1 ∨ ϕ2) R (ϕ1 ∨ ϕ2)

)
. (definition of R in terms of U)

(c) w |= (ϕ1 Rϕ2)

iff w |=
(
ϕ2 U (ϕ1 ∧ ϕ2)

)
(definition of R in terms of U)

iff w |=
(
ϕ2 U ((¬ϕ2 ∨ ϕ1) ∧ ϕ2)

)
((ϕ1 ∧ ϕ2) ≡

(
(¬ϕ2 ∨ ϕ1) ∧ ϕ2

)
)

iff w |=
(
(¬ϕ2 ∨ ϕ1) Rϕ2

)
. (definition of R in terms of U)

�

It is now straightforward to show that [·]det is a mapping from the sub-

class LTLCND(AP) to LTLdet(AP) that preserves the logical equivalence of
formulas (and conversely for [·]CND in the opposite direction).

Proposition 4.6.6 Let C be one of the syntactic subclasses LTLCND(AP) or

LTLdet(AP), let C′ be the opposite subclass, let ϕ ∈ C, and let [ϕ] be the
formula obtained from ϕ via the translation defined above for formulas in
the subclass C. The formulas ϕ and [ϕ] are logically equivalent, and [ϕ] ∈ C′

holds.

Proof: The result obviously holds if ϕ is a propositional formula, because

PL(AP) ⊆ LTLCND(AP) ∩ LTLdet(AP). In particular, the result holds if
|ϕ| = 1.

Assume that ϕ ≡ [ϕ] ∈ C′ holds for all formulas ϕ ∈ C of length at most
1 ≤ k < ω, and let ϕ ∈ C be a temporal formula of length k+ 1. If ϕ = Xϕ1

or ϕ = (ϕ1 ∨ ϕ2) holds for some ϕ1, ϕ2 ∈ C (|ϕ1| ≤ k, |ϕ2| ≤ k), then
either [ϕ] = X[ϕ1] or [ϕ] =

(
[ϕ1] ∨ [ϕ2]

)
, and the result follows easily by

the semantics of LTL and the syntactic closure properties of the subclass C′

since [ϕ1] ≡ ϕ1 ∈ C′ and [ϕ2] ≡ ϕ2 ∈ C′ hold by the induction hypothesis.
We check the other possible cases in each direction. Below, ϕ1 and ϕ2 are
formulas in the subclass C, and θ is a propositional formula.

(C = LTLCND(AP), C′ = LTLdet(AP)) If ϕ = (ϕ1 ∧ θ) or ϕ = (θ ∧ ϕ1)

holds, then it is easy to check from the semantics of LTL that ϕ ≡ (θ∧ϕ1) ≡(
θ ∧ (¬θ ∨ ϕ1)

)
≡

(
(θ ∨⊥) ∧ (¬θ ∨ ϕ1)

)
holds.

110 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

If ϕ = (θUϕ1), then ϕ = (θUϕ1) ≡
(
(¬θ ∨ ϕ1) R (θ ∨ ϕ1)

)
≡

(
(¬θ ∨

ϕ1) R (¬(¬θ) ∨ ϕ1)
)

holds by Lemma 4.6.5 (b) and the semantics of LTL.
Finally, if ϕ = (ϕ1 R θ), then ϕ = (ϕ1 R θ) ≡

(
(¬θ ∨ ϕ1) R θ

)
≡

(
(¬θ ∨

ϕ1) R (θ∨⊥)
)
≡

(
(¬θ∨ϕ1) R (¬(¬θ)∨⊥)

)
holds by Lemma 4.6.5 (c) (used

in the first logical equivalence) and the semantics of LTL.
In each case, we obtain the formula [ϕ] from the last formula in the chain

of logical equivalences by substituting [ϕ1] for the subformula ϕ1. Because

ϕ1 ≡ [ϕ1] ∈ C′ = LTLdet(AP) holds by the induction hypothesis, it is easy

to see that ϕ ≡ [ϕ] ∈ LTLdet(AP) holds by the semantics of LTL and the

syntactic closure properties of LTLdet(AP). The result holds by induction
on |ϕ| for all temporal formulas ϕ ∈ LTLCND(AP).

(C = LTLdet(AP), C′ = LTLCND(AP)) If ϕ =
(
(θ∨ϕ1)∧(¬θ∨ϕ2)

)
, then

it is easy to check from the semantics of LTL that ϕ ≡
(
(¬θ∧ϕ1)∨ (θ∧ϕ2)

)

holds. Similarly, if ϕ =
(
(θ ∨ ϕ1) R (¬θ ∨ ϕ2)

)
, then ϕ ≡

(
¬θ U ((¬θ ∧

ϕ1) ∨ (θ ∧ ϕ2))
)

holds (see [Maidl 2000b] for a proof). We again obtain
[ϕ] by replacing the formulas ϕ1 and ϕ2 with [ϕ1] and [ϕ2] (respectively)
in the right-hand side formulas in the identities, and the result follows by
the semantics of LTL and the syntactic closure properties of LTLCND(AP)
because ϕ1 ≡ [ϕ1] ∈ C′ and ϕ2 ≡ [ϕ2] ∈ C′ = LTLCND(AP) hold by
the induction hypothesis. We conclude that the result holds for all temporal

formulas ϕ ∈ LTLdet(AP) by induction on |ϕ|. �

Preservation of the Number of Pure Temporal Subformulas

To show that the mappings [·]det and [·]CND do not increase the number
of syntactically distinct pure temporal subformulas, we need the following
additional definition. We say that a formula ϕ ∈ LTLCND(AP) is in CND-
normal form iff ϕ does not contain subformulas of the form (ϕ1 ∧ θ) or
(⊥R θ) (where ϕ1 ∈ LTLCND(AP) \ PL(AP), θ ∈ PL(AP), and R ∈
{Rs,Rw}). Obviously, every formula in LTLCND(AP) can be rewritten in
CND-normal form due to the identities (ϕ1 ∧ θ) ≡ (θ ∧ ϕ1) and (⊥R θ) ≡(
θU (⊥ ∧ θ)

)
≡ (θU⊥) that hold for all ϕ1 ∈ LTL(AP) and θ ∈ PL(AP)

(where the R and U connectives are of the same strength in each formula
in the second chain of identities). Furthermore, it is easy to see that the
CND-normal form of ϕ has at most as many pure temporal subformulas as ϕ
itself.

We first make note of the fact that the translation from LTLCND(AP) to

LTLdet(AP) maps every pure temporal subformula of ϕ to a pure temporal
subformula of [ϕ]det, and the same holds for the other direction.

Lemma 4.6.7 Let C be one of the subclasses LTLCND(AP) or LTLdet(AP),
let C′ be the opposite subclass, let ϕ ∈ C, and let [ϕ] be the formula ob-
tained from ϕ via the translation from C to C′. For all ψ ∈ Temp(ϕ),
[ψ] ∈ Temp

(
[ϕ]

)
holds.

Proof: The result holds trivially if ϕ ∈ PL(AP) holds, since ϕ has no pure
temporal subformulas in this case. For temporal formulas, the result follows
by a straightforward induction on |ϕ| by observing that for all formulas ψ ∈ C,
ψ is a pure temporal formula only if [ψ] is a pure temporal formula. We omit
the details of the proof. �

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 111

On the other hand, any two syntactically distinct formulas in CND-normal

form in LTLCND(AP), or two syntactically distinct formulas in LTLdet(AP),
always translate to syntactically distinct formulas in the opposite subclass.

Lemma 4.6.8 Let C be one of the subclasses LTLCND(AP) or LTLdet(AP),
let C′ be the opposite subclass, let ϕ, ψ ∈ C (and let ϕ, ψ be in CND-normal
form if C = LTLCND(AP)), and let [ϕ] and [ψ] be the formulas obtained
from ϕ and ψ, respectively, via the translation from C to C′. If ϕ 6= ψ, then
[ϕ]det 6= [ψ]det.

Proof: Suppose that ϕ 6= ψ holds. We show that [ϕ] and [ψ] are syntacti-
cally distinct by induction on the maximum length of ϕ and ψ. The result
is obvious if ϕ, ψ ∈ PL(AP) holds, since [ϕ] = ϕ 6= ψ = [ψ] holds in
this case. In particular, [ϕ] 6= [ψ] holds if max

{
|ϕ|, |ψ|

}
= 1. The result

follows immediately also if only one of ϕ and ψ is a temporal formula: for
example, if Temp(ϕ) 6= ∅ but Temp(ψ) = ∅, then Temp

(
[ϕ]

)
6= ∅ holds

by Lemma 4.6.7, but Temp
(
[ψ]

)
= Temp(ψ) = ∅. Obviously, two formulas

cannot be syntactically identical if only one of them contains a pure temporal
subformula.

Assume that the result holds whenever max
{
|ϕ|, |ψ|

}
≤ k holds for some

1 ≤ k < ω, and let ϕ, ψ ∈ C be temporal formulas with max
{
|ϕ|, |ψ|

}
=

k + 1.

(C = LTLCND(AP), C′ = LTLdet(AP)) Obviously, two compound LTL
formulas are syntactically identical only if they have the same main con-
nective. It is easy to check directly from the rewrite rules that [ϕ]det 6=

[ψ]det holds if ϕ and ψ have different main connectives from one of the sets
{X,∨,∧,Us,Uw}, {X,∨,∧,Rs,Rw}, {Us,Rw} or {Uw,Rs}, because the trans-

lation from LTLCND(AP) to LTLdet(AP) either preserves the main connec-
tive of every formula (or the strength of the formula’s main connective if it is
Us or Uw). In the remaining case, ϕ = (θUϕ1) and ψ = (ψ1 R θ′) hold for
some θ, θ′ ∈ PL(AP) and ϕ1, ψ1 ∈ LTLCND(AP) (and U and R have the
same strength).

Suppose that [ϕ]det = [ψ]det holds. From the recursive definition, we
see that [ϕ]det =

(
(¬θ ∨ [ϕ1]

det) R (¬(¬θ) ∨ [ϕ1]
det)

)
and [ψ]det =

(
(¬θ′ ∨

[ψ1]
det) R (¬(¬θ′) ∨ ⊥)

)
, and it follows that θ = θ′, [ϕ1]

det = [ψ1]
det and

[ϕ1]
det = ⊥ must hold in this case. But then also [ψ1]

det = ⊥ and ψ1 = ⊥
hold, and thus we may write ψ = (ψ1 R θ′) = (⊥R θ′). This is, however, a
contradiction, because ψ is in CND-normal form. Therefore at least one of
θ 6= θ′, [ϕ1]

det 6= [ψ1]
det or [ϕ1]

det 6= ⊥ holds, and thus [ϕ]det 6= [ψ]det.
If ϕ and ψ have the same main connective, then the result follows easily

from the induction hypothesis (in case ∧, use the fact that both ϕ and ψ are
in CND-normal form). We present the case Us as an example.

Let ϕ = (θUs ϕ1) and ψ = (θ′ Us ψ1) for some θ, θ′ ∈ PL(AP) and
ϕ1, ψ1 ∈ LTLCND(AP). Because ϕ 6= ψ holds, then either θ 6= θ′ or ϕ1 6= ψ1

holds. In the latter case, [ϕ1]
det 6= [ψ1]

det holds by the induction hypothesis
because max

{
|ϕ1|, |ψ1|

}
≤ k. In both cases, it is easy to see that [ϕ]det =(

(¬θ∨[ϕ1]
det) Rs (¬(¬θ)∨[ϕ1]

det)
)
6=

(
(¬θ′∨[ψ1]

det) Rs (¬(¬θ′)∨[ψ1]
det)

)
=

[ψ]det, and the result follows.

112 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

The result holds by induction for all pairs of syntactically distinct temporal
formulas in CND-normal form.

(C = LTLdet(AP), C′ = LTLCND(AP)) It is again easy to check from the

rewrite rules that [ϕ]CND 6= [ψ]CND holds if ϕ and ψ have different main
connectives from one of the sets {X,∨,Rs,Rw} or {X,∧,Rs,Rw}. Suppose
that [ϕ]CND = [ψ]CND holds for ϕ = (ϕ1 ∨ ϕ2) and ψ =

(
(θ ∨ ψ1) ∧ (¬θ ∨

ψ2)
)

(ϕ1, ϕ2, ψ1, ψ2 ∈ LTLdet(AP) and θ ∈ PL(AP)). Then
(
[ϕ1]

CND ∨
[ϕ2]

CND
)

=
(
(¬θ∧[ψ1]

CND)∨(θ∧[ψ2]
CND)

)
holds, and thus [ϕ1]

CND =
(
¬θ∧

[ψ1]
CND

)
and [ϕ2]

CND =
(
θ∧ [ψ2]

CND
)

must hold in this case. Because none

of the recursive rules for translating a temporal formula from LTLdet(AP) to
LTLCND(AP) creates a formula having the operator ∧ as its main connective,
however, [ϕ1]

CND and [ϕ2]
CND are necessarily propositional formulas, and

thus also ϕ ∈ PL(AP). This contradicts the assumption that both ϕ and
ψ are temporal formulas. It follows that [ϕ]CND 6= [ψ]CND holds also in this
case.

If ϕ1 and ϕ2 have the same main connective, then the result follows by the
induction hypothesis similarly to the other direction. Therefore, [ϕ]CND 6=
[ψ]CND holds by induction for all pairs of syntactically distinct temporal for-

mulas ϕ, ψ ∈ LTLdet(AP). �

We can now show that translating formulas between LTLCND(AP) and

LTLdet(AP) incurs no blow-up in the number of pure temporal subformulas.

Proposition 4.6.9 Let C be one of the syntactic subclasses LTLCND(AP) or

LTLdet(AP), let C′ be the opposite subclass, let ϕ ∈ C, and let [ϕ] be the
formula obtained from ϕ via the translation from C to C′. The formula [ϕ]
has at most as many syntactically distinct pure temporal subformulas as ϕ.

Proof: If C = LTLCND(AP), we assume that ϕ is in CND-normal form
for the inductive proof. The result then follows easily for all formulas ϕ ∈
LTLCND(AP), because the CND-normal form of ϕ has at most as many syn-
tactically distinct pure temporal subformulas as ϕ.

If ϕ is a propositional formula, then [ϕ] = ϕ holds, and Temp
(
[ϕ]

)
=

|Temp(ϕ)| = 0 obviously holds in this case. In particular, the result holds
if |ϕ| = 1. Assume that Temp

(
[ϕ]

)
≤ |Temp(ϕ)| holds for all formulas

ϕ ∈ C (in CND-normal form, if C = LTLCND(AP)) with |ϕ| ≤ k for some
1 ≤ k < ω, and let ϕ ∈ C be a temporal formula of length k + 1.

(C = LTLCND(AP), C′ = LTLdet(AP)) It is easy to see from the rewrite

rules that Temp
(
[ϕ]

)
≤ |Temp(ϕ)| holds if ϕ is of the form Xϕ1, (θ ∧ ϕ1),

(θUϕ1) or (ϕ1 R θ) for some θ ∈ PL(AP) and ϕ1 ∈ LTLCND(AP), be-
cause Temp

(
[ϕ1]

)
≤ |Temp(ϕ1)| holds by the induction hypothesis (clearly

|ϕ1| ≤ k holds, and because ϕ is in CND-normal form, so is ϕ1).
If ϕ = (ϕ1 ∨ ϕ2) (for formulas ϕ1, ϕ2 ∈ LTLCND(AP) in CND-normal

form), then [ϕ] =
(
[ϕ1] ∨ [ϕ2]

)
. In this case

|Temp(ϕ)| = |Temp(ϕ1)| + |Temp(ϕ2)| − |Temp(ϕ1) ∩ Temp(ϕ2)|

and

Temp
(
[ϕ]

)
= Temp

(
[ϕ1]

)
+ Temp

(
[ϕ2]

)

− Temp
(
[ϕ1]

)
∩ Temp

(
[ϕ2]

)
.

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 113

Because |ϕ1| ≤ k and |ϕ2| ≤ k hold, Temp
(
[ϕ1]

)
≤ |Temp(ϕ1)| and

Temp
(
[ϕ2]

)
≤ |Temp(ϕ2)| hold by the induction hypothesis. The re-

sult obviously follows if also Temp
(
[ϕ1]

)
∩ Temp

(
[ϕ2]

)
≥ |Temp(ϕ1) ∩

Temp(ϕ2)| holds. We check that this is indeed the case.
Clearly, if Temp(ϕ1) and Temp(ϕ2) share a pure temporal subformula

ψ ∈ Temp(ϕ1) ∩ Temp(ϕ2), then Temp
(
[ϕ1]

)
and Temp

(
[ϕ2]

)
share the

pure temporal subformula [ψ] by Lemma 4.6.7. On the other hand, [ψ] 6=
[ψ′] holds for all pairs of syntactically distinct pure temporal subformulas
ψ, ψ′ ∈ Temp(ϕ1) ∩ Temp(ϕ2) (ψ 6= ψ′) by Lemma 4.6.8. Therefore, the
number of syntactically distinct pure temporal subformulas in Temp

(
[ϕ1]

)
∩

Temp
(
[ϕ2]

)
cannot be smaller than their number in Temp(ϕ1)∩Temp(ϕ2).

The result holds by induction on the length of ϕ for all temporal formulas
ϕ ∈ LTLCND(AP) in CND-normal form.

(C = LTLdet(AP), C′ = LTLCND(AP)) The proof is analogous to the
other direction. The result can be verified directly from the induction hy-

pothesis if ϕ = Xϕ1 holds for some ϕ1 ∈ LTLdet(AP), and in the other cases
by using Lemma 4.6.7 and Lemma 4.6.8 to establish that Temp

(
[ϕ]

)
≤

|Temp(ϕ)| holds. �

Because the syntactic subclasses LTLCND(AP) and LTLdet(AP) are ex-
pressively equivalent, it is possible to combine the definitions of the sub-
classes to facilitate specifying LTL properties that can be translated directly
into self-loop nondeterministic automata. For example, formulas built using
the shorter syntactic closure rules of LTLCND(AP) may be easier to read than

the corresponding formulas of LTLdet(AP). On the other hand, the closure

rules of LTLdet(AP) can be used as templates for special translation rules
[Maidl 2000a] for building automata from certain LTL formulas.

4.6.5 A Remark on Satisfiability

Because the satisfiability problem for full LTL is PSPACE-complete [Sistla
and Clarke 1982, 1985], some research effort has been directed at finding
subclasses of LTL for which this problem is of lower computational com-
plexity. In particular, this research has resulted in the discovery of several
NP-complete subclasses of LTL, such as LTL with X or F as the only tem-
poral operator [Sistla and Clarke 1982, 1985], LTL with both of these tem-
poral operators but negation restricted only to atomic formulas [Sistla and
Clarke 1982, 1985], subclasses obtained by restricting the number of atomic
propositions or the nesting of temporal operators [Demri and Schnoebe-
len 1998, 2002], and LTL with F and a set of X operators parameterized
by the underlying alphabet [Muscholl and Walukiewicz 2004, 2005]. (Of
course, NP-completeness amounts to lower computational complexity only
if NP 6= PSPACE.)

In this section we show the satisfiability problem in LTLCND(AP) to be
NP-complete. Actually, this result follows from the NP-completeness of sat-
isfiability in the existential (∃CTL) fragment of the branching time temporal
logic CTL [Kupferman and Vardi 1995, 2000]:5 due to the strict restrictions

5Thanks to Orna Kupferman for pointing out this connection.

114 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

concerning the closure of LTLCND(AP) under the ∧, U and R operators, re-
placing each temporal operator of a formula in LTLCND(AP) with the corre-
sponding existentially path-quantified CTL operator yields an ∃CTL formula
which can be shown to have a nonbranching computation tree model (that is
directly identifiable as a word model for the formula in LTLCND(AP)) iff it is
satisfiable. We shall nevertheless present an NP-completeness proof for satis-
fiability in the subclass LTLCND(AP) in detail using a more direct approach
since this proof will apply without changes—in contrast to the reduction to
∃CTL satisfiability—also to an extension of the subclass LTLCND(AP) to be
considered later in Sect. 5.6.3.

By Corollary 4.6.4, any formula ϕ ∈ LTLCND(AP) ⊆ LTL(AP) can be
translated into a self-loop nondeterministic automaton having at most 2 +
|Temp(ϕ)| ≤ 1 + |ϕ| states. Recall from Sect. 3.2.3 that also the number of
acceptance conditions in the automaton is bounded by |Temp(ϕ)| ≤ |ϕ| in
this case (because |Temp(ϕ)| = Temp

(
[ϕ]PNF

)
holds). These facts imply

the following upper bound on the encoding of models of LTL formulas in
LTLCND(AP).

Proposition 4.6.10 Let ϕ ∈ LTL(AP) be an LTL formula whose models are
fin-recognized by a self-loop nondeterministic automaton (working on the
alphabet 2AP) with at most 1+ |ϕ| states and |ϕ| acceptance conditions. The
formula ϕ is satisfiable iff there exist finite words u, v ∈ (2AP)∗, |u| ≤ |ϕ|,
1 ≤ |v| ≤ |ϕ|, such that uvω |= ϕ holds.

Proof: (Only if) Assume that ϕ is satisfiable, i.e., L(ϕ) 6= ∅ holds. Let A =

〈2AP , Q,∆, qI ,F〉 be a nondeterministic automaton that fin-recognizes the
language L(ϕ) (with |Q| ≤ 1 + |ϕ| and F = {f0, f1, . . . , fn−1} for some
0 ≤ n ≤ |ϕ|), and let w ∈ L(ϕ). By the assumption, A has a fin-accepting
run G = 〈V,E, L〉 on w. Because A is nondeterministic, ∆ contains no
transitions with an empty set of target states, and thus G contains an infinite
branch β ∈ B(G) (L is consistent).

Because A is a self-loop nondeterministic automaton, the branch β con-
verges to a nontransient state q ∈ Q of A by Corollary 2.3.19. It is easy to
see that we can extract from β a chain of edges e0, e1, . . . , ek ∈ E (for some
0 ≤ k < ω) such that the labels of the source nodes of these edges form a sim-
ple path (qi)0≤i≤k from qI to q for some 0 ≤ k ≤ |Q|−1 ≤ 1+ |ϕ|−1 = |ϕ|.
Because G is a run, the labels of the edges ei form a chain of transitions
(ti)0≤i≤k ∈ ∆k+1, where ti = 〈qi,Γi, Fi, Q

′
i〉 (with Γi 6= ∅ and Q′

i = {qi+1})
holds for all 0 ≤ i < k, and Q′

k−1 = {q}. Additionally, because q is a
nontransient state of the nondeterministic automaton A, there exists for all
0 ≤ j < n′ def

= max{n, 1} a transition t′j =
〈
q,Γ′

j, F
′
j, {q}

〉
∈ ∆ with Γ′

j 6= ∅
and (if j < n) fj /∈ Fj.

Let σi ∈ Γi and σ′
j ∈ Γ′

j for all 0 ≤ i < k and 0 ≤ j < n′, respectively,

let u
def
= σ0σ1 · · ·σk−1, and let v

def
= σ′

0σ
′
1 · · ·σ

′
n′−1. Clearly, |u| = k ≤ |ϕ| and

1 ≤ |v| = n′ = max{n, 1} ≤ |ϕ| hold. We show that A has a fin-accepting

run on the word w′ def
= uvω. Let G′ = 〈V ′, E ′, L′〉, where

• V ′ def
=

⋃
0≤i<ω V

′
i , and V ′

i

def
= {vi} for all 0 ≤ i < ω;

• E ′ def
=

⋃
0≤i<ω

{
〈vi, V

′
i+1〉

}
;

4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA 115

• L′(vi)
def
= qi and L′

(
〈vi, V

′
i+1〉

)
def
= ti for all 0 ≤ i < k, and L′(vi)

def
= q

and L′
(
〈vi, V

′
i+1〉

)
def
= t′(i−k) mod |v| for all k ≤ i < ω.

Obviously,G′ satisfies the partitioning and causality constraints, andL′(v0) =
q0 = qI . Let e = 〈vi, V

′
i+1〉 ∈ E ′ be an edge in G′ for some 0 ≤ i < ω. If

i < k, then L′(e) = ti = 〈qi,Γi, Fi, Q
′
i〉 =

〈
L′(vi),Γi, Fi, L

′(V ′
i+1)

〉
∈

∆, and because w′(i) = u(i) = σi ∈ Γi, L is consistent in this case.
Otherwise L′(e) = t′(i−k) mod |v| =

〈
q,Γ′

(i−k) mod |v|, F
′
(i−k) mod |v|, {q}

〉
=〈

L′(vi),Γ
′
(i−k) mod |v|, F

′
(i−k) mod |v|, L

′(V ′
i+1)

〉
∈ ∆, and L is consistent, be-

cause w′(i) = v
(
(i− k) mod |v|

)
= σ′

(i−k) mod |v| ∈ Γ′
(i−k) mod |v| holds. It is

easy to see that G′ contains a unique infinite branch, and this branch is fin-
accepting, because for all 0 ≤ i < n, fi /∈ Fj holds for all k ≤ j < ω such
that i = (j − k) mod |v|. Thus A fin-accepts uvω, and by Theorem 3.4.2,
uvω |= ϕ holds.

(If) If uvω |= ϕ holds, then uvω ∈ L(ϕ) 6= ∅, and thus ϕ is satisfiable. �

Proposition 4.6.10 leads to the following result on computational com-
plexity.

Corollary 4.6.11 Let AP be a countably infinite set of atomic propositions.
The satisfiability problem for LTLCND(AP) is NP-complete.

Proof: Because the satisfiability problem for formulas in PL(AP) that are
in conjunctive normal form is NP-hard [Cook 1971], NP-hardness follows
trivially because PL(AP) ⊆ LTLCND(AP). Let ϕ ∈ LTLCND(AP). By
Proposition 4.6.10, ϕ is satisfiable iff there exist words u, v ∈ (2AP)∗ of length
at most |ϕ| such that uvω |= ϕ holds. A nondeterministic decision procedure
for testing the satisfiability of ϕ guesses two words u, v ∈ (2AP)∗ of length at
most |ϕ| and checks whether uvω |= ϕ holds. This check can be done in
polynomial time in

(
|u| + |v|

)
· |ϕ| ∈ O

(
|ϕ|2

)
[Wolper 1987] (for example,

using the algorithm of Clarke et al. [1983, 1986]). The satisfiability of ϕ can
now be decided in nondeterministic polynomial time because also the words
u and v can be constructed in polynomial time in |ϕ|. (When choosing a
subset of AP , it is sufficient to restrict to those propositions which occur in
ϕ; because also the number of these propositions is bounded by |ϕ|, u and v
can be constructed in polynomial time in |ϕ|.) �

116 4. NONDETERMINIZATION OF SELF-LOOP ALTERNATING AUTOMATA

5 REFINING THE BASIC TRANSLATION RULES

In this chapter we explore methods for improving the basic translation proce-
dure from LTL into self-loop alternating automata by refining the translation
rules defined in Sect. 3.1. Except for mentioning some standard syntactic
heuristics for reducing the number of temporal subformulas in an LTL for-
mula and for representing and simplifying guards of transitions in automata
built using the translation rules (Sect. 5.1), we take a high-level theoretical
approach to optimizing the translation rules by exploiting language contain-
ment relationships between self-loop alternating automata (Sect. 5.2). In
addition to using language containment tests between automata built in the
translation as simple “pre- and postprocessing” steps for the translation rules
(Sect. 5.3), we shall also refine the translation rules themselves (Sect. 5.4,
Sect. 5.5): instead of building a compound automaton from one or two com-
ponent automata always in the same way, taking the semantic properties of
the component automata into account may make it possible to construct
compound automata with a simpler transition structure than the one de-
termined by the basic rules. Some of the refined rules even prove to be
universally applicable. Finally, we compare the new translation rules with
the original ones and use them to extend the class of LTL formulas that can
be translated into nondeterministic automata without applying the universal
subset construction (Sect. 5.6).

5.1 SIMPLE OPTIMIZATIONS

5.1.1 Subformulas with Commutative Main Connectives

A standard basic heuristic for reducing the number of steps required for trans-
lating (the positive normal form of) a formula ϕ ∈ LTL(AP) into an automa-
ton is to order the top-level subformulas of each subformula of [ϕ]PNF with a
commutative binary main connective (∨ or ∧ in our set of basic operators)
systematically (e.g., using a lexicographic ordering of LTL formulas), for ex-
ample, as an explicit preprocessing step before the translation. Even though
fixing the order of subformulas has no effect on the number of states in the
resulting automaton (by Corollary 3.2.2, this number does not depend on
the subformulas of [ϕ]PNF with a Boolean main connective), it may never-
theless decrease the total number of translation steps, which is proportional
to the number of syntactically distinct subformulas in ϕ. This way, the trans-
lation procedure may also avoid repeating potentially expensive automaton
minimization operations (such as those presented later in this chapter) on
automata built for logically equivalent subformulas of [ϕ]PNF that differ only
in the order of their top-level subformulas.

5.1.2 Transition Guard Simplification

As noted in Sect. 3.1.1, all transition guards of an automaton constructed
using the translation rules are finite conjunctions of one or more atomic

5. REFINING THE BASIC TRANSLATION RULES 117

formulas (also referred to as terms in the literature [Etessami and Holz-
mann 2000]). Due to the associativity of the ∧ operator, each guard for-
mula θ ∈ PL(AP) can be expressed (omitting parentheses) in the form
θ = µ1 ∧ µ2 ∧ · · · ∧ µn for some 1 ≤ n < ω, where µi ∈ PL(AP) is an
atomic formula for all 1 ≤ i ≤ n. The formula can then be simplified using
the commutativity of ∧ and the classic identities of propositional logic:

(θ ∧ θ) ≡ θ (θ ∧ ¬θ) ≡ (¬θ ∧ θ) ≡ ⊥
(θ ∧ >) ≡ (>∧ θ) ≡ θ (θ ∧⊥) ≡ (⊥∧ θ) ≡ ⊥

It is easy to see that every guard formula can thus be written in a form in
which it is either equal to one of the Boolean constants, or it is a conjunction
of literals formed from distinct atomic propositions. Because the formula ⊥
is unsatisfiable (i.e., because L(⊥) = ∅ holds), it follows immediately by
Corollary 2.3.11 that all transitions with ⊥ as a guard can be removed from
the alternating automaton without changing its language.

Several authors have suggested using binary decision diagrams (BDDs)
[Bryant 1986] for encoding and manipulating transition guards expressed as
Boolean formulas [Couvreur 1999; Thirioux 2002; Latvala 2003]. However,
as observed by Gastin and Oddoux [2001], guards given in the above very
restricted form (a conjunction of literals) can be encoded and manipulated
efficiently as pairs of sets of atomic propositions. More precisely, the con-
junction of literals θ = µ1 ∧ µ2 ∧ · · · ∧ µn ∈ PL(AP) can be encoded as
the pair 〈P1, P2〉 ∈ 2AP ×2AP , where P1 (P2) collects all atomic propositions
p ∈ AP for which µi = p (µi = ¬p) holds for some 1 ≤ i ≤ n; in this
notation, the Boolean constant > corresponds to the pair 〈∅, ∅〉. This en-
coding allows straightforward implicit application of the above propositional
identities when building new guards from previously defined ones during
the translation. It is also easy to check for the validity of propositional im-
plications between two transition guards (a prerequisite for many automaton
minimization operations presented in this chapter and in the literature) with-
out using the full power of BDDs. More precisely, if 〈P1, P2〉 and 〈P ′

1, P
′
2〉

are the encodings of the guard formulas θ ∈ PL(AP) and θ′ ∈ PL(AP),
respectively, then (θ ∧ θ′) is represented by the pair 〈P1 ∪ P

′
1, P2 ∪ P

′
2〉, θ is

unsatisfiable iffP1∩P2 6= ∅ holds, and the propositional implication (θ → θ′)
is valid iff P ′

1 ⊆ P1 and P ′
2 ⊆ P2 hold.

Example 5.1.1 Using the above simplification rules for transition guards,

the automaton built in Ex. 3.1.1 for the LTL formula
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
(repeated in Fig. 5.1 (a)) can be replaced with the one

shown in Fig. 5.1 (b) before using the automaton as a component in another
translation rule. �

5.2 LANGUAGE CONTAINMENT CHECKING BETWEEN SELF-LOOP ALTER-

NATING AUTOMATA

Informally, techniques for the optimization and minimization of automata
are used to transform automata into “simpler” automata such that the op-

118 5. REFINING THE BASIC TRANSLATION RULES

> >

(> ∧ p2) (p1 ∧ >)

>p1

p1

p2

(p1 ∧ p2)

p2
(> ∧>)

>

> >

p2 p1

>p1

p1

p2

(p1 ∧ p2)

p2
>

>

(a) (b)

Fig. 5.1: Simplifying the transition guards of an automaton. (a) An automaton built

for the LTL formula
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
; (b) Automaton ob-

tained from (a) via transition guard simplification

timized automata can be substituted for the original automata in all possi-
ble applications. Although the formal meaning of “simple” may vary from
context to context, this assumption on substitutability mandates that an op-
timized automaton should, at the very least, recognize the same language
as the original one. It is therefore not surprising that constraints needed
to ensure that techniques designed for optimizing the automaton have this
property are often naturally expressible in a unified way in terms of lan-
guage equivalence (or weaker language containment) relationships between
automata. We shall give examples of such conditions applied to the opti-
mization of self-loop alternating automata throughout this and the following
chapter. Before discussing these applications, however, we review the ba-
sic theoretical principles of language containment testing in this section and
point out observations specific to handling this task with self-loop alternating
automata.

Questions on language containment are traditionally answered compu-
tationally by reusing effective decision procedures for checking language
emptiness. Given two languages L1 and L2 of infinite words over a finite
alphabet Σ, the classic reformulation of the language containment relation-
ship L1 ⊆ L2 as language emptiness follows directly from the observation
that all words in the language L1 belong to the language L2 iff no word
in L1 belongs to the complement of L2 with respect to Σω, i.e., iff the set
intersection L1 ∩ L2 is empty. If the languages L1 and L2 correspond to
languages Lfin(A1) and Lfin(A2) (fin-)recognized by two automata A1 and
A2 (respectively) from a class of automata which is closed under operations
for constructing automata for Boolean combinations of languages, it follows
that the emptiness of the language L1 ∩ L2 = Lfin(A1) ∩ Lfin(A2) can be
decided effectively by applying a decision procedure for language emptiness
to an automaton built from A1 and A2 using these operations. In particu-
lar, the complement language Lfin(A2) is recognized by an automaton built
from the automaton A2 using a complementation procedure.

The powerful result of Muller and Schupp [1985, 1987] provides an el-
egant theoretical construction for complementing an alternating automaton
by “dualizing” its transition relation and its acceptance mode (for formal

5. REFINING THE BASIC TRANSLATION RULES 119

definitions, see [Muller and Schupp 1985, 1987]). The apparent simplicity
of the construction is due, however, to a definition of alternating automata
which uses a symbolic Boolean encoding for the transition relation of the
automaton, but at the same time (in effect) restricts the guards of transitions
to individual elements of the automaton’s alphabet. These requirements are
not directly compatible with our conventions for representing alternating au-
tomata having the alphabet 2AP . On the one hand, the individual transitions
of the automaton are not always easily distinguishable from the symbolic
Boolean encoding of the transition relation of the automaton; on the other
hand, however, allowing Boolean formulas as guards of transitions (Sect. 3.1)
makes it possible to represent many transitions on individual symbols of the
automaton’s alphabet as a single transition if the transitions share their target
states and acceptance conditions. A further practical difficulty is caused by
the modification to the acceptance mode of the automaton in the comple-
mentation construction. Because Boolean operations on automata are usu-
ally designed for automata working in the same acceptance mode, it is in our
case not possible to combine the automaton built from the automaton A2 via
dualization directly with the automaton A1 to obtain an automaton for the
language Lfin(A1)∩Lfin(A2). Although the acceptance mode of the dualized
automaton can be easily reduced back to the original one when working with
(very) weak alternating automata (whose acceptance mode can be identified
with a special case of state-based inf- or fin-acceptance using a single accep-
tance condition), this reduction does not generalize directly into self-loop
automata with multiple acceptance conditions associated with transitions.
This last difficulty could perhaps be overcome by replacing the acceptance
conditions in the automaton A2 with a single condition before dualization—
for example, by designing a generalized version of one of the constructions
used for this purpose with nondeterministic automata [Emerson and Sistla
1984a,b; Courcoubetis et al. 1991, 1992]—and mapping transition-based ac-
ceptance into state-based acceptance (which could be combined with the
reduction in the number of acceptance conditions; see, for example, [Gastin
and Oddoux 2001]). The resulting automaton could then be complemented
via an intermediate translation to weak alternating automata as suggested by
Kupferman and Vardi [1997, 2001] (see also [Löding 1998; Thomas 1999]
for a closely related approach).

It is apparent from the above discussion that the direct adaptation of com-
plementation constructions from the literature to our definition of alternat-
ing automata depends on many intricate intermediate automata transforma-
tions, all of which add to the challenge of implementing a complementation
procedure correctly. For self-loop alternating automata, however, a general
complementation construction is not necessarily needed because of the ex-
pressive equivalence between these automata and propositional linear time
temporal logic. If the self-loop alternating automata A1 and A2 recognize
the languages of two LTL formulas ϕ1 and ϕ2, respectively, it follows directly
from the correctness of the basic translation procedure between LTL and self-
loop alternating automata (Theorem 3.3.2) that the language Lfin(A2) can
be fin-recognized by an automaton built from the formula [¬ϕ2]

PNF. Knowl-
edge of the LTL formulas corresponding to the given self-loop automata thus
makes it possible to avoid using a direct complementation construction for

120 5. REFINING THE BASIC TRANSLATION RULES

automata by reusing the translation procedure from LTL into automata.
Because the automata A1 and A2 used in language containment checks to

be discussed in this chapter will often have been obtained in substeps in the
translation of an LTL formula ϕ ∈ LTLPNF(AP) into an automaton, the cor-
respondence between the automata built in the translation and the node sub-
formulas of ϕ ensures that the formula [¬ϕ2]

PNF is already known—or can be
determined easily by syntactic techniques—when testing whether Lfin(A1)∩

Lfin(A2) = ∅ (equivalently, whether Lfin(A1) ⊆ Lfin(A2)) holds. In this
case the automaton built for the language Lfin(A2) also shares its acceptance
mode with the automaton A1 by construction and can therefore be directly
combined with this automaton in a decision procedure for language empti-
ness. Additionally, because Temp

(
[ϕ]PNF

)
= Temp

(
[¬ϕ]PNF

)
holds for

all LTL formulas ϕ ∈ LTL(AP), the automaton built from the formula
[¬ϕ2]

PNF has at most 1 + Temp
(
[ϕ2]

PNF
)

states by Corollary 3.2.2. If
the automaton A2 was originally built from the formula ϕ2, the automaton
for the complement language has at most as many states as the automaton
A2, identically to an automaton built from A2 by dualization. However, all
means of complementing self-loop alternating automata conforming to our
definition will in the worst case cause an exponential blow-up in the number
of transitions in the automaton due to the explicit representation of transi-
tions (for example, when complementing automata built from Boolean for-
mulas in disjunctive normal form with two or more literals in each disjunct).

Nevertheless, it is not always directly possible to reuse the basic transla-
tion procedure from LTL into automata to handle language containment
tests if the LTL formulas corresponding to the automata A1 or A2 are not
known beforehand in the context. In this case, direct dualization can still be
avoided by applying the reverse translation discussed in Sect. 3.4 to, for exam-
ple, the automaton A2 to find an LTL formula to be negated and translated
back into an automaton for the language Lfin(A2). In this work, however, we
shall focus mostly on special cases that can be handled without applying re-
verse translation. Even though giving up the ability to complement arbitrary
self-loop alternating automata (i.e., the ability to perform arbitrary language
containment tests) will reduce the opportunities for the simplification of au-
tomata, we shall obtain a collection of optimizations in which all language
containment assumptions can be checked by applying the basic translation
procedure to LTL formulas that are easily determined in the context.

Finally, it needs be pointed out that the power of language containment
testing comes at a cost of high computational complexity, and thus optimiza-
tions based on it are unlikely to scale well in practice to large problem in-
stances. Clearly, checking for language containment between automata built
from two subformulas of an LTL formula to be translated into an automaton
is essentially equivalent to checking for language containment between the
formulas themselves; however, this latter problem is easily seen to be already
PSPACE-hard in the length of the formulas since the decision problem for
the satisfiability of LTL formulas is PSPACE-complete [Sistla and Clarke
1982, 1985]. (Obviously, an LTL formula ϕ is not satisfiable iff L(ϕ) ⊆ L(⊥)
holds.) As already seen in Sect. 3.2.2 and Sect. 3.4, our constructions for
building automata from LTL formulas and vice versa are inherently expo-
nential in the length of formulas and the number of states in the automata.

5. REFINING THE BASIC TRANSLATION RULES 121

Table 5.1: LTL equivalences under various language containment relationships
Relationship between languages

L(ϕ1) ⊆ L(ϕ2) L(ϕ1) ⊆ L(ϕ2) L(ϕ1) ⊆ L(ϕ2) L(ϕ2) ⊆ L(ϕ1)

(ϕ1 ∨ ϕ2) ϕ2 > ϕ1

(ϕ1 ∧ ϕ2) ϕ1 ⊥ ϕ2

(ϕ1 Us ϕ2) ϕ2 (>Us ϕ2) (ϕ2 Rs ϕ1)
†

(ϕ1 Uw ϕ2) ϕ2 > (ϕ2 Rw ϕ1)
†

F
or

m
u

la

(ϕ1 Rs ϕ2) (ϕ2 Us ϕ1)
† ⊥ ϕ2

(ϕ1 Rw ϕ2) (ϕ2 Uw ϕ1)
† (⊥Rw ϕ2) ϕ2

† See also Sect. 5.5.

5.3 RULE PREPROCESSING USING LANGUAGE CONTAINMENT

A language containment relationship between automata built for the top-
level subformulas of a binary LTL formula (equivalently, between the sub-
formulas themselves) may allow simplifying the compound automaton built
from these automata. For example, if the language of an LTL formula ϕ1 ∈
LTL(AP) is contained in the language of another formula ϕ2 ∈ LTL(AP)
(i.e., if L(ϕ1) ⊆ L(ϕ2) holds), then L

(
(ϕ1∧ϕ2)

)
= L(ϕ1)∩L(ϕ2) = L(ϕ1)

holds. Therefore the automaton already built for ϕ1 can be reused to obtain
an automaton for the formula (ϕ1 ∧ ϕ2) directly, instead of defining the au-
tomaton by applying the translation rule given for the ∧ connective. Reusing
the automaton built for ϕ1 will thus likely result in a smaller automaton for
the compound formula than the one that would have been obtained by using
the translation rule: for example, there is no need to take a new initial state
for the automaton for the compound formula.

Table 5.1 contains formula simplification rules that follow from a number
of possible assumptions about the relationship between the languages of two
LTL formulas. Each cell in the table gives an LTL formula that is logically
equivalent to the formula labeling the row of the cell under the language
containment relationship given as the label of the cell’s column; empty cells
correspond to cases in which the assumptions do not lead to direct simplifi-
cation of the formulas. The correctness of each rule can be verified directly
from the semantics of LTL. Because the LTL formulas referred to in the
conditions for language containment are subformulas of the compound for-
mulas labeling the rows of the table, the complement of the language of each
of these subformulas (required in the language containment test) can be rec-
ognized by an automaton built directly for the positive normal form of the
negated subformula.

The expressive equivalence between LTL formulas and self-loop alternat-
ing automata guarantees that an automaton built for a formula in a nonempty
cell of Table 5.1 can always be substituted for the compound automaton
built for the formula labeling the row of the cell. The formula substitution
is clearly preferable whenever either one of the original formula’s subfor-
mulas can be discarded (or replaced with a Boolean constant) in the sub-
stitution. However, under some assumptions on language containment, the
replacement formula for an Until (Release) formula is a Release (Until) for-
mula of the corresponding strength with only the order of the subformulas

122 5. REFINING THE BASIC TRANSLATION RULES

reversed. We shall investigate these cases further in Sect. 5.5, where we use
the same language containment assumptions to refine the translation rules
for these connectives. The identities in Table 5.1 can nevertheless be used
for reducing the effective number of distinct subformulas to which the trans-
lation needs to be applied when translating a formula ϕ ∈ LTLPNF(AP)
into an automaton. For example, by treating all subformulas of the form
(ϕ1 Rs ϕ2) ∈ Sub(ϕ), where L(ϕ1) ⊆ L(ϕ2), systematically as formulas of
the form (ϕ2 Us ϕ1), an automaton built for the formula (ϕ2 Us ϕ1) can ob-
viously be reused as the automaton for the formula (ϕ1 Rs ϕ2). This substi-
tution effectively reduces the number of syntactically distinct temporal sub-
formulas in ϕ and therefore also the worst-case size of an automaton for ϕ
(Corollary 3.2.2). Furthermore, the basic translation rules suggest that it
may be preferable to replace Release formulas with Until formulas and not
vice versa, since the worst-case number of initial transitions in a compound
automaton created by a Release rule is proportional to the product instead of
the sum of the numbers of the initial transitions in the component automata.

The simplification rules in Table 5.1 reduce to well-known easy-to-check
special cases when one of the subformulas involved in the language contain-
ment test is a Boolean constant, due to the fact that

∅ = L(⊥) = L(>) ⊆ L(ϕ) ⊆ L(>) = L(⊥) = (2AP)ω

holds for all LTL formulas ϕ ∈ LTL(AP). These special cases, together
with the identities X> ≡ > and X⊥ ≡ ⊥ for the Next Time connective,
can be checked syntactically from the formulas and can therefore be used
even if checking for general language containment is considered too expen-
sive. Checking for syntactic special cases that imply language containment
is a standard technique used in most actual implementations (for example,
[Etessami and Holzmann 2000; Somenzi and Bloem 2000; Thirioux 2002])
usually as a preprocessing step; clearly, performing the translation incremen-
tally supports combining the formula rewriting step easily with the translation
itself.

