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The Evolving Tree — Analysis and Applications
Jussi Pakkanen, Jukka Iivarinen, and Erkki Oja,Fellow, IEEE

Abstract— In this paper we enhance and analyze theEvolving
Tree data analysis algorithm. The suggested improvements aim to
make the system perform better while still maintaining the simple
nature of the basic algorithm. We also examine the system’s
behaviour with many different kinds of tests, measurements and
visualizations. We also compare the Evolving Tree’s performance
against classical data analysis methods and very similar modern
systems. We find that the Evolving Tree is a suitable method for
unsupervised analysis of huge data sets.

Index Terms— hierarchical clustering, Evolving Tree, tree-
shaped neural networks, self-organization

I. I NTRODUCTION

The Self-Organizing Map (SOM) is a widely used tool in
various data analysis tasks [1]. However, some of its intrinsic
features make it unsuitable for analyzing very large scale
problems. Almost all operations on SOM start by locating
the best matching unit (BMU) among all the nodes. This
scales linearly according to the map size. Analyzing huge data
sets requires very large maps. While operating on these maps
is not usually intractable, it can be extremely slow. Another
drawback is that the map size must be chosen beforehand.
While there are some heuristics for this, experimenting with
different sized maps is quite time-consuming.

There have been several different approaches to solve these
problems. They can be roughly divided into two different
groups. The first ones are flat systems that grow during train-
ing. Examples include incremental grid growing [2], growing
cell structures [3], and dynamic cell structure [4]. The second
group tries to build efficient search structures to make opera-
tions faster. This is a very common problem in various fields,
which has resulted in a plethora of different algorithms [5].
Most of these algorithms are based on classical computer
science rather than neural computation. An exception is the
tree-structured SOM [6].

An efficient way of attacking large scale problems is called
divide and conquer. This approach divides the problem into
smaller subproblems, which are easier to solve and combine.
In euclidean spaces this usually means partitioning the space
hierarchically into smaller and smaller regions. This partition-
ing is usually presented as a search tree, which is a traditional
and efficient way of doing searches. Another advantage of
divide and conquer is an easy approach to complexity control.
When the space is partitioned, the subspaces can be further
partitioned without affecting other areas of the data space.
This converts complexity control from a global problem to a
local one which is simpler.

There are some hybrid systems that try to combine both of
these features. Even though they start from relatively similar
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premises, the resulting systems vary quite a lot. Some systems
use the hierarchic structure only as an aid in classification,
like TreeGCS [7]. Others, like SAINT [8], DGSOT [9],
GHSOM [10] and CNeT [11], use the hierarchical structure
to speed up training and queries.

In this paper, we present and analyze the Evolving Tree [12],
[13], [14] (ETree) and its behaviour. The Evolving Tree is
a new kind of self-organizing neural network that has been
designed to scale to very large problems.

At its basic level the Evolving Tree is a fast, hierar-
chical clustering method especially suitable for large, high-
dimensional problems. This is not the only way of seeing the
algorithm. It can also be seen as an index to vectorial data,
similarly to R-tree [15] and other such algorithms. The prob-
lem with these approaches is that they become exponentially
slower as the data dimension increases [5]. The hierarchical
and approximate nature of ETree allows it to tackle problems
that are too large for these classical methods.

Contents of the paper are as follows. In chapter 2 we give an
overview of the Evolving Tree’s algorithms and architecture.
This is followed by the novel improvements and analysis
in chapter 3. In chapter 4 we subject our system to several
qualitative and quantitative experiments. Then we discussthe
results and conclude the paper.

II. T HE EVOLVING TREE

We will now briefly describe the basic Evolving Tree
algorithm. A more detailed description of the basic algorithm
can be found in [14]. We start with the small Evolving Tree in
Figure 1 (a). This example tree has a fanout of 2 for simplicity.
In practice larger values are often used. The tree consists of
black leaf nodesand white trunk nodes. Each node has a
prototype vectorwi, which places it somewhere in the data
space. It also has a counterbi, which tells how many times it
has been the best matching unit. Assume that we have available
a training set of data vectors, which are used in training oneby
one. Training the tree starts by finding the best matching unit
(BMU) with a greedy tree search. For every training vectorxi

we start at the root node and select the child which is closestto
the training vector. We select this node and examine its childen
and so on until we reach a leaf node. This is the BMU.

Now we need to update the leaf node locations. We use the
Kohonen learning rule [1]:

wi(t + 1) = wi(t) + hci(t)[x(t)−wi(t)]. (1)

The functionhci defines the amount of adaptation and is a
gaussian function as in SOM:

hci(t) = α(t) exp

(

d(rc, ri)
2

2σ2(t)

)

. (2)
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Here α and σ are used to control the width and time decay
of the neighborhood function. They are usually exponentially
decreasing functions with respect to time.

