Jussi Pakkanen, Jukka livarinen, and Erkki Oja, The Evolving Tree — Analysis and
Applications. |[EEE Transactions on Neural Networks, vol. 17, number 3, pages
591-603, May 2006.

© 2006 |IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Helsinki University of
Technology's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be
obtained from the |EEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

mailto:pubs-permissions@ieee.org

© 2006 IEEE. Reprinted, with permission, from IEEE Transactions on Neural Networks, volume
17, number 3, 2006.

The Evolving Tree — Analysis and Applications

Jussi Pakkanen, Jukka livarinen, and Erkki Gjallow, IEEE

Abstract— In this paper we enhance and analyze thé&volving premises, the resulting systems vary quite a lot. Somersgste
Tree data analysis algorithm. The suggested improvements aim to yse the hierarchic structure only as an aid in classification
make the system perform better while still maintaining the simple like TreeGCS [7]. Others, like SAINT [8], DGSOT [9]

nature of the basic algorithm. We also examine the system’s - .
behaviour with many different kinds of tests, measurements and GHSOM [10] and CNeT [11], use the hierarchical structure

visualizations. We also compare the Evolving Tree’s performance 10 speed up training and queries.

against classical data analysis methods and very similar modern In this paper, we present and analyze the Evolving Tree [12],

systems. We find that the Evolving Tree is a suitable method for [13], [14] (ETree) and its behaviour. The Evolving Tree is

unsupervised analysis of huge data sets. a new kind of self-organizing neural network that has been
Index Terms—hierarchical clustering, Evolving Tree, tree- designed to scale to very large problems.

shaped neural networks, self-organization At its basic level the Evolving Tree is a fast, hierar-
chical clustering method especially suitable for largeghhi
|. INTRODUCTION dimensional problems. This is not the only way of seeing the

The Self-Organizing Map (SOM) is a widely used tool inalgorlthm. It can also be seen as an index to vectorial data,

various data analysis tasks [1]. However, some of its isitin similarly to R-tree [15] and other such algorithms. The prob

. . ; lem with these approaches is that they become exponentially
features make it unsuitable for analyzing very large sca . Lo - .
. - slower as the data dimension increases [5]. The hieradchica
problems. Almost all operations on SOM start by locatin . .
. - nd approximate nature of ETree allows it to tackle problems
the best matching unit (BMU) among all the nodes. Thi .
at are too large for these classical methods.

scales linearly according to the map size. Analyzing huda da gontents of the paper are as follows. In chapter 2 we give an
sets requires very large maps. While operating on these maP/erview of the Evolving Tree’s algorithms and architeetur

0
Qis is followed by the novel improvements and analysis

is not usually intractable, it can be extremely slow. Anothel_
drawback is that the map size must be chosen beforehan :

i chapter 3. In chapter 4 we subject our system to several
qualitative and quantitative experiments. Then we disthss

While there are some heuristics for this, experimenting wi
different sized maps is quite time-consuming.
There have been several different approaches to solve th'é%séuns and conclude the paper.
problems. They can be roughly divided into two different
groups. The first ones are flat systems that grow during train- Il. THE EVOLVING TREE

ing. Examples include incremental grid growing [2], gro®in \ve will now briefly describe the basic Evolving Tree

cell structures l£3]'|‘dan19f' dynamic cer:l structure [4]. Thim algorithm. A more detailed description of the basic aldwrit
group tries to build efficient search structures to make ®per.,, pa fond in [14]. We start with the small Evolving Tree in

tlipshfar]ster. Thlls 'Zé.‘ very IcoI:nmonfp:jqftf)lem in Yam_)l;s f'elg igure 1 (a). This example tree has a fanout of 2 for simplicit
which has resulted in a plethora of different algorithms | n practice larger values are often used. The tree consists o

Most of these algorithms are based on classical compu Lick leaf nodesand white trunk nodes Each node has a

science rather than neural computation. An exception is t Fototype vectorw;, which places it somewhere in the data

tree-stru_ct_ured SOM 6] . . space. It also has a countgr which tells how many times it
.An efficient way of gttacklng large .sc.:ale problems is cgll as been the best matching unit. Assume that we have awailabl
divide and conquerThis gpproach dl_vldes the problem Into, training set of data vectors, which are used in traininglyne
smaller_ subproblems, V_Vh'Ch are easer to so_l_/e gnd Comb'Bﬁe. Training the tree starts by finding the best matching uni
Ir? euclld_ean spaces this usually means partltlonlr)g_t.heespz(\BMU) with a greedy tree search. For every training veatpr
hierarchically into smaller and smaller regions. This fiart- o gtart at the root node and select the child which is cldsest

ing is usually presented as a search tree, which is a trEle“tiothe training vector. We select this node and examine itslehil
and efficient way of doing searches. Another advantage d so on until we reach a leaf node. This is the BMU

divide and conquer IS an easy approach to complexity contro Now we need to update the leaf node locations. We use the
When the space is partitioned, the subspaces can be fur Efonen learnin .
" .) g rule [1]:

partitioned without affecting other areas of the data space
This converts complexity control from a global problem to a wi(t+1) = wi(t) + hei(D)[x(t) — wi(2)]. 1)
local one which is simpler.]]) _