In addition to checking for language containment relationships before ap-
plying a translation rule, language containment checks can also be used im-
mediately after applying the rule to test whether the language accepted by
the newly defined automaton for a compound formula ϕ is empty (L(ϕ) ⊆
L(⊥)), universal (that is, equal to (2AP)ω, L(>) ⊆ L(ϕ)), or equal to the
language of another LTL formula ϕ′ corresponding to some previously built
automaton (L(ϕ) ⊆ L(ϕ′) and L(ϕ′) ⊆ L(ϕ)). Obviously, such relation-
ships may again allow reducing the compound automaton into a simpler one
by, for example, improving the opportunities for Boolean constant propaga-
tion at the cost of an increase in the number of language containment tests.

5.4 THE ∧ CONNECTIVE

In this section we define a new translation rule for the ∧ connective that can
be used instead of the basic one to improve the translation in some simple
special cases. We start with a discussion to illustrate opportunities for opti-
mizing the translation rules.

5. REFINING THE BASIC TRANSLATION RULES 123

(p1 ∧ p2)

p1 p2

(p1 ∧ p2)

(a) (b)

Fig. 5.2: Two automata for the LTL formula (Gp1 ∧ Gp2). (a) Automaton built for
the formula using the basic translation rules; (b) Minimal automaton for the formula

Intuitively, the basic translation rule for the ∧ connective defines the ini-
tial transitions of the automaton for an LTL formula ϕ ∈ LTLPNF(AP) with
a subformula of the form (ϕ1 ∧ ϕ2) ∈ Sub(ϕ) by merging all pairs of initial
transitions of the component automata built for the formulas ϕ1 and ϕ2, “un-
rolling” all initial self-loops of the automata (see Fig. 3.1 (f), p. 43). Because
the initial state of every component automaton with an initial self-loop thus
becomes reachable from the initial state of the automaton built for the for-
mula (ϕ1 ∧ ϕ2), the state will remain reachable also from the initial state of
the automaton obtained for the formula ϕ at the end of the translation. It is
easy to see that this feature of the translation rule leads to the construction of
automata with a suboptimal number of states and transitions already in very
simple cases.

Example 5.4.1 Consider the translation of the LTL formula

(Gp1 ∧ Gp2) ≡
(
(⊥Rs p1) ∧ (⊥Rs p2)

)
∈ LTL

(
{p1, p2}

)

into a self-loop alternating automaton using the basic translation rules. Ap-
plying the basic translation rule for the ∧ connective to the automata built
for the formulas (⊥Rs p1) and (⊥Rs p2) results in the three-state automa-
ton shown in Fig. 5.2 (a). Obviously, this automaton is not of minimal size
in the number of states or transitions, since the language of the LTL formula
(Gp1∧Gp2) is clearly fin-recognized also by the single-state automaton shown
in Fig. 5.2 (b). �

Obviously, an automaton built using the basic translation rules could be
optimized afterwards to reduce the number of states in the automaton. In
the following, however, we explore techniques for refining the translation
rules themselves to make them handle simple optimizations (such as the one
shown in Ex. 5.4.1) directly.

Consider two self-loop alternating automata A1 and A2, both of which fin-
accept a word w ∈ Σω over their common alphabet Σ. By Proposition 2.3.7,
each of these runs begins with a (possibly empty) chain of edges labeled with
initial self-loops of the respective automaton. If A1 and A2 are used as com-
ponents in an application of the translation rule given for the ∧ connective,
then the automaton A built using the rule simulates the synchronous behav-
ior of A1 and A2 by, in effect, using its initial transitions to spawn copies of A1

and A2 (or their subautomata), which then work in parallel on the rest of the
input as discussed in Sect. 3.1.1. Consequently, every run of A separates into

124 5. REFINING THE BASIC TRANSLATION RULES

qI

q1

q2

q3

q4

q5

qI1qI1qI1 qI1

qI2qI2qI2qI2

=⇒ qIqIqIqIqI

q1

q2

q3

q5

q4

qI1 qI1qI1qI1

qI2qI2qI2qI2

Fig. 5.3: Merging the initial segments of two branches in a run of an automaton
having initial state qI

two (not necessarily disjoint) partitions corresponding to fin-accepting runs
of A1 and A2. If both of these runs begin with nonempty chains of edges
labeled with initial self-loops of A1 and A2, the separation of the run of A
into two partitions could be postponed by merging initial segments of these
chains together as shown in Fig. 5.3. Furthermore, if no copy of A1 (A2)
remains in the initial state of A1 (resp. A2) after the separation, the com-
pound automaton A can avoid spawning subautomata rooted at the initial
states of these component automata. If all runs of A admit a similar modi-
fication, A does not need any initial transitions to one or both of the initial
states of the automata A1 or A2. Unlike in the basic construction, the initial
state of at least one component automaton now remains a possible candidate
for eventual removal from the automaton obtained at the end of the transla-
tion (provided, of course, that no subsequent application of a translation rule
creates transitions to this state, either).

The above principle of merging the initial segments of two branches in a
run of a compound automaton A can be made implicit in the translation by
modifying the translation rule for the ∧ connective. Similarly to the basic
construction, we first collect all pairs of initial transitions of the component
automata and use the original construction to merge all pairs of transitions,
one of which is not a self-loop. However, each pair of self-loops is now tested
whether it could be merged into an initial self-loop of A that simulates the
pair of transitions. Since A should still be allowed to take a transition iff the
component automata can take a pair of synchronous transitions, it is again
natural to form the guard of the self-loop as the logical conjunction of the
guards of the individual transitions. The target states of each initial transition
of A would normally be formed as the union of the target states of the tran-
sitions to be merged; however, since we intend to prevent the run of A from
separating into two partitions, we replace the initial states of the component
automata in this set with the initial state of A. To define the acceptance
conditions of the new self-loop, it is tempting to try a similar strategy by tak-
ing the union of the acceptance conditions of the pair of transitions to be
merged to prevent A from possibly fin-recognizing more inputs than its com-
ponent automata. Analogously to designing a universal subset construction
for translating a self-loop alternating automaton into a nondeterministic one
(Sect. 4.2.1), this intuitive idea is, however, incorrect in the general case.

Example 5.4.2 Figure 5.4 depicts two alternating automata working on the
alphabet 2{p1,p2}, together with a self-loop alternating automaton obtained
by the above informal construction for merging initial self-loops of the two
automata into initial self-loops of the third automaton. It is easy to see that

5. REFINING THE BASIC TRANSLATION RULES 125

PSfrag

p1 p2 p1 p2

p1 p2

(p1 ∧ p2) (p1 ∧ p2)

(a) (b)

Fig. 5.4: Self-loops of automata that share common acceptance conditions cannot
always be merged into a single self-loop by forming their acceptance conditions as
the union of the acceptance conditions of the self-loops. (a) Two automata sharing
a common acceptance condition; (b) Automaton obtained from the two automata
by merging pairs of their initial transitions (taking unions of their acceptance condi-
tions)

both automata in Fig. 5.4 (a) fin-accept the word
(
{p1}{p2}

)ω
, but this word

does not belong to the language of the automaton in Fig. 5.4 (b): on this
input, this automaton can take only •-transitions, and thus the run of this
automaton on this input is not fin-accepting. �

Evidently, the suggested construction for merging initial self-loops of two
component automata is not correct in the general case without a means to
distinguish between the conditions inherited from the component automata
in the compound automaton. As in the universal subset construction of
Sect. 4.2.1, this problem could perhaps be overcome by introducing new
acceptance conditions. We shall not explore this approach further in this
section, however; instead, we show that the suggested construction is actu-
ally correct for a restricted class of automata that includes, in particular, all
automata built from LTL formulas using the basic translation rules. The rest
of this section is devoted to showing this result. (Actually, the result shown be-
low is slightly more general: instead of merging only pairs of initial self-loops
of two component automata into self-loops of a compound automaton, it is
permissible to merge any two initial transitions of the component automata
if the union of their target states covers their initial states.) The result leads
to a new translation rule for the ∧ connective (Table 5.2); see also Fig. 5.5.

Proposition 5.4.3 Let A1 = 〈2AP , Q1,∆1, qI1,F1〉 and A2 = 〈2AP , Q2,∆2,
qI2,F2〉 be two alternating automata (qI1 6= qI2) that satisfy the following
constraints:

• A1 and A2 are self-loop alternating automata simplified in the sense
of Corollary 2.3.20 (i.e., for all transitions t ∈ ∆1 ∪ ∆2, the set of
acceptance conditions of t is not empty only if t is a self-loop)

• Aq,F1∪F2

1 = Aq,F1∪F2

2 holds for all states q ∈ Q1 ∩Q2;

• for all indices n ∈ {1, 2}, the automaton An is an acceptance closed
alternating automaton, and if An has an f -state for some f ∈ Fn, then
An has an f -representative state; and

• if both A1 and A2 have an f -state for some f ∈ F1 ∩ F2, then A1 and
A2 share an f -representative state.

126 5. REFINING THE BASIC TRANSLATION RULES

Table 5.2: Definition of a new translation rule for the ∧ connective (continuation of
Table 3.1)

◦ F◦ ∆◦

∧ ∅





〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2,

{qI1, qI2} 6⊆ Q′
1 ∪Q

′
2





∪





〈
qI , (θ1 ∧ θ2), F1 ∪ F2,
(Q′

1 ∪Q
′
2 ∪ {qI}) \ {qI1, qI2}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2,

{qI1, qI2} ⊆ Q′
1 ∪Q

′
2





θ1

A1

θ2

θ3

A2qI1 qI2

(a)

θ1

A1 A2

qI

qI1 qI2

θ2

θ3

(θ1 ∧ θ2)

(θ1 ∧ θ3)∧

(b)

Fig. 5.5: New translation rule for the ∧ connective. (a) Two component automata
A1 and A2; (b) Automaton built from A1 and A2 using the refined rule for the ∧
connective

Define the alternating automaton A = 〈2AP , Q,∆, qI ,F〉, where Q
def
= Q1 ∪

Q2 ∪ {qI} (for a new state qI /∈ Q1 ∪Q2),

∆
def
= ∆1 ∪ ∆2 ∪





〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2,

{qI1, qI2} 6⊆ Q′
1 ∪Q

′
2






∪






〈
qI , (θ1 ∧ θ2), F1 ∪ F2,
(Q′

1 ∪Q
′
2 ∪ {qI}) \ {qI1, qI2}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2,

{qI1, qI2} ⊆ Q′
1 ∪Q

′
2






and F
def
= F1 ∪ F2. The automaton A is a self-loop alternating automaton

simplified in the sense of Corollary 2.3.20, Aq,Fn = Aq
n holds for all n ∈

{1, 2} and q ∈ Q ∩ Qn, and for all w ∈ (2AP)ω, w ∈ Lfin(A) holds iff
w ∈ Lfin(A1) ∩ Lfin(A2) holds. Furthermore, A is an acceptance closed
alternating automaton such that if A has an f -state for some f ∈ F , then A
has an f -representative state that is f -representative also in all automata An

(n ∈ {1, 2}) that have an f -state.

Observe that all automata A1 = 〈2AP , Q1,∆1, qI1,F1〉 and A2 = 〈2AP ,
Q2,∆2, qI2,F2〉 constructed from node subformulas of an LTL formula ϕ ∈
LTLPNF(AP) using the basic translation rules satisfy the assumptions given
in Proposition 5.4.3. The automata obtained in this way are self-loop alter-
nating automata such that Aq,F1∪F2

1 = Aq,F1∪F2
2 holds for all q ∈ Q1 ∩ Q2

by the discussion in Sect. 3.1.1, and for all f ∈ F1 ∪ F2, the union of the
state sets of A1 and A2 contains at most one f -state (which is the initial state

5. REFINING THE BASIC TRANSLATION RULES 127

of a subautomaton built for a strong temporal eventuality subformula of ϕ).
Clearly, this f -state is trivially f -representative in any automaton to which it
belongs.

We divide the proof of Proposition 5.4.3 into several lemmas. It is easy to
see that A has the simple structural properties listed in the proposition.

Lemma 5.4.4 Let A1, A2 and A be three alternating automata as specified
in Proposition 5.4.3. The automaton A is a self-loop alternating automaton
(simplified in the sense of Corollary 2.3.20) such that Aq,Fn = Aq

n holds for
all n ∈ {1, 2} and q ∈ Q ∩Qn.

Proof: Because A1 and A2 are self-loop alternating automata, it is easy to see
that also the automaton A is a self-loop alternating automaton (all loops in-
troduced in the definition of A are self-loops). Furthermore, because A1 and
A2 are simplified in the sense of Corollary 2.3.20, then so is A. If q ∈ Q∩Qn

holds for some n ∈ {1, 2}, then q 6= qI holds, and because every transition in
the subautomaton Aq is a transition of An, it follows that Aq,Fn = Aq

n holds.
�

The next result shows that every word fin-accepted by A is fin-accepted
by both A1 and A2. (Actually, this language inclusion holds generally for all
alternating automata A1 and A2.)

Lemma 5.4.5 Let A1 = 〈2AP , Q1,∆1, qI1,F1〉, A2 = 〈2AP , Q2,∆2, qI2,F2〉
and A = 〈2AP , Q,∆, qI ,F〉 be three alternating automata, where qI /∈ Q1 ∪
Q2 holds, andQ (∆, F) is defined fromQ1 andQ2 (∆1 and ∆2, F1 and F2) as
specified in Proposition 5.4.3. For all w ∈ Lfin(A), w ∈ Lfin(A1) ∩ Lfin(A2)
holds.

Proof: Let w ∈ Lfin(A), and let G = 〈V,E, L〉 be a fin-accepting run of A
on w. By Proposition 2.3.7, there exists an index 0 ≤ i ≤ ω and a chain of
edges (ej)0≤j<i+1, ej ∈ E ∩ (Vj × 2Vj+1), such that the transition L(ej) ∈ ∆
is an initial self-loop of A for all 0 ≤ j < i, and if i < ω, then the transition
L(ei) ∈ ∆ is an initial transition of A that is not a self-loop.

Write L(ej) = tj = 〈qI , θj , Fj, Q
′
j〉 for all 0 ≤ j < i + 1, and fix 0 ≤

j < i + 1. From the definition of A it follows that for all k ∈ {1, 2}, there
exists a transition tj,k = 〈qIk, θj,k, Fj,k, Q

′
j,k〉 ∈ ∆k for some θj,k ∈ PL(AP),

Fj,k ⊆ Fk and Q′
j,k ⊆ Qk such that θj = (θj,1 ∧ θj,2) holds. If j < i,

then L(ej) is an initial self-loop of A, in which case Fj = Fj,1 ∪ Fj,2 and
Q′
j =

(
Q′
j,1 ∪ Q′

j,2 ∪ {qI}
)
\ {qI1, qI2} (where {qI1, qI2} ⊆ Q′

j,1 ∪ Q′
j,2).

Otherwise, if i < ω, then Fi = ∅ and Q′
i = Q′

i,1 ∪Q
′
i,2.

For all 0 ≤ j < i and k ∈ {1, 2}, writeQ′
j,k\{qI1, qI2} = {qj,k,1, qj,k,2, . . . ,

qj,k,nj,k
} for some 0 ≤ nj,k < ω. If i < ω, write Q′

i,k = {qi,k,1, qi,k,2, . . . ,
qi,k,ni,k

} for some 0 ≤ ni,k < ω (k ∈ {1, 2}). We construct a fin-accepting
semi-run G′ = 〈V ′, E ′, L′〉 of A1 on w.

(Definition of G′) Define the levels of G′ inductively: let V ′
0

def
= {v0,1} and

L′(v0,1)
def
= qI1, and assume that V ′

j and L′(v) have already been defined for
some 0 ≤ j < i+ 1 and for all v ∈ V ′

j , respectively. For all v ∈ V ′
j , define a

128 5. REFINING THE BASIC TRANSLATION RULES

set S(v) of nodes (which will correspond to the successors of v in G′) by

S(v)
def
=





∅ if L′(v) /∈ {qI1, qI2}
{vj,k,1, . . . , vj,k,nj,k

} if L′(v) = qIk (k ∈ {1, 2}),
and either i = ω, or j < i∪

{
vj+1,` ` ∈ {1, 2}, qI` ∈ Q′

j,k

}

{vj,k,1, . . . , vj,k,nj,k
}

if L′(v) = qIk (k ∈ {1, 2}),
i < ω, and j = i.

Let V ′
j+1

def
=

⋃
v∈V ′

j
S(v). (We distinguish between nodes by their sub-

scripts; thus, V ′
j+1 consists of at most nj,1 + nj,2 + 2 nodes not included in

any previously defined level of G′.) Define the labeling for the nodes at level
j + 1 by setting

L′(vj,k,`)
def
= qj,k,` and L′(vj+1,k)

def
= qIk

for all (relevant) combinations of k ∈ {1, 2} and 1 ≤ ` ≤ nj,k. If i < ω,

let V ′
j

def
= ∅ for all i + 1 < j < ω. To complete the definition of G′, let

E ′ def
=

{〈
vj,k, S(vj,k)

〉
vj,k ∈ V ′

j for some 0 ≤ j < i + 1 and k ∈ {1, 2}
}

,

and for all e =
〈
vj,k, S(vj,k)

〉
∈ E ′, let L′(e)

def
= tj,k.

(G′ is a fin-accepting semi-run of A1 on w) We check that G′ is a fin-ac-
cepting semi-run of A1 on w.

(Partitioning) Clearly, V ′
0 = {v0,1} is a singleton, V ′ consists of finite

disjoint levels, and all edges of E ′ lie between successive levels of G′.

(Causality) Let v ∈ V ′
j for some 0 ≤ j < ω. Then v = vj−1,k,` holds

for some k ∈ {1, 2} and 1 ≤ ` ≤ nj−1,k, or v = vj,k holds for some
k ∈ {1, 2}. In the former case, v has no outgoing edges; otherwise v has
the unique outgoing edge

〈
v, S(v)

〉
∈ E ′. It follows that G′ satisfies the

forward semi-causality constraint.
If v′ ∈ V ′

j holds for some 1 ≤ j < ω, then j < i+ 2 holds, and, by the
inductive definition of the levels of G′, there exists a node v ∈ V ′

j−1 such
that L′(v) ∈ {qI1, qI2} and v′ ∈ S(v) hold. Because j − 1 < i+ 1 holds,
L′(v) ∈ {qI1, qI2} implies that v = vj−1,k for some k ∈ {1, 2}. Because〈
vj−1,k, S(vj−1,k)

〉
∈ E ′, it follows that v′ is a successor of the node v at

level j − 1, and G′ satisfies the backward causality constraint.

(Consistency of L′) Clearly, L′(V ′
0) =

{
L′(v0,1)

}
= {qI1} holds. Let

e =
〈
vj,k, S(vj,k)

〉
∈ E ′ for some 0 ≤ j < i+1 and k ∈ {1, 2}. By the def-

inition of G′, e is labeled with the transition tj,k = 〈qIk, θj,k, Fj,k, Q
′
j,k〉 ∈

∆k. Because the edge ej ∈ E ∩ (Vj × 2Vj+1) is labeled in G with the
transition tj = 〈qI , θj , Fj, Q

′
j〉 ∈ ∆, w(j) |= θj = (θj,1 ∧ θj,2) holds (G is

a run of A). By the semantics of LTL, it follows that w(j) |= θj,k holds.
Moreover, L′(vj,k) = qIk holds, and it is straightforward to check from
the definitions that also L′

(
S(vj,k)

)
= Q′

j,k holds. Thus the labeling L is
consistent.

(Acceptance) If V ′
j = ∅ holds for some 0 ≤ j < ω (which is always

the case if i < ω holds), then E ′ is finite. In this case B(G′) = ∅, and
G′ is trivially fin-accepting. Otherwise i = ω, and G′ contains an infinite
branch β = (e′j)0≤j<ω ∈ B(G′), where e′j ∈ E ′ ∩ (V ′

j × 2V
′
j+1) for all

0 ≤ j < ω. By the definition of E ′, e′j =
〈
vj,k, S(vj,k)

〉
holds for some

5. REFINING THE BASIC TRANSLATION RULES 129

k ∈ {1, 2} for all 0 ≤ j < ω, and thus L′(e′j) ∈ {tj,1, tj,2} holds for all 0 ≤
j < ω. Suppose that fin(β) 6= ∅ holds. Then there exists an acceptance
condition f ∈ F and an index 0 ≤ ` < ω such that the transition L′(e′j)
is an f -transition for all ` ≤ j < ω. Because i = ω, each edge ej in
the run G is labeled with a self-loop of A for all 0 ≤ j < ω, and thus
the acceptance conditions of L(ej) include the acceptance conditions of
the transitions tj,1 and tj,2 for all 0 ≤ j < ω. But then fin

(
(ej)0≤j<ω) 6=

∅ holds, contrary to the assumption that G is a fin-accepting run of A.
Therefore fin(β) is empty, and G′ is a fin-accepting semi-run of A1 on w.

(G′ can be extended to a fin-accepting run) Let v ∈ V ′ be a node with no
outgoing edges in G′. Then v = vj,k,` ∈ V ′

j+1 holds for some 0 ≤ j < i+ 1,

k ∈ {1, 2} and 1 ≤ ` ≤ nj,k, and L′(v) ∈ Q′′ def
= {qj,k,1, . . . , qj,k,nj,k

} ⊆ Q1

(because G′ is a run of A1, all nodes in V ′
j+1 are labeled with descendants of

L′(v0,1) = qI1 by Proposition 2.3.6). In the run G, ej ∈ E ∩ (Vj × 2Vj+1)
holds, and L(ej) = 〈qI , θj , Fj, Q

′
j〉, where Q′′ ⊆ Q′

j . Because G is a fin-
accepting run of A on w, Aq fin-accepts wj+1 for all q ∈ Q′

j , and because
Q′′ ⊆ Q1 holds, wj+1 ∈ Lfin(A

q) = Lfin(A
q,F1) = Lfin(A

q
1) holds for all

q ∈ Q′′ (Lemma 5.4.4). In particular, AL′(v)
1 fin-accepts wj+1, and because

this result holds for all v ∈ V ′ with no outgoing edges, the semi-run G′ can
be extended into a fin-accepting run of A1 on w by Proposition 2.3.14. We
conclude that w ∈ Lfin(A1) holds.

(w ∈ Lfin(A2)) By repeating the above construction of G′ for the automa-
ton A2 (i.e., by starting the inductive definition of the levels of V ′ from the

set V ′
0

def
= {v0,2} with L′(v0,2)

def
= qI2), we obtain a fin-accepting run of A2 on

w. Thus w ∈ Lfin(A1) and w ∈ Lfin(A2) hold. �

To prove the converse language inclusion, we need the following techni-
cal result.

Lemma 5.4.6 Let A1, A2 and A be three alternating automata as specified
in Proposition 5.4.3, and let w ∈ Lfin(A1) ∩ Lfin(A2). There exists (by pos-
sibly switching the roles of A1 and A2) an index 0 ≤ i ≤ ω and, for all n ∈
{1, 2}, a sequence (tj,n)0≤j<i+1 =

(
〈qIn, θj,n, Fj,n, Q

′
j,n〉

)
0≤j<i+1

∈ ∆i+1
n of

initial transitions of An such that

• the sequence (tj,1)0≤j<i+1 is a chain of initial transitions of A1 such
that the transition tj,1 is an initial self-loop of A1 for all 0 ≤ j < i;

• there exists a (possibly infinite) sequence of integers 0 = ı̂0 < ı̂1 <
· · · < i such that the sequence (tj,2)0≤j<i+1 can be written either (i)
as a finite concatenation (tj,2)ı̂0≤j<ı̂1(tj,2)ı̂1≤j<ı̂2 · · · (tj,2)ı̂`≤j<i+1 (0 ≤
` < ω) of nonempty segments, the last one of which is infinite iff i = ω
holds, or (ii) as an infinite concatenation (tj,2)ı̂0≤j<ı̂1(tj,2)ı̂1≤j<ı̂2 · · ·
of nonempty finite segments, where (in both cases) every segment is a
chain of initial transitions of A2, and every non-final segment ends in
an initial non-self-loop of A2;

• w(j) |= (θj,1 ∧ θj,2) holds for all 0 ≤ j < i+ 1;

• for all 0 ≤ j < i+ 1, n ∈ {1, 2} and q ∈ Q′
j,n, Aq

n fin-accepts wj+1;

130 5. REFINING THE BASIC TRANSLATION RULES

• {qI1, qI2} ⊆ Q′
j,1 ∪Q

′
j,2 holds for all 0 ≤ j < i;

• if i < ω holds, then {qI1, qI2} 6⊆ Q′
i,1 ∪Q

′
i,2 holds; and

• if i = ω holds, then, for all f ∈ F1 ∪ F2, there exist infinitely many
indices 0 ≤ j < ω such that f /∈ Fj,1 ∪ Fj,2 holds.

Proof: Because w ∈ Lfin(A1)∩Lfin(A2) holds, A1 and A2 have fin-accepting
runs G1 = 〈V 1, E1, L1〉 and G2 = 〈V 2, E2, L2〉 on w, respectively. (Without
loss of generality, we may assume that V 1 ∩ V 2 = E1 ∩ E2 = ∅ holds.) Fur-
thermore, because the automaton An (n ∈ {1, 2}) is an acceptance closed
alternating automaton that has an f -representative state for all f ∈ Fn for
which it has an f -state, we may assume that G1 and G2 are fin-acceptance
synchronized (Proposition 4.3.5). As a matter of fact, because A1 and A2

share an f -representative state for all f ∈ F1 ∩ F2 for which they both
have an f -state, G1 and G2 can be built using the construction given in the
proof of Proposition 4.3.5 such that there are, for all acceptance conditions
f ∈ F1 ∪ F2, infinitely many indices 0 ≤ j < ω such that no transition
labeling an edge starting from a node at level j of G1 or G2 is an f -transition.
Therefore, not only are the runs G1 and G2 individually fin-acceptance syn-
chronized, but the graph obtained by juxtaposing G1 and G2 is similarly syn-
chronized; we say that G1 and G2 are mutually fin-acceptance synchronized.

Let n ∈ {1, 2}. By Proposition 2.3.7, there exists an index 0 ≤ in ≤ ω
and a chain of edges (ej,n)0≤j<in+1 in Gn, ej,n ∈ En ∩ (V n

j × 2V
n
j+1), such

that for all 0 ≤ j < in, the transition Ln(ej,n) ∈ ∆n is an initial self-loop of
An, and if in < ω holds, then Ln(ein,n) is an initial transition of An that is
not a self-loop.

Without loss of generality, we may assume that i2 ≤ i1 holds (if this is

not the case, switch the roles of A1 and A2). For all n ∈ {1, 2}, let tj,n
def
=

Ln(ej,n) = 〈qIn, θj,n, Fj,n, Q
′
j,n〉 for all 0 ≤ j < in + 1. Clearly, for all

n ∈ {1, 2}, the sequence (tj,n)0≤j<in+1 is a chain of initial transitions of An.
Because the edge ej,n ∈ En ∩ (V n

j × 2V
n
j+1) is an edge in a fin-accepting run

of An on w and Ln is consistent, w(j) |= θj,n holds for all 0 ≤ j < in + 1,
Aq
n fin-accepts wj+1 for all 0 ≤ j < in + 1 and q ∈ Q′

j,n (Proposition 2.3.9),
and qIn ∈ Q′

j,n holds for all 0 ≤ j < in.

If i2 = ω holds, then the result obviously follows if we define i
def
= ω: in

this case the sequence (tj,2)0≤j<i+1 consists of a single infinite segment, and
the fact that G1 and G2 are mutually fin-acceptance synchronized guarantees
that f /∈ Fj,1 ∪ Fj,2 holds for infinitely many 0 ≤ j < ω for all f ∈ F1 ∪ F2.

If i2 < ω holds, then clearly (tj,2)0≤j<i2+1 consists of a single segment
conforming to the criteria given in the lemma, and this segment ends in an
initial non-self-loop transition of A2. In this case we extend the sequence
(tj,2)0≤j<i2+1 with another segment using the following inductive construc-

tion; we also define a sequence of integers ı̂1, ı̂2, Let ı̂1
def
= i2 + 1.

Assume that ı̂k ≤ i1 + 1 (̂ık < ω) and tj,2 = 〈qI2, θj,2, Fj,2, Q
′
j,2〉 have

already been defined for some 1 ≤ k < ω and for all 0 ≤ j < ı̂k, and
the sequence (tj,2)0≤j<ı̂k can be expressed as a finite concatenation of finite
nonempty segments corresponding to chains of initial transitions of A2 end-
ing in an initial transition that is not a self-loop, w(j) |= θj,2 holds for all

5. REFINING THE BASIC TRANSLATION RULES 131

0 ≤ j < ı̂k, and Aq
2 fin-accepts wj+1 for all 0 ≤ j < ı̂k and q ∈ Q′

j,2. (By the
above definition of (tj,2)0≤j<i2+1, the assumption clearly holds for k = 1.)

If {qI1, qI2} 6⊆ Q′
ı̂k−1,1 ∪ Q′

ı̂k−1,2 holds, we abort the inductive construc-

tion: in this case, the result follows by defining i
def
= ı̂k − 1.

Otherwise, if {qI1, qI2} ⊆ Q′
ı̂k−1,1 ∪ Q′

ı̂k−1,2 holds, then, because tı̂k−1,2

is not an initial self-loop of A2, qI2 /∈ Q′
ı̂k−1,2 holds, and thus qI2 ∈ Q′

ı̂k−1,1

holds. Suppose that qI1 /∈ Q′
ı̂k−1,1 holds (in which case ı̂k − 1 = i1 < ω);

then obviously qI1 ∈ Q′
ı̂k−1,2 holds. It follows that {qI1, qI2} ⊆ Q1 ∩ Q2

holds, and because qI1 6= qI2 and AqI1,F1∪F2

1 = AqI1,F1∪F2

2 hold by the as-
sumptions given in Proposition 5.4.3, the automaton A1 contains the simple
cycle (qI1, qI2, qI1) that is not a self-loop. The existence of this cycle contra-
dicts the assumption that A1 is a self-loop alternating automaton. Therefore
it must be the case that qI1 ∈ Q′

ı̂k−1,1 holds, and thus {qI1, qI2} ⊆ Q′
ı̂k−1,1.

Because G1 is a fin-accepting run of A1 and qI2 ∈ Q′
ı̂k−1,1 holds, it follows

that we can extract fromG1 a fin-accepting run (G2)′ =
〈
(V 2)′, (E2)′, (L2)′

〉

of AqI2
2 (which is a fin-accepting run of A2 by Proposition 2.3.12) on wı̂k . By

Proposition 2.3.7, there now exists an integer 0 ≤ i′2 < ω such that the run

(G2)′ contains a chain of edges (ej)0≤j<i′2+1, ej ∈ (E2)′∩
(
(V 2)′j×2(V 2)′j+1

)
,

labeled with initial transitions of A2 such that the transition (L2)′(ej) =
〈qI2, θj , Fj, Q

′
j〉 is an initial self-loop of A2 for all 0 ≤ j < i′2, and if i′2 < ω

holds, then (L2)′(ei′2) = 〈qI2, θi′2 , Fi′2 , Q
′
i′2
〉 is not a self-loop of A2. Fur-

thermore, because (G2)′ is embedded in the fin-accepting run G1, ej−ı̂k ∈

E1 ∩ (V 1
j × 2V

1
j+1) and w(j) |= θj−ı̂k hold for all ı̂k ≤ j < ı̂k + i′2 + 1,

wj+1 ∈ Lfin(A
q
1) = Lfin(A

q,F2

1) = Lfin(A
q
2) holds for all ı̂k ≤ j < ı̂k + i′2 + 1

and q ∈ Q′
j−ı̂k

, and qI2 ∈ Q′
j−ı̂k

holds for all ı̂k ≤ j < ı̂k + i′2.
If ı̂k + i′2 ≤ i1 holds, then, if i′2 = ω holds, then also i1 = ω holds. In

this case the result follows by defining i
def
= ω and tj,2

def
= (L2)′(ej−ı̂k) for all

ı̂k ≤ j < ω (because (G2)′ is embedded in the fin-acceptance synchronized
run G1, it is easy to see that there again exist infinitely many 0 ≤ j < ω
such that neither tj,1 nor tj,2 is an f -transition). If i′2 < ω holds, define

ı̂k+1
def
= ı̂k + i′2 + 1, and tj,2

def
= (L2)′(ej−ı̂k) for all ı̂k ≤ j < ı̂k+1. Clearly, the

assumptions of the inductive construction now hold for ı̂k+1. In this case we
continue the construction.

Otherwise, if ı̂k+i′2 > i1 holds, then i1 < ω holds. We claim that the result

now follows by defining i
def
= i1 and tj,2

def
= (L2)′(ej−ı̂k) for all ı̂k ≤ j ≤ i1.

It is easy to see that all except the second to last condition in the lemma
hold directly by construction of the sequences (tj,1)0≤j<i+1 and (tj,2)0≤j<i+1.
Assume that {qI1, qI2} ⊆ Q′

i,1∪Q
′
i,2 holds. Because the transition ti,1 is not an

initial self-loop ofA1, it follows that qI1 ∈ Q′
i,2 holds. But then it again follows

that the automaton A1 contains the cycle (qI1, qI2, qI1), a contradiction. We
conclude that {qI1, qI2} 6⊆ Q′

i,1 ∪Q
′
i,2 holds.

In summary, if the above inductive construction ends after a finite number
of steps, then the transition sequence (tj,2)0≤j<i+1 consists of a finite num-
ber of segments (the last one of which may be infinite), and the sequences
(tj,1)0≤j<i+1 and (tj,2)0≤j<i+1 satisfy the constraints given in the lemma by
the above discussion. Otherwise the sequence (tj,2)0≤i<i+1 is formed as the
concatenation of infinitely many finite segments, all except the first one are
embedded in the run G1. Because G1 is fin-acceptance synchronized, it is

132 5. REFINING THE BASIC TRANSLATION RULES

easy to see that for all f ∈ F1 ∪ F2, there are again infinitely many indices
0 ≤ j < ω such that neither tj,1 or tj,2 is an f -transition, and thus all con-
straints of the lemma are satisfied also in this case. �

We can now show that, for any automata A1, A2 and A specified in
Proposition 5.4.3, every word fin-accepted by bothA1 and A2 is also accepted
by the automaton A.

Lemma 5.4.7 Let A1, A2 and A be three alternating automata as specified
in Proposition 5.4.3. For all w ∈ Lfin(A1) ∩ Lfin(A2), w ∈ Lfin(A) holds.

Proof: Let w ∈ Lfin(A1) ∩ Lfin(A2). By Lemma 5.4.6, there exists an in-

dex 0 ≤ i ≤ ω and two sequences of transitions (tj,1)0≤j<i+1 ∈ ∆i+1
1 and

(tj,2)0≤j<i+1 ∈ ∆i+1
2 such that the conditions in the lemma are satisfied; for

all k ∈ {1, 2}, write tj,k = 〈qIk, θj,k, Fj,k, Q
′
j,k〉. We construct a fin-accepting

semi-run G = 〈V,E, L〉 of A on w.

(Definition of G) For all 0 ≤ j < i and k ∈ {1, 2}, writeQ′
j,k\{qI1, qI2} =

{qj,k,1, . . . , qj,k,nj,k
} for some 0 ≤ nj,k < ω, and if i < ω holds, write Q′

i,k =
{qi,k,1, . . . , qi,k,ni,k

} for some 0 ≤ ni,k < ω. Define the components of G by
setting

• V0
def
= {v0},

Vj+1
def
= {vj,1,1, . . . , vj,1,nj,1

}∪{vj,2,1, . . . , vj,2,nj,2
}∪

{
{vj+1} if j < i
∅ otherwise

for all 0 ≤ j < i+ 1, and if i < ω, let Vj
def
= ∅ for all i+ 1 < j < ω;

• E
def
=

⋃
0≤j<i+1

{
〈vj , Vj+1〉

}
; and

• for all 0 ≤ j < i + 1, let L(vj)
def
= qI and L(vj,k,`)

def
= qj,k,` for all k ∈

{1, 2} and 1 ≤ ` ≤ nj,k. Furthermore, let L
(
〈vj, Vj+1〉

)
def
=

〈
qI , (θj,1 ∧

θj,2), Fj,1 ∪Fj,2, (Q
′
j,1 ∪Q

′
j,2 ∪{qI}) \ {qI1, qI2}

〉
for all 0 ≤ j < i, and

if i < ω holds, let L
(
〈vi, Vi+1〉

)
def
= 〈qI , (θi,1 ∧ θi,2), ∅, Q

′
i,1 ∪Q

′
i,2〉.

(G is a fin-accepting semi-run of A on w) We check that G is a fin-accept-
ing semi-run of A on w.

(Partitioning) By the definition of G, V0 = {v0} is a singleton, V con-
sists of finite disjoint levels, and E is a collection of edges between con-
secutive levels of G.

(Causality) Let v ∈ Vj for some 0 ≤ j < ω. Then v either has no
outgoing edges, or v = vj has the unique outgoing edge 〈vj , Vj+1〉 ∈ E.
On the other hand, every node v ∈ Vj for some 1 ≤ j < ω is a successor
of the node vj−1 ∈ V . It follows that G satisfies the forward semi-causality
and backward causality constraints.

(Consistency of L) Clearly, L(v0) = qI holds. Let 0 ≤ j < i + 1,
and let 〈vj, Vj+1〉 ∈ E. Because the transition sequences (tj,1)0≤j<i+1

and (tj,2)0≤j<i+1 satisfy the conditions given in Lemma 5.4.6, w(j) |=
(θj,1 ∧ θj,2) holds. Because tj,k is an initial transition of Ak for all k ∈
{1, 2}, it follows from the definition of A that ∆ contains a transition

5. REFINING THE BASIC TRANSLATION RULES 133

t =
〈
qI , (θj,1 ∧ θj,2), F,Q

′
〉
, where either F = Fj,1 ∪ Fj,2 and Q′ =

(Q′
j,1∪Q

′
j,2∪{qI})\{qI1, qI2} hold, or F = ∅ and Q′ = Q′

j,1∪Q
′
j,2 (by the

conditions given in Lemma 5.4.6, the latter case occurs iff i < ω and j = i
hold). From the definition of L it now follows that L

(
〈vj , Vj+1〉

)
= t,

L(vj) = qI and L(Vj+1) = Q′ hold, and thus the labeling L is consistent.

(Acceptance) If i < ω holds, then B(G) = ∅ holds, and thus G is
trivially fin-accepting. Otherwise G contains the unique infinite branch
β =

(
〈vj, Vj+1〉

)
0≤j<ω

. By the definition of L, the transition L
(
〈vj, Vj+1〉

)

has the set Fj,1 ∪ Fj,2 as its acceptance conditions for all 0 ≤ j < ω.
Because there are, for all acceptance conditions f ∈ F1 ∪ F2, infinitely
many 0 ≤ j < ω such that f /∈ Fj,1 ∪ Fj,2 holds (Lemma 5.4.6), it is easy
to see that fin(β) = ∅ holds, and thus G is fin-accepting.

We conclude that G is a fin-accepting semi-run of A on w.

(G can be extended into a fin-accepting run) If v ∈ V is a node with no
outgoing edges in G, then v = vj,k,` holds for some 0 ≤ j < i+1, k ∈ {1, 2}
and 1 ≤ ` ≤ nj,k, and L(v) = qj,k,` ∈ Q′

j,k holds. By the assumptions given

in Lemma 5.4.6, wj+1 ∈ Lfin(A
q
k) = Lfin(A

q,F1∪F2

k) = Lfin(A
q) holds for all

q ∈ Q′
j,k. Thus, in particular, wj+1 ∈ Lfin(A

L(v)) holds. Because the same
result holds for all nodes of G with no outgoing edges, the semi-run G can be
extended into a fin-accepting run of A on w by Proposition 2.3.14, and thus
w ∈ Lfin(A) holds. �

Lemma 5.4.5 and Lemma 5.4.7 show that the automaton A defined from
two automata A1 and A2 as specified in Proposition 5.4.3 fin-recognizes ex-
actly the set intersection of the languages recognized by A1 and A2. Our last
result in this section completes the proof of Proposition 5.4.3 by showing that
the rule defined in the proposition preserves the existence of representative
states for acceptance conditions.

Lemma 5.4.8 Let A1, A2 and A be three alternating automata as specified
in Proposition 5.4.3. The automaton A is an acceptance closed alternating
automaton such that if A has an f -state for some f ∈ F , then A has an
f -representative state that is f -representative also in all automata An (n ∈
{1, 2}) that have an f -state.

Proof: (A is acceptance closed) Let f ∈ F be an acceptance condition, and

let t = 〈q, θ, F,Q′〉 ∈ ∆ be a transition of A such that f ∈ F holds. Clearly,
the state q ∈ Q is an f -state of A. Because A is simplified in the sense
of Corollary 2.3.20 (Lemma 5.4.4), F 6= ∅ implies that t is a self-loop of
A, i.e., q ∈ Q′ holds, and thus t is f -closed. Because the same reasoning
applies to all acceptance conditions and transitions of A, it follows that A is
an acceptance closed alternating automaton.

(A has representative states for acceptance conditions) Let f ∈ F be an

acceptance condition, and let q ∈ Q = Q1 ∪ Q2 ∪ {qI} be an f -state of
A. Then there exists an index n ∈ {1, 2} such that either q ∈ Qn holds,
or q = qI , and the initial state of An is an f -state (if no initial transition
of A1 or A2 were an f -transition, then no initial transition of A would be

134 5. REFINING THE BASIC TRANSLATION RULES

such a transition, either). In either case, the automaton An contains an f -
state, and it follows from the assumptions that the automaton An has an
f -representative state qf ∈ Qn. Furthermore, if also A3−n has an f -state, we
may assume that qf ∈ Q1 ∩ Q2 is f -representative in A1 and A2. We show
that qf is f -representative in A; that is, for all f -states q ∈ Q and infinite
words w ∈ (2AP)ω,

• if w ∈ Lffin(A
qf) ∩ Lfin(A

q) holds, then w ∈ Lffin(A
q) holds, and

• if w ∈ Lffin(A
q) holds, then wi ∈ Lffin(A

qf) holds for some 0 ≤ i < ω.

Let q ∈ Q be an f -state of A. If q 6= qI holds, then q ∈ Qn holds for
some n ∈ {1, 2}. Because the state qf ∈ Qn is an f -representative state of
An by assumption, the above two conditions hold in An for all w ∈ (2AP)ω

with respect to the state q. Because Aq′ fin-accepts w (by avoiding an initial
f -transition) iff Aq′,Fn (= Aq′

n , Lemma 5.4.4) fin-accepts w (by avoiding an
initial f -transition) for all q′ ∈ Qn, it is easy to see that the conditions hold
also in A with respect to the state q.

If q = qI and w ∈ Lfin(A
qI) hold, then, because obviously Lfin(A

qI) =
Lfin(A) holds (Proposition 2.3.12), w ∈ Lfin(A1) = Lfin(A

qI1
1) and w ∈

Lfin(A2) = Lfin(A
qI2
2) hold by Lemma 5.4.5 (and Proposition 2.3.12). By

Proposition 2.3.15, there exist transitions t1 = 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1 and

t2 = 〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2 such that for all n ∈ {1, 2}, w(0) |= θn holds,

and Aq′

n fin-accepts w1 for all q′ ∈ Q′
n.

Let w ∈ Lfin(A
qI), and let t1 ∈ ∆1 and t2 ∈ ∆2 be initial transitions of

A1 and A2 (respectively) having the above properties. From the definition of
A it follows that A contains the transition t =

〈
qI , (θ1 ∧ θ2), F,Q

′
〉
, where

either (i) F = ∅ andQ′ = Q′
1∪Q

′
2 ({qI1, qI2} 6⊆ Q′

1∪Q
′
2), or (ii) F = F1∪F2

and Q′ =
(
Q′

1∪Q
′
2 ∪{qI}

)
\{qI1, qI2} hold ({qI1, qI2} ⊆ Q′

1∪Q
′
2). Clearly,

because w(0) |= θn holds for all n ∈ {1, 2}, it is easy to see that w(0) |=
(θ1 ∧ θ2) holds. We show that the state qf satisfies the criteria required of an
f -representative state of A with respect to the state qI .

(w ∈ Lffin(A
qf) ∩ Lfin(A

qI) implies w ∈ Lffin(A
qI)) Suppose that w ∈

Lffin(A
qf) ∩ Lfin(A

qI) holds. If the transition t is an f -transition of A,
then the transition tn is an f -transition for some n ∈ {1, 2}, and thus the
initial state qIn ∈ Qn is an f -state of An. Therefore qf ∈ Qn holds, and
it follows by the above discussion that w ∈ Lffin(A

qf
n) ∩ Lfin(A

qIn
n) holds.

Because qf is an f -representative state of An, w ∈ Lffin(A
qIn
n) holds, and

thus we may change the transition tn to another initial transition of An

that does not include the condition f in its acceptance conditions (by
applying Proposition 2.3.15).

We may thus assume that the transition t =
〈
qI , (θ1 ∧ θ2), F,Q

′
〉

de-
fined above is not an f -transition of A.

Clearly, because q′ ∈ Q′
1 ∪ Q′

2 holds for all q′ ∈ Q′ \ {qI}, it follows
(by the choice of the transitions t1 and t2) that the subautomaton Aq′

(which coincides with Aq′,F1∪F2

1 or Aq′,F1∪F2

2) fin-accepts w1 for all q′ ∈
Q′ \ {qI}. If qI ∈ Q′ holds, then {qI1, qI2} ⊆ Q′

1 ∪ Q′
2 holds, and thus

w1 ∈ Lfin(A
qI1) ∩ Lfin(A

qI2) holds. It now follows by Proposition 2.3.12
and Lemma 5.4.7 that w1 ∈ Lfin(A

qI) holds. Therefore, Aq′ fin-accepts

5. REFINING THE BASIC TRANSLATION RULES 135

w1 for all q′ ∈ Q′, and because w(0) |= (θ1 ∧ θ2) and f /∈ F hold, it
follows by Proposition 2.3.15 that w ∈ Lffin(A

qI) holds.