The problematic part is the functiond(rc, ri), which tells
how far apart the nodesrc and ri are in the SOM grid. The
Evolving Tree does not form a grid so some other method is
required. We use an equivalent metric called thetree distance
which can be seen in Figure 1 (b). The idea is to calculate the
amount of “hops” needed to get from one node to the other
along the tree. In this case five hops are needed to get from
A to B. Using this distance the SOM neighborhood function
can be applied.

These two steps — finding the BMU and updating leaf
nodes — form most of the training. The third step is growing
the tree. Every node has a counter that tells how many times it
has been the BMU. When the counter reaches a certain value,
called thesplitting threshold, the node is split. That is, it is
given some child nodes, thus becoming a trunk node. The child
nodes’ prototype vectors are initialized to their parent’svalue.
The training may now continue using the new, slightly larger
tree. One of the consequences of these training rules is that
different branches have larger tree distances than nodes ina
same branch. This is expected since different branches grow
to different areas in the data space.

Now we can describe the very simple basic ETree algorithm
for a single training vector.

1) Find the BMU using the search tree.
2) Update the leaf node locations using the SOM training

formulas substituting tree distance for grid distance.
3) Increment the BMU’s hit counter.
4) If the counter reaches the splitting threshold, split the

node.

This is repeated for every vector on the training set until
the system is deemed good enough. Usually this means going
through the data a pre-specified amount of times. Because
distances between branches are usually quite large, the weight
updates become very small. The computational load can thus
be reduced by only updating the nodes close to the BMU.
These can be efficiently found using the links between nodes.

III. E NHANCEMENTS AND ANALYSIS OF THEEVOLVING

TREE

In this paper we further examine the established Evolving
Tree algorithm. First we consider different ways of ana-
lyzing and enhancing the basic algorithm. Then we derive
the computational complexity of the algorithm including the
enhancements. The effects of the enhancements are studied
experimentally in the next chapter.

A. Controlling the growth

A very important part of the training process is determining
how large the tree should become. If there are too few nodes,
we only get a very coarse overview of the data space. Too
many nodes may cause some overfitting but even more seri-
ously they add unnecessary computational burden. Therefore
it is important to have an efficient stopping criterion.

Approaches based on e.g. mean quantization error and
average distortion have been applied in related works [9],
[10]. These approaches have a solid mathematical background,
but there are also drawbacks. The biggest one is that these
distortion functions must be calculated relatively often.This
can slow down the training considerably.

We propose an algorithm that is based on the concepts of
regularization and weight decay [16]. The basic concept of
regularization is to penalize overly complicated models, thus
preventing overfitting. One approach is to create a penalty
function and to add that to the objective function to be
minimized. An example penalty term is a sum of all the
weights of a multilayer perceptron. This term can be made
smaller by decaying all the weights toward zero between
epochs.

In our system we would gain nothing by decaying the
prototype vectors. That is because the locations of the nodes
are not the cause of overfitting. The real reason is too many
nodes. To restrict the size of the tree, we apply weight decay
to the BMU countersbi. This yields the following two-
phase algorithm, which both controls the size of the tree and
automatically stops the training. The results are examinedin
subsection IV-A.

1) At the end of each epoch setbi(t+1) = γ · bi(t) for all
nodesi, whereγ ∈]0, 1[.

2) If the tree has grown less than a specified amount (e.g.
5%) since the last epoch, stop training.

B. Removing layers

One beneficial feature of most neural networks isgraceful
degradation. If the system suffers some sort of a minor
damage, its effects on the total operation should be small.
An example is randomly distorting a weight of one node in
a multilayer perceptron. The total performance may suffer
slightly, but the system is still operational and useful.

To examine whether the Evolving Tree also possesses
this property we examined its performance when nodes are
removed. The results can be found in subsection IV-B.

C. Better search for the BMU

One source of error in the Evolving Tree may be the greedy
BMU search, which is not guaranteed to find the globally
optimal node. We examined alternate ways of finding the
BMU. The first one is the original algorithm with a slight
modification. At every layer we keep then best subbranches
instead of only one. When we reach the leaf nodes the best
one is selected as the BMU. The second algorithm just finds
the global BMU among leaf nodes, ignoring the tree altogether
except for the leaf node updates. This algorithm can be seen
as a growing variant of k-means clustering. The results can be
found in subsection IV-C.

D. Child node initialization

When new child nodes are created, they are placed on top
of their parent in the data space. As the training progresses
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(a) BMU search (b) Tree distance

Fig. 1. Fundamental operations of the Evolving Tree.

the children move to different areas in the data space. Us-
ing a different initialization scheme could lead to improved
computational efficiency and faster convergence.