There are some hybrid systems that try to combine both Bfe function’.; defines the amount of adaptation and is a
these features. Even though they start from relatively laimi 9aussian function as in SOM:

2
The authors are with the Neural Networks Research Centrésirtke hei(t) = a(t) exp d(re, i))
University of Technology, 02015 HUT, Finland (email: jupsikkanen@hut.fi) o ’ 202(t)

Here o« and o are used to control the width and time decay Approaches based on e.g. mean quantization error and
of the neighborhood function. They are usually expondgtialaverage distortion have been applied in related works [9],
decreasing functions with respect to time. [10]. These approaches have a solid mathematical backdroun
The problematic part is the functiod(r., r;), which tells but there are also drawbacks. The biggest one is that these
how far apart the nodes. andr; are in the SOM grid. The distortion functions must be calculated relatively oftdinis
Evolving Tree does not form a grid so some other method é¢gin slow down the training considerably.
required. We use an equivalent metric called tlee distance ~ We propose an algorithm that is based on the concepts of
which can be seen in Figure 1 (b). The idea is to calculate thegularization and weight decay [16]. The basic concept of
amount of “hops” needed to get from one node to the othergularization is to penalize overly complicated moddisist
along the tree. In this case five hops are needed to get frpneventing overfitting. One approach is to create a penalty
A to B. Using this distance the SOM neighborhood functiofunction and to add that to the objective function to be
can be applied. minimized. An example penalty term is a sum of all the
These two steps — finding the BMU and updating leafieights of a multilayer perceptron. This term can be made
nodes — form most of the training. The third step is growingmaller by decaying all the weights toward zero between
the tree. Every node has a counter that tells how many timegjftochs.
has been the BMU. When the counter reaches a certain valudn our system we would gain nothing by decaying the
called thesplitting threshold the node is split. That is, it is prototype vectors. That is because the locations of thesiode
given some child nodes, thus becoming a trunk node. The chdce not the cause of overfitting. The real reason is too many
nodes’ prototype vectors are initialized to their pareméifie. nodes. To restrict the size of the tree, we apply weight decay
The training may now continue using the new, slightly larggo the BMU countersb;. This yields the following two-
tree. One of the consequences of these training rules is thhase algorithm, which both controls the size of the tree and
different branches have larger tree distances than nodes iautomatically stops the training. The results are examined
same branch. This is expected since different branches grsubsection IV-A.

to different areas in the data space. 1) At the end of each epoch st +1) = ~-b;(t) for all
Now we can describe the very simple basic ETree algorithm ~ nodes;, wherey €]o,1].

for a single training vector. 2) If the tree has grown less than a specified amount (e.qg.
1) Find the BMU using the search tree. 5%) since the last epoch, stop training.

2) Update the leaf node locations using the SOM training
formulas substituting tree distance for grid distance.

3) Increment the BMU's hit counter.

4) If the counter reaches the splitting threshold, split the One beneficial feature of most neural networkgiaceful
node. degradation If the system suffers some sort of a minor

This is repeated for every vector on the training set unfi2mage, its effects on the total operation should be small.
the system is deemed good enough. Usually this means gdﬁ“{@ exa_mple is randomly distorting a weight of one node in
through the data a pre-specified amount of times. Becadsdnultilayer perceptron. The total performance may suffer
distances between branches are usually quite large, trghtveSlightly, but the system is still operational and useful.
updates become very small. The computational load can thud©® €xamine whether the Evolving Tree also possesses
be reduced by only updating the nodes close to the BMiiS property we examined its performance when nodes are
These can be efficiently found using the links between nod&gmoved. The results can be found in subsection IV-B.