(w ∈ Lffin(A
qI) implies wi ∈ Lffin(A

qf) for some 0 ≤ i < ω) Suppose

that w ∈ Lffin(A
qI) holds. Because qI is an f -state of A, qIn is an f -state

of An for some n ∈ {1, 2}. Because w ∈ Lfin(A
qIn
n) holds, AqIn

n has a
fin-accepting run G = 〈V,E, L〉 on w. By Proposition 2.3.7, there ex-
ists an index 0 ≤ i ≤ ω such that this run contains a chain of edges
(ej)0≤j<i+1, ej ∈ E ∩ (Vj × 2Vj+1), labeled with initial transitions of
An, and if i < ω holds, then the transition L(ei) is not a self-loop. We
claim that wk ∈ Lffin(A

qIn
n) holds for some 0 ≤ k < ω. This is clear if

i < ω holds, because in this case the non-self-loop transition L(ei) has
an empty set of acceptance conditions (An is simplified in the sense of

Corollary 2.3.20), and we may choose k
def
= i in this case. Otherwise

(ej)0≤j<i+1 is an infinite branch in G labeled with initial self-loops of
An. Because G is fin-accepting, it follows that there necessarily exists
an index 0 ≤ k < ω such that L(ek) is not an f -transition of An, and
wk ∈ Lffin(A

qIn
n) holds.

Because qIn is an f -state of An, qf ∈ Qn holds, and because qf is f -
representative, wk ∈ Lffin(A

qIn
n) implies that (wk)` ∈ Lffin(A

qf
n) holds for

some 0 ≤ ` < ω. Because Lfin(A
qf
n) = Lfin(A

qf ,F1∪F2
n) = Lfin(A

qf)
holds, it follows that wk+` ∈ Lffin(A

qf) holds.

We conclude that qf is an f -representative state of A. By the choice of qf , qf
is f -representative also in An (n ∈ {1, 2}) if An contains an f -state. Because
the same holds for all acceptance conditions f ∈ F , the result follows. �

Proposition 5.4.3 now follows by combining Lemma 5.4.4, Lemma 5.4.5,
Lemma 5.4.7 and Lemma 5.4.8. Due to the properties of the automata built
using the basic translation rules and Proposition 5.4.3, it follows that the
translation procedure presented in Sect. 3.1 remains correct in the sense
of Theorem 3.3.2 if the set of basic translation rules is extended with the
rule presented in Proposition 5.4.3. Furthermore, because this rule is closed
under the construction of acceptance closed automata with representative
states for their acceptance conditions, the automaton obtained from an LTL
formula via the refined translation procedure can be translated into a non-
deterministic automaton without introducing new acceptance conditions in
the translation (Corollary 4.3.7). Further effects of using the new translation
rule for the ∧ connective will be discussed in Sect. 5.6.

5.5 BINARY TEMPORAL CONNECTIVES

In this section we refine the basic translation rules for the Until connectives
and use them to derive new rules also for the Release connectives. Unlike
the universally applicable translation rule proposed in the previous section
for the ∧ connective, however, the rules for the Until connectives apply
only under a certain language containment relationship between the top-
level subformulas of an Until formula. The optimized rules for the Until
connectives nevertheless lead to improved translation rules for the Release

136 5. REFINING THE BASIC TRANSLATION RULES

connectives that do not necessitate checking for any language containment
relationships between top-level subformulas (certain relationships admit fur-
ther optimizations, however).

The Until Connectives

Let A1 and A2 be two alternating automata built for the LTL formulas ϕ1 ∈
LTLPNF(AP) and ϕ2 ∈ LTLPNF(AP), respectively. To build an automa-
ton for a formula of the form (ϕ1 Uϕ2), the basic translation rules for the U

connectives take a new state (the initial state of the automaton to be built)
and transform the initial transitions of A1 into self-loops starting from this
state. Clearly, all initial self-loops of A1 are unrolled into initial transitions
of the compound automaton in the application of the translation rule, and
thus the initial state qI1 of A1 will remain reachable from the initial state of
any automaton built from the compound automaton in subsequent transla-
tion steps. However, if the languages of ϕ1 and ϕ2 satisfy the language con-
tainment relationship L(ϕ2) ⊆ L(ϕ1), it proves to be possible to avoid the
introduction of self-loops having the initial state of A1 in their target states in
the compound automaton by a slight modification to the way in which the
initial self-loops of this automaton are defined. Similarly to the new trans-
lation rule defined for the ∧ connective in the previous section, it may be
possible to drop the state qI1 from the final automaton obtained at the end of
the translation.

The new translation rules for the U connectives are based on the following
result.

Proposition 5.5.1 Let A1 = 〈2AP , Q1,∆1, qI1,F1〉 and A2 = 〈2AP , Q2,∆2,
qI2,F2〉 be two alternating automata satisfying the following constraints:

• A1 and A2 are self-loop alternating automata simplified in the sense
of Corollary 2.3.20 (i.e., for all transitions t ∈ ∆1 ∪ ∆2, the set of
acceptance conditions of t is not empty only if t is a self-loop)

• Aq,F1∪F2
1 = Aq,F2∪F2

2 holds for all states q ∈ Q1 ∩Q2;

• for all indices n ∈ {1, 2}, the automaton An is an acceptance closed
alternating automaton, and if An has an f -state for some f ∈ Fn, then
An has an f -representative state;

• if both A1 and A2 have an f -state for some f ∈ F1 ∩ F2, then A1 and
A2 share an f -representative state; and

• Lfin(A2) ⊆ Lfin(A1) holds.

Define the alternating automaton A = 〈2AP , Q,∆, qI ,F〉 obtained from A1

and A2 by setting Q
def
= Q1 ∪Q2 ∪ {qI} (where qI is a new state not included

in Q1 ∪Q2), ∆
def
= ∆1 ∪ ∆2 ∪ ∆′, and F

def
= F1 ∪ F2 ∪ F ′, where either

F ′ def
= {f} for a new acceptance condition f /∈ F1 ∪ F2, and

∆′ def
=

{
〈qI , θ, {f}, (Q

′ \ {qI1}) ∪ {qI}〉 〈qI1, θ, F,Q
′〉 ∈ ∆1

}

∪
{
〈qI , θ, ∅, Q

′〉 〈qI2, θ, F,Q
′〉 ∈ ∆2

}

5. REFINING THE BASIC TRANSLATION RULES 137

or
F ′ def

= ∅, and

∆′ def
=

{
〈qI , θ, F, (Q

′ \ {qI1}) ∪ {qI}〉 〈qI1, θ, F,Q
′〉 ∈ ∆1

}

∪
{
〈qI , θ, ∅, Q

′〉 〈qI2, θ, F,Q
′〉 ∈ ∆2

}

The automaton A is an acceptance closed self-loop alternating automaton
that is simplified in the sense of Corollary 2.3.20, Aq,Fn = Aq

n holds for all
n ∈ {1, 2} and q ∈ Q ∩ Qn, and for all w ∈ (2AP)ω, w ∈ Lfin(A) holds
iff (i) there exists an index 0 ≤ i < ω such that wi ∈ Lfin(A2) holds and
wj ∈ Lfin(A1) holds for all 0 ≤ j < i, or (ii) F ′ = ∅, andwi ∈ Lfin(A1) holds
for all 0 ≤ i < ω. Furthermore, if A has an f -state for some f ∈ F , then A
has an f -representative state that is f -representative also in all automata An

(n ∈ {1, 2}) that have an f -state.

Similarly to the previous section, we prove Proposition 5.5.1 in several
steps. We first show that the automaton A has the simple structural properties
listed in the proposition.

Lemma 5.5.2 Let A1, A2 and A be three alternating automata as specified
in Proposition 5.5.1. The automaton A is a self-loop alternating automaton
simplified in the sense of Corollary 2.3.20 such that Aq,Fn = Aq

n holds for all
n ∈ {1, 2} and q ∈ Q ∩Qn.

Proof: Because A1 and A2 are self-loop alternating automata simplified in
the sense of Corollary 2.3.20, it is easy to see that also A is the same kind of
self-loop alternating automaton (all loops introduced into A by the definition
are self-loops, and all non-self-loop transitions have an empty set of accep-
tance conditions). Let q ∈ Q ∩Qn for some n ∈ {1, 2}. Then q 6= qI holds,
and all transitions of the subautomaton Aq are transitions of An. Therefore,
the acceptance conditions of these transitions are subsets of Fn, and it follows
that Aq,Fn = Aq

n holds. �

The following lemma shows that the automaton A fin-recognizes the de-
sired language. (This result is analogous to Lemma 3.3.1.)

Lemma 5.5.3 Let A1 = 〈2AP , Q1,∆1, qI1,F1〉, A2 = 〈2AP , Q2,∆2, qI2,
F2〉 and A = 〈2AP , Q,∆, qI ,F〉 be three alternating automata such that
Lfin(A2) ⊆ Lfin(A1) and qI /∈ Q1 ∪ Q2 hold, and Q (∆, F) is defined from
Q1 and Q2 (∆1 and ∆2, F1 and F2 and F ′) as specified in Proposition 5.5.1.
For all w ∈ (2AP)ω,

A fin-accepts w iff there exists an index 0 ≤ i < ω such that A2 fin-
accepts wi, and for all 0 ≤ j < i, A1 fin-accepts wj

or
F ′ = ∅, and A1 fin-accepts wi for all 0 ≤ i < ω.

Proof: (Only if) Let w ∈ Lfin(A), and let G = 〈V,E, L〉 be a fin-accepting

run of A on w. By Proposition 2.3.7, there exists an index 0 ≤ i ≤ ω and
a chain of edges (ej)0≤j<i+1, ej ∈ E ∩ (Vj × 2Vj+1), such that the transition
L(ej) ∈ ∆ is an initial self-loop of A for all 0 ≤ j < i, and if i < ω holds,
then L(ei) ∈ ∆ is an initial transition of A that is not a self-loop.

138 5. REFINING THE BASIC TRANSLATION RULES

We first show that if wj ∈ Lfin(A1) holds for some 0 ≤ j < i + 1, then
wk ∈ Lfin(A1) holds for all 0 ≤ k ≤ j. Let 0 ≤ j < i+ 1 be an index such
that wj ∈ Lfin(A1) holds. The implication holds trivially if j = 0. Assume
that j ≥ 1 holds, and wk ∈ Lfin(A1) holds for some 1 ≤ k ≤ j. Because

k−1 ≤ j−1 < i holds, the transition t
def
= L(ek−1) = 〈qI , θ, F,Q

′〉 ∈ ∆ is an
initial self-loop of A, and becauseG is a fin-accepting run of A, w(k−1) |= θ
holds, and wk ∈ Lfin(A

q′) holds for all q′ ∈ Q′ (Proposition 2.3.9). Because t
is an initial self-loop of A, it follows from the definition of A that the automa-
ton A1 has an initial transition 〈qI1, θ, F1, Q

′
1〉 ∈ ∆1 for some F1 ⊆ F1 and

Q′
1 ⊆ Q1 such thatQ′ =

(
Q′

1\{qI1}
)
∪{qI} holds. Becausewk ∈ Lfin(A1) =

Lfin(A
qI1
1) (Proposition 2.3.12) holds by the assumption, it follows that, for

all q′ ∈ Q′
1, wk ∈ Lfin(A

q′) = Lfin(A
q′,F1) = Lfin(A

q′

1) (Lemma 5.5.2)
holds, and because w(k − 1) |= θ holds, it follows by Proposition 2.3.15 that
wk−1 ∈ Lfin(A1) holds. By induction on decreasing values of k, it follows
that wk ∈ Lfin(A1) holds for all 0 ≤ k ≤ j.

(i < ω) If i < ω holds, then the transition L(ei) = 〈qI , θ, F,Q
′〉 ∈ ∆ is

not an initial self-loop of A. By the definition of A, L(ei) corresponds to an
initial transition 〈qI2, θ, F2, Q

′〉 ∈ ∆2 of A2 for some F2 ⊆ F2, and Q′ ⊆ Q2

holds. Again, because G is a fin-accepting run of A, w(i) |= θ holds, and

for all q′ ∈ Q′, wi+1 ∈ Lfin(A
q′) = Lfin(A

q′,F2) = Lfin(A
q′

2) (Lemma 5.5.2)
holds. By Proposition 2.3.15, it follows that wi ∈ Lfin(A2) holds. Because
Lfin(A2) ⊆ Lfin(A1) holds by assumption, also A1 fin-accepts wi. By the
above inductive argument, wk ∈ Lfin(A1) holds for all 0 ≤ k ≤ i, and the
result follows.

(i = ω) If i = ω holds, then L(ej) is an initial self-loop of A for all 0 ≤

j < ω. Then necessarily F ′ = ∅ holds, since otherwise fin
(
(ej)0≤j<ω

)
6= ∅

would hold, contrary to the assumption thatG is fin-accepting. Because each
initial self-loop of A corresponds to an initial transition of A1, then the result
follows immediately by the above inductive argument if the initial transition
corresponding to L(ej) is not an initial self-loop of A1 for infinitely many
0 ≤ j < ω (if L(ej) corresponds to an initial transition of A1 that is not a
self-loop of A1, it is straightforward to check that the index j can be used as
the base case for the induction).

Otherwise there exists an index 0 ≤ j < ω such that the transitionL(ej+k)
(which is an initial self-loop of A) corresponds to an initial self-loop of A1 for
all 0 ≤ k < ω. Let ej = 〈v̂0, V̂

′〉 for some v̂0 ∈ Vj and V̂ ′ ⊆ Vj+1, and let

L(ej+k) = 〈qI , θ̂k, F̂k, Q̂
′
k〉, where w(j + k) |= θ̂k holds for all 0 ≤ k < ω.

Write Q̂′
k \ {qI} = {qk,1, qk,2, . . . , qk,nk

} (0 ≤ nk < ω) for all 0 ≤ k < ω.
Define the graph G′ = 〈V ′, E ′, L′〉, where

• V ′
0

def
= {v̂0}, V ′

k+1
def
= {v̂k+1, vk,1, . . . , vk,nk

} for all 0 ≤ k < ω,

• E ′ def
=

⋃
0≤k<ω

{
〈v̂k, V

′
k+1〉

}
,

• L′(v̂k)
def
= qI1, L′(vk,`)

def
= qk,` for all 0 ≤ k < ω and 1 ≤ ` ≤ nk, and

L′
(
〈v̂k, V

′
k+1〉

)
def
=

〈
qI1, θ̂k, F̂k, (Q̂

′
k \ {qI}) ∪ {qI1}

〉
for all 0 ≤ k < ω.

G′ is a fin-accepting semi-run of A1 on wj:

5. REFINING THE BASIC TRANSLATION RULES 139

(Partitioning) V ′
0 = {v̂0} is a singleton, and V ′ is partitioned into dis-

joint finite levels (with edges only between successive levels).

(Causality) Let v ∈ V ′
k for some 0 ≤ k < ω. Then v either has no

outgoing edges, or v = v̂k, in which case v has the unique outgoing edge
〈v, V ′

k+1〉 ∈ E ′. On the other hand, each node v ∈ V ′
k (1 ≤ k < ω) is

a successor of the node v̂k−1 ∈ V ′
k−1 in G′. It follows that G′ satisfies the

forward semi-causality and backward causality constraints.

(Consistency of L′) Clearly, L′(v̂0) = qI1 holds. Let e = 〈v̂k, V
′
k+1〉 ∈

E for some 0 ≤ k < ω. Because the transition L(ej+k) = 〈qI , θ̂k, F̂k, Q̂
′
k〉

is a self-loop of A that corresponds to an initial self-loop of A1 and F ′ = ∅
holds, it follows from the definition of A that ∆1 contains the transition〈
qI1, θ̂k, F̂k, (Q̂

′
k \ {qI}) ∪ {qI1}

〉
= L′(e) =

〈
L′(v̂k), θ̂k, F̂k, L(V ′

k+1)
〉
.

Furthermore, because G is a run of A, w(j+k) = wj(k) |= θ̂k holds, and
thus the labeling L′ is consistent.

(Acceptance) Clearly, B(G′) contains the unique infinite branch β
def
=

(e′k)0≤k<ω =
(
〈v̂k, V

′
k+1〉

)
0≤k<ω

. Because the transition L′(e′k) inherits its

acceptance conditions from the transition L(ej+k) for all 0 ≤ k < ω, it
follows that fin(β) = fin

(
(e′k)0≤k<ω

)
= fin

(
(ej+k)0≤k<ω

)
= ∅, because

G is a fin-accepting run of A on w. It follows that G′ is a fin-accepting
semi-run of A1 on wj.

Let v ∈ V ′ be a node with no outgoing edges in G′. Then v = vk,` holds

for some 0 ≤ k < ω, 1 ≤ ` ≤ nk, and L′(v) = qk,` ∈ Q̂′
k \ {qI} ⊆ Q1.

Because G is a fin-accepting run of A on w and ej+k ∈ E and L(ej+k) =

〈qI , θ̂k, F̂k, Q̂
′
k〉 hold, it follows that w(j+ k) |= θ̂k holds, and Aq′ fin-accepts

wj+k+1 = (wj)k+1 for all q′ ∈ Q̂′
k. In particular, (wj)k+1 ∈ Lfin(A

qk,`) =
Lfin(A

qk,`,F1) = Lfin(A
qk,`

1) holds, and because v is arbitrary, G′ can be ex-
tended into a fin-accepting run of A1 on wj by Proposition 2.3.14.

Since each level of the fin-accepting run G′ includes a node labeled with
the initial state of A1, it follows by Proposition 2.3.9 that A1 fin-accepts
(wj)k = wj+k for all 0 ≤ k < ω. By the inductive argument given in
the beginning of the proof, A1 fin-accepts wk also for all 0 ≤ k ≤ j, and thus
A1 fin-accepts wk for all 0 ≤ k < ω.

(If) The result follows in this direction by an obvious modification of the

proof of the corresponding direction in Lemma 3.3.1 (when defining non-
empty levels of a run of A on w, do not include nodes labeled with the state
qI1 to any level with index less than i+1 to make it possible to label the chain
of edges that emerges with initial transitions of A in a consistent way). �

To complete the proof of Proposition 5.5.1, we show that the translation
rule defined in the proposition preserves acceptance closure and the exis-
tence of representative states for acceptance conditions.

Lemma 5.5.4 Let A1, A2 and A be three alternating automata as specified
in Proposition 5.5.1. The automaton A is an acceptance closed alternating
automaton such that if A has an f -state for some f ∈ F , then A has an
f -representative state that is f -representative also in all automata An (n ∈
{1, 2}) that have an f -state.

140 5. REFINING THE BASIC TRANSLATION RULES

Proof: (A is acceptance closed) Because A1 and A2 are acceptance closed

automata, it is easy to see that every transition t ∈ ∆1 ∪∆2 is f -closed for all
f ∈ F . Clearly, also every initial transition of A is f -closed for all f ∈ F : if
A has an initial f -transition, then this transition is a self-loop of A and thus
includes the f -state qI in its target states.

(A has representative states for acceptance conditions) Let f ∈ F be an

acceptance condition, and let q ∈ Q = Q1 ∪ Q2 ∪ {qI} be an f -state of A.
If f /∈ F1 ∪ F2 holds, then it follows from the definition of A that q = qI
holds. Therefore, A has a unique f -state in this case, and this state is trivially
an f -representative state of A.

Otherwise, if f ∈ F1 ∪ F2 holds, then q ∈ Qn holds for some n ∈ {1, 2},
or q = qI , and the initial state qI1 of A1 is an f -state (otherwise qI would
not be an f -state). In either case, one of the automata A1 and A2 contains
an f -state, and it follows from the assumptions in Proposition 5.5.1 that this
automaton contains an f -representative state qf . (If both A1 and A2 con-
tain an f -state, we may assume that the state qf is f -representative in both
automata.) We show that qf is an f -representative state of A.

Let q ∈ Q be an f -state of A, and let w ∈ (2AP)ω. If q ∈ Qn holds for
some n ∈ {1, 2}, then it is straightforward to check that the state qf satisfies
the two conditions required of an f -representative state with respect to the f -
state q (Sect. 4.3.3), because qf is an f -representative state of An, and Aq′ fin-
acceptsw (by avoiding an initial f -transition) iff Aq′,Fn (= Aq′

n , Lemma 5.5.2)
fin-accepts w (by avoiding an initial f -transition) for all q′ ∈ Qn.

Otherwise, if q = qI holds, it follows that the initial state qI1 of A1 is an
f -state, and qf ∈ Q1 is an f -representative state of A1. We check that the
properties required of an f -representative state of A hold for qf also in this
case.

If w ∈ Lfin(A
qI) holds, then, because the automata AqI and A fin-rec-

ognize the same language (Proposition 2.3.12), w ∈ Lfin(A) holds, and it
follows by Lemma 5.5.3 that there exists an index 0 ≤ i ≤ ω such that
wj ∈ Lfin(A1) (= Lfin(A

qI1
1)) holds for all 0 ≤ j < i, and if i < ω holds,

then wi ∈ Lfin(A2) (= Lfin(A
qI2
2)) holds.

(w ∈ Lffin(A
qf) ∩ Lfin(A

qI) implies w ∈ Lffin(A
qI)) Suppose that w ∈

Lffin(A
qf) ∩ Lfin(A

qI) holds, and let 0 ≤ i ≤ ω be the index defined
above.

If i ≥ 1 holds, then w0 = w ∈ Lfin(A
qI1
1) holds, and it is easy

to see that also w1 ∈ Lfin(A) = Lfin(A
qI) holds. Because qf ∈ Q1

holds, Aqf fin-accepts w by avoiding an initial f -transition iff Aqf ,F1 (=
A
qf
1 , Lemma 5.5.2) fin-accepts w by avoiding an initial f -transition, and

it follows that w ∈ Lffin(A
qf
1) ∩ Lfin(A

qI1
1) holds. Because qf is an f -

representative state of A1, w ∈ Lffin(A
qI1
1) holds. By Proposition 2.3.15,

the automaton A1 has an initial transition 〈qI1, θ, F,Q
′〉 ∈ ∆1 such that

w(0) |= θ and f /∈ F hold, and w1 ∈ Lfin(A
q
1) = Lfin(A

q,F
1) = Lfin(A

q)
holds for all q ∈ Q′. By the definition of A, A has the initial transition〈
qI , θ, F, (Q

′ \ {qI1}) ∪ {qI}
〉
∈ ∆. It now follows that Aq fin-accepts w1

for all q ∈ (Q′ \ {qI1}) ∪ {qI}, and because w(0) |= θ and f /∈ F hold, it
follows by Proposition 2.3.15 that w ∈ Lffin(A) = Lffin(A

qI) holds.
If i = 0, then w0 = w ∈ Lfin(A2) holds. By Proposition 2.3.15,

5. REFINING THE BASIC TRANSLATION RULES 141

the automaton A2 has an initial transition 〈qI2, θ, F,Q
′〉 ∈ ∆2 such that

w(0) |= θ holds, and Aq
2 fin-accepts w1 for all q ∈ Q′. In this case the

automaton A has the initial transition 〈qI , θ, ∅, Q
′〉 ∈ ∆, and it is easy to

see that w1 ∈ Lfin(A
q
2) = Lfin(A

q,F
2) = Lfin(A

q) holds for all q ∈ Q′. By
Proposition 2.3.15, it follows that A fin-accepts w by avoiding an initial
f -transition, and thus w ∈ Lffin(A) = Lffin(A

qI) holds also in this case.

(w ∈ Lffin(A
qI) implies wj ∈ Lffin(A

qf) for some 0 ≤ j < ω) Assume

that w ∈ Lffin(A
qI) holds, and let 0 ≤ i ≤ ω be the index defined above.

Clearly, w0 ∈ Lfin(A1) holds if i ≥ 1. Because Lfin(A2) ⊆ Lfin(A1) holds
by the assumptions in Proposition 5.5.1, however, w0 ∈ Lfin(A1) actually
holds also if i = 0 (in this case w0 ∈ Lfin(A2) ⊆ Lfin(A1) holds). It
follows that the automaton A1 fin-accepts w. Similarly to Lemma 5.4.8, it
is straightforward to show (by applying Proposition 2.3.7 to a fin-accepting
run of A1 on w) that there exists an index 0 ≤ k < ω such that wk ∈
Lffin(A1) holds, and because the state qf is an f -representative state of A1,
it follows that (wk)` = wk+` ∈ Lffin(A

qf
1) = Lffin(A

qf) holds for some
0 ≤ ` < ω.

We conclude that qf is an f -representative state of A that is f -representative
also in every automaton An (n ∈ {1, 2}) that has an f -state. Because the
same holds for all acceptance conditions f ∈ F1 ∪ F2, the result follows. �

Proposition 5.5.1 can be used directly in the proof of Theorem 3.3.2 to
show that the procedure for translating LTL formulas into alternating au-
tomata remains correct if the set of translation rules is extended with special
rules for the Us and Uw connectives shown in the upper half of Table 5.3 (see
also Fig. 5.6 (b) and Fig. 5.6 (c)). Furthermore, because the automata built
using the rules are acceptance closed automata with representative states for
all of their acceptance conditions f for which they have an f -state, the trans-
lation procedure extended with the new rules yields automata which can be
translated into nondeterministic automata without introducing new accep-
tance conditions (Corollary 4.3.7).

The Release Connectives

The rules for the Rs and Rw connectives can again be obtained by combining
the (original) ∧ rule with the new rules for the corresponding Until connec-
tives. In particular, due to the identities

(ϕ1 Rs ϕ2) ≡
(
(ϕ2 Us (ϕ1 ∧ ϕ2)

)
and (ϕ1 Rw ϕ2) ≡

(
(ϕ2 Uw (ϕ1 ∧ ϕ2)

)

and the fact that L
(
(ϕ1 ∧ ϕ2)

)
= L(ϕ1) ∩ L(ϕ2) ⊆ L(ϕ2) always holds

for all pairs of LTL formulas ϕ1, ϕ2 ∈ LTL(AP), it follows that the lan-
guage containment assumption in Proposition 5.5.1 holds trivially between
the top-level subformulas of the Until formulas corresponding to the Release
formulas. This fact makes it possible to apply the new Until rules in the
derivation of the Release rules, and thus the original translation rules for the
Release connectives can be replaced with ones that allow a slightly simplified
transition structure for the compound automaton.

Finally, the identities of Table 5.1 allow a further improvement in the
translation of Release formulas of the form (ϕ1 Rϕ2), this time under the

142 5. REFINING THE BASIC TRANSLATION RULES

Table 5.3: Refined translation rules for the binary temporal connectives (continua-
tion of Table 3.1)

◦ F◦ ∆◦

{〈
qI , θ1, {f}, (Q

′
1 \ {qI1}) ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∪
{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}
if Lfin(A2) ⊆ Lfin(A1)

Us {f} {〈
qI , θ1, {f}, Q

′
1 ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∪
{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}
otherwise

{〈
qI , θ1, F1, (Q

′
1 \ {qI1}) ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∪
{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}
if Lfin(A2) ⊆ Lfin(A1)

Uw ∅ {〈
qI , θ1, ∅, Q

′
1 ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∪
{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}
otherwise

{〈
qI , θ2, {f}, (Q

′
2 \ {qI2}) ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∪
{
〈qI , θ1, ∅, Q

′
1〉 〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}
if Lfin(A1) ⊆ Lfin(A2)

Rs {f} {〈
qI , θ2, {f}, (Q

′
2 \ {qI2}) ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∪

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}
otherwise

{〈
qI , θ2, F2, (Q

′
2 \ {qI2}) ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∪
{
〈qI , θ1, ∅, Q

′
1〉 〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}
if Lfin(A1) ⊆ Lfin(A2)

Rw ∅ {〈
qI , θ2, F2, (Q

′
2 \ {qI2}) ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∪

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}
otherwise

5. REFINING THE BASIC TRANSLATION RULES 143

θ1

A1

θ2

θ3

A2qI1 qI2

(a)

θ1A1
θ2

θ2

θ3

A2

qI

qI2qI1

θ1

θ3

Uw
Lfin(A2)⊆Lfin(A1)

(b)

θ1

θ1

A1
θ2

θ2

θ3

A2

qI

qI1 qI2

θ3

Uw
Lfin(A2) 6⊆Lfin(A1)

(c)

θ1

A1

θ2

A2

qI

qI1 qI2

θ2

θ3

θ1

θ3

Rw
Lfin(A1)⊆Lfin(A2)

(d)

θ1

A1

θ2

θ2

θ3

A2

qI

qI1 qI2

(θ1∧θ2)

(θ1∧θ3)

θ3

Rw
Lfin(A1) 6⊆Lfin(A2)

(e)

Fig. 5.6: Automata built using the refined translation rules for the weak binary
temporal connectives. (a) Two component automata A1 and A2; (b) Automa-
ton built from A1 and A2 with the Uw translation rule under the assumption
Lfin(A2) ⊆ Lfin(A1); (c) Automaton built from the component automata using the
Uw rule without the language containment assumption; (d) Automaton built from
A1 and A2 with the Rw translation rule under the assumption Lfin(A1) ⊆ Lfin(A2);
(e) Automaton built from the component automata using the Rw rule without the as-
sumption. The initial transitions of the automata built for the corresponding strong
connectives have the same target states as the initial transitions of the above au-
tomata; however, all the initial self-loops of the automata for the strong connectives
share an acceptance condition that is not included in either of the component au-
tomata

144 5. REFINING THE BASIC TRANSLATION RULES

p1

Ap1

p2

Ap2

p1

A(⊥ Rw p1)

p1

p1

p2

A((⊥ Rw p1) Us p2)

p1p2

(a) (b) (c)

Fig. 5.7: The refined Until translation rules cannot be universally substituted for the
original ones. (a) Automata Ap1, Ap2 and A(⊥Rw p1) built for the formulas p1, p2,
and (⊥Rw p1), respectively; (b) Automaton built for the formula

(
(⊥Rw p1)Us p2

)

from A(⊥Rw p1) and Ap2 with the original translation rules; (c) Automaton built from
the same automata with the refined translation rules, ignoring the requirement on
the language containment relationship between the languages fin-accepted by these
automata

language containment relationship L(ϕ1) ⊆ L(ϕ2). Because (ϕ1 Rs ϕ2) ≡
(ϕ2 Us ϕ1) and (ϕ1 Rw ϕ2) ≡ (ϕ2 Uw ϕ1) hold in this case, and because the
assumption that L(ϕ1) ⊆ L(ϕ2) holds implies the language containment
assumption in Proposition 5.5.1 for the Until formulas, the translation of the
Release formulas reduces in this case to the translation of Until formulas
using the new translation rules. (As noted in Sect. 5.3, we may not need
to apply a rule explicitly if we are able to reuse an automaton built for an
Until formula.) Using an Until rule for the translation in this case removes
the need to collect all pairs of initial transitions of the component automata
corresponding to the subformulas ϕ1 and ϕ2, which reduces the worst-case
number of initial transitions in the compound automaton. The new rules for
the Release connectives are shown in the lower half of Table 5.3; see also
Fig. 5.6 (d) and Fig. 5.6 (e) for illustration.

We end this section with an example to show that the language contain-
ment assumption used in the new translation rules for the Us or Uw connec-
tives cannot be lifted in the general case.

Example 5.5.5 Figure 5.7 shows two automata built for the LTL formula

(
(Gp1) Us p2

)
≡

(
(⊥Rw p1) Us p2

)
∈ LTL

(
{p1, p2}

)
,

where the automaton in Fig. 5.7 (b) is obtained from the formula using the
original translation rules (with the usual restriction of the automaton to states
reachable from its initial state), whereas the automaton in Fig. 5.7 (c) is (er-
roneously) built from the formula by applying the new rules, ignoring the
precondition on the language containment relationship between its top-level
subformulas (⊥Rw p1) and p2; clearly, Lfin(Ap2) (= L(p2)) 6⊆ Lfin(A(⊥Rw p1))
(= L(Gp1)) holds in this case. It is easy to see that the automaton shown in
Fig. 5.7 (c) fin-accepts the word {p1}{p2}

ω, which is, however, not a model
of the LTL formula

(
(Gp1) Us p2

)
. �

5. REFINING THE BASIC TRANSLATION RULES 145

Ap1

p1

Ap2

p2

A>

>

A⊥

(a)

>p1

A(>Us p1)

> p2

A(>Us p2)

(b)

>p1

A(⊥Rw (>Us p1))

p2>

A(⊥Rw (>Us p2))

(c)

(> ∧>) (> ∧ p2)

(p1 ∧ p2) (p1 ∧ >)

Aϕ

(d)

> p2

(p1 ∧ p2) p1

Aϕ (with simplified transition guards)

(e)

Fig. 5.8: Building an automaton for the LTL formula ϕ
def

≡
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
using the refined translation rules. (a) Automata for the atomic

subformulas of ϕ; (b) Automata for the formulas (>Us p1) and (>Us p2); (c) Au-
tomata for the formulas

(
⊥Rw (>Us p1)

)
and

(
⊥Rw (>Us p2)

)
; (d) Automaton for

the formula ϕ; (e) The automaton obtained from (e) via transition guard simplifica-
tion

5.6 DISCUSSION

In this section we illustrate and discuss some effects of adding the new transla-
tion rules to the basic procedure for translating LTL formulas into alternating
automata.

5.6.1 Translation Example Revisited

We start with an example to illustrate the behavior of the new translation
rules.

Example 5.6.1 Consider again the LTL formula

(ϕ ∨ ψ)
def
=

[((
⊥Rw (>Us p1)

)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]

from Ex. 3.1.1; as in Ex. 3.1.1, we translate the formula into an automaton
by dealing with its top-level subformulas ϕ and ψ separately.

The basic rules for the atomic subformulas of ϕ yield again the automata
shown in Fig. 5.8 (a). Because Lfin(Ap1) ⊆ Lfin(A>) and Lfin(Ap2) ⊆
Lfin(A>) obviously hold, we can apply the new rule for the Us connective
to build the automata for the formulas (>Us p1) and (>Us p2) as shown in
Fig. 5.8 (b). (Actually, because the automaton A> has no initial self-loops,
we obtain in this case the same compound automata as before.)

Because Lfin(⊥) = ∅ holds, the language fin-recognized by A⊥ is trivially
a subset of the language fin-recognized by any automaton. Therefore, by

146 5. REFINING THE BASIC TRANSLATION RULES

p3

Ap3

p4

Ap4

p5

Ap5

p5(p4 ∧ p5)

A(p4 Rs p5)

p5 (p4 ∧ p5)

(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

Aψ

(a) (b) (c)

Fig. 5.9: Building an automaton for the formula ψ
def

≡
(
p3 Rw (p4 Rs p5)

)
using the

refined translation rules. (a) Automata for the atomic subformulas of ψ; (b) Automa-
ton for the formula (p4 Rs p5); (c) Automaton for the formula ψ

using the appropriate Rw rule that makes use of this language containment
assumption, we obtain the automata shown in Fig. 5.8 (c) for the subformu-
las

(
⊥Rw (>Us p1)

)
and

(
⊥Rw (>Us p2)

)
. We then apply the new rule for

the ∧ connective (Table 5.2) to build an automaton for the formula ϕ. As
shown in Fig. 5.8 (d), merging all pairs of initial self-loops of the compo-
nent automata yields a single-state automaton for the formula ϕ instead of
the five-state automaton (Fig. 3.2 (d), p. 46) built using the basic translation
rules. Figure 5.8 (e) shows the same automaton after simplifying its transition
guards as described in Sect. 5.1.2.

We then repeat the translation for the formula ψ. As before, we start from
the automata for the atomic formulas (Fig. 5.9 (a)). Because Lfin(Ap4) 6⊆
Lfin(Ap5) holds, we use the universally applicable version of the optimized
translation rule for the Rs connective to define an automaton for the formula
(p4 Rs p5) (Fig. 5.9 (b)). The corresponding rule for the Rw connective is ap-
plied to build an automaton for the formula

(
p3 Rw (p4 Rs p5)

)
(Fig. 5.9 (c)).

In comparison to the automaton obtained in Ex. 3.1.1 (Fig. 3.3 (c), p. 46),
the refined translation rules allow us to reduce the number of target states in
one transition of the automaton.

Finally, we build an automaton for the formula
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]

by applying the ∨ rule as shown in Fig. 5.10. This automaton has three states
less than the automaton built for the same formula in Ex. 3.1.1 (cf. Fig. 3.4,
p. 47). Additionally, no transition in the automaton built using the refined
rules has more than one target state, which is not the case for the automaton
obtained using the basic translation rules. �

5.6.2 Comparison of the Basic and the Refined Translation Rules

The refined translation rules behave very much like the basic rules given in
Sect. 3.1. For example, because each new translation rule takes a new initial
state for the automaton to be built, the correspondence between states in the
automaton and node subformulas of a given formula ϕ ∈ LTLPNF(AP) is
preserved, and because no new rule changes the transition structure of the

5. REFINING THE BASIC TRANSLATION RULES 147

>
>

p2

p2

(p1 ∧ p2)

(p1 ∧ p2) p1

p1

p5

p5

(p4 ∧ p5)

(p4 ∧ p5)

(p3 ∧ p5)
(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

Fig. 5.10: Automaton constructed for the LTL formula
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]
using the refined translation rules

component automata to which the rule is applied, the compound automata
will again be self-loop alternating automata. Also all transition guards are still
formed as conjunctions of atomic formulas.

The main difference between the original and the new rules concerns the
handling of acceptance conditions. Recall from the discussion in Sect. 3.1.1
that, in any automaton built using the original translation rules, every transi-
tion with a nonempty set of acceptance conditions always starts from a state
corresponding to a strong temporal eventuality subformula. Furthermore, all
self-loops starting from such a state share the same acceptance condition that
is nevertheless unique in the sense that it is never included in the accep-
tance conditions of any transition starting from another state in the automa-
ton. The refined rules, however, change this behavior: although the rules for
the strong temporal connectives still introduce new acceptance conditions
as before, the rules for the weak temporal connectives and the ∧ connec-
tive may cause an initial transition of a compound automaton to inherit its
acceptance conditions from a transition in a component automaton. Intu-
itively, an acceptance condition may thus propagate from transitions defined
during the translation towards transitions defined later in the translation via
chains of states corresponding to nested weak eventualities or conjunctions in
the given LTL formula. The “oldest” state of each such chain corresponds to
a strong temporal eventuality subformula or the conjunction of binary tem-
poral formulas. Therefore, an automaton built using the new rules may con-
tain self-loops that share a common acceptance condition even though they
have different source states; additionally, as illustrated in Ex. 5.6.1, appli-
cations of the new rule for the ∧ connective may result in states with self-
loops associated with multiple acceptance conditions. Nevertheless, because
the new rules preserve the acceptance closure of transitions and the exis-
tence of representative states for acceptance conditions (Lemma 5.4.8 and
Lemma 5.5.4; as a matter of fact, a state corresponding to a strong temporal
eventuality will remain representative for the corresponding acceptance con-
dition throughout the translation), all automata built using the rules can still
be translated into nondeterministic automata using the simple construction
of Theorem 4.3.2 (or the construction of Proposition 4.5.2, which exploits
syntactic implications).

148 5. REFINING THE BASIC TRANSLATION RULES

Clearly, changing the translation rules necessitates a reconsideration of
the upper bounds obtained in Sect. 3.2 for the sizes of the components of
a self-loop alternating automaton corresponding to an LTL formula ϕ ∈
LTLPNF(AP). Recall that the contribution of any automaton built for some
subformula ψ ∈ NSub(ϕ) to the number of states in the automaton for ϕ
depends on the number of states reachable from the initial state of the au-
tomaton for ψ; obviously, this fact still holds when using the new translation
rules.

In the worst case, the original translation rules for the binary temporal
connectives create compound automata in which both initial states of the
component automata are reachable from the initial state of the compound
automaton. (This worst case occurs whenever both component automata
have initial self-loops.) Although the new translation rules sometimes avoid
introducing transitions to the initial state of one of the component automata
even if this automaton has an initial self-loop, it is easy to see that the worst
case cannot be completely avoided since the rules for the Until connectives
under a negative language containment assumption coincide with the origi-
nal translation rules. Nevertheless, the number of states reachable from the
initial state of an automaton built for a binary pure temporal formula using
the new rules will never exceed the corresponding number of states in an au-
tomaton built for the same formula using the original rules, and thus the size
limit of Corollary 3.2.2 remains valid for a translation procedure extended
with the new rules for the binary temporal connectives.

The reasoning used in Sect. 3.2 to arrive at Proposition 3.2.1 does not ap-
ply, however, to the new translation rule for the ∧ connective. Because this
rule may introduce initial self-loops to a compound automaton, the initial
state of this compound automaton may become reachable from itself; obvi-
ously, this never occurs when using the original translation rule for the ∧
connective. Because of these initial self-loops, the initial state of the com-
pound automaton will thus remain reachable also from any automaton ob-
tained from this compound automaton using further translation rules. Con-
sequently, the upper bound given in Corollary 3.2.2 for the size of an au-
tomaton corresponding to an LTL formula ϕ ∈ LTL(AP) is not valid for
a translation procedure extended with the new rule for the ∧ connective; a
straightforward correction to this result necessitates taking also all formulas of
the form (ϕ1∧ϕ2) ∈ Sub(ϕ) into account. This version of the result is, how-
ever, less optimal than the original one. As a matter of fact, it is easy to find
examples where the original translation rule outperforms the new rule as far
as the number of states reachable from the initial state of the final automaton
is concerned.

Example 5.6.2 Consider translating the formula

(
(Fp1 ∧ Fp2) ∨ p3

)
≡

((
(>Us p1) ∧ (>Us p2)

)
∨ p3

)
∈ LTL

(
{p1, p2, p3}

)

into an automaton using both the original and the new translation rules. Ap-
plying the original ∧ rule to the automata built for the formulas (>Us p1)
and (>Us p2) (and then simplifying the guards of transitions) results in the
automaton shown in Fig. 5.11 (a). On the other hand, using the new transla-
tion rule to build an automaton for the same formula will cause the self-loops

5. REFINING THE BASIC TRANSLATION RULES 149

PSfrag

>>

>

p1

p1

p2

p2

(p1 ∧ p2)

>>

>

p1

p1

p2

p2

(p1 ∧ p2)

(a) (b)

>

>>
p1

p1

p2

p2

(p1 ∧ p2) p3

>

>>

>

p1

p1

p1

p2

p2

p2

(p1 ∧ p2)

(p1 ∧ p2)

p3

(c) (d)

Fig. 5.11: Greedy application of the refined translation rule for the ∧ connective
may result in alternating automata with a suboptimal number of states. (a)–(b) Au-
tomata built for the formula (Fp1 ∧ Fp2) using the original (a) and refined rules (b),
respectively; (c)–(d) Automata built for the formula

(
(Fp1 ∧ Fp2) ∨ p3

)
by applying

the ∨ translation rule to the automata (a) and (b), respectively

starting from the initial states of the component automata to be merged into
an initial self-loop of the compound automaton (Fig. 5.11 (b)).

Applying the ∨ rule to the automaton built using the original rules results
in the automaton shown in Fig. 5.11 (c). Clearly, the initial state of the
automaton shown in Fig. 5.11 (a) is not reachable from the initial state of this
automaton. On the other hand, applying the same rule to the automaton in
Fig. 5.11 (b) results in “unrolling” the initial self-loop of this automaton into
an initial transition of the automaton shown in Fig. 5.11 (d). However, there
are now three (instead of two) states reachable from the initial state of this
automaton. �

As seen from the above example, the assumption that merging the initial
segments of two branches of an accepting run of a compound automaton
(built using the original ∧ rule) results in a reduction in the number of states
in the automaton is obviously very optimistic. To minimize the number of
states in the alternating automaton, the rule should therefore be used only
sparingly, for example, only if the application of the rule leaves an initial
state of a component automaton unreachable from the initial state of the
compound automaton built using the rule. For instance, this simple heuris-
tic would already prevent the situation that arises in Ex. 5.6.2.

Nevertheless, there is a difference between the automata in Fig. 5.11 (c)
and Fig. 5.11 (d) as regards translating these automata into nondetermin-
istic automata: because the automaton in Fig. 5.11 (d) has no transitions

150 5. REFINING THE BASIC TRANSLATION RULES

with two or more target states, this automaton can be completed directly into
a nondeterministic automaton by an application of Lemma 4.6.1. On the
other hand, this completion result does not apply to the automaton shown
in Fig. 5.11 (c); as a matter of fact, applying the universal subset construc-
tion (Theorem 4.3.2) to this alternating automaton yields a nondeterminis-
tic automaton that is identical to the one obtained from the automaton in
Fig. 5.11 (d) as described above. Intuitively, the new rule for the ∧ connec-
tive can thus be said to “reduce universality” (i.e., the number of target states)
in the transitions of the alternating automaton at the cost of the size of the
state set of the automaton.

5.6.3 Extension of the Subclass LTLCND

We end this section by studying the effects of the new translation rules on
the set of LTL formulas closed under translation into automata which can
be completed into nondeterministic automata without applying the univer-
sal subset construction (previously considered in Sect. 4.6). The fact that the
automata built from certain LTL formulas we have seen in previous exam-
ples (Fig. 5.10 and Fig. 5.11 (d)) can be completed into nondeterministic
automata by an application of Lemma 4.6.1 is not a coincidence. First, we
shall list closure properties of the new translation rules, and then use them
to define a simple, yet more expressive, syntactic extension of the subclass
LTLCND, for which the satisfiability problem (discussed in Sect. 4.6.5) re-
mains NP-complete.

Closure Properties of Refined Translation Rules
Let ϕ ∈ LTL(AP) be an LTL formula, and let θ1, θ2 ∈ PL(AP) be two
Boolean formulas. It is clear from the syntactic definition of LTLCND(AP)
(Sect. 4.6.3, p. 107) that this subclass of LTL includes all formulas of the form
θ1, (θ1 U θ2) and (θ1 R θ2) (where both strong and weak variants of U and R

are allowed). More precisely, as argued in Sect. 4.6.3, the basic translation
rules map any formula of one of these forms into a self-loop automaton, in
which the subautomaton rooted at the initial state of the automaton consists
of a single state; obviously, this fact still holds when using the new translation
rules for the ∧, U and R connectives. In short, we say that these formulas
translate into single-state automata; it is clear that every single-state automa-
ton is trivially a self-loop automaton that can be extended into a nondeter-
ministic automaton by applying Lemma 4.6.1. Furthermore, we say that an
automaton is a single-state loop automaton iff the automaton is a single-state
automaton, all initial transitions of which are self-loops. For illustration, see
Fig. 5.8 (a) and Fig. 5.8 (b) for single-state automata, and Fig. 5.8 (c) and
Fig. 5.8 (d) for single-state loop automata.