We examined two initialization schemes. The first perturbs
the child nodes randomly. The second one is based on principal
component analysis (PCA). The idea is that when a node is
split, we first find all data vectors that map to it. Then we
calculate the principal components of this data cloud. We then
take the plane spanned by the two largest principal components
and the node to be split. The child nodes are placed evenly on
an ellipse that lies in this plane. The center of the ellipse is the
parent node and the ellipse axes are the principal component
vectors. The axis lengths are the standard deviations of the
respective components.

The basic idea of this scheme is to spread out the child
nodes to the directions of the largest variances. In the case
of two children this scheme reduces to placing the nodes
along the axis of the first principal component. In the case
of four children they are placed along the two first principal
components. The benefit of the ellipse algorithm is that we can
have an arbitrary amount of child nodes and still spread them
out efficiently. The efficiency of these algorithms is examined
in subsection IV-D.

E. Optimizing the leaf node locations

A known property of the SOM is that if the neighborhood
function does not go to zero the resulting map will be nonop-
timal with respect to quantization error. Since the amount of
training epochs is decided beforehand, the rate of decreasein
SOM can be chosen properly. When training the Evolving Tree
using weight decay, the amount of epochs is unknown. This
suggests that the algorithm might not find optimal locations
for the leaf nodes.

One way of optimizing the locations, while still maintaining
the system’s unsupervised nature, is to use a variant of k-means
clustering. First we map all training vectors to leaf nodes using
the established BMU search. Then we move the leaf nodes
to the center of mass of their respective data vectors. This
procedure is repeated a few times to obtain the final leaf node
locations. Experimental results are given in subsection IV-E.

Regular k-means usually requires several iterations to obtain
good results. One of the reasons is that initializing it effectively

is somewhat tricky. In our case the tree has partitioned and
initialized the data space quite effectively so only a few rounds
are needed. It should also be noted that the Evolving Tree
could be utilized as a fast initialization step for regular k-
means clustering. The drawback is that the search tree must
then be discarded, losing both the neighborhood information
and the ability to do fast queries.

F. Computational complexity

Let us use the following notation.

d data space dimension
N data set size
h tree depth
k # of updated neighbours
b branching factor (fanout)
θ splitting threshold
l # of leaf nodes

The computational complexity is the sum of finding the best
matching unit (CBMU ) and updating the neighbours (Cud).
The complexity of one epoch is simply the complexity of a
single operation multiplied by the epoch size.

To find the BMU we have to calculate a vector distanceb
times at every level of the tree. The amount of calculations
needed is

CBMU = d · h · b. (3)

Updating the leaf locations means movingk nodes. We also
have to add the cost of splitting the leaf nodes. This happens,
on average, every1/θ steps, making the total cost of the update
for a single vector

Cud = k · d +
b

θ
(4)

Adding these and multiplying by the epoch sizeN we find
that the amount of calculations needed for a single epoch is

Ctot = N (CBMU + Cud) (5)

= N

(

d · h · b + k · d +
b

θ

)

. (6)
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We can see that the complexity is linear in data dimension
d. This is very desirable, as many methods are exponential
as mentioned in the introduction. To find the complexity
with respect to the data set sizeN , we first note thatd, b
and θ are constants, so they are dropped. Because a search
tree is formed during training, it follows thath ∝ log N .
The most difficult parameter to define exactly is the amount
of updated neighborsk. In our experiments we have found
that only a couple of nodes are updated. This is due to the
rather narrow neighborhood functions and large intra-branch
distances. Therefore we can approximate thatk is a constant
and the computational complexity for one epoch reduces to

O(N log N) (7)

1) Complexity of weight decay:Weight decay is a very light
operation, which is run at most once per epoch. It affects every
child node once, so the complexity is

Cwd = l · d (8)

To function effectively, every node models only a small
portion of the data space. This means that only a few data
vectors map to each leaf node. Thereforel ∝ N and the
complexity per round is

Owd(N). (9)

2) Complexity of the k-means phase:Complexity of the k-
means updating is quite simple to calculate. That part consists
of mapping all data vectors to leaf nodes and then moving the
leaf nodes to the center of mass of their respective vectors.
For a single epoch that means

Ckm = N(d · h · b) + N · d. (10)

Using the same reasoning as above we find that

Okm(N log N). (11)

The k-means portion is usually run only a few times at
the end of training. In this case the computationally dominant
portion is training, not the final k-means adjustment.

3) Total complexity:The largest complexity of any part of
the algorithm isN log N . Therefore the complexity of the
Evolving Tree is alsoN log N per epoch. To find the total
complexity, we have to determine the total number of epochs
as a function ofN . Unfortunately the tree shape and weight
decay make determining it analytically extremely difficult.
Larger databases need larger trees which indicate more epochs.
On the other hand if the epoch is large, more splits occur per
epoch. Therefore the tree grows more for large epochs than
for small ones, indicating that less epochs are required.

Empirically we have discovered that relatively few epochs,
ten to twenty, are needed, even for databases of twenty
thousand vectors.