The new translation rules have the following simple closure properties on
the translation of LTL formulas into single-state (loop) automata.

Lemma 5.6.3 Let ϕ ∈ LTL(AP) be an LTL formula which can be trans-
lated into a single-state automaton. The formulas (ϕU⊥) and (⊥Rϕ) can
be translated into single-state loop automata.

Proof: Let Aϕ and A⊥ be single-state automata built for the formulas ϕ and

5. REFINING THE BASIC TRANSLATION RULES 151

⊥, respectively. Because L(⊥) = ∅ ⊆ L(ϕ) holds trivially, the formulas
(ϕU⊥) and (⊥Rϕ) can be translated into automata using the optimized
translation rules in Table 5.3. Because the automaton built for the formula
⊥ has no initial transitions, it is easy to see that every initial transition of the
compound automaton built from Aϕ and A⊥ will be a self-loop obtained
from an initial transition of the automaton Aϕ. Because Aϕ is a single-state
automaton, the target state set of each transition of Aϕ is either the empty
set, or it consists of the initial state of Aϕ. The result now follows because the
optimized translation rules remove the initial state of Aϕ from every initial
transition of Aϕ when converting it to an initial self-loop of the compound
automaton. �

Lemma 5.6.4 Let ϕ1, ϕ2 ∈ LTL(AP) be two LTL formulas translatable into
single-state loop automata. The LTL formula (ϕ1∧ϕ2) can be translated into
a single-state loop automaton.

Proof: Let A1 and A2 be single-state loop automata built for the formulas
ϕ1 and ϕ2, respectively. Because all pairs of initial transitions of A1 and
A2 consist of self-loops of the automata, all of these pairs of transitions are
merged by the new rule for the ∧ connective into initial self-loops of the
compound automaton built from A1 and A2; furthermore, the initial states
of the component automata are not included in the target states of these self-
loops. The result now follows because A1 and A2 are single-state automata.

�

Lemma 5.6.3 and Lemma 5.6.4 can be used to identify a simple syntactic
subclass of LTL formulas which can be translated into single-state automata.
Formally, we define this subclass LTL1-state(AP) (in terms of an auxiliary
subclass LTL1-loop(AP)) as the smallest set of LTL formulas closed under
finite application of the mutually recursive rules

If θ1, θ2 ∈ PL(AP) and ϕ ∈ LTL1-loop(AP), then
θ1, (θ1 U θ2), (θ1 R θ2), ϕ ∈ LTL1-state(AP); and

if ϕ ∈ LTL1-state(AP) and ψ1, ψ2 ∈ LTL1-loop(AP), then
(ϕU⊥), (⊥Rϕ), (ψ1 ∧ ψ2) ∈ LTL1-loop(AP).

(where U and R can be binary temporal connectives of any strength).
The above syntactic definition of LTL1-state(AP) was obtained without

considering the semantics of the formulas formed using the recursive rules.
As a matter of fact, there are in practice only few meaningful ways to apply the
recursive rules to obtain formulas that cannot be trivially expressed as simpler
formulas in the subclass. For example, given a formula ϕ ∈ LTL1-state(AP),
it does not make sense in practice to write formulas of the form (ϕUs ⊥)
or (⊥Rs ϕ), since each of these formulas is trivially equivalent to the for-
mula ⊥ as is easily seen from the semantics of the strong binary tempo-
ral operators. Likewise, if ϕ ∈ LTL1-loop(AP) holds, then it is easy to see
that (ϕUw ⊥) ≡ (⊥Rw ϕ) ≡ ϕ holds (if the automaton built from ϕ is
a single-state loop automaton, then the automaton built from this automa-
ton for either of these formulas using the new translation rules is structurally
identical to the automaton for ϕ). As a nontrivial special case, however, the

152 5. REFINING THE BASIC TRANSLATION RULES

subclass LTL1-state(AP) contains all formulas of the form
∧

1≤i≤n GFθn ≡∧
1≤i≤n

(
⊥Rw (>Us θn)

)
(where 0 ≤ n < ω, and θi ∈ PL(AP) for all

1 ≤ i ≤ n).1

The following lemma states a further consequence of the new translation
rules.

Lemma 5.6.5 Let ϕ1, ϕ2 ∈ LTL(AP) be LTL formulas which can be trans-
lated into single-state automata, and let θ ∈ PL(AP) be a Boolean formula.
The LTL formulas (ϕ1 ∧ ϕ2) and (θRϕ1) can be translated into self-loop
automata with no transitions having two or more target states.

Proof: Let A1, A2 and Aθ be single-state automata built for the formulas
ϕ1, ϕ2 and θ, respectively. Because A1 and A2 are single-state automata, no
transition in either automaton has two or more target states.

The new translation rule for the ∧ connective merges pairs of initial tran-
sitions of A1 and A2 into initial transitions of a compound automaton for the
formula (ϕ1∧ϕ2). Let t be one of these transitions. Obviously, the transition
t has at most one target state if it was built from a pair of transitions, one (or
both) of which had an empty set of target states. Otherwise t was built from
a pair of self-loops of the automata A1 and A2, in which case t is a self-loop
of the compound automaton. Because A1 and A2 are single-state automata,
it is easy to see from the definition of the new ∧ rule that t has exactly one
target state also in this case.

An automaton for the formula (θRϕ1) can be built using the universally
applicable version of the optimized rule for the Release connective. Every
initial transition of this automaton is either a self-loop obtained from an ini-
tial transition of A1 by removing the initial state of A1 from the target states
of this transition, or a transition whose target states comprise the union of
the target states of an initial transition of Aθ and an initial transition of A1.
Because A1 is a single-state automaton and the target state set of every tran-
sition of Aθ is empty, it follows that all initial transitions of the compound
automaton have at most one target state (which is either the initial state of
the compound automaton, or the initial state of A1). �

The Subclass LTLCND+

Combining the above definition of LTL1-state(AP) with Lemma 4.6.2 and
Lemma 5.6.5, we obtain the following syntactic definition of a subclass of
formulas which can be translated (effectively using a translation procedure
extended with the new translation rules for the ∧, U and R connectives) into
self-loop alternating automata with no transitions having two or more target
states. (The proof that this is indeed the case proceeds similarly to the proof

1Formulas of the form
∧

1≤i≤n GFθn are sometimes used as simple fairness constraints
to restrict verification of an LTL formula ϕ to computations that satisfy a set of proposi-
tional constraints infinitely often, using formulas of the form ¬

(
(
∧

1≤i≤n GFθn) → ϕ
)
≡(

(
∧

1≤i≤n GFθn) ∧ ¬ϕ
)

in verification. Because any fairness constraint of this form can be
translated into a single-state automaton (as observed already by Couvreur [1999]), the alter-
nating automaton built for the formula [¬ϕ]PNF combined with the fairness constraint is
never more than two states larger than the automaton built for the formula [¬ϕ]PNF.

5. REFINING THE BASIC TRANSLATION RULES 153

of Proposition 4.6.3, using Lemma 5.6.5 as an additional base case for induc-

tion.) Formally, we define the subclasss LTLCND+
(AP) as the smallest set of

LTL formulas closed under finite application of the syntactic rule

If θ ∈ PL(AP), ϕ1, ϕ2 ∈ LTL1-state(AP), and ψ1, ψ2 ∈ LTLCND+
(AP),

then
ϕ1, (ϕ1 ∧ ϕ2), (θ Rϕ1), Xψ1, (ψ1 ∨ ψ2), (ψ1 ∧ θ), (θ ∧ ψ1), (θUψ1),

(ψ1 R θ) ∈ LTLCND+
(AP)

(where U and R can be either weak or strong binary temporal connectives).

Similarly to the class LTLCND(AP), LTLCND+
(AP) is closed under rewrit-

ing formulas into positive normal form. For example, it is straightforward to
check from the syntactic definition that the formula

[((
⊥Rw (>Us p1)

)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]

considered in Ex. 3.1.1 and Ex. 5.6.1 belongs to the class LTLCND+
(AP),

and the same holds for the formula
((

(>Us p1)∧(>Us p2)
)
∨p3

)
considered

in Ex. 5.6.2.

Expressiveness and Satisfiability
Because PL(AP) ⊆ LTL1-state(AP) holds, it is easy to see from the syntac-

tic definition that LTLCND(AP) ⊆ LTLCND+
(AP) holds. Therefore, every

LTL formula expressible in LTLCND(AP) is trivially logically equivalent to

a formula in LTLCND+
(AP). This property does not hold in the converse

direction, however: the class LTLCND+
(AP) is strictly more expressive than

the subclass LTLCND(AP) for any nonempty set of atomic propositions AP .
(We prove this result only indirectly, referring to known results [Clarke and
Draghicescu 1989; Maidl 2000a] on the relative expressive power of LTL
and the branching time temporal logics CTL [Clarke and Emerson 1982a,b]
and CTL? [Emerson and Halpern 1983, 1986]; see, for example, [Emerson
1990] for an introduction into the syntax and semantics of these branching
time logics.)

Proposition 5.6.6 Let AP be a nonempty set of atomic propositions. The

subclass LTLCND+
(AP) is strictly more expressive than LTLCND(AP).

Proof: Let p ∈ AP be an atomic proposition. Consider the LTL formula

GF¬p ≡
(
⊥Rw (>Us ¬p)

)
∈ LTL(AP). Obviously, because (>Us ¬p) ∈

LTL1-state(AP) holds,
(
⊥Rw (>Us ¬p)

)
∈ LTLCND+

(AP) holds by the syn-

tactic definition of LTLCND+
(AP). We show that no formula in the subclass

LTLCND(AP) is logically equivalent to this formula.
Suppose that there exists a formula ϕ ∈ LTLCND(AP) such that ϕ ≡(

⊥Rw (>Us ¬p)
)
≡ GF¬p holds. By Proposition 4.6.6, ϕ is also logically

equivalent to the formula [ϕ]det ∈ LTLdet(AP) obtained from ϕ by applying

the rewrite rules presented in Sect. 4.6.4. Let ψ
def
=

[
¬[ϕ]det

]PNF
be the

positive normal form of ¬[ϕ]det; clearly, ψ ≡ ¬ϕ ≡ ¬GF¬p ≡ FGp holds,

and by the definition of LTLdet(AP), ψ belongs to the subclass LTLdet(AP)

154 5. REFINING THE BASIC TRANSLATION RULES

of Maidl [2000a]. By Corollary 1 of [Maidl 2000a], there exists a formula ψ′

in the branching time logic CTL such that the model checking problems for
the formula ψ′ and the CTL? formula Aψ ≡ A(FGp) have the same answer in
every state in every structure. This is, however, a contradiction, because the
formula A(FGp) is known to be not equivalent in this sense to any formula in
the logic CTL [Clarke and Draghicescu 1989]. Therefore, our assumption
that ϕ ∈ LTLCND(AP) holds is incorrect, and the result follows. �

Let ϕ ∈ LTLCND+
(AP) be a formula. Because the translation proce-

dure extended with the rules presented in this chapter still maps all Boolean
formulas into single-state automata, and because each application of a new
translation rule adds one new state to the constructed automaton, the num-
ber of states in an automaton built from [ϕ]PNF is bounded by the length
of ϕ. Clearly, also the number of acceptance conditions in this automaton
still remains bounded by |ϕ|: identically to the basic translation, the new
translation rules introduce new acceptance conditions only for binary tem-
poral subformulas with a strong main connective. By Lemma 4.6.1, the au-
tomaton can be completed into a nondeterministic automaton with at most
1 + |ϕ| states. Proposition 4.6.10 now applies to show that formulas in the

class LTLCND+
(AP) have the same “small model” property as the formulas

in the class LTLCND(AP). Therefore, a consideration identical to the one in
the proof of Corollary 4.6.11 shows that also the decision problem for satisfi-

ability in LTLCND+
(AP) is NP-complete.

Proposition 5.6.7 Let AP be a countably infinite set of atomic propositions.

The satisfiability problem for LTLCND+
(AP) is NP-complete.

As noted in Sect. 4.6.5, the satisfiability of a CTL formula obtained from a
formula ϕ ∈ LTLCND(AP) by prefixing all of its temporal operators with the
existential CTL path quantifier implies the existence of a nonbranching tree
(i.e., a word) model for the CTL formula, and this model can be identified
with a model for ϕ. This correspondence between ∃CTL satisfiability and
the existence of word models does not directly carry over to ∃CTL formulas

obtained from those in the subclass LTLCND+
(AP) using the same conver-

sion, however: for example, applying the conversion to the LTL formula

(Fp ∧ G¬p) ≡
(
(>Us p) ∧ (⊥Rw ¬p)

)
∈ LTLCND+(

{p}
)

yields the satisfiable ∃CTL formula
(
E(>Us p)∧ E(⊥Rw ¬p)

)
, which never-

theless has no word model because the LTL formula is unsatisfiable. Hence,
the NP-completeness of ∃CTL satisfiability [Kupferman and Vardi 1995,
2000] does not directly allow to conclude the above NP-completeness result

for satisfiability in LTLCND+
(AP) unlike in the case for LTLCND(AP).

5. REFINING THE BASIC TRANSLATION RULES 155

6 REMOVING REDUNDANT TRANSITIONS

The refined translation rules introduced in the previous chapter can be seen
as heuristics for simplifying self-loop alternating automata built using the
basic rules of Sect. 3.1 by replacing some of their transitions with transi-
tions having fewer target states without changing the language of the au-
tomata. The refined rules do not explicitly aim for reducing the actual
number of states or transitions in an automaton, however; all such reduc-
tions (if any) arise only as indirect side effects of applying the refined rules.
In this chapter, we shall explore techniques for detecting redundant tran-
sitions that can be removed from a self-loop alternating automaton with-
out changing its language. Formally, a transition t ∈ ∆ of an automaton
A = 〈Σ, Q,∆, qI ,F〉 is (fin-)redundant iff A is fin-equivalent to the automa-
ton A′ =

〈
Σ, Q,∆ \ {t}, qI ,F

〉
obtained from A by removing the transition

t from ∆. (Clearly, if A is a self-loop alternating automaton, then so is A′,
because the automaton A′ obviously has at most as many simple cycles as A.
Therefore, all heuristics specific to the simplification of self-loop alternating
automata remain applicable to A′ and any automaton obtained from it by
removing more transitions.)

The incremental translation procedure for building increasingly complex
automata from simpler automata can easily be combined with on-the-fly tran-
sition redundancy analysis [Gastin and Oddoux 2001]. Because the structure
of every automaton A built using a rule in the translation procedure from
LTL into automata remains unchanged in any further application of a rule
that uses A as a component, the language of A remains fixed regardless of
the way the translation rules are used after A has been defined. Therefore,
the automaton A can be scanned for redundant transitions immediately af-
ter constructing it. In particular, removing all redundant initial transitions
of A before applying another translation rule reduces the effort needed for
building a compound automaton in which A occurs as a component, as
well as any automaton built incrementally from these component automata.
This kind of on-the-fly transition redundancy analysis is conceptually more
difficult to combine with tableau-based procedures for translating LTL di-
rectly into nondeterministic automata due to the “top-down” approach used
in these procedures to construct the automaton. The requirement for ac-
cess to a complete automaton for ϕ is implicit also in the design of many
minimization techniques based on the use of simulation relations [Etessami
and Holzmann 2000; Somenzi and Bloem 2000; Etessami et al. 2001, 2005;
Etessami 2002; Fritz and Wilke 2002, 2005; Gurumurthy et al. 2002].

We shall concentrate on the detection of redundant initial transitions of
self-loop alternating automata due to its above potential benefits in reducing
the effort needed for the incremental application of the translation rules. Ob-
viously, this restriction will in the general case miss some opportunities for
removing transitions: even though the translation procedure is “modular” in
the syntactic structure of the formula, it is not modular in the sense that every
nonredundant initial transition of an automaton would remain nonredun-
dant in automata built from it incrementally. For example, the automaton
built from the formula

(
Fp1 ∨ X(Gp1 ∨ p2)

)
∈ LTL

(
{p1, p2}

)
with the basic

156 6. REMOVING REDUNDANT TRANSITIONS

q1

q2 q3

q4

>
>>

p1

p1p1

p1

p2

Fig. 6.1: A self-loop alternating automaton A built for the formula
(
Fp1 ∨ X(Gp1 ∨

p2)
)
. The transition from the state q3 to the state q4 is redundant in A even though

it is not redundant in Aq3

translation rules has redundant (non-initial) transitions even though no sub-
automaton rooted at one of its non-initial states has any redundant transitions
(see Fig. 6.1). Of course, this phenomenon is hardly surprising because of
the obvious analogy between incremental transition redundancy analysis and
the task of simplifying a compound LTL formula built from one or two ar-
bitrary subformulas and a connective. Nevertheless, the “local” approach to
the detection of redundant transitions has, besides special cases that are eas-
ier to check than the general case, advantages that ease the implementation
of the translation procedure. For example, restricting redundancy analysis
to the transitions starting from the initial state of an automaton will trivially
preserve the correspondence between the states of the automaton and the
node subformulas of the formula under translation. Therefore the subau-
tomata built for these subformulas remain directly accessible in case they are
needed again in the translation if some of these subformulas occur multiple
times in the formula.

6.1 REDUNDANT TRANSITIONS AND LANGUAGE CONTAINMENT

It is clear that any transformation used for simplifying an alternating automa-
ton A is correct (in the sense that it preserves the language fin-recognized by
the automaton) iff A and the automaton A′ built in the transformation satisfy
the language containment relationships

Lfin(A) ⊆ Lfin(A
′) and Lfin(A

′) ⊆ Lfin(A).

In particular, if the automaton A′ is obtained from A by removing transi-
tions, it is easy to see that the right-hand condition holds trivially between
the automata, since all fin-accepting runs of A′ are fin-accepting runs of A
in this case. In transition redundancy analysis, it is thus sufficient to check
that the left-hand language containment relationship holds between the au-
tomata. By the classic reformulation of language containment (see Sect. 5.2),
this test involves finding an automaton for the language Lfin(A′). In the lan-
guage containment based optimizations of Sect. 5.3 and Sect. 5.5, a self-loop

6. REMOVING REDUNDANT TRANSITIONS 157

alternating automaton that recognizes the complement of the language of
another self-loop alternating automaton could be found by reusing the trans-
lation procedure from LTL into automata because the automaton had been
originally built for a known (subformula of an) LTL formula. However, the
present language containment problem differs from these previous cases in
that the automaton A′ is now obtained directly from another automaton in-
stead of an LTL formula. Even if the automaton A did correspond to a known
LTL formula, removing a transition from it may break this correspondence,
and checking whether this is the case is merely a restatement of the language
containment problem.

If the given automaton A is a self-loop alternating automaton, then obvi-
ously also the automaton A′ obtained from A by removing one of its transi-
tions is such an automaton. Therefore, an LTL formula ψ corresponding to
the automaton A′ can be found, for example, via the reverse translation dis-
cussed in Sect. 3.4. In principle, an automaton for the complement language
Lfin(A′) can be then obtained as before by applying the basic translation pro-
cedure to the positive normal form of ¬ψ. Unfortunately, as noted in the dis-
cussion at the end of Sect. 3.4, a reverse translation procedure based on the
incremental application of the pattern given in Lemma 3.4.1 may yield an
LTL formula with exponentially many syntactically distinct subformulas in
the number of states in the automaton A′, and thus translating the negation
of this formula back into an automaton using the basic translation procedure
requires exponential time. It is nevertheless not always necessary to apply the
reverse translation to all states of the automaton A′: because A and A′ are
self-loop alternating automata that differ only in the transitions leaving the
source state q of the transition that was removed from A, the automaton A′

shares with the automaton A all subautomata that do not include the state
q. If the automaton A was built from an LTL formula ϕ using the translation
rules, it may therefore be possible to substitute some formulas in a reverse
translation pattern directly with subformulas of ϕ corresponding to these sub-
automata. It is thus sufficient to apply the reverse translation to the state q
in addition to all states of which q is a descendant in A′; in other words, the
cost of reverse translation increases with the length of the longest path from
the initial state of A′ to the state q. If the redundancy analysis is restricted to
the initial transitions of A, however, the formula ψ can be found from A′ in
a single reverse translation step applied to the initial state of the automaton.

Even though some subformulas of ϕ can be reused in the reverse transla-
tion procedure for finding an LTL formula ψ corresponding to the automa-
ton A′, the automata built for these subformulas cannot in the general case
be reused in the translation of the positive normal form of ¬ψ back into an
automaton without repeating the translation procedure. Although this re-
quirement is in fact common to all language containment checks presented,
the reverse translation used in the present case is nevertheless likely to intro-
duce formulas that are not subformulas of ϕ nor the positive normal form of
¬ϕ. Because the formula ψ also depends on the particular transition cho-
sen for the redundancy analysis, it becomes difficult to estimate beforehand
the actual number of formula translation subproblems that will arise during
the construction and simplification of a self-loop alternating automaton built
from the formula ϕ. In the next section, we examine special cases of tran-

158 6. REMOVING REDUNDANT TRANSITIONS

sition redundancy analysis in which the reverse translation can be avoided
by dividing the language containment test Lfin(A) ⊆ Lfin(A

′) into several
subproblems. These special cases allow for limited transition redundancy
analysis while keeping the formula translation subproblems within the set of
node subformulas of ϕ and (the positive normal forms of) their negations.

6.2 DETECTING REDUNDANT INITIAL TRANSITIONS BY TRANSITION SUB-

STITUTION

In this section, we develop heuristics for detecting redundant initial transi-
tions in self-loop alternating automata without solving the general language
containment problem presented in Sect. 6.1. Our results combine local
structural analysis of the automata with language containment checks that
can be handled by applying the basic translation only to node subformulas
of a given LTL formula or their negations. In some cases, however, we have
to trade the language containment test between two languages (as described
in the previous section) for a more general one that involves containment
between set intersections of languages. We present our results using arbi-
trary self-loop alternating automata; their application to self-loop alternating
automata with acceptance synchronized runs will be discussed in Sect. 6.2.5.

6.2.1 Redundant Transitions and Runs of an Automaton

Rephrasing the criterion on transition redundancy as a condition on runs of
an automaton A, we see a transition to be redundant iff, for every accept-
ing run of A that contains an edge labeled with the transition, there exists
another accepting run (on the same input) in which the automaton avoids
taking this transition. This high-level intuition of finding accepting runs in
which the automaton avoids taking a given transition forms the basic strat-
egy of proving the results of this section by modifying accepting runs of A
that contain edges labeled with the transition into accepting runs that do not
contain such edges.

By the above characterization, a transition is obviously redundant if it
never occurs in any accepting run of the automaton. We have already used
this fact previously in Corollary 2.3.11 and Sect. 5.1.2 for removing transi-
tions with an empty guard (characterizable by an unsatisfiable Boolean for-
mula in PL(AP) in automata having the alphabet 2AP), or transitions that
spawn a collection of subautomata, the intersection of whose languages is
empty.

Obviously, all redundant transitions of self-loop alternating automata do
not necessarily fall into the above category, and the automaton may well have
accepting runs, some edges of which are labeled with redundant transitions.
In the following, we shall investigate conditions under which these runs can
be modified into accepting runs in which the automaton avoids taking such
transitions. Formally, we shall often make use of the following result that
characterizes an obvious way to extract a semi-run avoiding a given transition
from any run of the automaton by truncating every branch of the run at the
first occurrence of an edge labeled with the transition. If this semi-run can

6. REMOVING REDUNDANT TRANSITIONS 159

then be extended back into an accepting run (on the same input) that still
avoids the transition, it follows that the transition is redundant if the same
extension result holds for all words in the language of the automaton.

Lemma 6.2.1 Let G = 〈V,E, L〉 be a fin-accepting run of an alternating
automaton A = 〈Σ, Q,∆, qI ,F〉 on some w ∈ Σω, and let t ∈ ∆ be a
transition of A with source state q ∈ Q. The graph G′ = 〈V ′, E ′, L′〉, where

• V ′
0

def
= {v0}, V ′

i+1
def
=

⋃
v∈V ′

i

{
V ′′ ⊆ Vi+1 〈v, V ′′〉 ∈ E, L

(
〈v, V ′′〉

)
6= t

}

for all 0 ≤ i < ω,

• E ′ def
=

{
〈v, V ′′〉 ∈ E {v} ∪ V ′′ ⊆ V ′, L

(
〈v, V ′′〉

)
6= t

}
, and

• L′(x)
def
= L(x) for all x ∈ V ′ ∪E ′,

is a fin-accepting semi-run of A on w such that none of the edges of E ′ is
labeled with the transition t, and every node of G′ with no outgoing edges is
labeled with the state q.

Proof: Obviously, V ′ ⊆ V (with V ′
i ⊆ Vi for all 0 ≤ i < ω) and E ′ ⊆ E hold;

because G is a run, it follows that G′ can be partitioned into finite disjoint
levels with edges between successive levels of G′.

Because G is a run of A, L′(v0) = L(v0) = qI holds. Let v ∈ V ′. Because
G is a run and V ′ ⊆ V holds, v has a unique consistently labeled outgoing
edge e ∈ E inG. Because E ′ ⊆ E holds, v now has either no outgoing edges
in G′, or v keeps its unique outgoing edge; by the definition of E ′, this edge
is always labeled with a transition different from t. Because L′(x) = L(x)
holds for all x ∈ V ′ ∪ E ′, the labeling of e is still consistent in G′.

Let v′ ∈ V ′
i for some 1 ≤ i < ω. From the definition of V ′ it follows that

there exists a node v ∈ V ′
i−1 and an edge e = 〈v, V ′′〉 ∈ E, v′ ∈ V ′′, such

that L(e) 6= t holds. Therefore e ∈ E ′ holds, and G′ is a semi-run of A on w.
Clearly, because every infinite branch β ′ ∈ B(G′) is also an infinite

branch in G and L′(e) = L(e) holds for all e ∈ E ′, fin(β ′) = ∅ holds in
both G and G′, and thus G′ is a fin-accepting semi-run of A.

Finally, if v ∈ V ′ has no outgoing edges, then the unique edge starting
from v in G is labeled with the transition t, and because the labeling of G is
consistent, v is labeled with the source state of t in G, i.e., L(v) = q = L′(v)
holds. �

6.2.2 Transition Substitution

Obviously, a run of a self-loop alternating automaton can be modified to
avoid a given transition, for example, if the automaton has another transition
that can be substituted for every occurrence of the given transition in the
run. Clearly, such a substitution can be made only if the transitions share
their source state, and if the automaton could in fact have taken either of the
transitions at each occurrence of the given transition in the run. Formally,
given two transitions t = 〈q,Γ, F,Q′〉 ∈ ∆ and t′ = 〈q′,Γ′, F ′, Q′′〉 ∈ ∆ of

an alternating automaton A = 〈Σ, Q,∆, qI ,F〉 and a set Γ̂ ⊆ Γ of symbols
from the automaton’s alphabet, we say that the transition t′ is Γ̂-substitutable

160 6. REMOVING REDUNDANT TRANSITIONS

for t (in a run of A) iff t 6= t′, q = q′ and Γ̂ ⊆ Γ′ hold. The transitions t and
t′ are called the substituted and the substituting transitions, respectively. (If
the guards Γ̂ and Γ′ are represented in an automaton with the alphabet 2AP

using their characteristic Boolean formulas θ̂ ∈ PL(AP) and θ′ ∈ PL(AP),
respectively, then Γ̂ ⊆ Γ′ holds iff the propositional implication (θ̂ → θ′) is
valid.)

Let t and t′ be two transitions of an alternating automaton A with the
components specified above. Obviously, renaming an edge labeled with the
transition t in a run of A with the transition t′ (using the above criterion
for substitutability) necessitates that t and t′ share their set of target states to
keep the labeling of the run consistent. In accepting runs of the automa-
ton, however, a less restrictive strategy for substituting the transition t′ for
an occurrence of the transition t is to require (besides substitutability) that
the subautomata rooted at the target states of t′ accept the remainder of the
input beginning at the level following the occurrence of t. Intuitively, the
run could thus be first modified into an accepting semi-run of A (apply-
ing the principle in Lemma 6.2.1 to remove the occurrence of t from the
run), and then extended back into an accepting run of A using accepting
runs of subautomata rooted at the target states of t′ on the rest of the input
(Proposition 2.3.14). Formally, for all Γ̂ ⊆ Γ, we say that the transition t′ is
Γ̂-substitutable for t under fin-acceptance iff t′ is Γ̂-substitutable for t′, and⋂
q′∈Q′ Lfin(A

q′) ⊆
⋂
q′∈Q′′ Lfin(A

q′) holds.

6.2.3 Substitutability and Redundant Initial Transitions of Self-loop Automata

Substitutability of transitions under fin-acceptance suggests a general strat-
egy for detecting redundant transitions in an alternating automaton by find-
ing sufficient conditions under which every occurrence of an edge labeled
with a transition t = 〈q,Γ, F,Q′〉 in a fin-accepting run of the automaton
can be replaced (along with the fragment of the run starting from the source
node of the edge) for all σ ∈ Γ with an edge labeled with another transition
that is {σ}-substitutable for the transition t under fin-acceptance. Unfortu-
nately, the local criteria on substitutability under fin-acceptance are not al-
ways sufficient to guarantee this global substitutability property if some of the
languages recognized by the subautomata rooted at the target states of a sub-
stituting transition depend on the substituted transition. For example, even
though the •-transition of the automaton shown on the left in Fig. 5.8 (c)
(p. 146) is substitutable for the transition with no acceptance conditions un-
der fin-acceptance for all models of the guard p1, the run obtained from a
fin-accepting run of the automaton by substituting the •-transition for every
occurrence of the other transition is no longer fin-accepting.

Because the language of an automaton depends only on the subautoma-
ton rooted at its initial state (Proposition 2.3.12), checking that the source
state of a substituted transition is neither a target state of a substituting tran-
sition (under fin-acceptance) nor reachable from any of these states in the
automaton provides a sufficient additional condition to ensure that the lan-
guage of the automaton is not changed by the removal of the substituted tran-
sition. In self-loop alternating automata, this property follows immediately if,

6. REMOVING REDUNDANT TRANSITIONS 161

for all symbols σ in the guard of the substituted transition, there exists a non-
self-loop transition that is {σ}-substitutable for it under fin-acceptance.

Proposition 6.2.2 Let t = 〈q,Γ, F,Q′〉 ∈ ∆ be a transition of a self-loop
alternating automaton A = 〈Σ, Q,∆, qI ,F〉. Assume that there exists a
nonempty set of non-self-loop transitions T = {t1, t2, . . . , tn} ⊆ ∆ \ {t}
(for some 1 ≤ n < ω such that ti = 〈q,Γi, Fi, Q

′
i〉 and q /∈ Q′

i hold for all
1 ≤ i ≤ n), such that for all σ ∈ Γ, there exists a transition t′ ∈ T that is {σ}-
substitutable for t under fin-acceptance. The automaton A is fin-equivalent

to the automaton A′ def
=

〈
Σ, Q,∆ \ {t}, qI ,F

〉
obtained from A by removing

the transition t from ∆.

Proof: As noted in Sect. 6.1, Lfin(A
′) ⊆ Lfin(A) holds trivially. To show lan-

guage containment in the other direction, let w ∈ Lfin(A). By Lemma 6.2.1,
we can extract from a fin-accepting run G = 〈V,E, L〉 of A on w a fin-
accepting semi-run G′ = 〈V ′, E ′, L′〉 that contains no edges labeled with the
transition t. Obviously, G′ is then also a fin-accepting semi-run of A′ on w.

Let v ∈ V ′
i for some 0 ≤ i < ω be a node with no outgoing edges in G′;

by the definition of G′, the unique outgoing edge of v in G is labeled with
the transition t = 〈q,Γ, F,Q′〉. Because L is consistent, w(i) ∈ Γ holds, and
the union of the labels of the successors of v in G is equal to Q′, and because
G is fin-accepting, it follows (Proposition 2.3.9) that Aq′ fin-accepts wi+1 for
all q′ ∈ Q′, i.e., wi+1 ∈

⋂
q′∈Q′ Lfin(A

q′) holds.
Because w(i) ∈ Γ holds, there exists an index 1 ≤ j ≤ n such that

the transition tj = 〈q,Γj, Fj , Q
′
j〉 ∈ T is

{
w(i)

}
-substitutable for t un-

der fin-acceptance. Therefore w(i) ∈ Γj and wi+1 ∈
⋂
q′∈Q′ Lfin(A

q′) ⊆⋂
q′∈Q′

j
Lfin(A

q′) hold, and it follows that Aq′ fin-accepts wi+1 also for all

q′ ∈ Q′
j . By Proposition 2.3.15, it follows that the automaton Aq has a fin-

accepting run on wi, where the edge starting from the node at level 0 of this
run is labeled with the transition tj , and the target nodes of this edge are la-
beled with the states in Q′

j . By Proposition 2.3.6, all states in this run (except
possibly the node at level 0) are labeled with descendants of the state q. But
then, because q /∈ Q′

j holds and Aq is a self-loop alternating automaton, it
follows that no state at a level greater than 0 is labeled in this run with the
state q, either, and because tj 6= t holds, no edge in this run is labeled with
the transition t. It follows that the run is a fin-accepting run of (A′)q on wi.

Because the above result holds for all nodes of G′ with no outgoing edges,
the fin-accepting semi-run G′ can be extended into a fin-accepting run of A′

on w by Proposition 2.3.14. Therefore w ∈ Lfin(A
′) holds, and it follows that

Lfin(A) ⊆ Lfin(A
′) holds. �

If a substituting transition is a self-loop, it includes its own source state in
its target states. Because also the substituted transition is rooted at this state,
it may not be safe to remove the substituted transition from the automaton
without changing the language of the subautomaton rooted at the common
source state of the transitions. It is in some cases nevertheless possible to find
the substituted transition to be redundant without resorting to, for example,
reverse translation based transition redundancy analysis.

Consider an infinite branch in a fin-accepting run of a self-loop alternat-
ing automaton. If the source state of a substituted self-loop is a transient state

162 6. REMOVING REDUNDANT TRANSITIONS

of the automaton, then every self-loop starting from this state can occur as the
label of only finitely many edges in the branch (cf. Corollary 2.3.19). Conse-
quently, no substituting transition (under fin-acceptance) can contribute to
the acceptance conditions occurring infinitely many times along this branch,
either, regardless of whether the transition is a self-loop or not. The require-
ments on transition substitution under fin-acceptance now guarantee that the
language of the subautomaton rooted at the transient state is preserved if the
substituted self-loop is removed from the automaton.

In case the source state of the substituted self-loop is not a transient state
in the automaton, the conditions on substitutability under fin-acceptance are
not by themselves sufficient to allow the self-loop to be safely removed from
the automaton such that the language of the automaton is preserved. Be-
cause transition substitution does not depend on the acceptance conditions
of the transitions, it may occur, for example, that the nontransient source
state of the substituted self-loop becomes transient when this self-loop is re-
moved from the automaton. Consequently, the language of the automaton
may change in the modification, for example, if the new transient state has
no other successors than itself. Obviously, this problem will not arise if the
set of acceptance conditions of the substituting transition is a subset of the
conditions of the substituted transition. This requirement can be generalized
slightly: the substituted self-loop can safely be removed if there exists (for ev-
ery symbol σ in the guard of the substituted transition) a set of transitions, all
of which are {σ}-substitutable for the transition under fin-acceptance such
that the transitions do not share any acceptance conditions that are not in-
cluded also in the acceptance conditions of the substituted self-loop. (In
runs of self-loop alternating automata, the acceptance conditions of the sub-
stituting transitions can affect fin-acceptance only in those infinite branches
that converge to the common source state of the transitions. Therefore, for
example, if an infinite branch of an accepting run ends in an infinite suffix
in which the automaton simply repeats the substituted transition, then ev-
ery occurrence of this transition can be replaced with a finite sequence of
substituting transitions. The properties of the sets of substituting transitions
guarantee that the substitution can be done throughout the entire suffix with-
out violating fin-acceptance.)

The above informal discussion can be summarized as the following result.

Proposition 6.2.3 Let t = 〈q,Γ, F,Q′〉 ∈ ∆ be a self-loop transition of a self-
loop alternating automaton A = 〈Σ, Q,∆, qI ,F〉. Assume that, for all σ ∈ Γ,
there exists a nonempty set of transitions Tσ = {tσ,1, tσ,2, . . . , tσ,nσ} ⊆ ∆\{t}
(for some 1 ≤ nσ < ω) with acceptance conditions Fσ,1, Fσ,2, . . . , Fσ,nσ ⊆ F
(respectively) such that tσ,i is {σ}-substitutable for t under fin-acceptance
for all 1 ≤ i ≤ nσ, and either q is a transient state of A, or

⋂
1≤i≤nσ

Fσ,i ⊆

F . The automaton A is fin-equivalent to the automaton A′ def
=

〈
Σ, Q,∆ \

{t}, qI ,F
〉

obtained from A by removing the transition t from ∆.

Proof: As noted in Sect. 6.1, Lfin(A
′) ⊆ Lfin(A) holds trivially. We show that

the language inclusion holds also in the converse direction. Letw ∈ Lfin(A),
and let G = 〈V,E, L〉 be a fin-accepting run of A on w. By Lemma 6.2.1,
the run G can be modified into a fin-accepting semi-run G′ = 〈V ′, E ′, L′〉

6. REMOVING REDUNDANT TRANSITIONS 163

that does not contain edges labeled with the transition t; obviously, G′ is then
a fin-accepting semi-run of the automaton A′ on w. Our goal is to show that
G′ can be extended into a fin-accepting run of A′ on w. Because all nodes of
G′ with no outgoing edges are labeled with the state q (by the construction
in Lemma 6.2.1), it needs to be shown that the automaton (A′)q fin-accepts
wi for all 0 ≤ i < ω for which V ′

i contains a node with no outgoing edges in
G′: the result then follows directly by applying Proposition 2.3.14.

(Construction of a fin-accepting run of (A′)q) Let v ∈ V ′
i ⊆ Vi be a node

with no outgoing edges inG′ for some 0 ≤ i < ω. Because L′(v) = L(v) = q
holds, v is (in G) the initial node of a fin-accepting run of Aq on wi em-
bedded in G (Proposition 2.3.9). By Proposition 2.3.7, there exists an in-
dex 0 ≤ j ≤ ω such that this run contains a chain of edges (ek)0≤k<j+1,
ek ∈ E ∩ (Vi+k × 2Vi+k+1), where the transition L(ek) = 〈q,Γk, Fk, Q

′
k〉 ∈ ∆

is an initial self-loop of Aq for all 0 ≤ k < j, and if j < ω holds, then
the transition L(ej) = 〈q,Γj, Fj , Q

′
j〉 ∈ ∆ is an initial transition of Aq

that is not a self-loop. We shall use this chain of edges to define a chain
of initial transitions of Aq (not including the transition t) that satisfies the fin-
acceptance condition. This chain of transitions will then be used to define a
fin-accepting run of (A′)q on w. To ensure that the fin-acceptance condition
is always satisfied, we need to treat every acceptance condition not included
in t’s acceptance conditions F fairly in the construction. For this purpose,
write F \ F = {f1, f2, . . . , fm} for some 0 ≤ m < ω; in addition to the se-
quence of transitions, we define a sequence of integers c0, c1, c2, . . . to guide

the definition of the chain of transitions. Let c0
def
= 1.

(Construction of a chain of transitions) Assume that ck has been defined
for some 0 ≤ k < j + 1, and 1 ≤ ck ≤ max{1, m} holds. (This is

obviously the case if k = 0.) If L(ek) 6= t holds, let tk
def
= L(ek) and

ck+1
def
= ck. Otherwise, if L(ek) = t = 〈q,Γ, F,Q′〉 holds, write wi(k) =

σk; because the labeling L is consistent, σk ∈ Γ holds. By the assump-
tion, there exists an integer 1 ≤ nσk

< ω and a nonempty set of transi-
tions Tσk

= {tσk ,1, tσk,2, . . . , tσk,nσk
} ⊆ ∆ \ {t} (with acceptance conditions

Fσk ,1, Fσk,2, . . . , Fσk,nσk
⊆ F , respectively) such that every transition in Tσk

is {σk}-substitutable for t under fin-acceptance. In this case we choose the
transition tk from the set Tσk

as follows:

• If q is a transient state of A or m = 0, let tk ∈ Tσk
be any transition in

Tσk
, and define ck+1

def
= ck.

• Otherwise, if q is not a transient state of A and m ≥ 1 holds, then⋂
1≤`≤nσk

Fσk ,` ⊆ F holds by the assumption. It is easy to see that

there exists, for all f ∈ {f1, f2, . . . , fm}, a transition tfσk
∈ Tσk

that is
not an f -transition of A. In particular, because 1 ≤ ck ≤ m holds,

the transition t
fck
σk ∈ Tσk

is not an fck -transition. In this case we define

tk
def
= t

fck
σk and ck+1

def
= (ck mod m) + 1.

It is easy to see that 1 ≤ ck+1 ≤ max{1, m} holds by the construction. If
the transition tk is not a self-loop, we stop the construction; otherwise we
repeat the same steps to define the transition tk+1. Obviously, the inductive
construction always ends after a finite number of steps if j < ω holds (in

164 6. REMOVING REDUNDANT TRANSITIONS

this case, the transition L(ej) 6= t is not an initial self-loop of Aq, so the
construction ends at the latest after the transition tj has been defined.) In
summary, we thus find an index 0 ≤ ` ≤ j such that the transition tk is an
initial self-loop of Aq for all 0 ≤ k < `, and if ` < ω, then t` is an initial
transition of Aq which is not a self-loop. Furthermore, it is easy to see that
tk 6= t holds for all 0 ≤ k < `+ 1 by the construction.

(Definition of a semi-run Ĝ of (A′)q on wi) Write tk=〈q, Γ̂k, F̂k, Q̂
′
k〉 and

Q̂′
k \ {q} = {q̂k,1, . . . , q̂k,nk

} (for some 0 ≤ nk < ω) for all 0 ≤ k < `, and

if ` < ω holds, write Q̂′
` = {q̂`,1, . . . , q̂`,n`

} for some 0 ≤ n` < ω. Define the

graph Ĝ
def
= 〈V̂ , Ê, L̂〉, where

• V̂0
def
= {v̂0}, V̂k+1

def
= {v̂k,1, . . . , v̂k,nk

} ∪

{
{v̂k+1} if k < `
∅ otherwise

for all

0 ≤ k < `+ 1, and if ` < ω, let V̂k
def
= ∅ for all `+ 1 < k < ω;

• Ê
def
=

⋃
0≤k<`+1

{
〈v̂k, V̂k+1〉

}
; and

• for all 0 ≤ k < `+1, let L̂(v̂k)
def
= q, L̂(v̂k,k′)

def
= q̂k,k′ for all 1 ≤ k′ ≤ nk,

and L
(
〈v̂k, V̂k+1〉

)
def
= tk.

(Ĝ is a semi-run of (A′)q on wi)

(Partitioning) Clearly, V̂0 = {v̂0} is a singleton, and Ĝ consists of finite

disjoint levels with edges between successive levels of Ĝ.

(Causality) Let v̂ ∈ V̂k for some 0 ≤ k < ` + 1. Then v̂ either has
no outgoing edges, or v̂ = v̂k holds, and v̂ has the unique outgoing edge
〈v̂, V̂k+1〉 ∈ Ê. Furthermore, if k ≥ 1 holds, then v̂ is obviously a succes-
sor of the node v̂k−1 ∈ V̂k−1 in Ĝ. It follows that Ĝ satisfies both causality
constraints required of a semi-run of (A′)q.

(Consistency of L̂) Clearly, L̂(v̂0) = q is the initial state of Aq. Let

ê = 〈v̂k, V̂k+1〉 ∈ Ê be an edge in Ĝ for some 0 ≤ k < ` + 1. By the
definition of L̂, L̂(ê) = tk = 〈q, Γ̂k, F̂k, Q̂

′
k〉 holds. By the construction

of Ĝ, L̂(v̂k) = q holds, and it is easy to check that also L̂(V̂k+1) = Q̂′
k

holds. The labeling L̂ is thus consistent if wi(k) ∈ Γ̂k and tk ∈ ∆ \ {t}
hold. This is clear if L(ek) 6= t holds in the original run G, since in
this case tk = L(ek) = 〈q,Γk, Fk, Q

′
k〉 ∈ ∆ \ {t} holds, and because

ek ∈ E ∩ (Vi+k × 2Vi+k+1) holds and L is consistent, wi(k) ∈ Γk = Γ̂k
holds. Otherwise, if L(ek) = t holds, then tk is one of the

{
wi(k)

}
-

substitutable transitions Twi(k) ⊆ ∆ \ {t}, and wi(k) ∈ Γ̂k follows from{
wi(k)

}
-substitutability. It follows that the labeling L̂ is consistent.

(Ĝ is fin-accepting) If ` < ω holds, then Ê contains only finitely many

edges, and thus Ĝ is trivially a fin-accepting semi-run of (A′)q onwi. Because
` ≤ j holds, this occurs whenever q is a transient state of A: otherwise (if
` = j = ω), the chain of edges (ek)0≤k<j+1 labeled with initial self-loops of
Aq would violate the fin-acceptance condition in the fin-accepting run of Aq

embedded in G.