4) Complexity of k-means and SOM:We briefly analyze
the complexity of regular k-means clustering and SOM, since
they are used in experiments later. First we note that both SOM
and k-means should have about the same amount of nodes as
the ETree has leaf nodes, meaningO(N). That is also the
complexity for a single BMU search, since there is no search
structure. One batch hasN of these searches and therefore the
total complexity of a single training round isO(N2).

IV. EXPERIMENTS

Three kinds of experiments were performed. The first ones
examine the effects of the enhancements A to E that were de-
scribed previously and to examine how the algorithm behaves
under various circumstances. Even though all experiments do
not lead to improved performance, they are still useful in
understanding the inner workings of the algorithm.

The second class of experiments compare ETree to classical
data analysis methods. These experiments give us baseline
performance values for classification and training time. For
this reason we have selected algorithms that work in a roughly
similar way as ETree. The main difference is that they are flat
instead of hierarchical.

Finally we compare ETree to two other tree-shaped neural
network systems, S-Tree and CNeT. These systems have a
similar divisive, hierarchical approach to data analysis.These
experiments show ETree’s performance when compared to
modern systems.

We have used two different kinds of data sets for the
experiments. The first one consists of different MPEG-7
features [17] which have been calculated for 1300 paper
surface defect images [18]. This gives us moderate sized
databases with dimensions around 20. The exact dimension
varies somewhat depending on the descriptor being used. This
data set represents actual industrial data. There are a total of 14
different classes which are fuzzy and overlapping and therefore
extremely difficult to classify.

We calculated the following MPEG-7 features for these
defect images.

• Color Structure (CS)slides a structuring element over
the image. The numbers of positions where the element
contains each particular color are stored and used as a
descriptor.

• Edge Histogram (EH)calculates the amount of vertical,
horizontal, 45 degree, 135 degree and non-directional
edges in 16 sub-images of the picture, resulting in a total
of 80 histogram bins.

• Homogeneous Texture (HT) filters the image with a bank
of orientation and scale tuned filters that are modeled
using Gabor functions. The first and second moments of
the energy in the frequency domain in the corresponding
sub-bands are then used as the components of the texture
descriptor.

The other data set consists of 18 000 handwritten digits.
The digit images were normalized to32 × 32 pixels with
256 gray scale values. 38 principal components were obtained
using PCA and used for our experiments [19]. This is a
relatively large classified database. Comparing results tothe
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previous databases tells us how different algorithms scaleup.
The experiments test relative diverse areas. It is beneficial to
see how the algorithm performs under different circumstances.

A crucial question is the performance measure used in com-
parisons. We are mostly interested in unsupervised learning, so
suitable measures are quantization error and clustering indices
such as the Davies-Bouldin index. These comparisons can be
found in IV-G. Visualization experiments are found in IV-F.

However a very feasible comparison is also clustering with
ground truth available: how well do the clusters produced by
the algorithms correspond to labeled classes found in the data.
In order to carry out such classification experiments a voting
rule must be used. All classification results have been obtained
by using majority voting with ties broken arbitrarily and ten
fold cross validation.

A. Effects of regularization

Effects of the regularization coefficientγ were examined by
training the tree with different values and comparing the clas-
sification results. We used a very aggressive splitting scheme
to amplify the differences. All experiments were done with
the homogeneous texture data set. The results can be seen in
Figure 2. The results follow the theory quite nicely. Tree size,
which is measured as the total amount of nodes, depends very
strongly on the coefficient, and smaller trees produce worse
classification rates. This degradation is not strong but still very
clear, but this is due to the very small splitting threshold,
as most of the resulting nodes are somewhat redundant. We
verified these results by measuring the average quantization
error. We found that it increased from 0.12 to 0.16 as we
decreased the regularization coefficient. The decrease hadthe
same linear shape as the classification error. In practice we
have found that values ofγ between 0.85 and 0.95 produce
quite good results.

B. Removing layers

For simplicity we removed whole layers at a time. We used
the homogeneous texture data set. The tree was trained to be
larger than usual so we would have more layers to remove.

The results in Figure 3 show that the Evolving Tree degrades
very gracefully. The classification rate drops dramatically only
after three layers are totally removed from the tree. After that
the rate goes rapidly to zero. This makes the Evolving Tree
very robust against small errors in its lowest layers.

C. Better search for the BMU

Figure 4 shows the differences between the regular BMU
search and the two new algorithms. After training the BMUs
were found using all the algorithms and the tree distances
between these were calculated. The plots show the distribution
of distances from the regular BMU to ones obtained with the
alternative methods. These results are for the edge histogram
database, but others gave very similar results.

The first thing we notice is that the regular algorithm finds
the global BMU only approximately 46% of the time. The
second observation is that there are no instances of distance

one in either case. Nodes with a distance of one share a
common parent. If the search algorithm reaches that parent,it
will always select the correct BMU, since that is the locally
optimal solution.

At first sight the distances seem small, but they are larger
than they appear. The largest distance in the figure is 9, which
corresponds to a subtree depth of 5. If we assume a splitting
factor of 4, this subtree would have a maximum of44 = 256
leaf nodes. This is approximately the size of the whole tree
used in these tests. The conclusion is that in some cases the
greedy BMU search may choose the wrong branch at the very
first step. While this seems quite bad at first sight, it is actually
not. Two nodes that have a very large tree distance may still be
very close to each other in the data space. This happens when
the nodes are very close to a partition line set by the topmost
nodes. This is an unfortunate side-effect of the hierarchical
structure.

The important question is, however, whether the inoptimal-
ity in the search algorithm affects the classification rates. A
partial answer can be found in Figure 5. It has the per-class
classification percentages for the different algorithms. The
relative performances fluctuate slightly for different classes.
None of the methods is better for all the classes. This is
caused by the overlapping classes, where improving the total
rate happens at the expense of some classes. Averaged results
are 51% for regular ETree, 52% when using two BMUs and
55% for the global BMU. The last rate approaches the result
for regular k-means (Figure 7 (a)). This is understandable as
the global BMU algorithm reduces to a variant of k-means as
described in subsection III-C. Quantization error behavesin
the same way with global BMU search having the smallest
error.

The intuitive behaviour would be that if the system can not
find the real BMU it should not be able to model the data
properly. This seems not to be the case here. The explanation
lies in the way the Evolving Tree handles the data space. Each
leaf node explains only a very small portion of the data space.
If a vector maps to a node, then very probably vectors in
its immediate vicinity map to the same node. This happens
whether the node is the global BMU or not. Obviously this
property does not always hold, which is why using the global
BMU gives better results.

These results indicate that there is no pressing need to
replace the greedy BMU search with another algorithm. Using
several BMUs gives only an insignificant performance boost.
Using global BMU gives a bigger improvement. The draw-
back is that the search tree is ignored, so the computational
complexity increases significantly. One of the design goalsof
the Evolving Tree has been scalability to very large problems,
which makes the global BMU search unsuitable.

D. Child node initialization

The main results can be seen in Figure 6. Figure a lists
the results for four different algorithms. The first bar is the
regular ETree, the second bar uses the optimal BMU search
described above. The third one uses the PCA initialization and
the fourth one combines PCA and optimal search. The results
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(a) Classification decay (b) Tree size decay

Fig. 2. Effect of regularization coefficient to performance,homogeneous texture data set.

Fig. 3. Performance degradation when removing layers, homogeneous texture data set.

(a) (b)

Fig. 4. Tree distances to regular algorithm’s BMU on the edge histogram database.

for random child initialization have been omitted because they
are all but identical to the regular initialization scheme.This
is expected, since the first couple of update rounds effectively
move the nodes around in a pseudo-random fashion.

All the methods give almost identical classification results.
Only edge histogram seems to benefit from the PCA initializa-
tion, but only a few percents. Interestingly the optimal BMU

search does not give better results in all cases. This is most
likely caused by the very difficult nature of the data set as
discussed earlier. PCA’s good performance on edge histogram
is countered by the drop in classification rate in the other two
cases. Overall the PCA initialization does not seem to produce
noticeable improvements. A negative effect is that training
times grow very large, because PCA is a computationally
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Fig. 5. Classification rates for the different BMU algorithmsper class using edge histogram.

(a) Classification rate (b) Subtree size

Fig. 6. Comparing different initialization schemes.

costly operation.
PCA initialization does have its benefits as can be seen

in Figure 6 (b). It shows the standard deviation of subtree
sizes for every layer in the Evolving Tree. This particular
tree was grown with very aggressive splitting parameters, so
the differences between algorithms can be seen more clearly.
Smaller deviance is better because it implies a more balanced
tree.

The random initialization tree is slightly more balanced than
the regular tree. The difference is not very large, though. PCA
produces the most balanced trees. The difference between
different algorithms is very small at layer three and almost
insignificant at layer four.

The results above suggest that PCA initialization could be
used in the top layers if tree balance is absolutely vital. This
is usually not the case since the regular ETree produces quite
a good search tree. Another problem is that computing the
principal components for a large data base is an expensive
operation. Since the PCA initialization does not yield notice-

ably better qualification results, its computational complexity
is not usually justifiable.

E. Comparison to K-means clustering

First we ran the classification tests on the Evolving Tree.
After those tests we checked how many leaf nodes the trees
had on average. Then we did the comparison tests with k-
means using the same amount of clusters. The main results
can be seen in Figure 7.