6. REMOVING REDUNDANT TRANSITIONS 165

If ` = j = ω holds and q is not a transient state of A, then the run
Ĝ contains the unique infinite branch (êk)0≤k<ω =

(
〈v̂k, V̂k+1〉

)
0≤k<ω

. If

L(ek) = t holds for only finitely many 0 ≤ k < ω in the chain of edges
(ek)0≤k<ω, then there exists an index 0 ≤ `′ < ω such that L̂(êk) = L(ek)
holds for all `′ ≤ k < ω by the construction of the sequence (tk)0≤k<ω and
the definition of the labeling L̂. Because the chain (ek)0≤k<ω is an infinite
branch in a fin-accepting run of Aq on wi, it follows that fin

(
(êk)0≤k<ω

)
=

fin
(
(êk)`′≤k<ω

)
= fin

(
(ek)`′≤k<ω

)
= fin

(
(ek)0≤k<ω

)
= ∅ holds, and thus Ĝ

is a fin-accepting semi-run of (A′)q on wi.
Otherwise the chain (ek)0≤k<ω contains infinitely many edges labeled

with the transition t. We show that for all acceptance conditions f ∈ F ,
L̂(êk) is not an f -transition of (A′)q for infinitely many 0 ≤ k < ω. Then
obviously f /∈ fin

(
(êk)0≤k<ω

)
holds, and because the same result holds for

all acceptance conditions f ∈ F , we may conclude that fin
(
(êk)0≤k<ω

)
= ∅

holds, and Ĝ is fin-accepting. Obviously, this result holds trivially if F = ∅
holds.

Assume that f ∈ F holds, i.e., that the transition t is an f -transition of A.
Because fin

(
(ek)0≤k<ω

)
= ∅ holds, the transition L(ek) is not an f -transition

of A for infinitely many 0 ≤ k < ω. Because t is an f -transition, however, it
follows that L(ek) 6= t holds at all of these indices. By the definition of the
transitions tk and the semi-run Ĝ, it follows that L̂(êk) = tk = L(ek) holds at
all of these indices, and it is easy to see that f /∈ fin

(
(êk)0≤k<ω

)
holds.

Let f ∈ F \ F . Because L(ek) = t holds for infinitely many 0 ≤ k < ω,
it follows from the inductive definition of the integers ck that fck = f holds
for infinitely many k such that L(ek) = t holds (the integer ck+1 is defined
by incrementing ck modulo the number of acceptance conditions in F \ F
iff L(ek) = t holds). Obviously, the definition of the transitions tk then
guarantees that tk = L̂(êk) is not an f -transition of (A′)q at any of these
indices. Therefore f /∈ fin

(
(êk)0≤k<ω

)
= ∅ holds also in this case. By the

above observation, it follows that Ĝ is a fin-accepting semi-run of (A′)q on
wi.

(Ĝ can be extended into a fin-accepting run of (A′)q on wi) Let v̂ ∈ V̂ be

a node with no outgoing edges in Ĝ. Then v̂ = v̂k,k′ ∈ V̂k+1 holds for

some 0 ≤ k < ω and 1 ≤ k′ ≤ nk, and L̂(v̂) 6= q holds. Because the
fin-accepting run G contains the edge ek ∈ Vi+k × 2Vi+k+1 , the target nodes
of which are labeled with (exactly) the target states of the transition L(ek) =
〈q,Γk, Fk, Q

′
k〉, it follows (Proposition 2.3.9) that (Aq)q

′
(= Aq′) fin-accepts

wi+k+1 = (wi)k+1 for all q′ ∈ Q′
k, i.e., (wi)k+1 ∈

⋂
q′∈Q′

k
Lfin(A

q′) holds.

We show that (wi)k+1 ∈ Lfin(A
bL(v̂)) holds. This is clear if L(ek) 6= t

holds, because in this case L̂(v̂) = qk,k′ ∈ Q′
k holds by the definition of Ĝ.

Otherwise, if L(ek) = t holds, the setQ′
k coincides with the set of target states

Q′ of the transition t, and thus (wi)k+1 ∈
⋂
q′∈Q′ Lfin(A

q′) holds. Because the

transition tk = 〈q, Γ̂k, F̂k, Q̂
′
k〉 is in this case chosen from a set of transitions{

wi(k)}-substitutable for t under fin-acceptance, it follows that (wi)k+1 ∈⋂
q′∈Q′ Lfin(A

q′) ⊆
⋂
q′∈ bQ′

k
Lfin(A

q′) holds. In particular, because L̂(v̂) ∈ Q̂′
k

holds by the definition of Ĝ, it follows that A
bL(v̂) fin-accepts (wi)k+1.

166 6. REMOVING REDUNDANT TRANSITIONS

Because L̂(v̂) 6= q is a successor of q and A is a self-loop alternating au-

tomaton, A
bL(v̂) =(Aq)

bL(v̂) =
(
(A′)q

)bL(v̂)
holds, and it follows that

(
(A′)q

)bL(v̂)

fin-accepts (wi)k+1. Because the same reasoning applies to all nodes of Ĝ
with no outgoing edges, Ĝ can be extended into a fin-accepting run of (A′)q

on wi by Proposition 2.3.14.

(G′ can be extended into a fin-accepting run of A′ on w) The above con-

struction can now be repeated at every level 0 ≤ i < ω of G′ containing
a node (labeled with the state q) with no outgoing edges to show that wi ∈
Lfin

(
(A′)q

)
holds. By Proposition 2.3.14, it follows that the fin-accepting

semi-run G′ can be extended into a fin-accepting run of A′ on w. Because
the result holds for all w ∈ Lfin(A), Lfin(A) ⊆ Lfin(A

′) holds. �

It is easy to see that Proposition 6.2.2 is actually only a special case of
Proposition 6.2.3 if the substituted transition is a self-loop of a self-loop al-
ternating automaton simplified in the sense of Corollary 2.3.20. The pre-
conditions of Proposition 6.2.2 are nevertheless simpler than those used in
Proposition 6.2.3; additionally, Proposition 6.2.2 is applicable also to substi-
tuted transitions that are not self-loops of the automaton.

Other special cases of the results with simpler preconditions can be ob-
tained by strengthening the conditions on substitutability of transitions. For
example, instead of finding a {σ}-substitutable transition for every symbol
σ in the guard Γ of a substituted transition t, a single non-self-loop tran-
sition that is Γ-substitutable for t under fin-acceptance suffices to show in
Proposition 6.2.2 that t is redundant. Similarly, a self-loop t can be found
to be redundant using Proposition 6.2.3 by exhibiting, instead of a family of
sets, a single set of transitions, all of which are Γ-substitutable for t under
fin-acceptance and together satisfy the constraint on the intersection of their
acceptance conditions. Of course, special cases such as these are less general
than the above results and do not apply in as many situations (see Ex. 6.2.11
in Sect. 6.2.6).

6.2.4 Reducing Language Containment Between Intersections of Languages to Lan-
guage Emptiness

Identically to the language containment tests used in Ch. 5, the general
version of the test for the redundancy of a transition in an automaton A
(Sect. 6.1) can be reduced to checking for the emptiness of the set intersec-
tion of the language of A with the complement of the language of another
automaton (see Sect. 5.2). Because substitutability under fin-acceptance de-
pends on a condition on language containment between set intersections of
two families of languages, applying the standard reduction of language con-
tainment into language emptiness to this problem yields an equation which
refers to a more general Boolean combination of languages (see below); how-
ever, this problem on language emptiness can easily be reduced to multiple
tests, each of which again involves only intersections of languages, via basic
set-theoretic manipulation as follows.

Lemma 6.2.4 For any two finite families of languages Λ1,Λ2 ⊆ 2Σω
over the

finite alphabet Σ,
⋂

L1∈Λ1
L1 ⊆

⋂
L2∈Λ2

L2 holds iff
(⋂

L1∈Λ1
L1

)
∩L2 holds

6. REMOVING REDUNDANT TRANSITIONS 167

for all L2 ∈ Λ2 \ Λ1 (where we write L = Σω \ L for all L ⊆ Σω).

Proof:
⋂

L1∈Λ1
L1 ⊆

⋂
L2∈Λ2

L2 holds

iff
(⋂

L1∈Λ1
L1

)
∩

⋂
L2∈Λ2

L2 = ∅
iff

(⋂
L1∈Λ1

L1

)
∩

(⋃
L2∈Λ2

L2

)
= ∅

iff
⋃

L2∈Λ2

((⋂
L1∈Λ1

L1

)
∩ L2

)
= ∅

iff
⋃

L2∈Λ2\Λ1

((⋂
L1∈Λ1

L1

)
∩ L2

)
= ∅ (

(⋂
L1∈Λ1

L1

)
∩ L2 = ∅ for all L2 ∈ Λ1)

iff
(⋂

L1∈Λ1
L1

)
∩ L2 = ∅ holds for all L2 ∈ Λ2 \ Λ1.

�

By instantiating the languages in Lemma 6.2.4 with languages fin-recog-
nized by subautomata of an alternating automaton A, we obtain the follow-
ing immediate corollary that applies to testing substitutability of transitions
under fin-acceptance.

Corollary 6.2.5 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton. For
all subsets Q1, Q2 ⊆ Q,
⋂

q∈Q1

Lfin(A
q) ⊆

⋂

q∈Q2

Lfin(A
q) holds iff

(⋂

q1∈Q1

Lfin(A
q1)

)
∩Lfin(Aq2) = ∅

holds for all q2 ∈ Q2 \Q1.

A well-known special case (used, for example, by Gastin and Oddoux
[2001] in an optimization to their translation procedure from LTL into very
weak alternating automata) of the above result arises when the setQ2 is a sub-
set of the set Q1. Obviously, the right-hand side condition of Corollary 6.2.5
holds trivially in this case.

Corollary 6.2.6 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton. For
all subsets Q1, Q2 ⊆ Q,

⋂

q∈Q1

Lfin(A
q) ⊆

⋂

q∈Q2

Lfin(A
q) holds if Q2 ⊆ Q1.

(Intuitively, this result is easy to justify: if Q2 ⊆ Q1 holds, a word w ∈⋂
q∈Q1

Lfin(A
q) belongs to all languages Lfin(A

q) (q ∈ Q2) in addition to all
languages determined by the states in Q1 \ Q2, and thus it is “harder” for w
to belong to the language w ∈

⋂
q∈Q1

Lfin(A
q).)

6.2.5 Compatibility with Nondeterminization of Automata Built from LTL Formulas

Clearly, an automaton obtained from a self-loop alternating automaton by
removing one or more of its redundant transitions is a self-loop alternating
automaton. Therefore, this automaton can be translated into a nondeter-
ministic one using the universal subset construction given in Theorem 4.2.1
(Sect. 4.2). In our application of translating LTL formulas into nondetermin-
istic automata, however, we have preferred using the optimized construction
of Theorem 4.3.2 (Sect. 4.3.2) instead to avoid introducing new acceptance
conditions in the translation. As observed in Sect. 4.3.4, the automata built

168 6. REMOVING REDUNDANT TRANSITIONS

from LTL formulas using the basic translation rules have special structural
and semantic properties (acceptance closed transitions and representative
states for acceptance conditions, see Sect. 4.3.3) that allow the automata to
be translated into nondeterministic automata using the optimized univer-
sal subset construction. These properties are also preserved when applying
the new translation rules discussed in Ch. 5. In this section we investigate
conditions under which these properties continue to hold when removing
redundant initial transitions from self-loop alternating automata.

We first state two results on the preservation of acceptance closure and
the existence of representative states for acceptance conditions under the
removal of redundant initial transitions from self-loop alternating automata.
It is easy to show that any acceptance closed self-loop alternating automaton
simplified in the sense of Corollary 2.3.20 remains such an automaton if one
of its transitions is removed. (This transition need not even be redundant.)

Proposition 6.2.7 Let A = 〈Σ, Q,∆, qI ,F〉 be an acceptance closed self-
loop alternating automaton simplified in the sense of Corollary 2.3.20, and

let t ∈ ∆ be a transition of A. Let A′ def
=

〈
Σ, Q,∆\{t}, qI ,F

〉
be the automa-

ton obtained from A by removing the transition t from ∆. The automaton
A′ is an acceptance closed self-loop alternating automaton simplified in the
sense of Corollary 2.3.20.

Proof: Obviously, the automaton A′ is a self-loop alternating automaton sim-
plified in the sense of Corollary 2.3.20. We check that A′ is acceptance
closed. Let t′ ∈ ∆ \ {t} be an f -transition of A′ for some acceptance condi-
tion f ∈ F . Because the set of acceptance conditions of every non-self-loop
transition in ∆ is empty, t′ is a self-loop of A′, i.e., t′ contains its source state
in its target states. Clearly, this state is an f -state of A′. Because the same
result holds for all transitions and acceptance conditions of A′, it follows that
A′ is acceptance closed. �

The following proposition states sufficient conditions under which the re-
moval of a redundant initial transition from an alternating automaton (with
no non-self-loop transitions to its initial state) will not interfere with the ex-
istence of a representative state for an acceptance condition if the condition
still occurs in a transition of the simplified automaton.

Proposition 6.2.8 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton
with no non-self-loop transitions having the state qI as a target state, and let
f ∈ F be an acceptance condition for which A has an f -representative state
qf ∈ Q. Let t = 〈qI ,Γ, F,Q

′〉 ∈ ∆ be a redundant initial transition of
A such that there exists, for all σ ∈ Γ, a nonempty set of transitions Tσ =
{tσ,1, tσ,2, . . . , tσ,nσ} ⊆ ∆ \ {t} (for some 1 ≤ nσ < ω) with acceptance
conditions Fσ,1, Fσ,2, . . . , Fσ,nσ ⊆ F , respectively, such that for all t′ ∈ Tσ, t′

is {σ}-substitutable for t in A under fin-acceptance, and
⋂

1≤i≤nσ
Fσ,i ⊆ F

holds. Let A′ def
=

〈
Σ, Q,∆ \ {t},F

〉
be the automaton obtained from A by

removing the transition t. The automaton A′ has no non-self-loop transitions
having the state qI as a target state, and either A′ has no f -states, or the state
qf is an f -representative state of A′.

6. REMOVING REDUNDANT TRANSITIONS 169

Proof: Because A has no non-self-loop transitions having qI as a target state, it
is easy to see from the definition of A′ that A′ has no such transitions, either.
If the transition t is the only f -transition of A, then the result follows trivially
because A′ has no f -states in this case. Otherwise A′ contains at least one
f -state. We need to show that the state qf is an f -representative state of A′.
For this purpose, we first make the following observations:

(Lfin

(
(A′)q

)
= Lfin(A

q) holds for all q ∈ Q) First, it is easy to see that

Lfin

(
(A′)q

)
= Lfin(A

q) holds for all q ∈ Q: clearly, this equality holds for
all q ∈ Q \ {qI}, because (A′)q = Aq holds in this case (∆ contains no
non-self-loop transitions having the state qI as a target state). Furthermore,
the automata (A′)qI and AqI are fin-equivalent, because the transition t is
redundant in A.

(Lffin

(
(A′)q

)
= Lffin(A

q) holds for all q ∈ Q) We claim that also

Lffin

(
(A′)q

)
= Lffin(A

q) holds for all q ∈ Q. Clearly, Lffin

(
(A′)q

)
⊆

Lffin(A
q) holds by the definition of A′ for all q ∈ Q: if the subautoma-

ton (A′)q is able to fin-accept a word by avoiding an initial f -transition,
then so is Aq, since any fin-accepting run of (A′)q on some w ∈ Σω is a
fin-accepting run of Aq on w.

To show language containment in the other direction, let q ∈ Q, and
let w ∈ Lffin(A

q). By Proposition 2.3.15 (and the definition of Lffin(A
q)),

there exists a transition tq = 〈q,Γq, Fq, Q
′
q〉 ∈ ∆ such that w(0) ∈ Γq

and f /∈ Fq hold, and Aq′ fin-accepts w1 for all q′ ∈ Q′
q. If tq 6= t

holds, then the transition tq is a transition of A′, and because w1 ∈
Lfin(A

q′) = Lfin

(
(A′)q

′)
holds for all q′ ∈ Q′

q by the above observation, it
follows (Proposition 2.3.15) that (A′)q fin-accepts w by avoiding an initial
f -transition.

Otherwise tq = t is the initial transition removed from A. Let σ
def
=

w(0). By the assumption, there exists a nonempty set of transitions Tσ =
{tσ,1, tσ,2, . . . , tσ,nσ} ⊆ ∆ \ {t} of A for some 1 ≤ nσ < ω (with ac-
ceptance conditions Fσ,1, Fσ,2, . . . , Fσ,nσ ⊆ F , respectively) such that
the transition tσ,i is {σ}-substitutable for the transition t in A under fin-
acceptance for all 1 ≤ i ≤ nσ, and

⋂
1≤i≤nσ

Fσ,i ⊆ F holds. Because
the transition t = tq is not an f -transition, it follows that Tσ contains
a transition tf = 〈q,Γf , Ff , Q

′
f〉 ∈ Tσ that is not an f -transition of A.

Clearly, tf is an initial transition of the automaton A′, and because tf is
{σ}-substitutable for the transition t in A under fin-acceptance, it follows
that w(0) ∈ Γf and w1 ∈

⋂
q′∈Q′

f
Lfin(A

q′) =
⋂
q′∈Q′

f
Lfin

(
(A′)q

′)
hold.

Therefore, (A′)q fin-accepts w by avoiding an initial f -transition also in
this case. It follows that Lffin(A

q) ⊆ Lffin

(
(A′)q

)
holds for all q ∈ Q.

It is now easy to check that the state qf has the properties required of an f -
representative state of A′. Let q ∈ Q be an f -state of A′, and let w ∈ Σω be
an infinite word over the alphabet Σ.

(w ∈ Lffin

(
(A′)qf

)
∩ Lfin

(
(A′)q

)
implies w ∈ Lffin

(
(A′)q

)
) By the above

observations, w ∈ Lffin

(
(A′)qf

)
∩Lfin

(
(A′)q

)
implies that w ∈ Lffin(A

qf)∩
Lfin(A

q) holds. Because qf is an f -representative state of A, it follows that
w ∈ Lffin(A

q) = Lffin

(
(A′)q

)
holds.

170 6. REMOVING REDUNDANT TRANSITIONS

(w ∈ Lffin

(
(A′)q

)
implies wi ∈ Lffin

(
(A′)qf

)
for some i) Assume that

w ∈ Lffin

(
(A′)q

)
(= Lffin(A

q)) holds. Because qf is an f -representative
state of A, it follows that there exists an index 0 ≤ i < ω such that wi ∈
Lffin(A

qf) = Lffin

(
(A′)qf

)
holds.

Clearly, the same reasoning applies to all f -states of A′. We conclude that qf
is an f -representative state of A′. �

Proposition 6.2.8 characterizes a set of sufficient conditions under which
it is safe to remove a redundant initial transition from an automaton without
invalidating the existence of representative states for the acceptance condi-
tions occurring in the transitions of the automaton. It is easy to see that these
conditions hold whenever using Proposition 6.2.2 to detect redundant tran-
sitions in self-loop automata simplified in the sense of Corollary 2.3.20; a
similar result holds for a strengthened version of Proposition 6.2.3 that does
not treat transient states of the automaton as a special case.

Proposition 6.2.9 Let A = 〈Σ, Q,∆, qI ,F〉 be a self-loop alternating au-
tomaton simplified in the sense of Corollary 2.3.20. Let t = 〈qI ,Γ, F,Q

′〉 ∈
∆ be a transition of A that can be found to be redundant in A by applying
Proposition 6.2.2, or Proposition 6.2.3, without considering transient states
of A as a special case. For all σ ∈ Γ, there exists a nonempty set of tran-
sitions Tσ = {tσ,1, tσ,2, . . . , tσ,nσ} (for some 1 ≤ nσ < ω) with acceptance
conditions Fσ,1, Fσ,2, . . . , Fσ,nσ ⊆ F , respectively, such that for all t′ ∈ Tσ, t′

is {σ}-substitutable for t in A under fin-acceptance, and
⋂

1≤i≤nσ
Fσ,i ⊆ F

holds.

Proof: If the transition t can be found to be redundant in A by applying
Proposition 6.2.2, A has (for all σ ∈ Γ) a non-self-loop initial transition tσ ∈
∆\{t} that is {σ}-substitutable for t in A under fin-acceptance. Because the
transition tσ is not a self-loop, it has an empty set of acceptance conditions (A
is simplified in the sense of Corollary 2.3.20), and thus the set {tσ} satisfies
the conditions required of the set Tσ.

Otherwise, if t is found to be redundant by applying Proposition 6.2.3
(without considering transient states of A as a special case), the existence of
the family {Tσ}σ∈Γ follows directly from the conditions of Proposition 6.2.3.

�

If A = 〈2AP , Q,∆, qI ,F〉 is a self-loop alternating automaton built from
an LTL formula ϕ ∈ LTLPNF(AP) using the (basic or refined) translation
rules, then A is an acceptance closed self-loop alternating automaton with
an f -representative state for all acceptance conditions f ∈ F for which it
has an f -state (Lemma 4.3.8, Proposition 5.4.3, Proposition 5.5.1). Fur-
thermore, because all translation rules guarantee that the set of acceptance
conditions of every non-self-loop transition of A is empty, A is constructed
simplified in the sense of Corollary 2.3.20. Because no automaton built us-
ing the translation rules obviously has any non-self-loop transitions to its ini-
tial state, either, A satisfies the assumptions used in Proposition 6.2.7 and
Proposition 6.2.8 (for all acceptance conditions f ∈ F). Therefore, all of
these properties are preserved if one (or more) of the redundant initial tran-
sitions of A is removed, provided that each of these transitions satisfies the

6. REMOVING REDUNDANT TRANSITIONS 171

constraints given in Proposition 6.2.8. (By Proposition 6.2.9, these conditions
are guaranteed to hold for every transition that can be found to be redun-
dant using Proposition 6.2.2 or a version of Proposition 6.2.3 strengthened
by removing the special case for transient states of the automaton.) As noted
in Corollary 4.3.7, the simplified automaton can be translated into a fin-
equivalent nondeterministic automaton using the optimized universal subset
construction of Theorem 4.3.2 without introducing new acceptance condi-
tions; additionally, the simplified automaton can be used again in a further
application of a translation rule.

6.2.6 Examples

In this section we illustrate the simplification of self-loop alternating au-
tomata using Proposition 6.2.2 and Proposition 6.2.3 with several examples.

A Final Look at the Running Example

We first reconsider automata built in Ex. 5.6.1 (Sect. 5.6).

Example 6.2.10 As seen in Ex. 5.6.1, the LTL formula

ϕ
def

≡
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∈ LTL

(
{p1, p2}

)

can be translated into a single-state automaton (repeated in Fig. 6.2 (a)) using
the refined translation rules defined in Sect. 5.5 (Table 5.3). Let q denote
the unique state of this automaton. The transition relation of the automaton
consists of the self-loops t1 =

〈
q,>, {•, ◦}, {q}

〉
, t2 =

〈
q, p1, {◦}, {q}

〉
, t3 =〈

q, p2, {•}, {q}
〉

and t4 =
〈
q, (p1 ∧ p2), ∅, {q}

〉
.

Clearly, the guard of the transition t4 encodes the unique symbol {p1, p2}
of the alphabet 2{p1,p2} of the automaton. Because

(
(p1 ∧ p2) → p1

)
and(

(p1 ∧ p2) → p2

)
are valid propositional implications (i.e.,

{
{p1, p2}

}
⊆{

{p1}, {p1, p2}
}

and
{
{p1, p2}

}
⊆

{
{p2}, {p1, p2}

}
hold) and because t2,

t3 and t4 share their target states, the transitions t2 and t3 are {p1, p2}-sub-
stitutable under fin-acceptance for t4 in the automaton. Because the inter-
section of the acceptance conditions of t2 and t3 is empty, it follows that the
set of transitions {t2, t3} satisfies the preconditions of Proposition 6.2.3 on the
unique symbol in the guard of t4. Therefore the transition t4 is redundant,
and it can be removed from the automaton to obtain the automaton shown
in Fig. 6.2 (b).

Joining the automaton in Fig. 6.2 (b) with the automaton in Fig. 6.2 (c)

(built for the formula ψ
def

≡
(
p3 Rw (p4 Rs p5)

)
in Sect. 5.6) using the transla-

tion rule for the ∨ connective yields the automaton shown in Fig. 6.2 (d) for
the formula (ϕ∨ψ). We can now apply Proposition 6.2.2 several times to re-
move some of the initial transitions of this automaton: for example, because
(p2 → >) is a valid propositional implication, the >-labeled initial non-self-
loop of the automaton is {σ}-substitutable for the initial transition with guard
p2 (under fin-acceptance, because the transitions share their target state) for
all σ ∈ 2{p1,p2} such that σ |= p2 holds, and thus the latter transition can be
removed from the automaton by Proposition 6.2.2. Two further applications
of this result then yield the automaton shown in Fig. 6.2 (e). �

172 6. REMOVING REDUNDANT TRANSITIONS

> p2

(p1 ∧ p2) p1

> p2

p1

p5 (p4 ∧ p5)

(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

(a) (b) (c)

>

>
p2

p2

p1

p1

p5

p5

(p4 ∧ p5)

(p4 ∧ p5)

(p3 ∧ p5)
(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

(d)

>

> p2

p1

p5

p5

(p4 ∧ p5)

(p3 ∧ p5)
(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

(e)

Fig. 6.2: Using Proposition 6.2.2 and Proposition 6.2.3 to optimize translation of
LTL formulas into self-loop alternating automata. (a) Automaton built for the for-

mula ϕ
def

≡
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
in Sect. 5.6; (b) Automaton

obtained from (a) by applying Proposition 6.2.3; (c) Automaton built for the for-

mula ψ
def

≡
(
p3 Rw (p4 Rs p5)

)
in Sect. 5.6; (d) Automaton built from (b) and (c) for

the formula (ϕ ∨ ψ); (e) Automaton obtained from (d) by repeated application of
Proposition 6.2.2

6. REMOVING REDUNDANT TRANSITIONS 173

¬p1

¬p1 p1

p2 p3

>

> ¬p1

¬p1

p2 p3

>

p1 ¬p1

¬p1

p2 p3

p1

(a) (b) (c)

Fig. 6.3: Using Proposition 6.2.2 and Proposition 6.2.3 to find redundant initial
transitions that cannot be detected using the stronger notion of substitutability men-
tioned at the end of Sect. 6.2.3. (a) A self-loop alternating automaton; (b) Automaton
obtained from (a) by applying Proposition 6.2.3; (c) Automaton obtained from (b)
by applying Proposition 6.2.2

Comparison between Notions of Transition Substitutability
As a matter of fact, the previous example remains the same when using
the stronger notion of substitutability (i.e., Γ-substitutability with respect to
the guard Γ of a transition instead of {σ}-substitutability on individual sym-
bols σ ∈ Γ) mentioned at the end of Sect. 6.2.3 (p. 167) when applying
Proposition 6.2.2 and Proposition 6.2.3. In some cases, however, the weaker
notion of substitutability is necessary to detect the redundancy of a transition
using Proposition 6.2.2 or Proposition 6.2.3.

Example 6.2.11 Consider the self-loop alternating automaton (with the al-
phabet 2{p1,p2,p3}) shown in Fig. 6.3 (a). (This automaton can be obtained
by translating the LTL formula

(
(p1 ∨ Xp2) Rw (¬p1 ∨ Xp3)

)
into a self-loop

alternating automaton and then simplifying the guards of its transitions as
described in Sect. 5.1.2; the basic and the refined translation rules yield the
same automaton for this LTL formula.) Denote the initial state of the au-
tomaton by qI , and denote the two other states of the automaton (from left
to right) by q1 and q2. The initial transitions of the automaton can then
be written as t1 =

〈
qI ,¬p1, ∅, {qI}

〉
(the initial self-loop of the automa-

ton with guard ¬p1), t2 =
〈
qI ,>, ∅, {qI , q2}

〉
(the other initial self-loop),

t3 =
〈
qI , p1, ∅, {q2}

〉
(the transition with guard p1), t4 =

〈
qI ,¬p1, ∅, {q1}

〉

(the non-self-loop transition with guard ¬p1) and t5 =
〈
qI ,>, ∅, {q1, q2}

〉
.

Clearly, the guard Γ2 of the transition t2 contains all symbols of the au-
tomaton’s alphabet (i.e., Γ2 = 2{p1,p2,p3} holds). It is easy to see that the
transition t1 is {σ}-substitutable for the transition t2 for all σ ∈ Γ2 such that
p1 /∈ σ holds. Because the transition t3 is substitutable for t2 on the remain-
ing symbols in Γ2 and because the target state sets of t1 and t3 are subsets of
the target state set of the transition t2, it follows that for all σ ∈ Γ2, one of the
transitions t1 and t3 is {σ}-substitutable for t2 under fin-acceptance (the con-
dition on fin-acceptance follows directly by Corollary 6.2.6). Because the au-
tomaton has no acceptance conditions, it is easy to see that there exists (for all
symbols σ ∈ Γ2) a set of transitions ({t1} or {t3}) that satisfies the conditions
required in Proposition 6.2.3 (using the self-loop t2 as the substituted transi-
tion). Therefore the transition t2 is redundant; removing this transition from
the automaton yields the automaton shown in Fig. 6.3 (b). (Note that the

174 6. REMOVING REDUNDANT TRANSITIONS

redundancy of t2 cannot be shown with Proposition 6.2.3 using the stronger
notion of Γ2-substitutability, because neither t1 nor t3 is Γ2-substitutable for
t2 in A.)

Similarly, it is straightforward to check that the transition t3 is {σ}-substi-
tutable under fin-acceptance also for the transition t5 for all σ ∈ 2{p1,p2,p3}

such that p1 ∈ σ holds. Because the transition t4 is {σ}-substitutable under
fin-acceptance for t5 on the remaining symbols in the guard of t5, it follows
(by Proposition 6.2.2, because neither of the transitions t3 or t4 is a self-loop)
that also the transition t5 is redundant and can be removed from the automa-
ton as shown in Fig. 6.3 (c). (As above, neither t3 nor t4 is substitutable by
itself for t5 on all symbols in the guard of t5.) �

Comparison with the Translation of Gastin and Oddoux [2001]
The following examples demonstrate cases in which the refined translation
rules—combined with transition removal using Proposition 6.2.3 using a re-
stricted notion of transition substitutability suggested by Gastin and Oddoux
[2001]—yield automata with a polynomial number of transitions for certain
LTL formulas for which this notion of substitutability does not allow any sim-
plification of the automata built for the same formulas using the basic rules,
leading to an exponential blow-up in the number of transitions instead. Be-
cause the basic translation rules given in Sect. 3.1 are essentially identical to
the ones used by Gastin and Oddoux [2001] in their translation, we obtain
in this way a comparison of our refined translation against their translation
procedure. Incidentally, the families of formulas in the examples are virtually
the same as those used by Gastin and Oddoux [2001] for benchmarking their
implementation against other implementations.

For convenience, we shall write guards of transitions using set notation:
for a formula θ ∈ PL(AP), we write Γθ ⊆ 2AP as the set of models of θ;
obviously, Γ> ∩ Γ = Γ holds for all Γ ⊆ 2AP . Additionally, we say that a
transition t′ = 〈q′,Γ′, F ′, Q′′〉 of a self-loop alternating automaton is substi-
tutable for another transition t = 〈q,Γ, F,Q′〉 of the automaton in the sense
of Gastin and Oddoux iff t′ is Γ-substitutable for t in the usual sense (i.e., if
t′ 6= t, q′ = q and Γ ⊆ Γ′ hold), and Q′′ ⊆ Q′ holds. (By Corollary 6.2.6, it
is immediate that substitutability in the sense of Gastin and Oddoux implies
substitutability under fin-acceptance.)

Example 6.2.12 Let {ϕn}1≤n<ω be the family of LTL formulas over the set
of atomic propositions AP = {p1, p2, p3, . . .} defined inductively by the rules

ϕ1
def
= GFp1, and

ϕi+1
def
= (ϕi ∧ GFpi) for all 1 ≤ i < ω,

where, as usual, GFpi is a shorthand for the formula
(
⊥Rw (>Us pi)

)
for

all 1 ≤ i < ω. Formulas in this family appear in formulas of the form
¬
(
(
∧n
i=1 GFpi) → ψ

)
(for a fixed formula ψ) used by Gastin and Oddoux

[2001] in their benchmarks.

(Translation using the basic rules) It is easy to check that the automaton

built for a formula GFpi for any 1 ≤ i < ω using the basic translation rules
has two initial transitions

{〈
qGFpi

,Γ>, ∅, {qGFpi
, qFpi

}
〉
,
〈
qGFpi

,Γpi
, ∅, {qGFpi

}
〉}

6. REMOVING REDUNDANT TRANSITIONS 175

(where we write qψ for the initial state of the automaton built for the formula
ψ); see Fig. 3.2 (c) on p. 46 for illustration. It is easy to see that neither
of these transitions is substitutable for the other in the sense of Gastin and
Oddoux since neither Γ> ⊆ Γpi

nor {qGFpi
, qFpi

} ⊆ {qFpi
} hold.

Let 1 ≤ i < ω. Assume that every initial transition of the automaton
Aϕi

built for the formula ϕi has an empty set of acceptance conditions and
a nonempty guard Γ such that for all σ ∈ 2AP and j > i, σ ∈ Γ holds
only if both σ ∪ {pj} ∈ Γ and σ \ {pj} ∈ Γ hold (i.e., the guard does
not “depend” on the proposition pj). Assume also that no initial transition
of the automaton Aϕi

built for the formula ϕi is substitutable for another
one of these transitions in the sense of Gastin and Oddoux. Therefore none
of these transitions is redundant under this notion of substitutability. It is
easy to check that all of these properties hold for the initial transitions of the
automaton Aϕ1 .

Applying the basic translation rule for the ∧ connective (Table 3.1) to the
automata built for the formulas ϕi and GFpi+1 yields an automaton Aϕi+1

having the initial transitions
{〈
qϕi+1

,Γ, ∅, Q′ ∪ {qGFpi+1
, qFpi+1

}
〉

〈qϕi
,Γ, ∅, Q′〉 is an initial transition of Aϕi

}

∪
{〈
qϕi+1

,Γ ∩ Γpi+1
, ∅, Q′ ∪ {qGFpi+1

}
〉

〈qϕi
,Γ, ∅, Q′〉 is an initial transition of Aϕi

}
.

Denote the two components in this set union by ∆i+1,1 and ∆i+1,2, respec-
tively. Clearly, the set of acceptance conditions of all initial transitions of
Aϕi+1

is empty, and by the induction hypothesis, it is easy to see that every
initial transition of Aϕi+1

has a nonempty guard Γ such that for all j > i+ 1
and σ ∈ 2AP , σ ∈ Γ holds only if both σ ∪ {pj} and σ \ {pj} hold.

Suppose that there exists a pair of transitions t1 = 〈qϕi+1
,Γ1, ∅, Q

′
1〉, t2 =

〈qϕi+1
,Γ2, ∅, Q

′
2〉 ∈ ∆i+1,1 ∪∆i+1,2 such that the transition t2 is substitutable

for the transition t1 in the sense of Gastin and Oddoux. Then t1 6= t2, Γ1 ⊆
Γ2, and Q′

2 ⊆ Q′
1 hold. From the above definition of the initial transitions

of Aϕi+1
it follows that the automaton Aϕi

has a pair of initial transitions

t̂1 = 〈qϕi
, Γ̂1, ∅, Q̂1〉 and t̂2 = 〈qϕi

, Γ̂2, ∅, Q̂2〉 for some Γ̂1, Γ̂2 ⊆ 2AP and

Q̂1, Q̂2 ⊆ Qϕi
(the state set of Aϕi

, which contains neither qGFpi+1
nor qFpi+1

).
There are the following cases:

(t1 ∈ ∆i+1,1, t2 ∈ ∆i+1,2) In this case Γ1 = Γ̂1 and Γ2 = Γ̂2 ∩Γpi+1
. By

the induction hypothesis, there exists a σ ∈ 2AP such that σ ∈ Γ̂1 = Γ1

holds, and thus also σ \ {pi+1} ∈ Γ1 holds. But then it cannot be the case
that Γ1 ⊆ Γ2 (⊆ Γpi+1

) holds, contradictory to the assumption that the
transition t2 is substitutable for the transition t1.

(t1 ∈ ∆i+1,2, t2 ∈ ∆i+1,1) This case is impossible, because qFpi+1
∈ Q′

2\

Q′
1, and therefore Q′

2 cannot be a subset of Q′
1.

(t1, t2 ∈ ∆i+1,j for some j ∈ {1, 2}) In this case either Γ̂1 = Γ1 and

Γ̂2 = Γ2 (j = 1), or Γ̂1 = Γ1 ∪
{
σ \ {pi+1} σ ∈ Γ1

}
and Γ̂2 = Γ2 ∪{

σ \ {pi+1} σ ∈ Γ2

}
(j = 2), and Q̂1 = Q′

1 \ Q̂ and Q̂2 = Q′
2 \ Q̂ for

some nonempty set Q̂ ⊆ {qGFpi+1
, qFpi+1

}. (The transitions t̂1 and t̂2 are
necessarily distinct, since otherwise it would be the case that t1 = t2).

176 6. REMOVING REDUNDANT TRANSITIONS

But then, because Γ1 ⊆ Γ2 and Q′
2 ⊆ Q′

1 hold, it follows that Γ̂1 ⊆ Γ̂2

and Q̂2 ⊆ Q̂1, contradictory to the assumption that no initial transition of
the automaton Aϕi

is substitutable for another in the sense of Gastin and
Oddoux.

It follows that ∆i+1,1 ∪ ∆i+1,2 contains no pairs of initial transitions, one
of which would be substitutable for the other in the sense of Gastin and
Oddoux; by induction, this result holds for all 1 ≤ i < ω. Because the
automaton Aϕi

has two initial transitions for all 1 ≤ i < ω, it follows (by
an argument analogous to the one used in Ex. 3.2.4 in Sect. 3.2.2) that the
automaton Aϕi

has 2i initial transitions for all 1 ≤ i < ω.

(Translation using the refined rules) As observed in Sect. 5.6.3, every for-

mula ϕi (1 ≤ i < ω) belongs to a subclass of formulas that can be translated
into a single-state automaton using the refined translation rules (see, for ex-
ample, Fig. 5.8 (c) and Fig. 5.8 (d) on page 146 for the cases i = 1 and i = 2,
respectively). However, it is clear from the definition of the refined transla-
tion rule for the ∧ connective (Table 5.2) that the automaton built for the
formula ϕi will still have an exponential number of initial transitions in i if
no redundant transitions can be removed from the automaton.

The formula ϕ2 has previously appeared as a subformula in our running
example considered in Ex. 3.1.1, Ex. 5.6.1 and Ex. 6.2.10. In the last of these
examples, we used Proposition 6.2.3 to eliminate one of the initial transitions
of the automaton built for the formula ϕ2 (see Fig. 6.2 (a) and Fig. 6.2 (b)).
As we now show, this simplification is a special case of a general pattern
concerning the construction of an automaton for the formula ϕi+1 from the
automaton built for the formulas ϕi and GFpi+1.

Suppose that Aϕi
=

〈
2AP , {qϕi

},∆ϕi
, qϕi

,Fϕi

〉
(1 ≤ i < ω) is a single-

state automaton built for the formula ϕi with initial state qϕi
, i acceptance

conditions Fϕi
= {f1, f2, . . . , fi}, and i+1 initial self-loop transitions ∆ϕi

=
{t0, t1, . . . , ti}, where t0 =

〈
qϕi
,Γ>,Fϕi

, {qϕi
}
〉
, and tj =

〈
qϕi
,Γpj

,Fϕi
\

{fj}, {qϕi
}
〉

for all 1 ≤ j ≤ i. Clearly, the automaton Aϕ1 built for the
formula ϕ1 using the refined translation rules is of this form (cf. Fig. 5.8 (c)).
We show that joining the automaton Aϕi

with an automaton built for the for-
mula GFpi+1 using the refined rule for the ∧ connective (Table 5.2) yields an
automaton which can be simplified to the form Aϕi+1

by repeatedly applying
Proposition 6.2.3 to remove some of its initial transitions, using the notion of
transition substitutability in the sense of Gastin and Oddoux. By induction, it
then follows that the automaton built in this way for the formula ϕi will have
i + 1 instead of 2i (initial) transitions for all 1 ≤ i < ω. (It can be checked
that ∆ϕi

contains no redundant transitions.)

Clearly, the automaton built for the formula GFpi+1 using the refined
translation rules is structurally identical to the automaton Aϕ1 except for the
guards and acceptance conditions associated with its transitions: more pre-
cisely, the transition relation of this automaton consists of two initial self-loop
transitions with guards Γ> and Γpi+1

, respectively, such that the transition
with guard Γ> has also an associated acceptance condition fi+1 (not included
in Fϕi

, the acceptance conditions of the automaton Aϕi
). Applying the re-

fined ∧ translation rule (Table 5.2) to the automaton Aϕi
and this automa-

ton yields an automaton Âϕi+1
=

〈
2AP , {qϕi+1

}, ∆̂ϕi+1
, qϕi+1

,Fϕi
∪ {fi+1}

〉
,

6. REMOVING REDUNDANT TRANSITIONS 177

where

∆̂ϕi+1
=

{〈
qϕi+1

,Γ>,Fϕi
∪ {fi+1}, {qϕi+1

}
〉
,
〈
qϕi+1

,Γpi+1
,Fϕi

, {qϕi+1
}
〉

︸ ︷︷ ︸
ti+1,0

}

∪
{〈
qϕi+1

,Γpj
, (Fϕi

\ {fj}) ∪ {fi+1}, {qϕi+1
}
〉

︸ ︷︷ ︸
ti+1,j

1 ≤ j ≤ i
}

∪
{〈
qϕi+1

,Γpj
∩ Γpi+1

,Fϕi
\ {fj}, {qϕi+1

}
〉

︸ ︷︷ ︸
t′i+1,j

1 ≤ j ≤ i
}

.

Let 1 ≤ j ≤ i. Comparing the guard of the transition t′i+1,j with the guard
of ti+1,0 and ti+1,j, we see that Γpj

∩ Γpi+1
⊆ Γpi+1

and Γpj
∩ Γpi+1

⊆ Γpj

hold. Therefore, because all transitions in ∆̂ϕi+1
share their set of target

states, it follows that the transitions ti+1,0 and ti+1,j are substitutable for the
transition t′i+1,j in the sense of Gastin and Oddoux. Furthermore, because
the intersection of the acceptance conditions of ti+1,0 and ti+1,j equals Fϕi

\
{fj} (that is, the set of acceptance conditions of t′i+1,j), the transition t′i+1,j

satisfies the requirements of Proposition 6.2.3 (using the set {ti+1,0, ti+1,j} as
the set Tσ for all σ ∈ Γpj

∩ Γpi+1
). Therefore, the transition t′i+1,j may be

removed from ∆̂ϕi+1
. By repeating the same consideration for all 1 ≤ j ≤ i,

we obtain the transition relation

∆̂′
ϕi+1

=
{〈
qϕi+1

,Γ>,Fϕi+1
, {qϕi+1

}
〉}

∪
{〈
qϕi+1

,Γpj
,Fϕi+1

\ {fj}, {qϕi+1
}
〉

1 ≤ j ≤ i+ 1
}

,

which is of the desired form ∆ϕi+1
if we define Fϕi+1

def
= Fϕi

∪ {fi+1}. �

Example 6.2.13 Let {ϕn}2≤n<ω be a family of LTL formulas over the set of
atomic propositions AP = {p1, p2, p3, . . .} defined inductively by the rules

ϕ2
def
= (p2 Rw p1), and

ϕi+1
def
= (pi+1 Rw ϕi) for all 2 ≤ i < ω.

(Again, this family of LTL formulas is essentially identical to a family of for-
mulas of the form ¬

(
p1 Us (p2 Us (. . . Us pn) . . .)

)
considered previously by

Gastin and Oddoux [2001]; obviously, the positive normal form of any for-
mula of this form can be identified with the formula ϕn by renaming its
literals.)

For all 1 ≤ i < ω, let qpi
and ∆I

pi
be the initial state and the set of

initial transitions (respectively) of the alternating automaton built for the
atomic proposition pi ∈ AP using the translation rules. Clearly, ∆I

pi
={

〈qpi
,Γpi

, ∅, ∅〉
}

for all 1 ≤ i < ω.

(Translation using the basic rules) Let qϕi
and ∆I

ϕi
denote the initial state

and the set of initial transitions (respectively) of the automaton built for the
formula ϕi (2 ≤ i < ω) using the basic translation rules from Sect. 3.1. It is
straightforward to check from the definition of the basic translation rule for
the Rw connective (Table 3.1, p. 44) that

∆I
ϕ2

=
{〈
qϕ2 ,Γp1, ∅, {qϕ2}

〉
, 〈qϕ2,Γp2 ∩ Γp1, ∅, ∅〉

}
holds, and

∆I
ϕi+1

=
{〈
qϕi+1

,Γ, ∅, Q′ ∪ {qϕi+1
}
〉

〈qϕi
,Γ, F,Q′〉 ∈ ∆I

ϕi

}

∪
{
〈qϕi+1

,Γpi+1
∩ Γ, ∅, Q′〉 〈qϕi

,Γ, F,Q′〉 ∈ ∆I
ϕi

}

178 6. REMOVING REDUNDANT TRANSITIONS

holds for all 2 ≤ i < ω. Denote the two components of ∆I
ϕi+1

in the above

equation by ∆sl
ϕi+1

and ∆nsl
ϕi+1

; obviously, ∆sl
ϕi+1

consists of the initial self-

loops of the automaton built for the formula ϕi+1, and ∆nsl
ϕi+1

comprises those
initial transitions of the automaton that are not self-loops. It is easy to check
by induction on i that |∆I

ϕi
| = 2i−1 holds for all 2 ≤ i < ω, and Γ 6= ∅ holds

for every guard Γ of a transition in ∆I
ϕi

. Furthermore, for all 2 ≤ i < j < ω,
σ ∈ 2AP and t = 〈q,Γ, F,Q′〉 ∈ ∆I

ϕi
, σ ∈ Γ holds only if both σ ∪ {pj} ∈ Γ

and σ \ {pj} ∈ Γ hold.
We claim that for all 2 ≤ i < ω and all pairs of transitions t1, t2 ∈ ∆I

ϕi

(t1 6= t2), the transition t2 is not substitutable for the transition t1 in the sense
of Gastin and Oddoux. Suppose that there exists a least index 2 ≤ i < ω
such that ∆I

ϕi
contains a pair of transitions t1 = 〈qϕi

,Γ1, F1, Q
′
1〉 ∈ ∆I

ϕi

and t2 = 〈qϕi
,Γ2, F2, Q

′
2〉 ∈ ∆I

ϕi
(t1 6= t2) such that the transition t2 is

substitutable for the transition t1 in the sense of Gastin and Oddoux, i.e.,
Γ1 ⊆ Γ2 and Q′

2 ⊆ Q′
1 hold. Obviously, this cannot be the case if i = 2,

because Γp1 6⊆ Γp2 ∩ Γp1 and {qϕ2} 6⊆ ∅. Therefore i > 2 holds. There are
the following cases:

(t1 ∈ ∆sl
ϕi
, t2 ∈ ∆nsl

ϕi
) By the definition of ∆I

ϕi
, Γ1 is the guard of a tran-

sition in ∆I
ϕi−1

in this case. Because Γ1 6= ∅ holds, σ ∈ Γ1 holds for some
σ ∈ 2AP ; then also σ \ {pi} ∈ Γ1 holds. But then σ /∈ Γ2 holds, because
obviously σ′ ∈ Γ2 holds only if pi ∈ σ′. Therefore Γ1 6⊆ Γ2, contrary to
the assumption.

(t1 ∈ ∆nsl
ϕi
, t2 ∈ ∆sl

ϕi
) In this case qϕi

∈ Q′
2 holds, because t2 is a self-

loop. Because t1 is not a self-loop, however, qϕi
/∈ Q′

1 holds. But then it
cannot be the case that Q′

2 ⊆ Q′
1 holds.

(t1, t2 ∈ ∆sl
ϕi

) By the definition of ∆I
ϕi

, ∆I
ϕi−1

contains initial transitions

t̂1 = 〈qϕi−1
,Γ1, F̂1, Q̂1〉 ∈ ∆I

ϕi−1
and t̂2 = 〈qϕi−1

,Γ2, F̂2, Q̂2〉 ∈ ∆I
ϕi−1

such that Q̂1 = Q′
1 \ {qϕi

} and Q̂2 = Q′
2 \ {qϕi

} hold; because t1 6= t2
holds, t̂1 6= t̂2 holds. Because Γ1 ⊆ Γ2 and Q̂2 = Q′

2 \ {qϕi
} ⊆ Q′

1 \

{qϕi
} = Q̂1 hold, the transition t̂2 is substitutable for t̂1 in the sense of

Gastin and Oddoux. But then i is cannot the least index for which ∆I
ϕi

contains a pair of transitions, one of which is substitutable for the other in
this sense.

(t1, t2 ∈ ∆nsl
ϕi

) In this case the automaton built for the formula ϕi−1 has

the initial transitions t̂1 = 〈qϕi−1
, Γ̂1, F̂1, Q

′
1〉 ∈ ∆I

ϕi−1
and t̂2 = 〈qϕi−1

, Γ̂2,

F̂2, Q
′
2〉 ∈ ∆I

ϕi−1
such that Γ1 = Γpi

∩ Γ̂1 and Γ2 = Γpi
∩ Γ̂2 hold. Clearly,

t̂1 6= t̂2 holds, since otherwise also t1 and t2 would be identical transitions.
Suppose that σ ∈ Γ̂1 holds for some σ ∈ 2AP . Then also σ ∪ {pi} ∈ Γ̂1

holds, and thus σ ∪ {pi} ∈ Γpi
∩ Γ̂1 = Γ1 ⊆ Γ2 = Γpi

∩ Γ̂2 ⊆ Γ̂2. But

then also
(
σ ∪ {pi}

)
\ {pi} = σ ∈ Γ̂2. It follows that Γ̂1 ⊆ Γ̂2 holds,

and because Q′
2 ⊆ Q′

1 holds, the transition t̂2 is substitutable for t̂1 in the
sense of Gastin and Oddoux. Similarly to the previous case, i cannot be
the least index for which ∆I

ϕi
contains two transitions, one of which can

be substituted for the other.
Because all cases yield a contradiction, it follows that no transition in ∆I

ϕi

is substitutable for another transition in the sense of Gastin and Oddoux; by

6. REMOVING REDUNDANT TRANSITIONS 179

induction, the claim holds for all 2 ≤ i < ω. Therefore, transition sub-
stitutability in the sense of Gastin and Oddoux does not help in removing
initial transitions (by applying Proposition 6.2.2 or Proposition 6.2.3) from
automata built for formulas in the family {ϕn}2≤n<ω using the basic transla-
tion rules, and it follows that the number of transitions in the automaton built
for the formula ϕi is exponential in i. More precisely, it is straightforward to
check that the subautomaton rooted at the initial state of the automaton built
for the formula ϕi (2 ≤ i < ω) has

∑i

j=2 |∆
I
j | =

∑i

j=2 2j−1 = 2i−2 ∈ O(2i)

transitions (for all 3 ≤ i < ω, ∆I
ϕi

contains a transition having the initial state
of the automaton built from the formula ϕi−1 as a target state).

(Translation using the refined rules) We now consider the translation of

formulas in the family {ϕn}2≤n<ω into alternating automata using a refined
translation rule for the Rw connective from Table 5.3 (p. 143). (We use the
rule that does not involve assumptions on language containment; it can be
shown that the other rule is never applicable when working with subformulas
of formulas in the family.) As above, let qϕi

and ∆I
ϕi

(2 ≤ i < ω) denote the
initial state and the initial transitions of an automaton built for the formula
ϕi. Obviously, the automaton built for the formula ϕ2 is identical to the one
built using the basic translation procedure, i.e.,

∆I
ϕ2

=
{〈
qϕ2 ,Γp1, ∅, {qϕ2}

〉
, 〈qϕ2,Γp2 ∩ Γp1, ∅, ∅〉

}

holds also in this case.
Let 2 ≤ i < ω. Assume that ∆I

ϕi
contains the self-loop

〈
qϕi
,Γp1, ∅, {qϕi

}
〉
,

and Γ ⊆ Γp1 holds for all guards Γ of transitions in ∆I
ϕi

. (Clearly, these
assumptions hold if i = 2.)

Let ∆̃I
ϕi+1

be the set of initial transitions in the automaton built for the
formula ϕi+1 by applying the refined translation rule for the Rw connective to
define ∆̃I

ϕi+1
from ∆I

pi+1
and ∆I

ϕi
. From the definition of the rule (Table 5.3)

it follows that

∆̃I
ϕi+1

=
{〈
qϕi+1

,Γ, F, (Q′ \ {qϕi
}) ∪ {qϕi+1

}
〉

〈qϕi
,Γ, F,Q′〉 ∈ ∆I

ϕi

}

∪
{
〈qϕi+1

,Γpi+1
∩ Γ, ∅, Q′〉 〈qϕi

,Γ, F,Q′〉 ∈ ∆I
ϕi

}
.

It now follows from the assumptions that ∆̃I
ϕi+1

contains the self-loop t =〈
qϕi+1

,Γp1, ∅, {qϕi+1
}
〉
, and Γ ⊆ Γp1 holds also for all guards Γ of transi-

tions in ∆̃I
ϕi+1

. Furthermore, the self-loop t is substitutable for all self-loops

in ∆̃I
ϕi+1

\ {t} in the sense of Gastin and Oddoux, since all self-loops in

∆̃I
ϕi+1

are of the form
〈
qϕi+1

,Γ, F, (Q′ \ {qϕi
})∪{qϕi+1

}
〉

for some transition
〈qϕi

,Γ, F,Q′〉 ∈ ∆I
ϕi

: by the above observation, Γ ⊆ Γp1 holds, and obviously
also {qϕi+1

} ⊆ (Q′ \ {qϕi
}) ∪ {qϕi+1

} holds. Because the set of acceptance
conditions of the transition t is empty, it follows by Proposition 6.2.3 that all
self-loops in ∆̃I

ϕi+1
\ {t} are redundant. We may thus write the set of ini-

tial transitions in the automaton built for the formula ϕi+1 (after removing
redundant transitions) as

∆I
ϕi+1

=
{〈
qϕi+1

,Γp1, ∅, {qϕi+1
}
〉}

∪
{
〈qϕi+1

,Γpi+1
∩ Γ, ∅, Q′〉 〈qϕi

,Γ, F,Q′〉 ∈ ∆I
ϕi

}
.

180 6. REMOVING REDUNDANT TRANSITIONS

Because ∆I
ϕi+1

contains the self-loop
〈
qϕi+1

,Γp1, ∅, {qϕi+1
}
〉
, and because

Γ ⊆ Γp1 holds for all guards Γ of transitions in ∆̃I
ϕi+1

, the above equality
holds for all 2 ≤ i < ω by induction on i.

It is straightforward to check (using similar arguments as for the basic trans-
lation rules) that no transition in ∆I

ϕi+1
is substitutable for another transition

in ∆I
ϕi+1

in the sense of Gastin and Oddoux. Because no two distinct tran-
sitions in ∆I

ϕi
map into the same transition in ∆I

ϕi+1
in the definition of

∆I
ϕi+1

, it follows that |∆I
i | = i holds in this case for all 2 ≤ i < ω (clearly,

|∆I
ϕ2
| = 2 holds, and if |∆I

ϕi
| = i holds for some 2 ≤ i < ω, then obviously

|∆I
ϕi+1

| = i+1). It is easy to check that the subautomaton rooted at the initial
state of the automaton built in this way for the formula ϕi (2 ≤ i < ω) then

has
∑i

j=2 |∆
I
j | =

∑i

j=2 j = i·(i+1)
2

− 1 ∈ O(i2) transitions (again, it is easy to
check that ∆I

ϕi
contains a transition having the initial state of the automaton

built from the formula ϕi−1 as a target state for all 3 ≤ i < ω). As a matter
of fact, it is actually the case that the automaton built for the formula ϕi has
no transitions with two or more target states: thus every formula in the fam-
ily {ϕn}2≤n<ω can be translated into a self-loop nondeterministic automaton
with a linear number of states in the length of the formula. �

Not All Redundant Initial Transitions Can Be Detected
All previous examples in this section were based on using Proposition 6.2.2
and Proposition 6.2.3 to detect redundant initial transitions in self-loop al-
ternating automata. It is nevertheless easy to show that these results are not
powerful enough for finding all redundant initial transitions in self-loop al-
ternating automata.

Example 6.2.14 Figure 6.4 (a) depicts the self-loop alternating automa-
ton built from the LTL formula

(
(⊥Rw (p1 ∧ p2)) Rw p1

)
using the refined

translation rules. It is easy to see that this automaton fin-accepts a word
w ∈ (2{p1,p2})ω iff p1 ∈ w(i) holds for all 0 ≤ i < ω. Therefore the au-
tomaton is fin-equivalent to the automaton obtained from it by removing its
initial non-self-loop transition (Fig. 6.4 (b)). Hence, this transition is redun-
dant; however, neither Proposition 6.2.2 nor Proposition 6.2.3 applies in this
case (the only transition that can be substituted for the transition under fin-
acceptance is a self-loop, but the substituted transition itself is not a self-loop).

�

6. REMOVING REDUNDANT TRANSITIONS 181

p1

(p1 ∧ p2)

(p1 ∧ p2)

p1

(a) (b)

Fig. 6.4: Not all redundant initial transitions of self-loop alternating automata can be
detected by applying Proposition 6.2.2 or Proposition 6.2.3. (a) Self-loop alternating
automaton built from the formula

(
(⊥Rw (p1∧p2))Rw p1

)
; (b) Automaton obtained

from (a) by removing a redundant initial transition that cannot be detected using one
of the propositions

7 A HIGH-LEVEL REFINED TRANSLATION PROCEDURE

In this short chapter we summarize how the results presented in the two
previous chapters can be combined with the translation procedure from LTL
into self-loop alternating automata.

Let ϕ ∈ LTL(AP) be an LTL formula over the atomic propositions AP .
The translation of the formula ϕ into a self-loop alternating automaton starts
by rewriting ϕ in positive normal form (optionally, applying syntactic opti-
mizations to the formula as is common in translation algorithms [Etessami
and Holzmann 2000; Somenzi and Bloem 2000; Thirioux 2002]). Let ϕ′ be
the formula (in positive normal form) obtained from this rewriting step. A
self-loop alternating automaton for the formula ϕ′ can then be defined by
repeating the following high-level steps:

1. Choose a formula ψ ∈ NSub(ϕ′) that has not yet been translated into
an automaton such that automata for all top-level subformulas of ψ
have already been constructed. If ψ is an atomic formula, build a
single-state automaton for ψ using the translation rule for the atomic
formulas (Sect. 3.1) and repeat from this step.

2. Check whether any of the identities discussed in Sect. 5.3 apply to ψ
by analyzing the automata built for the top-level subformulas of ψ; if ψ
reduces to a formula for which an automaton already exists, reuse that
automaton for ψ and return to step 1.

3. Choose a translation rule according to the main connective of ψ and
the relationship between the top-level subformulas of ψ (Table 3.1,
Table 5.2, Table 5.3) and apply it to the automata built for the top-
level subformula(s) of ψ to obtain an automaton Aψ.

4. Remove redundant initial transitions from Aψ as discussed in Sect. 5.1
and Sect. 6.1 (by applying Corollary 2.3.11 and the results proved in
Proposition 6.2.2, Proposition 6.2.3 and Sect. 6.2.5).

5. Repeat from step 1 until Aϕ′ has been constructed.

182 7. A HIGH-LEVEL REFINED TRANSLATION PROCEDURE

In principle, the above procedure can easily be augmented with additional
minimization tests, for example, to reduce Aψ into a single-state automaton
corresponding to one of the Boolean constants if it accepts the empty or the
universal language. Furthermore, instead of only removing redundant tran-
sitions from the automaton, it is possible to use language containment tests
also for replacing states systematically with their language-equivalent repre-
sentatives in each remaining transition or to reduce the number of target
states in the transitions [Rohde 1997].

As observed in Sect. 5.2 and Sect. 6.2.4, every language containment test
applied in the above procedure can be reduced to testing the emptiness of
the set intersection of languages recognized by self-loop alternating automata
built from subformulas of the formula ϕ′ or the positive normal forms of their
negations. Because the formula ϕ′ is known at the beginning of the transla-
tion, these automata can be found directly by recursive invocations of the
above translation procedure. The number of these invocations is obviously
bounded by 2 · |NSub(ϕ′)| if no automaton built in the translation is dis-
carded until the end of the translation. The collection of the self-loop alter-
nating automata built in the translation can then be seen as a single self-loop
alternating automaton A having at most 2 · |NSub(ϕ′)| states corresponding
to formulas in the set NSub(ϕ′) ∪ NSub

(
[¬ϕ′]PNF

)
. Every collection of al-

ternating automata referred to in a test for language emptiness can then be
seen as a collection of subautomata of the underlying automaton A.

To effectively check whether the set intersection of languages recognized
by a collection of subautomata of A (determined by a set Q of their initial
states) is empty, it is now straightforward to apply a language emptiness check-
ing procedure for nondeterministic automata to the subautomaton rooted at
the state Q of the nondeterministic automaton A′ built from A by applying
the universal subset construction, since Lfin

(
(A′)Q

)
=

⋂
q∈QLfin(A

q) holds
by Proposition 4.4.1 (Sect. 4.4). (Because all translation rules and simplifi-
cation techniques used in the above procedure generate acceptance closed
self-loop alternating automata with representative states for all of their ac-
ceptance conditions, the automaton A can be nondeterminized without in-
troducing new acceptance conditions as observed in Corollary 4.3.7; also
the optimizations presented in Sect. 4.5 apply to the nondeterminization
procedure.) As usual, the universal subset construction can be embedded
directly into a language emptiness checking algorithm for nondeterministic
automata which is then invoked incrementally on subautomata of the au-
tomaton A′ during the translation procedure. In particular, language empti-
ness checking algorithms based on Tarjan’s algorithm for finding the strongly
connected components of a directed graph [Tarjan 1971, 1972] are easily
adaptable to compute the answer to the language emptiness question for the
automaton (A′)Q together with all of its subautomata in the same pass of the
state space of the automaton (A′)Q. (Of the emptiness checking algorithms
based on finding the strongly connected components of a nondeterministic
automaton [Couvreur 1999; Geldenhuys and Valmari 2004, 2005; Hammer
et al. 2005; Schwoon and Esparza 2005; Couvreur et al. 2005], the algorithm
of Couvreur [1999]—see also [Couvreur et al. 2005]—is perhaps best com-
patible with our definition of automata since it applies directly to automata
with generalized transition-based acceptance.) Again, if no subautomaton of

7. A HIGH-LEVEL REFINED TRANSLATION PROCEDURE 183

the nondeterministic automaton is discarded in the translation, all language
emptiness checks can thus be handled (in effect) in a single invocation of a
language emptiness checking algorithm on the nondeterministic automaton
A′ (which has at most 22·|NSub(ϕ′)| states). Technically, even though the struc-
ture of the underlying alternating automaton A may change between invo-
cations of an emptiness checking procedure (for example, if some transitions
are removed from the automaton), it is nevertheless not necessary to repeat
a language emptiness check for any collection of subautomata of A because
all of our simplifications preserve the language of each subautomaton of A.

The language containment based optimizations used in the high-level
translation procedure do not affect the order of the upper bound for the
number of recursive invocations of the basic translation procedure, or the
number of states in a nondeterministic automaton built in the translation of
an LTL formula into a nondeterministic automaton via a self-loop alternat-
ing automaton (these upper bounds remain of the order O

(
|NSub(ϕ′)|

)
and

2O(|NSub(ϕ′)|), respectively). Nevertheless, it is to be expected that this trans-
lation procedure is realistically applicable in practice only to small problem
instances. Because the translation procedure enhanced with language con-
tainment based optimizations is intuitively more prone to perform the worst-
case amount of work than the basic translation procedure, the performance
penalty resulting from repeated unsuccessful language containment tests is
likely to become clearly visible in practice (in favor of a procedure with-
out language containment based optimizations) in cases where the language
containment tests fail to discover opportunities for simplification.

By the design of our language containment based optimizations, every op-
timization depends on a positive answer to a question on language contain-
ment (equivalently, language emptiness) in order to be applicable. Therefore
it is always safe to assume the answer to such a question to be negative (con-
sequently, disabling the optimization) without risking the correctness of the
translation procedure. For example, the effort spent in recursive invocations
of the translation procedure for formulas that do not occur as node subfor-
mulas of ϕ′ could be reduced by specifying a bound for the node size (or
other syntactic measure, such as the number of temporal operators) of LTL
formulas for which to invoke the translation procedure recursively. Similarly,
the amount of work needed for building nondeterministic automata for lan-
guage emptiness tests could be controlled by limiting the maximum number
of states of the underlying nondeterministic automaton to generate in the
translation, disabling the language emptiness tests if this bound is exceeded
during the translation. Instead of applying the universal subset construction,
the language emptiness checks could also be approximated by syntactic tech-
niques (Sect. 4.5.1) to try to detect the unsatisfiability of a conjunction of
LTL formulas corresponding to a set of alternating automata. Additionally,
caching the results of the emptiness checks for subsets of the states of the
alternating automaton A would allow the explicit construction of a nonde-
terministic automaton to be avoided in some cases for other subsets of states
of the automaton: for example, if

⋂
q∈QLfin(A

q) = ∅ is known to hold for a
subset Q of states of A, then obviously

⋂
q∈Q′ Lfin(A

q) = ∅ holds also for all
sets Q′ of which Q is a subset; conversely, if

⋂
q∈QLfin(A

q) 6= ∅ holds, then⋂
q∈Q′ Lfin(A

q) 6= ∅ holds for all subsets Q′ ⊆ Q.

184 7. A HIGH-LEVEL REFINED TRANSLATION PROCEDURE

8 LANGUAGE EMPTINESS CHECKING FOR NONDETERMINIS-
TIC AUTOMATA

Checking for the emptiness of the language recognized by a nondeterminis-
tic automaton working in inf- or fin-acceptance mode can be reduced to a
question on repeated reachability in automata (see, for example, [Vardi and
Wolper 1994]). Therefore, the emptiness checking problem can be solved
by using basic graph algorithms to decide the existence of cycles satisfying
certain acceptance constraints. In particular, Tarjan’s algorithm for finding
the maximal strongly connected components of a directed graph in linear
time in the number of nodes and edges in the graph using depth-first search
[Tarjan 1971, 1972] has been found to be easily and efficiently adaptable to
language emptiness checking for nondeterministic automata working in inf-
or fin-acceptance mode using one [Geldenhuys and Valmari 2004; Schwoon
and Esparza 2005] or more [Couvreur 1999; Hammer et al. 2005; Couvreur
et al. 2005; Geldenhuys and Valmari 2005] acceptance conditions. Because
the algorithms can be combined with the on-the-fly construction of a non-
deterministic automaton, they are often able to detect language nonempti-
ness without constructing the automaton in full. This on-the-fly detection of
language nonemptiness is useful especially in model checking applications,
where the nondeterministic automata obtained by composing system descrip-
tions with automata expressing correctness specifications (built, for example,
from LTL formulas) are often very large due to state space explosion.

The single most critical resource consumed by an emptiness checking
algorithm based on a search in the state space of an automaton is usually
considered to be the amount of randomly accessed memory needed for dis-
tinguishing already visited states from states that have not been explored in
the search, together with the additional memory used for implementing the
actual language emptiness check on top of the search. For example, vari-
ants of Tarjan’s algorithm commonly number the states of the automaton in
the order in which they are encountered during the search, associating each
state with one or more integers whose maximum possible values depend on
the number of states in the automaton. Even though some variants of lan-
guage emptiness checking algorithms try to discard as much information as
possible when it is not needed any longer in the search by maximizing the
use of stacks in place of hash tables for storing the information [Geldenhuys
and Valmari 2004, 2005], the worst-case memory requirements of these algo-
rithms still exceed those of the nested depth-first search (NDFS) algorithm of
Courcoubetis et al. [1991, 1992] and its many variants [Godefroid and Holz-
mann 1993; Holzmann et al. 1997; Edelkamp et al. 2001, 2004; Brim et al.
2001; Bošnački 2002, 2003; Gastin et al. 2004; Tauriainen 2004, 2005, 2006;
Schwoon and Esparza 2005; Couvreur et al. 2005]. Instead of analyzing the
strongly connected components of an automaton, these algorithms try to de-
tect the nonemptiness of the language of the automaton via the reduction
of language nonemptiness to repeated reachability. However, the worst-case
number of passes of the state space of the automaton required by these algo-
rithms depends on the number of acceptance conditions in the automaton.
It is therefore not surprising that variants of Tarjan’s algorithm, for which the

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 185

number of passes is independent of the number of acceptance conditions,
outperform NDFS-based ones as regards the number of states (re-)explored
in the search [Schwoon and Esparza 2005; Couvreur et al. 2005].

In addition to using multiple passes of the state space, most known variants
of the basic nested depth-first search algorithm are not directly applicable
to automata with more than one acceptance condition: the automata first
need to be degeneralized to replace the multiple acceptance conditions with
a single one [Emerson and Sistla 1984a,b; Courcoubetis et al. 1991, 1992;
Gastin and Oddoux 2001; Giannakopoulou and Lerda 2002]. Although a
simple operation in a theoretical sense, degeneralization may nevertheless
increase the number of states in the automaton by a factor that is propor-
tional to the number of acceptance conditions. Because the increase in the
number of states cannot be avoided in the general case, the transformation
may thus work against any memory savings gained from the use of a special
emptiness checking algorithm. Other advantages of direct emptiness check-
ing algorithms for automata with multiple acceptance conditions have pre-
viously been pointed out in the context of verification under simple liveness
[Aggarwal et al. 1990] (or weak fairness) assumptions by Couvreur [1999],
who proposed an on-the-fly variant of Tarjan’s algorithm [Tarjan 1971, 1972]
for checking the emptiness of languages recognized by automata with multi-
ple acceptance conditions, and Bošnački [2003], who studied combining the
nested depth-first search with fairness and symmetry reduction.

In this chapter, we present a variant of the basic nested depth-first search
emptiness checking algorithm of [Courcoubetis et al. 1991, 1992], combin-
ing material from previous work by the author in [Tauriainen 2004, 2005,
2006]. This variant is designed to work directly on automata with multiple
acceptance conditions and thus avoids the need for degeneralization. In-
stead of using automata working in fin-acceptance mode, we switch our fo-
cus to automata working in inf-acceptance mode to make our algorithm di-
rectly substitutable for other constructions known from the literature. When
dealing with nondeterministic automata obtained from self-loop alternating
automata working in fin-acceptance mode, the simple correspondence be-
tween the acceptance modes allows the inversion of the acceptance mode to
be combined, for example, with the nondeterminization of self-loop alternat-
ing automata (which can by itself be embedded into the language emptiness
checking algorithm [Hammer et al. 2005]).

Although the algorithm presented in this chapter could be used to im-
plement language emptiness checks in the high-level translation procedure
for translating LTL formulas into self-loop alternating automata (Ch. 7), the
algorithm is geared more towards model checking (variants of Tarjan’s al-
gorithm work faster, and they are easily adaptable to answer the language
emptiness question for all subautomata of a nondeterministic automaton in
the same pass of the automaton’s state space).

8.1 TERMINOLOGY

In this section we briefly introduce additional terminology which we shall
use in the analysis of nondeterministic automata working in inf-acceptance

186 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

mode.
Let A = 〈Σ, Q,∆, qI ,F〉 be a nondeterministic automaton, and let

(ti)0≤i<n ∈ ∆n (for some 0 ≤ n ≤ ω) be a chain of transitions in A. We
say that the chain (ti)0≤i<n fulfills the acceptance condition f ∈ F iff there
exists an index 0 ≤ i < n such that the transition ti is an f -transition of A.

Because every transition of A has exactly one target state, it is easy to see
that every nonempty chain of transitions in A determines a unique path in
A. Thus we say that a nonempty chain of transitions visits a state q ∈ Q if the
path corresponding to it does; similarly, we may consider a state q′ ∈ Q to be
reachable from another state q ∈ Q via a nonempty chain of transitions if q′

is reachable from q via the path that corresponds to the chain of transitions,
and we may call a finite nonempty chain of transitions a cycle if the path
determined by the chain is a cycle of A.

It is easy to see that every infinite chain of transitions with nonempty
guards that begins with an initial transition of A defines a run of A on some
input and vice versa. Therefore, because ∆ is finite, it follows that A has
an inf-accepting run on some input w ∈ Σω (that is, Linf(A) 6= ∅ holds)
iff A contains an accepting cycle, i.e., a cycle (of transitions with nonempty
guards) which fulfills all acceptance conditions f ∈ F and visits a state that
is reachable from the initial state qI of the automaton.

Finally, a maximal strongly connected component of A is a maximal sub-
set C ⊆ Q∪∆ such that for all q, q′ ∈ C∩Q, there exists a path from q to q′ in
A that corresponds to a (possibly empty) chain of transitions with nonempty
guards, and for all t =

〈
q,Γ, F, {q′}

〉
∈ C ∩ ∆, Γ 6= ∅ and q, q′ ∈ C hold.

It is straightforward to check that every accepting cycle of A is contained in
a maximal strongly connected component of A that contains an f -transition
for all f ∈ F .

8.2 DEGENERALIZATION

It is well-known that nondeterministic automata with more than one accep-
tance condition are not more expressive than automata with a single ac-
ceptance condition, and there are effective degeneralization constructions
for replacing the acceptance conditions in a nondeterministic automaton
with a single condition. These constructions [Emerson and Sistla 1984a,b;
Courcoubetis et al. 1991, 1992] can be seen either as variants of the “flag-
construction” of Choueka [1974] for defining a nondeterministic ω-automa-
ton for the set intersection of the languages recognized by a collection of
nondeterministic ω-automata, or as procedures that achieve their goal by
combining automata with special “degeneralizer” automata [Couvreur 1999;
Giannakopoulou and Lerda 2002].

It is straightforward to adapt, for example, the construction proposed by
Courcoubetis et al. [1991, 1992] (designed for automata with state-based
acceptance) to automata with transition-based acceptance. Intuitively, the
construction works by taking as many copies of the automaton as there are
acceptance conditions, and then connecting the copies together into an au-
tomaton in which every finite chain of transitions that begins and ends with
transitions fulfilling the acceptance condition of the automaton corresponds

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 187

to a chain that fulfills all acceptance conditions in the original automaton
(and vice versa). Therefore, any infinite chain of transitions satisfying the
inf-acceptance condition in one of the automata corresponds to a similar
chain in the other automaton.

Formally, the construction transforms a nondeterministic automaton A =
〈Σ, Q,∆, qI ,F〉 with state set Q = {q1, q2, . . . , qn} (where 1 ≤ n < ω and
qI = q1) and a nonempty set of acceptance conditions F = {f1, f2, . . . , fm}
(1 ≤ m < ω) into a nondeterministic automaton A′ =

〈
Σ, Q′,∆′, q′I , {f}

〉
,

where

Q′ def
= {q(i,j)}

i=n,j=m
i=1,j=1 ,

∆′ def
=

⋃m
k=1

({〈
q(i,k),Γ, ∅, {q(j,k)}

〉 〈
qi,Γ, F, {qj}

〉
∈ ∆, fk /∈ F

}

∪
{〈
q(i,k),Γ, F (i), {q(j,1+(k mod m))}

〉 〈
qi,Γ, F, {qj}

〉
∈ ∆,

fk ∈ F
})

,

q′I
def
= q(1,k), and

F (i)
def
=

{
{f} if i = ` holds for some fixed 1 ≤ ` ≤ m
∅ otherwise.

(If F = ∅ holds, we can define A′ def
=

〈
Σ, Q,∆′, qI , {f}

〉
, where ∆′ def

={〈
q,Γ, {f}, {q′}

〉 〈
q,Γ, ∅, {q′}

〉
∈ ∆

}
.)

When applied to an automaton A with n states and 1 ≤ m < ω ac-
ceptance conditions, the transformation yields an automaton A′ with nm
states and one acceptance condition such that the automata A′ and A inf-
recognize the same language [Emerson and Sistla 1984a,b; Courcoubetis
et al. 1991, 1992]. The construction gives an O(nm) worst-case lower bound
for the number of states in an automaton obtained via degeneralization. As
shown below, this lower bound is optimal, i.e., the linear blow-up in the
number of states in the automaton cannot be avoided in the general case. (Al-
though this result is intuitively very obvious, the optimality of the construc-
tion is usually not considered in literature on degeneralization algorithms
[Emerson and Sistla 1984a,b; Courcoubetis et al. 1991, 1992; Clarke et al.
1999] or their optimizations [Gastin and Oddoux 2001; Giannakopoulou and
Lerda 2002]. We therefore repeat an example from [Tauriainen 2004, 2006]
here for illustration.)

Proposition 8.2.1 A nondeterministic automaton built by degeneralizing a
nondeterministic automaton with 1 ≤ n < ω states and 1 ≤ m < ω accep-
tance conditions (and an alphabet of at least m+1 symbols) needs nm states
to recognize the language of the original automaton in the worst case.

Proof: Let 2 ≤ n < ω be an integer, and let Σm denote a finite alphabet
with 1 ≤ m < ω distinct symbols σ1, . . . , σm together with an extra symbol
different from each σi. The parameters n and m can be used to define a
set of infinite words Ln,m over Σm characterized by the ω-regular expression

Ln,m =
((

(∪mi=1
i6=1

σi)#
n−1

)∗
σ1#

n−1

(
(∪mi=1

i6=2

σi)#
n−1

)∗
σ2#

n−1

· · ·
(
(∪mi=1

i6=m

σi)#
n−1

)∗
σm#n−1

)ω
,

188 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

{#}

{#}

{σ1}
{σ2}

{σ3}

q3,31 q3,32 q3,33

{#}

{#}

{#}

{#}

{#}

{#} {σ1}
{σ1}

{σ1}
{σ2}

{σ2}

{σ2}

{σ3}

{σ3}

{σ3}

q3,3(1,1)

q3,3(2,1)

q3,3(3,1) q3,3(1,2)

q3,3(2,2)

q3,3(3,2) q3,3(1,3)

q3,3(2,3)

q3,3(3,3)

(a) (b)

Fig. 8.1: Examples of automata used in the proof of Proposition 8.2.1. (a) The
automaton A3,3. (b) Automaton obtained from A3,3 via degeneralization

i.e., the set of infinite words built from n-symbol “blocks” over Σm, each of
which consists of one of the symbols σi (1 ≤ i ≤ m) followed by exactly n−1
#’s, with the additional constraint that each σi should occur in the resulting
word infinitely many times.

The language Ln,m can be recognized by the n-state nondeterministic
automaton An,m = 〈Σm, Qn,m,∆n,m, q

n,m
I ,Fn,m〉, where

Qn,m
def
= {qn,m1 , qn,m2 , qn,m3 , . . . , qn,mn },

∆n,m
def
=

(⋃m

i=1

{〈
qn,m1 , {σi}, {f

n
m}, {q

n,m
2 }

〉})

∪
(⋃n

i=2

{〈
qn,mi , {#}, ∅, {qn,m(i mod n)+1}

〉})
,

qn,mI
def
= qn,m1 , and

Fn,m
def
= {fn1 , f

n
2 , . . . , f

n
m}.

As a concrete example, see Fig. 8.1 (a) for an illustration of the automaton
A3,3.

By the above construction, there exists an automaton with nm states and
a single acceptance condition such that the automaton recognizes the lan-
guage Ln,m. Figure 8.1 (b) shows the result when the construction is applied
to the automaton A3,3. We argue that the construction is optimal by show-
ing that any automaton that inf-recognizes the language Ln,m using only one
acceptance condition always has at least nm states.

Let A =
〈
Σm, Q,∆, qI , {f}

〉
be an automaton that inf-recognizes Ln,m

using only one acceptance condition f , and let w ∈ Ln,m. Thus, A inf-
accepts w, and there exists a uniform inf-accepting run G of A on w that
consists of a unique infinite branch β ∈ B(G) such that inf(β) = {f} holds.
Because ∆ is finite, β contains infinitely many edges labeled with a transition
t =

〈
q,Γ, F, {q′}

〉
∈ ∆ such that f ∈ F holds. Let u be a finite prefix of w

such that the edge beginning at level |u| of G is labeled with the transition t
(with source state q). Because t occurs infinitely many times inG, there exists
a chain of transitions (with nonempty guards) beginning with the transition t
that corresponds to a cycle from q to itself in A.

Consider any shortest chain of transitions (with nonempty guards) that
begins with the transition t and corresponds to a cycle from q to itself in

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 189

the automaton A. Let v be a word composed of symbols in the guards of the
successive transitions in the chain. It is easy to see that A inf-accepts the word
uvω. Because A inf -recognizes the language Ln,m, it follows that uvω ∈ Ln,m
holds. Hence each σi must occur at least once in v for all 1 ≤ i ≤ m. In
the simplest case, each σi occurs in v exactly once, and v is of the form
#kσρ(1)#

n−1σρ(2)#
n−1 · · ·σρ(m)#

n−k−1 for some 0 ≤ k ≤ n − 1 and some
permutation ρ of {1, . . . , m}. Clearly, v has (n − 1)m + m = nm symbols.
Because v was formed from a shortest chain of transitions (beginning with
the transition t) that corresponds to a cycle from q to itself, the source states
of the transitions in the chain are distinct. It follows that A has at least nm
states as argued. �

8.3 EMPTINESS CHECKING ALGORITHM

Let A = 〈Σ, Q,∆, qI ,F〉 be a nondeterministic automaton with a nonempty
set of acceptance conditions F = {f1, f2, . . . , fn} for some 1 ≤ n < ω. The
indices of the acceptance conditions induce an ordering between the con-
ditions. Figure 8.2 represents the pseudocode of an algorithm that decides
whether A inf-recognizes the empty language or not by checking for the ex-
istence of an accepting cycle in A. We present the algorithm in recursive
form, from which it is easy to point out the relevant details. (If F = ∅ holds,
the emptiness of Linf(A) can be decided using a single depth-first search in
the automaton, because Linf(A) 6= ∅ holds in this case iff A contains a cycle
that visits a state reachable from the initial state qI of A. As a matter of fact, a
single search is sufficient also for weak nondeterministic automata [Schwoon
and Esparza 2005].)

The TOP-LEVEL-SEARCH procedure implements a simple depth-first
search in the automaton. After processing a transition (line 7), a second
search is started from the transition at line 9 (in further discussion, the term
“second search” refers to all operations caused by a call to the SECOND-

SEARCH procedure made at line 9). The purpose of this search is to prop-
agate information about the reachability of states via chains of transitions
which fulfill certain acceptance conditions. Each second search is restricted
to states that have been found in the top-level search.

The algorithm uses the following (global) data structures:

path_stack : This stack collects the states entered in the top-level search but
from which the search has not yet backtracked. This stack is used only
to facilitate the correctness proof in Sect. 8.3.2 and thus all references
to it (lines 3 and 12) could be removed from the pseudocode.

visited : States found in the top-level search. When a state is added to this
set, it will never be removed.

count : A lookup table associating each state of the automaton with an in-
dex of an acceptance condition. Intuitively, if count [q] = c holds for
some q ∈ Q and 1 ≤ c ≤ n, then, for every acceptance condition
f1, f2, . . . , fc ∈ F , the automaton contains a nonempty chain of tran-
sitions (with nonempty guards) that corresponds to a path ending in

190 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

Initialize: A := 〈Σ, Q,∆, qI ,F〉: Nondeterministic automaton with states Q =
{q1, q2, . . . , q|Q|} and 1 ≤ n < ω acceptance conditions F = {f1,
f2, . . . , fn};

path_stack := [empty stack];
visited := ∅;
count := [q1 7→ 0, . . . , q|Q| 7→ 0];
depth := 1;
condition_stack := [stack initialized with the element (0, 0)].

1 TOP-LEVEL-SEARCH(q ∈ Q)

2 begin

3 push q on path_stack ;

4 visited := visited ∪ {q};

5 for all t =
〈
q,Γ, F, {q′}

〉
∈ ∆ with Γ 6= ∅ do

6 begin

7 if (q′ /∈ visited) then TOP-LEVEL-SEARCH(q′);
8 Iseen :=

{
1, 2, . . . , count [q]

}
;

9 SECOND-SEARCH(t);
10 if (count [q] = |F|) then report “Linf(A) 6= ∅”;

11 end;

12 pop q off path_stack ;

13 end

14 SECOND-SEARCH(
〈
q,Γ, F, {q′}

〉
∈ ∆)

15 begin

16 Iunseen_fulfilled :=
{
1 ≤ i ≤ |F| fi ∈ F

}
\ Iseen;

17 c := max
{
0 ≤ i ≤ |F| j ∈ Iseen ∪ Iunseen_fulfilled for all 1 ≤ j ≤ i

}
;

18 if (c > count [q′]) then

19 begin

20 count [q′] := c;
21 Iseen := Iseen ∪ Iunseen_fulfilled;

22 for all i ∈ Iunseen_fulfilled do push (i, depth) on condition_stack ;

23 depth := depth + 1;

24 for all t =
〈
q′,Γ′, F ′, {q′′}

〉
∈ ∆ such that Γ′ 6= ∅ and q′′ ∈ visited do

25 SECOND-SEARCH(t);
26 depth := depth − 1;

27 (i, d) := topmost element of condition_stack ;

28 while (d = depth) do

29 begin

30 Iseen := Iseen \ {i};

31 pop (i, d) off condition_stack ;

32 (i, d) := topmost element of condition_stack ;

33 end

34 end

35 end

Fig. 8.2: Nested depth-first search language emptiness checking algorithm for non-
deterministic automata working in inf -acceptance mode using one or more ac-
ceptance conditions. The emptiness check is started by calling the TOP-LEVEL-

SEARCH procedure with the initial state qI of the automaton as a parameter

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 191

the state q such that the chain fulfills the condition. For all q ∈ Q,
count [q] will never decrease during the execution of the algorithm.

Iseen: A set of indices of acceptance conditions “seen” in a chain of transi-
tions (beginning with the transition from which a second search was
started at line 9), the path corresponding to which ends in the state
referred to by the program variable q in a nested recursive call of the
SECOND-SEARCH procedure. The conditions “seen” in this chain in-
clude also the conditions that were associated with the state from which
the search was started (line 8). In every nested call to the SECOND-

SEARCH procedure, the algorithm first collects the indices of all previ-
ously “unseen” acceptance conditions that are included in the accep-
tance conditions of the transition given as a parameter for the proce-
dure (line 16). These indices are then added to the Iseen set later at
line 21 before any nested recursive calls to the procedure.

depth: An integer variable representing the number of transitions in a chain
(beginning with the transition from which a second search was started)
that corresponds to a path that ends in the state referred to by the pro-
gram variable q′ in a nested recursive call of the SECOND-SEARCH

procedure.

condition_stack : A stack used for recording a (partial) history of changes
made to the Iseen set during a second search in the automaton. To
simplify the presentation of the SECOND-SEARCH procedure, the stack
is initialized with a sentinel element that will never be removed from
the stack (and thus the stack can never be empty at lines 27 or 32).

To simplify the presentation of the algorithm, the global variables depth and
Iseen could be modeled as parameters of the SECOND-SEARCH procedure
(in which case also the variable condition_stack could be eliminated). How-
ever, we treat these variables as globals to facilitate the analysis of the algo-
rithm’s memory requirements.

The second search proceeds from a state q to its successor q′ only if the
conditions “seen” in a chain of transitions corresponding to a path that ends
in the state q′ include the next condition (or possibly several consecutive con-
ditions in the acceptance condition ordering), the index of which is not yet
recorded in the value of count [q′]. At line 17, the algorithm finds the maxi-
mal index of an acceptance condition which has been “seen” along with all
of its predecessors (in the acceptance condition ordering) during the second
search; whether to proceed to a successor of q is then decided at line 18.

Example 8.3.1 We illustrate the behavior of the emptiness checking algo-
rithm with a simple example. Consider the nondeterministic automaton
shown in Fig. 8.3 (a) (for simplicity, we assume that all transitions in the
automaton have nonempty guards and omit them from the figure because
the behavior of the language emptiness checking algorithm does not depend
on the contents of such guards). This automaton has eight states and three
acceptance conditions f1, f2 and f3 represented in the figure by •, ◦ and
•, respectively. It is easy to see that the automaton consists of a single max-
imal strongly connected component, and thus the language inf-recognized

192 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

q1

q2

q3

q4

q5

q6

q7

q8

0

1

1

1

0

0

0

0

q1

q2

q3

q4

q5

q6

q7

q8
00

0

0

1

1

1 0

q1

q2

q3

q4

q6

q7

q8

q5

(a) (b) (c)

PSfrag 2

2 2

2

2

2

2

0

q1

q2

q3

q4

q6

q7

q8

q5 0

2

2 2

2

2

2

2

q1

q2

q3

q4

q5

q6

q7

q8

3

3

3

3

3

3

3

3

q1

q2

q3

q4

q5

q6

q7

q8

(d) (e) (f)

Fig. 8.3: Example on running the emptiness checking algorithm on an automaton.
(a) An automaton with three acceptance conditions and a nonempty language; (b)–
(f) State of the algorithm when the top-level search is about to backtrack from the
states q4, q6, q2, q5 and q1, respectively

by the automaton is not empty. We briefly describe the steps the algorithm
takes to verify this property. (In the following, we assume that the algorithm
examines the transitions starting from a state of the automaton in the order
determined by the indices of their target states. Thus, for example, in state
q8, the algorithm first examines the transition with target state q1, followed by
the transitions with target states q6 and q7, respectively.)

Starting from the state q1, the top-level search first explores the states q2,
q3 and q4. Before the search backtracks from the state q4, a second search is
started from each transition with source state q4. Because the transition with
target state q2 is an f1- (•-)transition, the second search starting from this
transition explores the states q2, q3 and q4 and updates count [q2], count [q3]
and count [q4] to 1. The search will not proceed from q2 to q7, however, be-
cause the top-level search did not visit the state q7 before this second search.
Figure 8.3 (b) represents the state of the algorithm when the top-level search
is about to backtrack from the state q4 (the contents of the count table is rep-
resented by numbers in the states; the shaded states represent the contents of
the top-level search stack).

The top-level search now backtracks from q4 and q3 (without making fur-
ther changes to the count table in second searches), and then explores the
states q7, q8 and q6. Even though the transition from q6 to the state q4 is an f2-
(◦-)transition, the second search started from this transition will not proceed
to the state q4, because count [q6] < 1 holds at the beginning of this search
(and when the top-level search is about to backtrack from the state q6, see
Fig. 8.3 (c)). The contents of this table remain unchanged until a second
search is started from the transition with source state q2 and target state q7.

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 193

Because count [q2] = 1 > 0 = count [q7] holds at the beginning of the sec-
ond search from the transition between these two states, the second search
will update count [q7], count [q8], count [q1] and count [q6] to 1. Furthermore,
because the transition from q6 to q4 is an f2- (◦-)transition, the search will
revisit all descendants of q6 explored in the top-level search, updating the
count table as shown in Fig. 8.3 (d), which represents the state of the algo-
rithm when the top-level search backtracks from the state q2.

After backtracking from the state q2, the top-level search enters the last
unvisited state q5 of the automaton. The algorithm backtracks from this state
without making any changes to the count table in the second search started
from the transition between q5 and q6; see Fig. 8.3 (e).

A second search is started once more from the transition from q1 to q5.
The state of the algorithm after this second search is shown in Fig. 8.3 (f).
Because q1 is still on the top-level search stack and count [q1] = 3 holds at the
end of this search, the algorithm reports that the language inf-recognized by
the automaton is not empty. �

8.3.1 Resource Requirements

Clearly, the count table associates each state of the automaton with an inte-
ger that will never exceed the number of acceptance conditions |F| in the
automaton. Because entering a state q′ during a second search (line 19) im-
plies incrementing the value of count [q′], it is easy to see that the algorithm
needs at most |F|+1 passes of the state space of the automaton. It is also easy
to see that the top-level search stack will contain at most |Q| elements at any
time during the search. The implicit recursion stack used for nested calls of
the SECOND-SEARCH procedure will grow to contain at most |Q| · |F| + 1
elements in the worst case. If the count table is represented as a hash table
indexed with state descriptors, each of which consumes s bits of memory,
the table has to store |Q| ·

(
s+ dlog2(|F| + 1)e

)
bits in the worst case. (The

visited set can be combined with this table by inserting states to the table as
they are entered in the top-level search.)