First in subfigure (a) we have classification results for
the small database. In this case the classification rates are
almost identical. Interestingly the k-means adjustment slightly
worsens ETree’s results. This indicates that with medium sized
databases the algorithm optimizes the leaf node locations
very well by itself, so the k-means adjustment is not needed.
Another factor is most likely the fuzzy nature of the data.
Results with other MPEG-7 data sets were very similar.

Performance on the larger database is very interesting.
The regular ETree algorithm achieves approximately 80%
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(a) Classification percentages (b) Training time for handwritten digits

Fig. 7. Comparison to k-means clustering.

classification rate. Using the k-means adjustment raises it
noticeably to 87%. Plain k-means obtains the extremely good
result of 95%. This is an expected result, since the cluster
centers in k-means are not constrained by the search tree, but
they can move more freely.

This freedom does come with a heavy cost, though, as we
can see in subfigure (b). It lists the running times of ten cross-
validated training/query rounds. Both versions of the Evolving
Tree take only two minutes, while k-means take up to a half
hour. This figure shows clearly the benefits of the search tree.
The training time is only a fraction compared to regular k-
means. All programs used in the timing tests were coded by
ourselves in C++. This makes the running times comparable.

Another interesting thing to note is that the k-means ad-
justment to the Evolving Tree adds only a hardly noticeable
increase to the total training time, yet it improves classification
percentages noticeably. We can deduce that the k-means
adjustment should be used with large databases. It can be
hypothesized that we could obtain equivalent results without
the adjustment. Unfortunately that would require a lot of trial
and error with the parameters. The k-means adjustment offers
a simpler way to achieve better results.

Overall, the Evolving Tree offers a classical trade-off to the
k-means algorithm. Using it seems to lose some accuracy, but
this is countered by the enormous decrease in computational
complexity. This makes the Evolving Tree suitable for huge
problems that have been unfeasible to approach with classical
methods.

F. Visualization experiments

To obtain further insight into the behaviour of different
algorithms, we did visualization experiments comparing ETree
with regular SOM and k-means clustering. Since the Evolving
Tree is designed for large dimensional data, we cannot plot
them directly. We took the data and projected it to two
dimensions using Sammon’s mapping [20]. This preserves the
overall shape of the data cloud. Since Sammon’s mapping is

nonlinear and in our cases reduces the dimensionality quite
drastically, the resulting images should be analyzed quite
critically.

Figure 8 (a) shows the locations of data vectors, ETree and
SOM nodes, and k-means cluster centers. We have used the
homogeneous texture data set which has 1300 vectors. Almost
all of them are in the dark clump in the middle of the picture.
Only roughly one to two hundred vectors are further away.
Every algorithm has its own way of distributing nodes between
these two areas.

First we look at the Evolving Tree, which focuses very
strongly on the dense area. There are only a few nodes in
the sparse data areas, but they follow the overall shape of the
data quite well. The two furthest nodes cover only a few data
vectors which are most likely outliers.

The SOM’s rigid grid structure can be seen in the third
picture as the nodes form regular structures. SOM focuses
less on the dense areas than ETree. SOM’s training formulas
also prevent it from covering the entire data set, it is not as
spread out as ETree. This is known as theborder effectof
SOM. Another consequence of the training is that there are a
lot of nodes in the semi-sparse area up and right of the center.
This area is likely overrepresented.

Last we have k-means which seems to have best captured
the overall shape of the data cloud. There are, however, several
outlier clusters which lie very far from the data cloud. These
are not shown on the image due to scaling issues. Another
potential drawback is that k-means seems to put more weight
on the sparse areas than the data blob in the center. This
behaviour can be justified in this case since k-means obtains
the best classification results.

Figure 8 (b) shows the locations of ETree nodes per layer.
They show how the tree grows outwards as the training
progresses. The first two layers are rather plain. The next ones
are more interesting. They show how the tree grows outward
layer by layer. The large amount of splits at the dense central
area can also be seen in every layer. Finally at layer six the
tree only grows at the dense area. Weight decay prevents the
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Fig. 8. Homogeneous texture data and node vector locations obtained with Sammon’s mapping. Subfigure b shows the locations ofETree’s nodes per layer.

outmost branches from growing. This behaviour is exactly as
was predicted in the algorithm description.

Leaf node locations per class:Figure 9 shows the locations
of Sammon projected data vectors for each of the 14 classes.
There are no clear cluster differences and many of the classes
overlap significantly. Given this very difficult data set, itis not
surprising that none of the algorithms works properly for all
cases. Class 12 demonstrates the very difficult nature of the
data set. This particular run does not have a single vector in
that class. This is unfortunate, but expected, since the defects
in this class are almost identical to class 11 and there are only
about 30 of them. ETree assigns nodes to these classes in
some runs but not in others, resulting in the poor performance
in Figure 5. The overall shape of each class is somewhat
captured, but careful analysis locates several anomalies.