The Iseen set can be represented as a bit vector with |F| bits. Because el-
ements are added to condition_stack only when there are conditions whose
indices are still missing from the Iseen set, it is easy to see that this stack will
never contain more than |F| + 1 elements. Note that this bound would not
be as obvious if the depth and Iseen variables had been modeled as parame-
ters of the SECOND-SEARCH procedure: in this case the information stored
in condition_stack would be implicit in the activation records of nested re-
cursive procedure calls (and would amount to |Q| · |F|+1 instead of |F|+1
elements in the worst case). It is straightforward to check that the integer
depth, the Iseen set and the elements in the condition_stack stack need
O

(
|F| log2(|Q| · |F|)

)
bits for their representation in the worst case.

Additionally, the search procedures need (in a standard way) to keep track
of information on how to generate the next transition starting from a state in
the loops at lines 5–11 and 24–25 such that the information is preserved over
nested recursive calls of the procedures.

Table 8.1 lists worst-case resource requirements (number of bits consumed
by a hash table used to implement a search and the number of states visited

194 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

Table 8.1: Upper bounds for complexity measures for checking the language inf-
recognized by a nondeterministic with n states and 1 ≤ m < ω acceptance condi-
tions for emptiness; sg and sd are the numbers of bits required for representing state
descriptors in the original and degeneralized automaton, respectively (sg ≤ sd).

Emptiness checking strategy
Number of
entries in
hash table

Memory required for hash table
(bits)

Number of
states visited

explicit degeneralization
with classic NDFS
[Godefroid and
Holzmann 1993]

nm nm(sd + 2) 2nm

classic NDFS with
on-the-fly
degeneralization
[Bošnački 2003]

n n(sg + 2m) 2nm

generalized nested search
[Tauriainen 2004, 2006]

n n(sg +m) n(m+ 1)

generalized NDFS
(Fig. 8.2; [Tauriainen
2005])

n n
(
sg + dlog2(m+ 1)e

)
n(m+ 1)

in the search in the worst case) for several language emptiness checking al-
gorithms based on the nested depth-first search algorithm of Courcoubetis
et al. [1991, 1992] when applied to nondeterministic automata working in
inf-acceptance mode using multiple acceptance conditions. (For simple ex-
perimental comparison of generalized search against nongeneralized algo-
rithms, see [Tauriainen 2006].)

The original nested depth-first search algorithm of Courcoubetis et al.
[1991, 1992] for nondeterministic automata with a single acceptance condi-
tion needs two passes of the state space of the automaton in the worst case
to decide whether the automaton inf -recognizes the empty language (for a
description of the basic nested depth-first search algorithm, see, for exam-
ple, the textbook [Clarke et al. 1999]). Godefroid and Holzmann [1993]
suggested an implementation of the classic algorithm that stores two bits of
information per each state of the automaton in a hash table indexed with
state descriptors of the automaton to keep track of the two passes in which a
state may have been visited. The worst-case number of bits needed for the
hash table and number of states visited by this algorithm follow directly from
the result that degeneralizing an automaton with n states and 1 ≤ m < ω ac-
ceptance conditions may result in an m-fold increase in the number of states
of the automaton in the worst case (Proposition 8.2.1). As shown by Bošnački
[2003], combining degeneralization with the search algorithm (called “on-
the-fly degeneralization” in Table 8.1) makes it possible to implement the
search using less memory by observing that the states in the degeneralized
automaton are copies of states of the original automaton (in which case the
two additional bits associated with each of the m different copies of a state
can be stored into the same entry of the hash table).

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 195

The worst-case memory requirements can be improved further by bypass-
ing degeneralization, in which case also the worst-case number of states vis-
ited during the search can be reduced [Tauriainen 2004, 2006]; ordering the
acceptance conditions allows for a further reduction in the number of bits
that need to be stored in the search hash table [Tauriainen 2005]. The algo-
rithm in Fig. 8.2 corresponds to this variant of the generalized nested search
algorithm from [Tauriainen 2004, 2006] enhanced with an optimization sug-
gested by Couvreur et al. [2005] to speed up the detection of language non-
emptiness by initiating second searches immediately after processing a transi-
tion at line 7 (instead of waiting until all transitions starting from a state have
been processed as done in the classic NDFS algorithm).

8.3.2 Correctness of the Algorithm

In this section we prove the correctness of the algorithm.
Let A = 〈Σ, Q,∆, qI ,F〉 (F 6= ∅) be a nondeterministic automaton

(working in inf-acceptance mode) given as input for the algorithm. It is
easy to see that the algorithm will start a second search at line 9 from every
transition (with a nonempty guard), the source state of which is either the
initial state qI of the automaton, or a state reachable from qI via a chain of
transitions with nonempty guards, and the second search is started exactly
once from each of these transitions. Therefore the transitions are processed
in some well-defined order: we write t ≤ t′ (t, t′ ∈ ∆) to indicate that the
second search from t is started at line 9 before the second search from t′

(or t = t′). (Other inequalities between transitions are defined in the ob-
vious way.) Additionally, we write visited(t) and path_stack(t) to refer to
the contents of the visited set and the top-level search stack (respectively) at
the beginning of a second search from the transition t; note that these data
structures remain unchanged in all recursive calls to the SECOND-SEARCH

procedure. We also write path_stack(q) to denote the contents of the top-
level search stack at line 13 of the algorithm when the top-level search is
about to backtrack from a state q ∈ Q.

It is easy to check (by induction on the number of nested recursive calls of
the SECOND-SEARCH procedure) that, if depth = d and Iseen = I hold for
an integer d and a set of indices of acceptance conditions I ⊆

{
1, 2, . . . , |F|

}

when the algorithm is about to enter the loop at line 24, then depth and Iseen

will have these same values at the beginning of each iteration of the loop.

Soundness
In this section we prove the soundness of the algorithm (with respect to
checking for the nonemptiness of a language inf-accepted by an automaton).
We first formalize a simple fact about states in the top-level search stack.

Lemma 8.3.2 Let q and q′ be states in path_stack such that q = q′ holds,
or q was pushed before q′ on the stack. There exists a path from q to q′ in A
such that the path corresponds to a (possibly empty) chain of transitions with
nonempty guards in A.

Proof: The result holds trivially if q = q′. Otherwise q′ was pushed on the
stack in a recursive call of the top-level search procedure (started at line 7

196 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

when q was on top of the stack), and it follows by induction that there exists a
path from q to q′ in the automaton such that this path corresponds to a chain
of transitions with nonempty guards. �

The soundness of the algorithm is based on the observation that every state
in the top-level search stack known to be reachable via a chain of transitions
(with nonempty guards) that fulfills an acceptance condition is actually in a
cycle that fulfills the condition.

Lemma 8.3.3 Let t ∈ ∆ be a transition from which the algorithm starts a
second search at line 9. If count [q] ≥ n holds for some q ∈ path_stack(t)
and 1 ≤ n ≤ |F| during a second search started at line 9 from the transition
t, then the automaton contains a cycle of transitions with nonempty guards
which fulfills the acceptance condition fn and visits the state q.

Proof: We claim that there exists an integer 1 ≤ k < ω, states q0, q1, . . . , qk ∈
Q (with q0 = q) and transitions t0, t1, . . . , tk ∈ ∆ such that for all 0 ≤ i < k,
qi and qi+1 are reachable from each other in the automaton via nonempty
chains of transitions with nonempty guards, ti ≥ ti+1 holds for all 0 ≤ i <
k, and qk−1 is reachable from qk via a chain of transitions (with nonempty
guards) which fulfills the acceptance condition fn. Clearly, if such sequences
exist, then q0 (= q) is a source state of a transition in a cycle of transitions
with nonempty guards which fulfills the acceptance condition fn, and the
result follows.

We prove the claim by constructing sequences with the required proper-

ties. Let q0
def
= q, and let t0

def
= t. Because count [q0] ≥ n > 0 holds during

the second search from t0, there exists a transition t1 ∈ ∆, t1 ≤ t0, such that
count [q0] was updated for the first time to a value greater than or equal to n
during a second search started at line 9 from the transition t1. Let q1 ∈ Q be
the source state of t1.

Assume that qi and ti have been defined for some 1 ≤ i < ω such that
count [qi−1] is updated for the first time to a value greater than or equal to
n during a second search started at line 9 from the transition ti ≤ ti−1. If
count [qi] ≥ n > 0 already holds at the beginning of this second search, there
exists a transition t′ ∈ ∆, t′ < ti, such that count [qi] was updated for the first
time to a value greater than or equal to n during a second search started from

the transition t′ (with source state q′ ∈ Q). In this case we let qi+1
def
= q′ and

ti+1
def
= t′ and continue the inductive construction.

By repeating the construction, we obtain a sequence of states q0, q1, q2, . . .
and a sequence of transitions t0 ≥ t1 > t2 > · · · such that for all i =
0, 1, 2, . . ., count [qi] was updated for the first time to a value greater than or
equal to n in a second search started from the transition ti+1 with source
state qi+1. Because the automaton is finite, the sequence of transitions is
finite, and because count [q′] = 0 initially holds for all q′ ∈ Q, there exists an
index k such that count [qk] < n holds at the beginning of a second search
from the transition tk.

Let 0 ≤ i < k. Because count [qi] is updated for the first time to a value
greater than or equal to n during a second search started from the transition
ti+1 ≤ ti, qi is reachable from the source state qi+1 of ti+1 via a nonempty

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 197

chain of transitions with nonempty guards, and qi ∈ visited(ti+1) holds.
On the other hand, because ti+1 ≤ ti holds, the top-level search could not
have backtracked from the state qi before backtracking from qi+1, and thus
qi ∈ path_stack(ti+1) holds. Because qi+1 is on top of path_stack during
the second search from ti+1, it follows by Lemma 8.3.2 that the automaton
contains a path from qi to qi+1 that corresponds to a (possibly empty) chain
of transitions with nonempty guards. It follows that the states qi and qi+1 are
reachable from each other in the automaton via nonempty chains of transi-
tions whose guards are nonempty.

Because count [qk] < n holds at the beginning of the second search from
tk, n /∈ Iseen holds at line 16 when the second search procedure is called at
line 9 with tk as a parameter. Because count [qk−1] is nevertheless updated
to a value greater than or equal to n during the second search from tk (at
line 20), it is easy to see that n must be inserted to Iunseen_fulfilled during the
search, and thus the second search from tk must reach qk−1 via a chain of
transitions (with nonempty guards) which fulfills the acceptance condition
fn. Therefore qk−1 and qk are source states of transitions in a cycle that
fulfills the condition fn, and the result follows. �

It is now easy to prove the soundness of the algorithm using Lemma 8.3.3.

Proposition 8.3.4 Let A = 〈Σ, Q,∆, qI ,F〉 (F 6= ∅) be the nondetermin-
istic automaton (working in inf-acceptance mode) given as input for the al-
gorithm. Let t ∈ ∆ be a transition from which the algorithm starts a sec-
ond search at line 9. If count [q] = |F| holds during this search for a state
q ∈ path_stack(t), then A contains an accepting cycle. In particular, this
holds if the algorithm reports that A does not inf-recognize the empty lan-
guage.

Proof: Because the top-level search is started from the initial state qI of the
automaton, qI ∈ path_stack(t) certainly holds, and there exists a path from
qI to q in A (corresponding to a chain of transitions, the guards of which are
nonempty) by Lemma 8.3.2. Because count [q] ≥ i holds for all 1 ≤ i ≤ |F|,
it follows by Lemma 8.3.3 that for all 1 ≤ i ≤ |F|, the automaton contains
a cycle (of transitions with nonempty guards) which fulfills the acceptance
condition fi and visits the state q. Because all of these cycles visit the state q,
they can be merged together to obtain an accepting cycle for the automaton.
The soundness of the algorithm now follows from the condition at line 10
of the top-level search procedure since the program variable q refers to the
topmost state of path_stack at this point. �

Completeness
We now turn to the completeness of the algorithm. Again, we start by listing
several basic facts about the behavior of the algorithm for future reference.

Lemma 8.3.5 Let t =
〈
q,Γ, F, {q′}

〉
∈ ∆ be a transition from which the

algorithm starts a second search at line 9. Then, q′ ∈ visited(t) holds.

Proof: The result follows from the condition at line 7 of the algorithm: if
q′ /∈ visited holds at this point, the algorithm calls the TOP-LEVEL-SEARCH

procedure recursively for the state q′, and q′ is added to the visited set at
line 4 of the algorithm before a second search from the transition t. �

198 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

Lemma 8.3.6 Let t ∈ ∆ be a transition from which the algorithm starts a
second search at line 9. If there exists a state q ∈ visited(t) and a transition
t′ =

〈
q,Γ, F, {q′}

〉
∈ ∆ such that Γ 6= ∅ and q′ ∈ Q \ visited(t) hold, then

q ∈ path_stack(t) holds.

Proof: Let q be a state satisfying the assumptions. Because q ∈ visited(t)
holds, the top-level search has entered q. If the search had also backtracked
from q, then the algorithm would have reached line 12 with q on top of
the top-level search stack. Therefore the algorithm would have initiated a
second search from all transitions (with a nonempty guard) having q as its
source state, in particular, from the transition t′. But then q′ ∈ visited would
hold at the beginning of the search from t by Lemma 8.3.5, contrary to the
assumption. Therefore, the top-level search has not yet backtracked from q,
and q ∈ path_stack(t) holds. �

Lemma 8.3.7 Let
〈
q,Γ, F, {q′}

〉
∈ ∆ be a transition for which the algorithm

calls the second search procedure at line 9 or 25. If c ≥ n holds at line 18
for some 0 ≤ n ≤ |F| at the beginning of the call, then count [q′] ≥ n holds
when this call returns.

Proof: If count [q′] < n holds at line 18, count [q′] is updated to the value c
(≥ n) at line 20 of the algorithm, and the result follows from the fact that
count [q′] never decreases during the execution of the algorithm. �

Lemma 8.3.8 Assume that the algorithm reaches line 20 during a second
search started from a transition t ∈ ∆ such that c ≥ n holds for some 1 ≤
n ≤ |F|, and the program variable q′ refers to a state q ∈ Q at this point.
The second search procedure will be called recursively for every transition
(with a nonempty guard) having q as its source state such that c ≥ n holds at
line 18 at the beginning of each call.

Proof: The result holds trivially if q has no successors, or if all transitions

starting from q have an empty guard. Otherwise, let t′ =
〈
q,Γ, F, {q′}

〉
be

a transition (with Γ 6= ∅) having q as its source state. It is easy to see from
line 20 that count [q] ≥ n will hold at the end of the second search from t.

Assume that q′ ∈ visited(t) holds. Denote by I the contents of the Iseen

set at the beginning of the first iteration of the loop at line 24 when the
program variable q′ refers to the state q with c ≥ n. Because c ≥ n holds, it is
easy to see that {1, 2, . . . , n} ⊆ I holds at this point. Because Iseen = I holds
at the beginning of each iteration of the loop (and therefore, in particular, at
the beginning of the recursive call of the second search procedure for the
transition t′), line 17 guarantees that c ≥ n holds at line 18 in the beginning
of this call.

If q′ /∈ visited(t) holds, the algorithm has not yet started a second search
from the transition t′ (Lemma 8.3.5), and thus t′ > t holds. Furthermore,
q ∈ path_stack(t) holds by Lemma 8.3.6, i.e., the top-level search has not
backtracked from the state q before the second search from t. Clearly, a sec-
ond search is started from the transition t′ before the top-level search back-
tracks from q. Because count [q] ≥ n holds at the end of the second search
from t, it follows from the initialization of the Iseen set at line 8 that c ≥ n

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 199

will hold at line 18 when the second search is started from the transition t′ at
line 9. �

In the following results, we shall refer to a maximal strongly connected
component C ⊆ Q∪∆ that contains either the initial state of the automaton
or a state reachable from the initial state of the automaton via a chain of
transitions with nonempty guards. Clearly, the top-level search will in this
case explore all states in the component, and thus there exists a state q̂ ∈
C∩Q that is the first state of C pushed on the top-level search stack. Because
the elements of this stack are accessed in “last in, first out” order, it is easy to
see that q̂ is the last state of C from which the top-level search backtracks.

Our goal is to show that if the component C contains an accepting cycle,
then there exists a state q ∈ C∩Q in the component (namely, the first state q̂
of the component entered in the top-level search) for which count [q] = |F|
holds when the top-level search is about to backtrack from the state q. Clearly,
this implies that the algorithm will report that the language inf-recognized
by the automaton is not empty (at the latest) at line 10 with q̂ on top of
path_stack . (Because C contains an accepting cycle, C contains at least one
transition having a nonempty guard and q̂ as its source state, and thus it is
easy to see that the algorithm will in fact reach line 10 with q̂ on top of the
top-level search stack before the top-level search backtracks from q̂.)

More generally, we shall be interested in finding states q ∈ C ∩ Q for
which count [q] ≥ n holds for some 1 ≤ n ≤ |F| when the top-level search is
about to backtrack from the state q at line 13. Given a path in the automaton
(corresponding to a nonempty chain of transitions with nonempty guards),
this property is guaranteed to hold for the last state q (in the path) for which
count [q] ≥ n holds at the end of a second search started in the first state of
the path unless the path ends in the state q.

Lemma 8.3.9 Let q0, q1, . . . , qk ∈ Q be the list of consecutive states in a path
(corresponding to a nonempty chain of transitions with nonempty guards)
from the state q0 to the state qk in the automaton for some 1 ≤ k < ω. As-
sume that there exists a maximal index 0 ≤ ` ≤ k for which count [q`] ≥ n
holds for some 1 ≤ n ≤ |F| at the end of a second search from a transition
t ∈ ∆ having q0 as its source state (line 10). If ` < k holds, then q` is a
state for which count [q`] ≥ n already holds when the top-level search back-
tracks from the state q`. Actually, in this case count [q`] ≥ n holds before the
algorithm starts a second search from any transition from q` to q`+1.

Proof: Because n ≥ 1 holds, there exists a transition t′ ∈ ∆, t′ ≤ t, such
that the second search started from t′ reached line 20 of the algorithm such
that the program variable q′ referred for the first time to the state q` with
c ≥ n. Clearly, q` ∈ visited(t′) holds, and the top-level search had entered
q` at some point. By Lemma 8.3.8, the algorithm calls the second search pro-
cedure recursively for every transition (with a nonempty guard) with source
state q` and target state q`+1 such that c ≥ n holds at line 18 at the beginning
of this call. If q`+1 ∈ visited(t′) holds, such a call occurs during the second
search started from the transition t′. But then count [q`+1] ≥ n would hold
at the end of the call by Lemma 8.3.7, and therefore also at the end of the

200 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

second search from t. This contradicts the maximality of `, however. It fol-
lows that q`+1 /∈ visited(t′) holds, and by Lemma 8.3.6, q` ∈ path_stack(t′)
holds. Thus the top-level search backtracks from the state q` after the sec-
ond search from t′, and count [q`] ≥ n holds when this occurs. The second
claim follows from Lemma 8.3.5: because q`+1 /∈ visited(t′) holds, no sec-
ond search can have been started at line 9 from a transition with source state
q` and target state q`+1 before updating count [q`] to a value greater than or
equal to n (in the second search from t′). �

Lemma 8.3.9 leads to the following result, which can then be used to
show that the reachability information (i.e., the knowledge on the reachabil-
ity of states via chains of transitions that fulfill certain acceptance conditions)
stored in the count table propagates towards the first state of the maximal
strongly connected component C entered in the top-level search.

Lemma 8.3.10 Let C be a maximal strongly connected component of the
automaton, and let q̂ ∈ C ∩ Q be the first state of the component entered
in the top-level search. Let q ∈ C ∩ Q, q 6= q̂, be another state in the
component such that count [q] ≥ n holds for some 1 ≤ n ≤ |F| when the
top-level search is about to backtrack from the state q at line 13. There exists
a state q′ ∈ C ∩ Q, q′ 6= q, such that the top-level search backtracks from
q′ after backtracking from q, and count [q′] ≥ n holds when this occurs at
line 13.

Proof: Because q and q̂ belong to the same maximal strongly connected com-
ponent, but q 6= q̂ holds, there exists a path (corresponding to a nonempty
chain of transitions with nonempty guards) from q to q̂ in the automaton.
Clearly, all states in this path are contained in C. Let q0, q1, . . . , qk ∈ C ∩Q
(1 ≤ k < ω, q0 = q, qk = q̂) be the list of consecutive states in this path.
Because count [q0] ≥ n holds when the top-level search is about to backtrack
from the state q0 at line 13, there exists a maximal index 0 ≤ ` ≤ k such
that count [q`] ≥ n holds at this point. Clearly, count [q`] ≥ n holds already
at the end of a second search started at line 9 from the last transition t ∈ ∆
(with source state q0 and a nonempty guard) which was processed in the loop
between lines 5 and 11 (and such a transition exists because C contains a
path from q0 to qk corresponding to a nonempty chain of transitions with
nonempty guards).

If ` = k holds, the result follows immediately (with q′ = q̂) by the choice
of q̂. Otherwise, by Lemma 8.3.9, count [q`] ≥ n holds at the beginning of
any second search starting at line 9 from a transition from q` to q`+1 (and
still when the top-level search is about to backtrack from the state q`). Let
t′ ∈ C ∩ ∆ be a transition from q` to q`+1 with a nonempty guard. If the
top-level search had backtracked from q` before backtracking from q0 (or if
q` = q0), a second search would have been started from the transition t′. But
then, because count [q`] ≥ n holds at the beginning of this second search
(and because q`+1 ∈ visited(t′) necessarily holds by Lemma 8.3.5 at this
point), it follows by Lemma 8.3.7 that count [q`+1] ≥ n would hold when the
top-level search backtracks from the state q0. This, however, contradicts the
maximality of `. Therefore, q` 6= q0 holds, and the top-level search backtracks

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 201

from q` only after backtracking from q0 (= q). The result now follows with
q′ = q`. �

Corollary 8.3.11 Let C be a maximal strongly connected component of the
automaton, and let q̂ ∈ C ∩Q be the first state of the component entered in
the top-level search. Let q ∈ C ∩ Q be a state in the component such that
count [q] ≥ n holds for some 1 ≤ n ≤ |F| when the top-level search is about
to backtrack from q at line 13. Then, count [q̂] ≥ n holds when the top-level
search is about to backtrack from q̂.

Proof: The result holds trivially if q = q̂. Let thus q 6= q̂. Because count [q] ≥
n ≥ 1 holds when the top-level search is about to backtrack from the state q
at line 13, then, by Lemma 8.3.10, there exists a state q′ ∈ C ∩ Q, q′ 6= q,
from which the top-level search backtracks after backtracking from the state
q, and count [q′] ≥ n holds when this occurs.

By repeating the argument, we can now construct a sequence of distinct
states q, q′, . . . ∈ C ∩ Q such that for any state q′′ in the sequence, the top-
level search backtracks from the state q′′ only after backtracking from all states
that precede it in the sequence, and count [q′′] ≥ n holds when the top-level
search backtracks from q′′. Because C is finite and q̂ is the last state in C
from which the top-level search backtracks, the sequence ends with the state
q̂, and the result follows. �

On the other hand, when the top-level search is about to backtrack from
the first state q̂ of the component C entered in the top-level search, the
following relationship holds between count [q̂] and the values stored in the
count table for other states in the component.

Lemma 8.3.12 Let C be a maximal strongly connected component of the
automaton, and let q̂ ∈ C ∩Q be the first state of the component entered in
the top-level search. Assume that count [q̂] = n holds for some 0 ≤ n ≤ |F|
when the top-level search backtracks from q̂ at line 13. Then, count [q] ≥ n
holds for all q ∈ C ∩Q at this point.

Proof: The result holds trivially if n = 0. For the rest of the proof, we assume
that n > 0 holds. Let q ∈ C ∩ Q. Because q and q̂ belong to the same
maximal strongly connected component, there exists a path from q̂ to q in
the automaton such that the path corresponds to a (possibly empty) chain of
transitions with nonempty guards. We proceed by induction on the number
of transitions in the chain.

If the chain is empty, then q = q̂, and the result holds for the state q
trivially.

Assume that the result holds for all states in C to which there exists a
path from q̂ corresponding to a shortest chain of 0 ≤ k < ω transitions with
nonempty guards, and let q ∈ C ∩ Q be a state that is reachable from q̂
via a shortest chain (ti)

k
i=0 of k + 1 transitions with nonempty guards (ti =〈

qi,Γi, Fi, {qi+1}
〉
∈ ∆ for all 0 ≤ i ≤ k, q0 = q̂, and qk+1 = q). Clearly,

qk is reachable from q̂ via a path that corresponds to a chain of k transitions
with nonempty guards, and because q̂, q ∈ C, qk ∈ C holds also. By the

202 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

induction hypothesis, count [qk] ≥ n > 0 holds when the top-level search
backtracks from q̂. This implies the existence of a transition t ∈ ∆ such
that count [qk] was first updated to a value greater than or equal to n during
a second search started (at line 9) from the transition t. It follows that the
algorithm reached line 20 such that the program variable q′ referred to the
state qk with c ≥ n. Let t′ ∈ C ∩ ∆ be a transition (with a nonempty guard)
from qk to q. By Lemma 8.3.8, the algorithm will call the second search
procedure recursively for the transition t′ such that c ≥ n holds at line 18 at
the beginning of this call. Furthermore, by the choice of q̂, this call occurs
before the top-level search backtracks from the state q̂. By Lemma 8.3.7, it
follows that count [q] ≥ n holds when the top-level search backtracks from q̂.

The result now follows by induction for all states q ∈ C ∩Q. �

A maximal strongly connected component C that contains an accepting
cycle includes an f -transition (with a nonempty guard) for every acceptance
condition f ∈ F . We wish to use Corollary 8.3.11 to show that the existence
of such transitions forces the condition at line 10 to hold in the first state of C
entered in the top-level search. However, Corollary 8.3.11 does not directly
refer to such f -transitions. We therefore need the following technical result,
which establishes a connection between the existence of an fn-transition (in
C) for some 1 ≤ n ≤ |F| and a state q ∈ C ∩ Q for which count [q] ≥ n
holds when the top-level search is about to backtrack from the state.

Lemma 8.3.13 Let C be a maximal strongly connected component of the
automaton, and let q̂ ∈ C ∩ Q be the first state of the component entered
in the top-level search. Let tfn+1 =

〈
qfn+1 ,Γfn+1, Ffn+1 , {q

′
fn+1

}
〉
∈ C ∩ ∆

be an fn+1-transition of A (with fn+1 ∈ Ffn+1 and Γfn+1 6= ∅) for some 0 ≤
n < |F|. Assume that, before the top-level search backtracks from the state
q̂, the SECOND-SEARCH procedure is called at line 9 or 25 of the algorithm
with tfn+1 as a parameter such that c ≥ n holds at the beginning of this call
at line 18. There exists a state q ∈ C ∩ Q such that count [q] ≥ n + 1 holds
when the top-level search is about to backtrack from the state q at line 13.

Proof: Clearly, the call to the SECOND-SEARCH procedure with tfn+1 as a
parameter occurs during a second search started at line 9 from a transition
t ∈ ∆ such that there exists a path (corresponding to a possibly empty chain
of transitions with nonempty guards) from the source state of t to the state
qfn+1 in the automaton. Because c ≥ n holds at line 18 and fn+1 ∈ Ffn+1 , it
actually follows that c ≥ n+1 holds at line 18, and thus count [q′fn+1

] ≥ n+1
holds at the end of the second search from t by Lemma 8.3.7.

Because q′fn+1
∈ C holds, there exists a path from q′fn+1

to q̂ that corre-
sponds to a (possibly empty) chain of transitions with nonempty guards that
visits only states in C. Thus there exists a path from the source state q0 of
t to q̂ (corresponding to a nonempty chain of transitions whose guards are
nonempty) in the automaton. Let q0, q1, . . . , qk ∈ Q (1 ≤ k < ω, qk = q̂,
qi = q′fn+1

for some 1 ≤ i ≤ k, and qj ∈ C for all i ≤ j ≤ k) be the list
of consecutive states in this path. Because count [q′fn+1

] ≥ n + 1 holds at the
end of the second search from t, there exists a maximal index i ≤ ` ≤ k such
that count [q`] ≥ n+ 1 holds at this point.

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 203

If ` = k holds, then the result follows (with q = q̂) by the choice of q̂.
Otherwise count [q`] ≥ n+ 1 holds when the algorithm is about to backtrack
from the state q` by Lemma 8.3.9, and the result holds with q = q` because
q` ∈ C. �

We can now prove the completeness of the algorithm.

Proposition 8.3.14 Let A = 〈Σ, Q,∆, qI ,F〉 (where F = {f1, f2, . . . , fn}
is a nonempty finite set of 1 ≤ n < ω acceptance conditions) be a nondeter-
ministic automaton (working in inf-acceptance mode) given as input for the
algorithm. If A contains an accepting cycle, the algorithm reports that the
language inf-recognized by A is not empty.

Proof: Because the automaton A contains an accepting cycle, A has a maxi-
mal strongly connected component C ⊆ Q ∪ ∆ that includes a state reach-
able from qI via a chain of transitions with nonempty guards, and an fi-
transition (with a nonempty guard) for all 1 ≤ i ≤ |F|. Let q̂ be the first state
of C entered in the top-level search.

Assume that count [q̂] = m < n holds when the top-level search is about
to backtrack from the state q̂. By Lemma 8.3.12, it follows that count [q] ≥ m
holds for all q ∈ C ∩Q at this point.

Because C contains an accepting cycle, there exists an fm+1-transition
tm+1 ∈ C ∩ ∆ with a nonempty guard. We claim that the algorithm calls
the second search procedure at line 9 or 25 for the transition tm+1 such that
c ≥ m holds at line 18 at the beginning of this call. This is clear if m = 0,
because a second search is started from every transition in C before the top-
level search backtracks from the state q̂. If m > 0, then, because count [q] ≥
m holds for all q ∈ C ∩ Q before the top-level search backtracks from the
state q̂ (but count [q] = 0 holds for all q ∈ C ∩ Q initially), the algorithm
reached line 20 such that the program variable q′ referred to the source state
of tm+1 with c ≥ m before the top-level search backtracks from q̂. In this case
the second search procedure will be called for the transition tm+1 (before the
top-level search backtracks from q̂) such that c ≥ m holds at line 18 at the
beginning of this call by Lemma 8.3.8.

Because c ≥ m holds at line 18 when the second search procedure is
called with the transition tm+1 (which is an fm+1-transition of A) as a param-
eter, it now follows by Lemma 8.3.13 that there exists a state qm+1 ∈ C ∩ Q
such that count [qm+1] ≥ m + 1 holds before the top-level search backtracks
from qm+1. But then, by Corollary 8.3.11, count [q̂] ≥ m+ 1 holds when the
top-level search backtracks from the state q̂. This contradicts the assumption
that count [q̂] = m < n holds at this point.

It follows that count [q̂] ≥ n necessarily holds when the top-level search
backtracks from q̂ (and count [q̂] = n, because c ≤ n clearly holds always at
line 20, the only location where the value of count [q̂] may change). There-
fore, because q̂ ∈ C is the source state of at least one transition with a
nonempty guard, the algorithm will report that the language inf-recognized
by the automaton is not empty at line 10 before the top-level search back-
tracks from q̂ (at the latest, after a second search from the last transition ex-
amined in the loop between lines 5 and 11 with q̂ on top of path_stack).

�

204 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

8.3.3 Compatibility with Enhancements of Classic Nested Depth-First Search

This section lists some observations [Tauriainen 2005, 2006] on the compat-
ibility of the language emptiness checking algorithm with techniques used
with the classic nested depth-first search algorithm. Many of these tech-
niques are designed to be used in the specific context of verification, where
the nondeterministic automata are built on-the-fly as “products” of several
smaller components. The exact form of the product operation depends on
the semantics of the components, which may not be strictly defined as au-
tomata. A classic example of a product operation is the synchronous prod-
uct of a finite number (1 ≤ n < ω) of nondeterministic automata Ai =

〈Σi, Qi,∆i, qIi,Fi〉 (1 ≤ i ≤ n) defined as the automaton A
def
=

〈 ⋃
1≤i≤n Σi,

Q1 ×Q2 × · · · ×Qn,∆, 〈qI1, qI2, . . . , qIn〉,
⋃

1≤i≤n

(
Fi × {i}

)〉
, where

∆
def
=

{〈
〈q1, q2, . . . , qn〉,

⋂
1≤i≤n Γi,

⋃
1≤i≤n

(
Fi × {i}

)
, {〈q′1, q

′
2, . . . , q

′
n〉}

〉
〈
qi,Γi, Fi, {q

′
i}

〉
∈ ∆i for all 1 ≤ i ≤ n

}
.

If the automata Ai share the same alphabet Σ, it is straightforward to check
that the automaton A inf-accepts a word w ∈ Σω iff w ∈

⋂
1≤i≤n Linf(Ai)

holds. (As illustrated by the definition of the synchronous product, the num-
ber of transitions generated by product constructions is often exponential in
the number of components in the product. This feature provides motiva-
tion for minimizing the number of states explored by a language emptiness
checking algorithm [Schwoon and Esparza 2005].)

Constructing Accepting Cycles

In addition to checking the languages inf -recognized by nondeterministic
automata for emptiness, verification usually includes the additional task of
finding accepting cycles for automata with nonempty languages to be used
as “counterexamples” for showing why a verification run failed. Unlike the
classic nested depth-first search algorithm [Courcoubetis et al. 1991, 1992],
the emptiness checking algorithm of Fig. 8.2 does not support extracting ac-
cepting cycles directly from its internal data structures when reporting lan-
guage nonemptiness (except for a path from the initial state of the automaton
to a state visited by an accepting cycle). In principle, it is straightforward to
construct an actual accepting cycle using additional search in the automaton,
for example, by using techniques suggested by Latvala and Heljanko [1999,
2000]. (This search can be restricted to states explored in the emptiness
search algorithm.)

Optimizations

A standard heuristic to speed up the detection of language nonemptiness
is to use information about the states in the top-level search stack to abort
a second search as soon as possible [Holzmann et al. 1997]: it is easy to see
from Lemma 8.3.3 that language nonemptiness can be reported immediately
when a second search updates count [q] to the value |F| at line 20 of the
algorithm for a state q currently in the top-level search stack. States in the
stack can be distinguished easily by using an additional bit of memory per
state in the search hash table [Holzmann et al. 1997].

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 205

It is easy to show that the second search started from a transition could
always be restricted to the maximal strongly connected component (or any
overapproximation thereof) which contains the source state of the transition:
if the source state and the target state of a transition t belong to different
maximal strongly connected components, it follows that no state in the top-
level search stack can be reached via a chain of transitions beginning with the
transition t (and thus count [q] will not change for any state q in the top-level
search stack when exploring states reachable via the transition t). Although
it does not make sense to find the maximal strongly connected components
of the automaton in order to run the NDFS algorithm, partial information
on the components may nevertheless be available if the automaton is built
as the product of smaller component automata. As suggested by Edelkamp
et al. [2001, 2004], the often more easily computable information on the
maximal strongly connected components of the component automata can
be used to limit the extent of second searches in the NDFS algorithm.

The algorithm in Fig. 8.2 enhanced with the above optimization from
[Holzmann et al. 1997] is compatible also with a heuristic suggested by Cou-
vreur et al. [2005] to further speed up the detection of language nonempti-
ness. Intuitively, whereas the enhanced algorithm considers only the accep-
tance conditions “seen” in a chain of transitions beginning from the source
state of a second search when testing whether a state reached in the top-level
search stack closes an accepting cycle, it is sometimes possible to detect lan-
guage nonemptiness faster by considering also the conditions in a chain of
transitions from this state to the state currently on the top of the top-level
search stack [Couvreur et al. 2005].

Partial Order Reduction

The effort needed for state space exploration in verification (language empti-
ness checking) algorithms can often be reduced significantly by identifying
parts of the state space which can be ignored in the search without com-
promising the completeness of the algorithm. For example, using concepts
such as independence between transitions (defined in terms of the semantics
of the components from which the automaton is built), the classic nested
depth-first search algorithm can be combined with on-the-fly partial order
reduction [Peled 1994, 1996] to restrict the set of successors to explore from
a given state of the state space. From a purely theoretical viewpoint, par-
tial order reduction can be seen as an automaton transformation which pre-
serves the emptiness or nonemptiness of its language; in principle, a language
emptiness checking algorithm can be combined with any such transforma-
tion to obtain a sound and complete verification procedure.

In practice, however, combining state space reductions with language
emptiness checking may require additional effort to ascertain that the reduc-
tion will not interfere with the preservation of language (non)emptiness. For
example, in the case of partial order reduction and classic nested depth-first
search, extra memory may be needed to ensure that revisiting a state dur-
ing a second search will not affect the set of successors chosen for the state
when it was first visited [Holzmann et al. 1997]. The techniques suggested
in [Holzmann et al. 1997] apply also to the algorithm in Fig. 8.2 to make it
compatible with partial order reduction.

206 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

Bitstate Hashing and Hash Compaction

Explicit-state model checking tools employ probabilistic state exploration
techniques such as bitstate hashing [Holzmann 1987, 1988] or hash com-
paction [Wolper and Leroy 1993; Stern and Dill 1995, 1996] to reduce mem-
ory usage at the risk of losing the completeness of the language emptiness
checking algorithm by exploring only a part of the state space of the automa-
ton, using hash functions that may map several states of the automaton to the
same entry in the search hash table. Compatibility with bitstate hashing was
originally considered to be one of the main advantages of the classic nested
depth-first search algorithm [Courcoubetis et al. 1991, 1992] over alterna-
tive language emptiness checking algorithms, although recent research on
these algorithms has shown bitstate hashing to be applicable as well to algo-
rithms based on Tarjan’s algorithm [Geldenhuys and Valmari 2005]. Below,
we list changes needed to make the language emptiness checking algorithm
presented in this chapter compatible with imperfect hashing.

The soundness of the language emptiness checking algorithm shown in
Fig. 8.2 rests on the property that count [q] ≥ n holds for some state q cur-
rently in the top-level search stack for some 1 ≤ n ≤ |F| only if the au-
tomaton contains a cycle which visits the state q and fulfills the acceptance
condition fn (Lemma 8.3.3). Unfortunately, this property cannot be guaran-
teed with imperfect hashing without a way to keep exact track of the contents
of the count table for states currently in the top-level search stack. A sim-
ple possibility is to store the values associated with the states in the stack in
a separate hash table that is always consulted first when accessing entries in
the count table during second searches. When a state q is entered in the
top-level search, count [q] should be set to zero in this hash table; conversely,
updates made to this table should be copied back to the imperfectly hashed
part of the table when the top-level search backtracks from the state q. (To
ensure that the algorithm still works within the bound given in Table 8.1 for
the number of states visited by the algorithm, the update should not be done,
however, if the value of count [q] would decrease in the imperfectly hashed
part of the table.)

The feasibility of the above strategy in the reduction of memory require-
ments depends critically on the assumption that the depth of the top-level
search stack remains small in comparison with the number of states in the au-
tomaton. Unfortunately, there exists experimental evidence [Pelánek 2004]
suggesting that this assumption does not usually hold for depth-first state ex-
ploration algorithms in actual verification examples.

State Space Caching

Restricting the second searches to states that have been explored in the top-
level search makes the generalized algorithm incompatible with state space
caching techniques [Holzmann 1985; Godefroid et al. 1993, 1995], which
reduce the memory requirements of the search at the risk of repeating the
search multiple times in parts of the automaton; the completeness of the al-
gorithm is not preserved, for example, in the extreme case when only the
states in the top-level search stack are kept in the state space cache. This also
makes it impossible to apply heuristics for choosing which states to keep in
the set of visited states (see, e.g., [Brim et al. 2001]). Making the algorithm

8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA 207

compatible with state space caching therefore limits opportunities for remov-
ing states from the visited set. However, the requirements on the count table
can be relaxed somewhat: for example, entries that do not refer to states cur-
rently in the top- or second-level search stacks need not be kept in this table.
(Making this work nevertheless requires ensuring that, when backtracking to
a state during a second search, the iteration over the transitions beginning
from the state at line 24 is never continued from a transition that has already
been processed.)

208 8. LANGUAGE EMPTINESS CHECKING FOR NONDETERMINISTIC AUTOMATA

9 CONCLUSION

The close connection between linear time temporal logic and self-loop al-
ternating automata gives rise to conceptually simple translation procedures
between LTL and automata. To implement decision procedures for this
logic and its applications, the alternating automata built from formulas in
the logic are usually translated explicitly or implicitly into nondeterminis-
tic automata, which can then be analyzed using, for example, well-known
simple graph algorithms. The worst-case exponential combinatorial cost of
nondeterminization makes the behavior of the decision procedures very sen-
sitive to the properties of the alternating automata: intuitively, even small
changes to the alternating automata may have visible effects on the results of
nondeterminization. This motivates the study of methods for optimizing the
translation of LTL into self-loop alternating automata. Even though the non-
deterministic automata built from self-loop alternating automata still have
exponential size in the length of an LTL specification in the worst case, the
translation from LTL into nondeterministic automata may be manageable
in a more robust way as separate, more easily understandable subtasks, as
evidenced also by practical observations on the difficulty of implementing
efficient translation procedures for LTL correctly [Tauriainen and Heljanko
2000, 2002]. Additionally, it is in some cases possible to speed up on-the-
fly verification by combining nondeterminization of alternating automata di-
rectly with language emptiness checking [Hammer et al. 2005].

Although the differences between state-based and transition-based, and on
the other hand, nongeneralized and generalized, Büchi acceptance are sim-
ple in a theoretical sense, this work illustrates and reinforces in a single frame-
work the well-known advantages of using generalized transition-based accep-
tance for both understanding and even implementing the LTL verification
procedure [Couvreur 1999; Gastin and Oddoux 2001; Giannakopoulou and
Lerda 2002; Thirioux 2002]. The constructions involving self-loop alternat-
ing automata built from LTL formulas benefit from the generalized notion
of acceptance: the acceptance conditions of the automata can easily be used
for encoding semantic properties of LTL formulas ([Gerth et al. 1995; Gastin
and Oddoux 2001]; Sect. 3.1.1), and transition-based acceptance allows sep-
arating purely “structural” features of the constructions from the semantics
of acceptance. For example, generalized transition-based acceptance allows
the basic state-transition structure of nondeterministic automata built from
self-loop alternating automata to be defined, in effect, by adapting the classic
subset construction ([Gastin and Oddoux 2001]; Theorem 4.2.1). Although
this opportunity is not unique to using the transition-based notion of accep-
tance [Hammer et al. 2005], the state-based construction of Hammer et al.
[2005] nevertheless applies only to a subclass of very weak alternating au-
tomata, whereas our transition-based approach covers all self-loop alternat-
ing automata, however, at the—in the general case, unavoidable—cost of
increasing the number of acceptance conditions in the subset construction
(Proposition 4.2.3). However, the introduction of new acceptance conditions
can be avoided when working with automata that have uniform acceptance
synchronized accepting runs on all words in their language (Theorem 4.3.2).

9. CONCLUSION 209

Most importantly, all automata built from LTL formulas using the translation
rules presented in this work (Sect. 3.1, Table 3.1, Table 5.2, Table 5.3) have
this property (by Proposition 4.3.5, via Lemma 4.3.8, Proposition 5.4.3, and
Proposition 5.5.1); in comparison, the construction of Hammer et al. [2005]
depends on using additional rewrite rules for LTL formulas to ensure that the
automata belong to the intended subclass.

Also syntactic optimization techniques proposed for direct translation al-
gorithms from LTL into nondeterministic automata [Daniele et al. 1999;
Giannakopoulou and Lerda 2002] can easily be described as modifications
to the nondeterminization construction (Sect. 4.5). Further improvements
to the translation procedure are easily understood by making use of infor-
mation on language containment relationships between self-loop alternating
automata (Sect. 5.3); these relationships were essential also in the design of
the refined translation rules that can be used as heuristics to reduce univer-
sal choice in the automata (Table 5.2, Table 5.3). In most cases, the op-
timized nondeterminization construction remains applicable also when re-
moving redundant transitions from the automata (Sect. 6.2.5). Because LTL
and self-loop alternating automata have the same expressive power ([Rohde
1997; Löding and Thomas 2000]; Theorem 3.3.2, Theorem 3.4.2), the lan-
guage containment based improvements to the translation procedure can, in
principle, be implemented effectively without a general complementation
procedure for alternating automata—in many cases, by simply reusing the
basic translation procedure from LTL into self-loop alternating automata.

Transition-based acceptance is useful also for extending known syntactic
subclasses of LTL [Schneider 1999; Maidl 2000a] (shown to be expressively
closely related in Sect. 4.6.4 of this work) which can be translated directly
into self-loop nondeterministic automata without applying the subset con-
struction (Sect. 4.6, Sect. 5.6.3). For example, even though there is no very
weak nondeterministic automaton (in the sense of Rohde [1997] or Gastin
and Oddoux [2001], i.e., using state-based acceptance) recognizing the mod-
els of the LTL formula GFp for an atomic proposition p, transition-based ac-
ceptance allows formulas of this form (and, as a matter of fact, also their logi-
cal conjunctions) to be naturally expressed as single-state self-loop automata,
which can furthermore be obtained effectively using the refined translation
rules (Table 5.2, Table 5.3). Additionally, the automata-theoretic study of
these subclasses of LTL leads easily to simple NP-completeness results on
their satisfiability (Corollary 4.6.11, Proposition 5.6.7). These syntactic sub-
classes differ from classic subclasses whose satisfiability is NP-complete by
restricting the ways to combine subformulas into compound formulas instead
of the set of operators allowed to occur in the formulas.