Take for example class 9, which is a small clump just below
the middle area. All algorithms find this clump quite well, but
both SOM and k-means have spurious nodes over the main
cluster. Similarly class 5 is elongated to the top and right,but
only SOM finds it. Overall the results mirror the above results
for the total data set. The Evolving Tree has the tightest node
locations, k-means is very spread out and SOM stands between
these two.

G. Quality of clustering

One very common way of measuring different clustering
algorithms isquantization error. It is usually defined as the
average distance from a data vector to its nearest codebook
vector. Given two similar methods, the one with the smaller
quantization error is usually the better one. Figure 10 (a)
shows the quantization error for the regular ETree, for ETree
without the search tree, for SOM, and k-means clustering.
The homogeneous texture was used for these experiments. K-
means and SOM obtain noticeably smaller quantization errors,
but the situation is not as straightforward.

SOM and k-means are flat data structures, meaning that all
nodes perform an identical task. The Evolving Tree, on the
other hand, uses a hierarchical divide and conquer approach.

The nodes at the top layers partition the data space with
hyperplanes. In any non-trivial problem the clusters are non-
separable so the partitioning will inevitably split some clusters
non-optimally. This increases quantization error. This isappar-
ent in the second column, removing the search tree halves the
quantization error. This is the trade-off of hierarchicality: the
ability to do fast operations causes some losses in accuracy.

This kind of error is inevitable in hierarchical data space
partitioning. Therefore these kinds of algorithms can not obtain
error levels of flat algorithms. The interesting question, then,
is how much larger the error is. If the partitions are chosen
badly, the error differences can reach an order of magnitude
or more. The Evolving Tree does a tolerable job in this regard.
The error is only about three times as large as with k-means.
This is a satisfactory result, especially since the classification
percentages are almost identical for both algorithms.

Quantization error measures the average distance from a
data vector to a node. Adding nodes to an existing network
can only decrease the error, no matter where in the data space
they are placed. An efficient system has as few nodes as
possible. To examine the efficiency we calculated theinverse
quantization error, that is, the average distance from a node to
its nearest data vector. If this value is much larger than normal
quantization error, it implies the existance of outlier analysis
nodes which may hinder computational efficiency. The results
can be seen in the Figure 10 (b).

Etree and SOM have the smallest errors, while k-means’
error is the largest. A large portion of k-means’ error most
likely comes from the outlier points mentioned in the previous
chapter. In other data sets the inverse error was a lot smaller,
some times even the smallest of the three. This shows that
k-means is susceptible to outlier nodes. These don’t usually
matter, but they reduce the overall efficiency. Conversely ETree
and SOM stay very close to the data cloud. It should be
noted that the starved nodes in k-means can be detected and
re-initialized. We have not done this because we wanted to
test against the basic k-means algorithm and also because the
reinitialization can be done in several different ways.

Finally we calculated theDavies–Bouldin index[21] for
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Fig. 9. Sammon projections of the data and the different algorithms.

(a) Quantization error (b) Inverse quantization error (c) Davies-Bouldin index

Fig. 10. Clustering results for homogeneous texture data set.

the different methods. It is one of the most common measures
for examining clustering validity. Its basic assumption isthat
a good clustering consists of compact clusters that are well-
separated. It is calculated using the following formula.

DBI =
1

n

n
∑

i=1

max
i6=j

(

Sn(Ci) + Sn(Cj)

S(Ci, Cj)

)

(12)

Here Sn(Ci) is the average distance of data vectors to the

cluster center in clusterCi. S(Ci, Cj) is the distance between
the centers of clustersCi and Cj . A good clustering as
described above should minimize this function.

The results are in Figure 10 (c). K-means obtains the best
results. This is quite understandable, since the DB-index favors
compact clusters that are well separated. This is what the k-
means algorithm is trying to achieve as well. A much more
interesting result is the search tree’s effect on the Evolving
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Tree. Using only the leaf nodes gives very roughly the same
results as the SOM, but the entire tree’s index value is a whole
lot bigger. This can be caused by one of two things: either the
clustering is bad or the clusters formed are not optimal in the
DB sense, that is they are elongated and/or not well separated.
Since the classification results are guite good, the clustering
can not be totally bad. Therefore we can assume that the latter
condition holds. This follows from the nature of the algorithm
as well as the hierarchical structure.

H. Tree trunk reorganization

It has been established that the Evolving Tree does not
always find the global BMU. One cause for this could be
that the search tree is not optimal. To examine whether we
could improve the trunk node locations after training we
examined reshaping the tree’s trunk. We developed a bottom-
up algorithm that places every trunk node at the center of mass
of its children. The reasoning is that this provides maximal
separation between different branches.

In our tests this did not improve the classification rates at all,
and on several occasions they decreased somewhat. We also
calculated the mean quantization error and found that trunk
reorganization increases it by an average of 5%–10%. These
results are most likely caused by the hierarchichal nature of the
algorithm. Upper layers partition the data and their children
optimize their locations based on these partitions. When upper
layer nodes are moved, the partition lines change. This causes
changes in the data vectors mapped to the leaf nodes. Since the
nodes are not in globally optimal places it is not very likely
that the redistribution of data would lead to a better solution.
Moving the trunk nodes would therefore require a much more
sophisticated algorithm.

Above we have seen that even if we used the global BMU,
the classification percentages remain mostly the same. The
gains that could be obtained from tree reshaping would be
quite minimal. These two experimental results suggest that
the Evolving Tree’s trunk does not require reshaping.

I. Comparison to other tree-shaped neural systems

So far we have compared ETree with classical non-
hierarchical data analysis methods. It can be argued that these
kinds of comparisons are not totally objective due to the
different nature of the algorithms. We will now compare ETree
with two other modern tree shaped neural systems, the S-
Tree [22] and CNet [11]. Their main differences to ETree
are that they don’t use the neighborhood function and their
splitting rules are more complex. CNeT also utilizes the class
information in splitting the nodes which makes it a supervised
algorithm.

All three systems are based on competitive learning and
have tree structure that grows as the training progresses.
Algorithmically S-Tree is the most complicated and ETree
is the simplest. We examined both classification performance
and training time. All the algorithms were coded in C++, so
CPU time comparisons are fair. The parameters for all different
systems were obtained by experimentation, the best result was
chosen for every algorithm.

In Figure 11 we can see the classification percentages for
the different algorithms. The results are consistent with earlier
experiments. All three hierarchical systems outperform regular
SOM. ETree and CNeT are very evenly matched, and their
performance is very close to k-means (in Figure 7 (a)). S-
Tree has the worst performance of the hierarchical methods,
but the margin is quite small. On the larger digit database k-
means enhanced ETree is clearly the best, CNeT holds second
place with S-Tree very close to it.

Figure 12 shows the training times for the different algo-
rithms. The times have been normalized by dividing them with
ETree’s training time. In all cases S-Tree is the slowest one.
CNeT is slower on MPEG data but slightly faster than ETree
on the digit database. Overall ETree and CNeT seem to have
very similar time complexity.

The Evolving Tree has the best performance in almost all
the tests which makes it the preferred algorithm of the three,
especially in classification and clustering tasks.

V. D ISCUSSION

During our research we have discovered that the Evolving
Tree is robust against disruptions in the algorithm. Its nature
seems to automatically compensate the parameter variations.
This can be a good thing or a bad thing. If the algorithm
performs consistently well, there is little need to fiddle with
the parameters. Whereas if the performance varies a lot, the
ability to fine tune the performance is often essential. In our
experiments the results have been relatively good, so this
robustness has been a good thing.

One of the interesting paradigms noted in our experiments
is power through simplicity. The Evolving Tree has been
designed with a strict adherence to the KISS principle1. That
is, every aspect of the algorithm has been kept as simple
as possible, but no simpler. ETree is the simplest of the
three compared hierarchical algorithms, yet it has the best
performance. The most complex one (S-Tree) performs worst
in these experiments.

VI. SOFTWARE PACKAGE

We have released our implementation of the Evolving Tree
as a free software package under the GNU General Public
License [23]. We encourage other researchers to use and adapt
the analysis package to their own problems.

Our implementation is a very light weight C++ program
which should run on almost any platform. It has been tested on
Linux, IRIX and Tru-64. There are also several helper scripts
coded in Python. These scripts make it easy to preprocess
data, run tests and analyze the results. The package comes
with extensive documentation. The documents include a user’s
guide, data format descriptions and so on. It also contains a
hyperlinked reference documentation describing every class,
function and file.

The package can be downloaded fromhttp://www.
cis.hut.fi/research/etree/.

1Also known as the “Keep it simple, scientist” principle.
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(a) MPEG-7 features (b) Handwritten digits

Fig. 11. Classification percentages for ETree, SOM, S-Tree and CNeT.

(a) MPEG-7 features (b) Handwritten digits

Fig. 12. Normalized training times for ETree, S-Tree and CNeT.

VII. C ONCLUSIONS

We have analyzed and compared the Evolving Tree against
many different systems. ETree’s performance is quite close
to classical, nonhierarchical algorithms but it is noticeably
faster, in our tests an order of magnitude. Complexity analysis
indicates that the difference becomes even larger as the size of
the data set grows. This makes ETree suitable for several such
tasks that have been too slow with nonhierarchical methods.
We also find that ETree outperforms similar kinds of algo-
rithms. It is also simpler, which is not only a virtue in its own
right, but also makes implementation and application easier.
Several improvements to the basic algorithm were suggested
and analyzed. They, too, are relatively simple, but some of
them still manage to improve the overall performance. The
other changes illustrate that the basic algorithm is quite robust
against alterations.
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