Finally, generalized transition-based acceptance can also be handled di-
rectly in language emptiness checking algorithms for nondeterministic au-
tomata without the need to translate the automata to simpler formalisms
[Couvreur 1999; Tauriainen 2004, 2006]. In particular, because the blow-
up caused by translating generalized acceptance into nongeneralized accep-
tance cannot be avoided in the general case (Proposition 8.2.1), bypassing
degeneralization of automata leads to a new variant of the nested depth-first
search language emptiness checking algorithm of Courcoubetis et al. [1991,
1992] (Sect. 8.3) with improved worst-case resource requirements under gen-

210 9. CONCLUSION

eralized acceptance (see Table 8.1). The author has contributed an imple-
mentation of the search heuristic used in this algorithm to version 0.3 of the
open source model checking library Spot [Duret-Lutz and Poitrenaud 2004].

Directions for Further Work

Implementing and extending the translation procedure. The first obvi-
ous task for further work is to implement the high-level translation procedure
presented in Ch. 7 to evaluate its feasibility in practice. On a more theoreti-
cal level, the translation procedure should be extended with translation rules
for past time LTL connectives. There are freely available tools for testing the
correctness of implementations of translation procedures from future time
LTL into automata [Tauriainen and Heljanko 2000, 2002]; such tools can
also be used for benchmarking purposes.

“Top-down” vs. “bottom-up” translation. Unlike tableau-based transla-
tion algorithms, the proposed construction for translating LTL into alternat-
ing automata does not support on-demand definition of an automaton start-
ing from its initial state [Gerth et al. 1995; Bollig and Leucker 2001, 2003];
obviously, a “top-down” version of the translation procedure would be very
attractive for being directly combined with on-the-fly nondeterminization or
emptiness checking techniques. This feature is not unique to the proposed
translation, however, as the need for constructing an automaton in full is also
implicit, for example, in the design of simulation-based minimization tech-
niques for alternating and nondeterministic automata. Furthermore, because
the number of states in an alternating automaton built from an LTL formula
is linear in the length of the formula, the translation from LTL into alter-
nating automata is intuitively less prone to exhibit the worst-case exponen-
tial space requirements than direct explicit translation algorithms from LTL
into nondeterministic automata. A task for further work is to see whether the
translation procedure could be implemented in a top-down manner while re-
taining the applicability of at least some of the techniques used to minimize
an automaton during the translation.

Explicit vs. symbolic definitions for alternating automata. Many of the
proposed structural optimizations to self-loop alternating automata depend
on the explicit notion of a transition of an alternating automaton. As a mat-
ter of fact, the explicit encoding for the transition relation of an automaton
is rather unattractive in a complexity-theoretic sense: for example, because
complementing an alternating automaton may result in an exponential blow-
up in the automaton’s explicit representation, polynomial space automata
constructions which depend on the possibility to complement automata in
polynomial space do not trivially remain so when using the explicit defini-
tion. Similarly, the basic translation procedure from LTL into self-loop alter-
nating automata has exponential worst-case space complexity in the length
of LTL specifications. Of course, this feature is common to translation pro-
cedures for constructing automata from LTL formulas explicitly. An obvious
task for further work is to investigate whether transition-based generalized ac-
ceptance and any of the explicit techniques for removing transitions could
be combined with (or explained in terms of) traditional Boolean encodings

9. CONCLUSION 211

of the transition relation.

Cost of improvements to the translation procedure. Most of the proposed
improvements to the translation procedure make use of language contain-
ment tests between self-loop alternating automata. Even though the lan-
guage emptiness checks in the high-level algorithm of Ch. 7 can be per-
formed in exponential space in essentially a single application of a nonde-
terminization construction, the practicability of this procedure is neverthe-
less likely to depend critically on heuristics to ensure that the language con-
tainment testing is applied only conservatively due to the high worst-case
resource requirements. As a matter of fact, it is a valid question whether LTL
formulas used in verification applications (which often have only few tem-
poral operators with shallow nesting of temporal subformulas) exhibit redun-
dancies which display as language containment between subformulas. This
question can be answered only with experimental evaluation of the transla-
tion procedure. Some of the suggested techniques are nevertheless applica-
ble without the need for testing for language containment and could there-
fore be used for improving related translation procedures that do not rely on
such tests. For example, combining the universally applicable refined transla-
tion rules with standard techniques for removing redundant transitions from
automata sometimes reduces the number of transitions in the generated au-
tomata from exponential to polynomial in the length of a formula for certain
families of LTL formulas (Ex. 6.2.12, Ex. 6.2.13).

Applications of acceptance synchronized runs. Despite the simple form
of the results obtained by arguing about uniform acceptance synchronized
runs of alternating automata (for example, the optimized universal subset
construction of Theorem 4.3.2 and the refined translation rule for the ∧ con-
nective in Table 5.2), checking for the preservation of the conditions that
imply the existence of such runs (Proposition 4.3.5) in optimizations for al-
ternating automata is in the general case rather tedious due to the strong
semantic nature of the conditions. (This is apparent already in the proofs of
Lemma 5.4.8, Lemma 5.5.4 and Proposition 6.2.8.) For the same reason,
even though the result on the applicability of the optimized universal subset
construction (Corollary 4.3.7) does not explicitly refer to self-loop alternating
automata (only acceptance closure and the existence of representative states
for acceptance), it is an open question whether there actually exist any other
easily characterizable subclasses of alternating automata which could benefit
from the optimized nondeterminization construction. Identifying such sub-
classes would directly give new insight into the problem posed by Kupferman
and Vardi [2004] of searching for subclasses of alternating automata which
support optimized translation into nondeterministic automata with general-
ized acceptance.

Improved heuristics for detecting redundant transitions. The techniques
suggested for removing redundant transitions from alternating automata
(Proposition 6.2.2, Proposition 6.2.3) are obviously limited due to their ap-
plicability only to the initial transitions of self-loop alternating automata. Of
course, this choice of focus stems from the goal of reducing the effort needed

212 9. CONCLUSION

to apply translation rules in the translation procedure from LTL into self-
loop alternating automata. A possible task for further research is to investi-
gate whether the results could be generalized or extended to obtain a com-
plete “local” characterization of redundant (initial) transitions of self-loop or
more general alternating automata. Such generalizations would likely have
to be based on a weakened notion of substitutability of transitions under fin-
acceptance: similarly to distributing the individual elements in the guard
of a substituted transition among a set of substituting transitions, also the
set intersection of the languages recognized by the subautomata rooted at
the target states of the substituted transition could be divided among several
substituting transitions. (In principle, an initial transition of any alternating
automaton is redundant iff Proposition 2.3.15 still holds after removing the
transition for all words for which it held before removing the transition.) On
the other hand, designing efficient heuristics for searching for suitable sets of
transitions in Proposition 6.2.2 and Proposition 6.2.3 is already a nonobvious
task with the definition of substitutability used in this work; a weaker defini-
tion of substitutability will likely complicate the search for suitable subsets of
transitions. Another possibility for further work is to evaluate the feasibility
of transition redundancy analysis in self-loop alternating automata by making
use of the connection to linear time temporal logic via the reverse translation
procedure.

Reducing nondeterminism in automata built in translation. Some au-
thors [Etessami and Holzmann 2000; Sebastiani and Tonetta 2003] have
questioned whether minimizing the size of a nondeterministic automaton
built from a logical specification actually reduces the resources needed for
verification in practice: clearly, minimizing the nondeterministic automaton
only affects the worst case. As a matter of fact, there is some research and
experimental evidence [Thirioux 2002; Latvala 2003; Sebastiani and Tonetta
2003] to support the view that the combinatorial explosion that arises in the
actual verification step may be more efficiently reduced in practice by re-
placing nondeterministic choice with deterministic choice in the automata.
There are some obvious possibilities for trying to increase determinism in the
suggested constructions: for example, the translation rules for the binary tem-
poral operators could be based on stronger fixpoint characterizations [Cou-
vreur 1999; Thirioux 2002]. Additionally, a new translation rule for the ∨
connective (modeled after the refined ∧ rule) could possibly help in “post-
poning” nondeterministic choice in branches of runs of automata.

Extending NP-complete syntactic subclasses of LTL. Obviously, the syn-

tactic subclasses of LTL (LTLCND and LTLCND+
) which were shown to be

translatable into nondeterministic self-loop automata without applying the
subset construction leave room for further possible extensions: the subclasses
were defined by examining only the translation rules without considering any
of the other suggested optimizations, such as removing transitions from au-
tomata. On the other hand, as seen already from the definition of the class

LTLCND+
(Sect. 5.6.3), purely syntactic characterizations of such subclasses

may easily degenerate into complex lists of mutually recursive special cases.
Alternatively, the translation could be used in an experimental approach to

9. CONCLUSION 213

determining the fraction of LTL formulas (from a finite set of LTL formulas
restricted, for example, by their node size) belonging to such subclasses. A
comparison of the subclass (or any of the other known NP-complete sub-
classes of LTL) against formula patterns used in verification [Dwyer et al.
1999] could also give new insight into the theoretical complexity of verifica-
tion of different types of properties.

214 9. CONCLUSION

BIBLIOGRAPHY

S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness properties to
coupled finite-state machines. ACM Transactions on Programming Lan-
guages and Systems, 12(2):303–339, 1990.

M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching
time. In Proceedings of the 8th Annual ACM Symposium on Principles
of Programming Languages (POPL 1981), pages 164–176. Association for
Computing Machinery, 1981.

M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time.
Acta Informatica, 20(3):207–226, 1983.

S. Ben-David, R. Bloem, D. Fisman, A. Griesmayer, I. Pill, and S. Ruah.
Automata construction algorithms optimized for PSL. Deliverable 3.2/4,
PROSYD, 2005.

O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In Proceedings of the 6th International
Conference on Computer Aided Verification (CAV 1994), volume 818
of Lecture Notes in Computer Science, pages 142–155. Springer-Verlag,
1994.

B. Bollig and M. Leucker. Deciding LTL over Mazurkiewicz traces. In Pro-
ceedings of the 8th International Symposium on Temporal Representation
and Reasoning (TIME 2001), pages 189–197. IEEE Computer Society,
2001.

B. Bollig and M. Leucker. Deciding LTL over Mazurkiewicz traces. Data &
Knowledge Engineering, 44(2):219–238, 2003.

D. Bošnački. A nested depth first search algorithm for model checking with
symmetry reduction. In Proceedings of the 22nd IFIP WG6.1 Interna-
tional Conference on Formal Techniques for Networked and Distributed
Systems (FORTE 2002), volume 2529 of Lecture Notes in Computer Sci-
ence, pages 65–80. Springer-Verlag, 2002.

D. Bošnački. A light-weight algorithm for model checking with symmetry
reduction and weak fairness. In Proceedings of the 10th International
SPIN Workshop on Model Checking Software (SPIN 2003), volume 2648
of Lecture Notes in Computer Science, pages 89–103. Springer-Verlag,
2003.

L. Brim, I. Černá, and M. Nečesal. Randomization helps in LTL model
checking. In Proceedings of the Joint Workshop on Process Algebra and
Probabilistic Methods, Performance Modeling and Verification (PAPM-
PROBMIV 2001), volume 2165 of Lecture Notes in Computer Science,
pages 105–119. Springer-Verlag, 2001.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

BIBLIOGRAPHY 215

J. A. Brzozowski and E. Leiss. On equations for regular languages, finite
automata, and sequential networks. Theoretical Computer Science, 10
(1):19–35, 1980.

J. R. Büchi. On a decision method in restricted second order arithmetic. In
Proceedings of the 1960 International Congress on Logic, Methodology
and Philosophy of Science, pages 1–11. Stanford University Press, 1962.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, 1992.

D. Bustan, D. Fisman, and J. Havlicek. Automata construction for PSL.
Technical Report MSC05-04, The Weizmann Institute of Science, 2005.

D. Bustan and O. Grumberg. Applicability of fair simulation. In Proceedings
of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture
Notes in Computer Science, pages 401–414. Springer-Verlag, 2002.

D. Bustan and O. Grumberg. Applicability of fair simulation. Information
and Computation, 194(1):1–18, 2004.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, 1981.

A. K. Chandra and L. J. Stockmeyer. Alternation. In Proceedings of the 17th
Annual Symposium on Foundations of Computer Science (FOCS 1976),
pages 98–108. IEEE Computer Society, 1976.

Y. Choueka. Theories of automata on ω-tapes: A simplified approach. Jour-
nal of Computer and System Sciences, 8:117–141, 1974.

E. M. Clarke and I. A. Draghicescu. Expressibility results for linear-time and
branching-time logics. In Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency, volume 354 of Lecture Notes in
Computer Science, pages 428–437. Springer-Verlag, 1989.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Proceedings of
the Workshop on Logics of Programs 1981, volume 131 of Lecture Notes
in Computer Science, pages 52–71. Springer-Verlag, 1982a.

E. M. Clarke and E. A. Emerson. Using branching time temporal logic to
syntesize synchronization skeletons. Science of Computer Programming,
2(3):241–266, 1982b.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite state concurrent systems using temporal logic specifications: A prac-
tical approach. In Proceedings of the 10th Annual ACM Symposium on
Principles of Programming Languages (POPL 1983), pages 117–126. As-
sociation for Computing Machinery, 1983.

216 BIBLIOGRAPHY

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263,
1986.

E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. In Proceedings of the 6th International Conference on Com-
puter Aided Verification (CAV 1994), volume 818 of Lecture Notes in
Computer Science, pages 415–427. Springer-Verlag, 1994.

E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. Formal Methods in System Design, 10(1):47–71, 1997.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT
Press, 1999.

S. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing (STOC
1971), pages 151–158. Association for Computing Machinery, 1971.

C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. In Proceed-
ings of the 2nd International Conference on Computer-Aided Verification
(CAV 1990), volume 531 of Lecture Notes in Computer Science, pages
233–242. Springer-Verlag, 1991.

C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1:275–288, 1992.

J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Proceed-
ings of the FM’99 World Congress on Formal Methods in the Develop-
ment of Computing Systems, Volume I, volume 1708 of Lecture Notes in
Computer Science, pages 253–271. Springer-Verlag, 1999.

J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness
checks for generalized Büchi automata. In Proceedings of the 12th In-
ternational SPIN Workshop on Model Checking Software (SPIN 2005),
volume 3639 of Lecture Notes in Computer Science, pages 169–184.
Springer-Verlag, 2005.

M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata genera-
tion for linear temporal logic. In Proceedings of the 11th International
Conference on Computer Aided Verification (CAV 1999), volume 1633
of Lecture Notes in Computer Science, pages 249–260. Springer-Verlag,
1999.

G. G. de Jong. An automata theoretic approach to temporal logic. In Pro-
ceedings of the 3rd International Conference on Computer Aided Verifi-
cation (CAV 1991), volume 575 of Lecture Notes in Computer Science,
pages 477–487. Springer-Verlag, 1992.

BIBLIOGRAPHY 217

S. Demri and Ph. Schnoebelen. The complexity of propositional linear tem-
poral logics in simple cases. In Proceedings of the 15th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS 1998), vol-
ume 1373 of Lecture Notes in Computer Science, pages 61–72. Springer-
Verlag, 1998.

S. Demri and Ph. Schnoebelen. The complexity of propositional linear tem-
poral logics in simple cases. Information and Computation, 174(1):84–
103, 2002.

A. Duret-Lutz and D. Poitrenaud. SPOT: an extensible model checking li-
brary using transition-based generalized Büchi automata. In Proceedings
of the 12th IEEE/ACM International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS 2004), pages 76–83. IEEE Computer Society, 2004.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifica-
tions for finite-state verification. In Proceedings of the 1999 International
Conference on Software Engineering (ICSE 1999), pages 411–420. Asso-
ciation for Computing Machinery, 1999.

S. Edelkamp, A. Lluch Lafuente, and S. Leue. Directed explicit model
checking with HSF-SPIN. In Proceedings of the 8th International SPIN

Workshop on Model Checking Software (SPIN 2001), volume 2057 of
Lecture Notes in Computer Science, pages 57–79. Springer-Verlag, 2001.

S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model
checking in the validation of communication protocols. International Jour-
nal on Software Tools for Technology Transfer (STTT), 5(2–3):247–267,
2004.

E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science: Formal Models and Semantics, volume B, pages 995–
1072. Elsevier, 1990.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revis-
ited: On branching versus linear time. In Proceedings of the 10th An-
nual ACM Symposium on Principles of Programming Languages (POPL
1983), pages 127–140. Association for Computing Machinery, 1983.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited:
On branching versus linear time temporal logic. Journal of the ACM, 33
(1):151–178, 1986.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determi-
nacy. In Proceedings of the 32nd Annual Symposium on Foundations of
Computer Science (FOCS 1991), pages 368–377. IEEE Computer Soci-
ety, 1991.

E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for fragments
of µ-calculus. In Proceedings of the 5th International Conference on
Computer Aided Verification (CAV 1993), volume 697 of Lecture Notes
in Computer Science, pages 385–396. Springer-Verlag, 1993.

218 BIBLIOGRAPHY

E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the
µ-calculus and its fragments. Theoretical Computer Science, 258(1–2):
491–522, 2001.

E. A. Emerson and A. P. Sistla. Deciding branching time logic. In Pro-
ceedings of the 16th Annual ACM Symposium on Theory of Comput-
ing (STOC 1984), pages 14–24. Association for Computing Machinery,
1984a.

E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Informa-
tion and Control, 61(3):175–201, 1984b.

K. Etessami. Stutter-invariant languages, ω-automata, and temporal logic.
In Proceedings of the 11th International Conference on Computer Aided
Verification (CAV 1999), volume 1633 of Lecture Notes in Computer Sci-
ence, pages 236–248. Springer-Verlag, 1999.

K. Etessami. A hierarchy of polynomial-time computable simulations for au-
tomata. In Proceedings of the 13th International Conference on Concur-
rency Theory (CONCUR 2002), volume 2421 of Lecture Notes in Com-
puter Science, pages 131–144. Springer-Verlag, 2002.

K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In Pro-
ceedings of the 11th International Conference on Concurrency Theory
(CONCUR 2000), volume 1877 of Lecture Notes in Computer Science,
pages 153–167. Springer-Verlag, 2000.

K. Etessami, Th. Wilke, and R. A. Schuller. Fair simulation relations, par-
ity games, and state space reduction for Büchi automata. In Proceedings
of the 28th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2001), volume 2076 of Lecture Notes in Computer
Science, pages 694–707. Springer-Verlag, 2001.

K. Etessami, Th. Wilke, and R. A. Schuller. Fair simulation relations, parity
games, and state space reduction for Büchi automata. SIAM Journal on
Computing, 34(5):1159–1175, 2005.

C. Fritz. Constructing Büchi automata from linear temporal logic using
simulation relations for alternating Büchi automata. In Proceedings of
the 8th International Conference on Implementation and Application of
Automata (CIAA 2003), volume 2759 of Lecture Notes in Computer Sci-
ence, pages 35–48. Springer-Verlag, 2003.

C. Fritz. Concepts of automata construction from LTL. In Proceedings of
the 12th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2005), volume 3835 of Lecture Notes
in Computer Science, pages 728–742, 2005.

C. Fritz and Th. Wilke. State space reductions for alternating Büchi au-
tomata: Quotienting by simulation equivalences. In Proceedings of the
22nd Conference on Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS 2002), volume 2556 of Lecture Notes in
Computer Science, pages 157–168. Springer-Verlag, 2002.

BIBLIOGRAPHY 219

C. Fritz and Th. Wilke. Simulation relations for alternating Büchi automata.
Theoretical Computer Science, 338(1–3):275–314, 2005.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Proceedings of the 7th Annual ACM Symposium on Principles
of Programming Languages (POPL 1980), pages 163–173. Association for
Computing Machinery, 1980.

P. Gastin, R. Meyer, and A. Petit. A (non-elementary) modular decision pro-
cedure for LTrL. In Proceedings of the 23rd International Symposium on
Mathematical Foundations of Computer Science (MFCS 1998), volume
1450 of Lecture Notes in Computer Science, pages 356–365. Springer-
Verlag, 1998.

P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in
SPIN. In Proceedings of the 11th International SPIN Workshop on Model
Checking Software (SPIN 2004), volume 2989 of Lecture Notes in Com-
puter Science, pages 92–108. Springer-Verlag, 2004.

P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Pro-
ceedings of the 13th International Conference on Computer Aided Verifi-
cation (CAV 2001), volume 2102 of Lecture Notes in Computer Science,
pages 53–65. Springer-Verlag, 2001.

P. Gastin and D. Oddoux. LTL with past and two-way very-weak alternating
automata. In Proceedings of the 28th International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2003), volume 2747
of Lecture Notes in Computer Science, pages 439–448. Springer-Verlag,
2003.

M. C. W. Geilen. On the construction of monitors for temporal logic prop-
erties. Electronic Notes in Theoretical Computer Science, 55(2), 2001.

J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes on-the-fly LTL ver-
ification more efficient. In Proceedings of the 10th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2004), volume 2988 of Lecture Notes in Computer Science,
pages 205–219. Springer-Verlag, 2004.

J. Geldenhuys and A. Valmari. More efficient on-the-fly LTL verification
with Tarjan’s algorithm. Theoretical Computer Science, 345(1):60–82,
2005.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly auto-
matic verification of linear temporal logic. In Proceedings of the 15th
IFIP WG6.1 International Symposium on Protocol Specification, Testing
and Verification (PSTV 1995), pages 3–18. Chapman & Hall, 1995.

D. Giannakopoulou and F. Lerda. From states to transitions: Improving
translation of LTL formulae to Büchi automata. In Proceedings of the
22nd IFIP WG6.1 International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE 2002), volume 2529 of Lec-
ture Notes in Computer Science, pages 308–326. Springer-Verlag, 2002.

220 BIBLIOGRAPHY

P. Godefroid and G. J. Holzmann. On the verification of temporal properties.
In Proceedings of the IFIP TC6/WG6.1 13th International Symposium on
Protocol Specification, Testing and Verification (PSTV 1993), pages 109–
124. North-Holland, 1993.

P. Godefroid, G. J. Holzmann, and D. Pirottin. State-space caching revisited.
In Proceedings of the 4th International Conference on Computer Aided
Verification (CAV 1992), volume 663 of Lecture Notes in Computer Sci-
ence, pages 178–191. Springer-Verlag, 1993.

P. Godefroid, G. J. Holzmann, and D. Pirottin. State-space caching revisited.
Formal Methods in System Design, 7(3):227–241, 1995.

Y. Gurevich and L. Harrington. Trees, automata, and games. In Proceedings
of the 14th Annual ACM Symposium on Theory of Computing (STOC
1982), pages 60–65. Association for Computing Machinery, 1982.

S. Gurumurthy, F. Somenzi, and R. Bloem. Fair simulation minimization.
In Proceedings of the 14th International Conference on Computer Aided
Verification (CAV 2002), volume 2404 of Lecture Notes in Computer Sci-
ence, pages 610–624. Springer-Verlag, 2002.

M. Hammer, A. Knapp, and S. Merz. Truly on-the-fly LTL model check-
ing. In Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2005),
volume 3440 of Lecture Notes in Computer Science, pages 191–205.
Springer-Verlag, 2005.

G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(10):2413–
2433, 1985.

G. J. Holzmann. On limits and possibilities of automated protocol analysis.
In Proceedings of the IFIP WG6.1 7th International Conference on Proto-
col Specification, Testing and Verification (PSTV 1987), pages 339–344.
North-Holland, 1987.

G. J. Holzmann. An improved protocol reachability analysis technique. Soft-
ware – Practice and Experience, 18(2):137–161, 1988.

G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search.
In Proceedings of the 2nd SPIN Workshop (SPIN 1997), volume 32 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, 1997.

A. Isli. Mapping an LPTL formula into a Büchi alternating automaton ac-
cepting its models. In Temporal Logic: Proceedings of the ICTL Work-
shop, pages 85–90. Research Report MPI-I-94-230, Max-Planck-Institut für
Informatik, 1994.

A. Isli. Converting a Büchi alternating automaton to a usual nondeterminis-
tic one. Sādhāna – Academy Proceedings in Engineering Sciences, 21(2):
213–228, 1996.

BIBLIOGRAPHY 221

Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for
full propositional temporal logic. In Proceedings of the 5th International
Conference on Computer Aided Verification (CAV 1993), volume 697
of Lecture Notes in Computer Science, pages 97–109. Springer-Verlag,
1993.

Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear tem-
poral logic specifications. In Proceedings of the 25th International Collo-
quium on Automata, Languages and Programming (ICALP 1998), volume
1443 of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag,
1998.

D. Kozen. On parallelism in Turing machines. In Proceedings of the 17th
Annual Symposium on Foundations of Computer Science (FOCS 1976),
pages 89–97. IEEE Computer Society, 1976.

O. Kupferman, N. Piterman, and M. Y. Vardi. Extended temporal logic revis-
ited. In Proceedings of the 12th International Conference on Concurrency
Theory (CONCUR 2001), volume 2154 of Lecture Notes in Computer
Science, pages 519–535. Springer-Verlag, 2001.

O. Kupferman and M. Y. Vardi. On the complexity of branching modular
model checking. In Proceedings of the 6th International Conference on
Concurrency Theory (CONCUR 1995), volume 962 of Lecture Notes in
Computer Science, pages 408–422. Springer-Verlag, 1995.

O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
In Proceedings of the 5th Israel Symposium on Theory of Computing and
Systems (ISTCS 1997), pages 147–158. IEEE Computer Society, 1997.

O. Kupferman and M. Y. Vardi. An automata-theoretic approach to modu-
lar model checking. ACM Transactions on Programming Languages and
Systems, 22(1):87–128, 2000.

O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Transactions on Computational Logic, 2(3):408–429, 2001.

O. Kupferman and M. Y. Vardi. From complementation to certification.
In Proceedings of the 10th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2004),
volume 2988 of Lecture Notes in Computer Science, pages 591–606.
Springer-Verlag, 2004.

O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. Journal of the ACM, 47(2):312–360,
2000.

F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with for-
gettable past. In Proceedings of the 17th IEEE Symposium on Logic in
Computer Science (LICS 2002), pages 383–392. IEEE Computer Soci-
ety, 2002.

222 BIBLIOGRAPHY

T. Latvala. Efficient model checking of safety properties. In Proceedings
of the 10th International SPIN Workshop on Model Checking Software
(SPIN 2003), volume 2648 of Lecture Notes in Computer Science, pages
74–88. Springer-Verlag, 2003.

T. Latvala and K. Heljanko. Coping with strong fairness – On-the-fly empti-
ness checking for Streett automata. In Proceedings of the Workshop on
Concurrency, Specification and Programming (CS&P 1999), pages 107–
118. Warsaw University, 1999.

T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta Infor-
maticae, 43(1–4):175–193, 2000.

E. Leiss. Succinct representation of regular languages by Boolean automata.
Theoretical Computer Science, 13(3):323–330, 1981.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In Proceedings of the 12th An-
nual ACM Symposium on Principles of Programming Languages (POPL
1985), pages 97–107. Association for Computing Machinery, 1985.

O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability
and completeness. Logic Journal of the IGPL, 8(1):55–85, 2000.

P. Lindsay. On alternating ω-automata. Journal of Computer and System
Sciences, 36(1):16–24, 1988.

C. Löding. Methods for the Transformation of ω-Automata: Complexity and
Connection to Second Order Logic. Diploma thesis, Christian-Albrechts-
University of Kiel, 1998.

C. Löding and W. Thomas. Alternating automata and logics over infinite
words. In Proceedings of the IFIP International Conference on Theoreti-
cal Computer Science – Exploring New Frontiers of Theoretical Informat-
ics (IFIP TCS2000), volume 1872 of Lecture Notes in Computer Science,
pages 521–535. Springer-Verlag, 2000.

M. Maidl. The common fragment of CTL and LTL. In Proceedings of the
41st Annual Symposium on Foundations of Computer Science (FOCS
2000), pages 643–652. IEEE Computer Society, 2000a.

M. Maidl. Using Model Checking for System Verification. Doctoral dis-
sertation, Fakultät für Mathematik und Informatik, Ludwig-Maximilians-
Universität, München, 2000b.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems – Specification. Springer-Verlag, 1992.

Z. Manna and H. B. Sipma. Alternating the temporal picture for safety.
In Proceedings of the 27th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2000), volume 1853 of Lecture Notes
in Computer Science, pages 429–450. Springer-Verlag, 2000.

BIBLIOGRAPHY 223

Z. Manna and P. Wolper. Synthesis of communicating processes from tem-
poral logic specifications. In Proceedings of the Workshop on Logics of
Programs 1981, volume 131 of Lecture Notes in Computer Science, pages
253–281. Springer-Verlag, 1982.

Z. Manna and P. Wolper. Synthesis of communicating processes from tem-
poral logic specifications. ACM Transactions on Programming Languages
and Systems, 6(1):68–93, 1984.

R. McNaughton. Testing and generating infinite sequences by a finite au-
tomaton. Information and Control, 9(5):521–530, 1966.

S. Merz and A. Sezgin. Emptiness of linear weak alternating automata. Tech-
nical report, LORIA, 2003.

M. Michel. Computation of temporal operators. Logique et Analyse, 28
(110–111):137–152, 1985.

S. Miyano and T. Hayashi. Alternating finite automata on ω-words. In Pro-
ceedings of the 9th International Colloquium on Trees in Algebra and
Programming (CAAP 1984), pages 195–209. Cambridge University Press,
1984a.

S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoret-
ical Computer Science, 32(3):321–330, 1984b.

D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak
monadic theory of the tree, and its complexity. In Proceedings of the
13th International Colloquium on Automata, Languages and Program-
ming (ICALP 1986), volume 226 of Lecture Notes in Computer Science,
pages 275–283. Springer-Verlag, 1986.

D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give
a simple explanation of why most temporal and dynamic logics are decid-
able in exponential time. In Proceedings of the 3rd Annual Symposium
on Logic in Computer Science (LICS 1988), pages 422–427. IEEE Com-
puter Society, 1988.

D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak
monadic theory of trees and its complexity. Theoretical Computer Sci-
ence, 97(2):233–244, 1992.

D. E. Muller and P. E. Schupp. Alternating automata on infinite objects,
determinacy and Rabin’s theorem. In Automata on Infinite Words, vol-
ume 192 of Lecture Notes in Computer Science, pages 100–107. Springer-
Verlag, 1985.

D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. The-
oretical Computer Science, 54(2–3):267–276, 1987.

D. E. Muller and P. E. Schupp. Simulating alternating tree automata by
nondeterministic automata: New results and new proofs of the theorems
of Rabin, McNaughton and Safra. Theoretical Computer Science, 141
(1–2):69–107, 1995.

224 BIBLIOGRAPHY

A. Muscholl and I. Walukiewicz. An NP-complete fragment of LTL. In Pro-
ceedings of the 8th International Conference on Developments in Lan-
guage Theory (DLT 2004), volume 3340 of Lecture Notes in Computer
Science, pages 334–344, 2004.

A. Muscholl and I. Walukiewicz. An NP-complete fragment of LTL. In-
ternational Journal of Foundations of Computer Science, 16(4):743–753,
2005.

C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

R. Pelánek. Typical structural properties of state spaces. In Proceedings
of the 11th International SPIN Workshop on Model Checking Software
(SPIN 2004), volume 2989 of Lecture Notes in Computer Science, pages
5–22. Springer-Verlag, 2004.

D. Peled. Combining partial order reductions with on-the-fly model-
checking. In Proceedings of the 6th International Conference on Com-
puter Aided Verification (CAV 1994), volume 818 of Lecture Notes in
Computer Science, pages 377–390. Springer-Verlag, 1994.

D. A. Peled. Combining partial order reductions with on-the-fly model
checking. Formal Methods in System Design, 8(1):39–64, 1996.

D. Perrin and J.-E. Pin. Infinite Words: Automata, Semigroups, Logic and
Games, volume 141 of Pure and Applied Mathematics. Elsevier, 2004.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (FOCS 1977),
pages 46–57. IEEE Computer Society, 1977.

A. Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13(1):45–60, 1981.

J.-P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In Proceedings of the 5th International Symposium on
Programming, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer-Verlag, 1982.

M. O. Rabin. Decidability of second-order theories and automata on infi-
nite trees. Transactions of the American Mathematical Society, 141:1–35,
1969.

M. O. Rabin and D. Scott. Finite automata and their decision prob-
lems. IBM Journal of Research and Development, 3(2):114–125, 1959.
Reprinted (with corrections) in Sequential Machines – Selected Papers,
pages 63–91. Addison-Wesley, 1964.

Y. S. Ramakrishna, L. K. Dillon, L. E. Moser, P. M. Melliar-Smith, and
G. Kutty. An automata-theoretic decision procedure for future interval
logic. In Proceedings of the 12th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 1992), volume
652 of Lecture Notes in Computer Science, pages 51–67. Springer-Verlag,
1992a.

BIBLIOGRAPHY 225

Y. S. Ramakrishna, P. M. Melliar-Smith, L. E. Moser, L. K. Dillon, and
G. Kutty. Interval logics and their decision procedures, part I: An interval
logic. Theoretical Computer Science, 166(1–2):1–47, 1996.

Y. S. Ramakrishna, L. E. Moser, L. K. Dillon, P. M. Melliar-Smith, and
G. Kutty. An automata-theoretic decision procedure for propositional tem-
poral logic with since and until. Fundamenta Informaticae, 17(3):271–
282, 1992b.

G. S. Rohde. Alternating Automata and the Temporal Logic of Ordinals.
PhD thesis, University of Illinois at Urbana-Champaign, 1997.

S. Safra. On the complexity of ω-automata. In Proceedings of the 29th
Annual Symposium on Foundations of Computer Science (FOCS 1988),
pages 319–327. IEEE Computer Society, 1988.

K. Schneider. Yet another look at LTL model checking. In Proceedings of
the 10th IFIP WG10.5 Advanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods, volume 1703 of Lecture
Notes in Computer Science, pages 321–325. Springer-Verlag, 1999.

K. Schneider. Improving automata generation for linear temporal logic by
considering the automaton hierarchy. In Proceedings of the 8th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR 2001), volume 2250 of Lecture Notes in Computer Sci-
ence, pages 39–54. Springer-Verlag, 2001.

S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms.
In Proceedings of the 11th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2005),
volume 3440 of Lecture Notes in Computer Science, pages 174–190.
Springer-Verlag, 2005.

R. Sebastiani and S. Tonetta. “More deterministic” vs. “smaller” Büchi au-
tomata for efficient LTL model checking. In Proceedings of the 12th IFIP
WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME 2003), volume 2860 of Lec-
ture Notes in Computer Science, pages 126–140. Springer-Verlag, 2003.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear tempo-
ral logics. In Proceedings of the 14th Annual ACM Symposium on Theory
of Computing (STOC 1982), pages 159–168. Association for Computing
Machinery, 1982.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear tempo-
ral logics. Journal of the ACM, 32(3):733–749, 1985.

F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae.
In Proceedings of the 12th International Conference on Computer Aided
Verification (CAV 2000), volume 1855 of Lecture Notes in Computer Sci-
ence, pages 248–263. Springer-Verlag, 2000.

226 BIBLIOGRAPHY

U. Stern and D. L. Dill. Improved probabilistic verification by hash com-
paction. In Proceedings of the IFIP WG 10.5 Advanced Research Work-
ing Conference on Correct Hardware Design and Verification Methods
(CHARME 1995), volume 987 of Lecture Notes in Computer Science,
pages 206–224. Springer-Verlag, 1995.

U. Stern and D. L. Dill. A new scheme for memory-efficient probabilis-
tic verification. In Proceedings of the IFIP TC6 WG6.1 Joint Interna-
tional Conference on Formal Description Techniques and Protocol Spec-
ification, Testing and Verification (FORTE/PSTV 1996), pages 333–348.
Kluwer, 1996.

R. S. Streett. Propositional dynamic logic of looping and converse. In Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Comput-
ing (STOC 1981), pages 375–383. Association for Computing Machinery,
1981.

R. S. Streett. Propositional dynamic logic of looping and converse is elemen-
tarily decidable. Information and Control, 54(1/2):121–141, 1982.

R. Tarjan. Depth-first search and linear graph algorithms. In Conference
Record of the 12th Annual Symposium on Switching and Automata The-
ory, pages 114–121. IEEE Computer Society, 1971.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.

H. Tauriainen. On translating linear temporal logic into alternating and
nondeterministic automata. Research Report A83, Helsinki University of
Technology, Laboratory for Theoretical Computer Science, 2003.

H. Tauriainen. Nested emptiness search for generalized Büchi automata. In
Proceedings of the 4th International Conference on Application of Con-
currency to System Design (ACSD 2004), pages 165–174. IEEE Com-
puter Society, 2004.

H. Tauriainen. A note on the worst-case memory requirements of generalized
nested depth-first search. Research Report A96, Helsinki University of
Technology, Laboratory for Theoretical Computer Science, 2005.

H. Tauriainen. Nested emptiness search for generalized Büchi automata.
Fundamenta Informaticae, 70(1–2):127–154, 2006.

H. Tauriainen and K. Heljanko. Testing SPIN’s LTL formula conversion into
Büchi automata with randomly generated input. In Proceedings of the
7th International SPIN Workshop on Model Checking Software (SPIN
2000), volume 1885 of Lecture Notes in Computer Science, pages 54–72.
Springer-Verlag, 2000.

H. Tauriainen and K. Heljanko. Testing LTL formula translation into Büchi
automata. International Journal on Software Tools for Technology Transfer
(STTT), 4(1):57–70, 2002.

BIBLIOGRAPHY 227

X. Thirioux. Simple and efficient translation from LTL formulas to Büchi au-
tomata. Electronic Notes in Theoretical Computer Science, 66(2), 2002.

W. Thomas. Star-free regular sets of ω-sequences. Information and Control,
42(2):148–156, 1979.

W. Thomas. A combinatorial approach to the theory of ω-automata. Infor-
mation and Control, 48(3):261–283, 1981.

W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science: Formal Models and Semantics, volume B, pages 133–
191. Elsevier, 1990.

W. Thomas. Languages, automata, and logic. In Handbook of Formal Lan-
guages, volume III, pages 389–455. Springer-Verlag, 1997.

W. Thomas. Complementation of Büchi automata revisited. In Jewels are
Forever: Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 109–120. Springer-Verlag, 1999.

A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic
Models, volume 1491 of Lecture Notes in Computer Science, pages 429–
528. Springer-Verlag, 1998.

M. Y. Vardi. A temporal fixpoint calculus. In Proceedings of the 15th An-
nual ACM Symposium on Principles of Programming Languages (POPL
1988), pages 250–259. Association for Computing Machinery, 1988.

M. Y. Vardi. Nontraditional applications of automata theory. In Proceedings
of the International Conference on Theoretical Aspects of Computer Soft-
ware (TACS 1994), volume 789 of Lecture Notes in Computer Science,
pages 575–597, 1994.

M. Y. Vardi. Alternating automata and program verification. In Computer
Science Today – Recent Trends and Developments, volume 1000 of Lec-
ture Notes in Computer Science, pages 471–485. Springer-Verlag, 1995.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Logics for Concurrency: Structure versus Automata, volume 1043 of Lec-
ture Notes in Computer Science, pages 238–266. Springer-Verlag, 1996.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the Symposium on Logic in Com-
puter Science (LICS 1986), pages 332–344. IEEE Computer Society,
1986.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Informa-
tion and Computation, 115(1):1–37, 1994.

P. Wolper. Temporal logic can be more expressive. In Proceedings of the
22nd Annual Symposium on Foundations of Computer Science (FOCS
1981), pages 340–348. IEEE Computer Society, 1981.

228 BIBLIOGRAPHY

P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1–2):72–99, 1983.

P. Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, 28(110–111):119–136, 1985.

P. Wolper. On the relation of programs and computations to models of tem-
poral logic. In Temporal Logic in Specification, volume 398 of Lecture
Notes in Computer Science, pages 75–123. Springer-Verlag, 1987.

P. Wolper. Constructing automata from temporal logic formulas: A tuto-
rial. In Lectures on Formal Methods and Performance Analysis: First
EEF/Euro Summer School on Trends in Computer Science, Revised Lec-
tures, volume 2090 of Lecture Notes in Computer Science, pages 261–
277. Springer-Verlag, 2001.

P. Wolper and D. Leroy. Reliable hashing without collision detection. In
Proceedings of the 5th International Conference on Computer Aided Ver-
ification (CAV 1993), volume 697 of Lecture Notes in Computer Science,
pages 59–70. Springer-Verlag, 1993.

P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computa-
tion paths. In Proceedings of the 24th Annual Symposium on Foundations
of Computer Science (FOCS 1983), pages 185–194. IEEE Computer So-
ciety, 1983.

BIBLIOGRAPHY 229

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A91 Mikko Särelä

Measuring the Effects of Mobility on Reactive Ad Hoc Routing Protocols. May 2004.

HUT-TCS-A92 Timo Latvala, Armin Biere, Keijo Heljanko, Tommi Junttila

Simple Bounded LTL Model Checking. July 2004.

HUT-TCS-A93 Tuomo Pyhälä

Specification-Based Test Selection in Formal Conformance Testing. August 2004.

HUT-TCS-A94 Petteri Kaski

Algorithms for Classification of Combinatorial Objects. June 2005.

HUT-TCS-A95 Timo Latvala

Automata-Theoretic and Bounded Model Checking for Linear Temporal Logic. August 2005.

HUT-TCS-A96 Heikki Tauriainen

A Note on the Worst-Case Memory Requirements of Generalized Nested Depth-First Search.

September 2005.

HUT-TCS-A97 Toni Jussila

On Bounded Model Checking of Asynchronous Systems. October 2005.

HUT-TCS-A98 Antti Autere

Extensions and Applications of the A∗ Algorithm. November 2005.

HUT-TCS-A99 Misa Keinänen

Solving Boolean Equation Systems. November 2005.

HUT-TCS-A100 Antti E. J. Hyvärinen

SATU: A System for Distributed Propositional Satisfiability Checking in Computational

Grids. February 2006.

HUT-TCS-A101 Jori Dubrovin

Jumbala — An Action Language for UML State Machines. March 2006.

HUT-TCS-A102 Satu Elisa Schaeffer

Algorithms for Nonuniform Networks. April 2006.

HUT-TCS-A103 Janne Lundberg

A Wireless Multicast Delivery Architecture for Mobile Terminals. May 2006.

HUT-TCS-A104 Heikki Tauriainen

Automata and Linear Temporal Logic: Translations with Transition-Based Acceptance.

September 2006.

ISBN 951-22-8343-3

ISSN 1457-7615

	Preface
	1 Introduction
	2 Definitions and Basic Results
	2.1 Mathematical Concepts and Notation
	2.1.1 Sequences
	2.1.2 Omega-Regular Expressions

	2.2 Propositional Linear Time Temporal Logic
	2.2.1 Syntax
	2.2.2 Semantics
	2.2.3 Positive Normal Form

	2.3 Alternating Automata
	2.3.1 Basic Concepts
	2.3.2 Properties of Runs of Alternating Automata
	2.3.3 Semi-Runs
	2.3.4 Self-loop Alternating Automata

	3 Basic Automaton Translation
	3.1 Translation Rules
	3.1.1 Simple Observations

	3.2 Sizes of Components in an Automaton Built from an LTL Formula
	3.2.1 Number of States
	3.2.2 Number of Transitions
	3.2.3 Number of Acceptance Conditions

	3.3 Correctness of the Translation
	3.4 Reverse Translation

	4 Nondeterminization of Self-loop Alternating Automata
	4.1 Uniform Runs
	4.2 Nondeterminization Construction
	4.2.1 Universal Subset Construction
	4.2.2 Number of States and Transitions in a Nondeterministic Automaton
	4.2.3 Number of Acceptance Conditions

	4.3 Automata with Acceptance Synchronized Runs
	4.3.1 Acceptance Synchronicity
	4.3.2 A Simplified Nondeterminization Construction
	4.3.3 Sufficient Conditions for Acceptance Synchronization
	4.3.4 Application to Translation of LTL into Nondeterministic Automata

	4.4 Languages Accepted by Subautomata of a Nondeterministic Automaton
	4.5 On-the-Fly Optimizations to Nondeterminization
	4.5.1 Detecting Redundant States Using Syntactic Implications
	4.5.2 Merging Syntactically Language-Equivalent States

	4.6 The Subclass LTLCND
	4.6.1 Completion to Nondeterministic Automata
	4.6.2 Closure Properties of Translation Rules
	4.6.3 Definition of the Subclass
	4.6.4 Relationships between Syntactic Subclasses of LTL
	4.6.5 A Remark on Satisfiability

	5 Refining the Basic Translation Rules
	5.1 Simple Optimizations
	5.1.1 Subformulas with Commutative Main Connectives
	5.1.2 Transition Guard Simplification

	5.2 Language Containment Checking between Self-loop Alternating Automata
	5.3 Rule Preprocessing Using Language Containment
	5.4 The ``And'' Connective
	5.5 Binary Temporal Connectives
	5.6 Discussion
	5.6.1 Translation Example Revisited
	5.6.2 Comparison of the Basic and the Refined Translation Rules
	5.6.3 Extension of the Subclass LTLCND

	6 Removing Redundant Transitions
	6.1 Redundant Transitions and Language Containment
	6.2 Detecting Redundant Initial Transitions by Transition Substitution
	6.2.1 Redundant Transitions and Runs of an Automaton
	6.2.2 Transition Substitution
	6.2.3 Substitutability and Redundant Initial Transitions of Self-loop Automata
	6.2.4 Reducing Language Containment Between Intersections of Languages to Language Emptiness
	6.2.5 Compatibility with Nondeterminization of Automata Built from LTL Formulas
	6.2.6 Examples

	7 A High-Level Refined Translation Procedure
	8 Language Emptiness Checking for Nondeterministic Automata
	8.1 Terminology
	8.2 Degeneralization
	8.3 Emptiness Checking Algorithm
	8.3.1 Resource Requirements
	8.3.2 Correctness of the Algorithm
	8.3.3 Compatibility with Enhancements of Classic Nested Depth-First Search

	9 Conclusion
	Bibliography