B. Removing layers

I1l. ENHANCEMENTS AND ANALYSIS OF THEEVOLVING C. Better search for the BMU

TREE One source of error in the Evolving Tree may be the greedy

In this paper we further examine the established Evolvif3MU search, which is not guaranteed to find the globally
Tree algorithm. First we consider different ways of anesptimal node. We examined alternate ways of finding the
lyzing and enhancing the basic algorithm. Then we deriBMU. The first one is the original algorithm with a slight
the computational complexity of the algorithm includinge th modification. At every layer we keep the best subbranches
enhancements. The effects of the enhancements are stuélistead of only one. When we reach the leaf nodes the best
experimentally in the next chapter. one is selected as the BMU. The second algorithm just finds
the global BMU among leaf nodes, ignoring the tree altogethe
A. Controlling the growth except fth the Ie_af node updates. This _algorithm can be seen

) as a growing variant of k-means clustering. The results ean b

A very important part of the training process is determininfbund in subsection IV-C.
how large the tree should become. If there are too few nodes,
we only get a very coarse overview of the data space. Too
many nodes may cause some overfitting but even more s&i-
ously they add unnecessary computational burden. Therefor When new child nodes are created, they are placed on top
it is important to have an efficient stopping criterion. of their parent in the data space. As the training progresses

Child node initialization

ez 2N
N N N

N N

(a) BMU search (b) Tree distance

Fig. 1. Fundamental operations of the Evolving Tree.

the children move to different areas in the data space. Us-somewhat tricky. In our case the tree has partitioned and
ing a different initialization scheme could lead to imprdveinitialized the data space quite effectively so only a fewnds
computational efficiency and faster convergence. are needed. It should also be noted that the Evolving Tree
We examined two initialization schemes. The first perturltould be utilized as a fast initialization step for regular k
the child nodes randomly. The second one is based on principgans clustering. The drawback is that the search tree must
component analysis (PCA). The idea is that when a nodetigen be discarded, losing both the neighborhood informatio
split, we first find all data vectors that map to it. Then wand the ability to do fast queries.
calculate the principal components of this data cloud. Veéa th
take the plane spanned by the two largest principal compsneE
and the node to be split. The child nodes are placed evenly on
an ellipse that lies in this plane. The center of the elligsthé Let us use the following notation.

Computational complexity

parent node and the ellipse axes are the principal componeny data space dimension
vectors. The axis lengths are the standard deviations of they data set size
respective components. h tree depth

The basic idea of this scheme is to spread out the childg # of updated neighbours
nodes to the directions of the largest variances. In the case, branching factor (fanout)
of two children this scheme reduces to placing the nodesy splitting threshold
along the axis of the first principal component. In the case; # of leaf nodes

of four children they are placed along the two first principal
components. The benefit of the ellipse algorithm is that we g,
have an arbitrary amount of child nodes and still spread th
out efficiently. The efficiency of these algorithms is exaeain
in subsection IV-D.

The computational complexity is the sum of finding the best
atching unit Czarp) and updating the neighbour€(;).
e complexity of one epoch is simply the complexity of a
single operation multiplied by the epoch size.

To find the BMU we have to calculate a vector distace
times at every level of the tree. The amount of calculations
E. Optimizing the leaf node locations needed is

A known property of the SOM is that if the neighborhood
function does not go to zero the resulting map will be nonop- Ceyu =d-h-b. €)
timal with respect to quantization error. Since the amount o
training epochs is decided beforehand, the rate of deciaase Updating the leaf locations means movikgodes. We also
SOM can be chosen properly. When training the Evolving Tréeive to add the cost of splitting the leaf nodes. This happens
using weight decay, the amount of epochs is unknown. Thig average, every/ steps, making the total cost of the update
suggests that the algorithm might not find optimal locatiorfer a single vector
for the leaf nodes.

One way of optimizing the locations, while still maintaigin Cpa =k -d+ b 4
the system’s unsupervised nature, is to use a variant ofdame 0
clustering. First we map all training vectors to leaf nodsisig Adding these and multiplying by the epoch sixewe find
the established BMU search. Then we move the leaf nodest the amount of calculations needed for a single epoch is
to the center of mass of their respective data vectors. This
procedure is repeated a few times to obtain the final leaf node
locations. Experimental results are given in subsectiof |V Ciot = N(Cmu +Cua) (%)

Regular k-means usually requires several iterations taimbt N <d hbak-dt 9) . ®)

good results. One of the reasons is that initializing iteftely =]

We can see that the complexity is linear in data dimension4) Complexity of k-means and SOMVe briefly analyze
d. This is very desirable, as many methods are exponentiaé complexity of regular k-means clustering and SOM, since
as mentioned in the introduction. To find the complexitthey are used in experiments later. First we note that botd SO
with respect to the data set siZé, we first note thatd, b and k-means should have about the same amount of nodes as
and 6 are constants, so they are dropped. Because a sedahehETree has leaf nodes, meani@dN). That is also the
tree is formed during training, it follows that « log N. complexity for a single BMU search, since there is no search
The most difficult parameter to define exactly is the amoustructure. One batch ha$ of these searches and therefore the
of updated neighborg. In our experiments we have foundtotal complexity of a single training round &(N?).
that only a couple of nodes are updated. This is due to the
rather narrow neighborhood functions and large intra-tinan
distances. Therefore we can approximate thé a constant
and the computational complexity for one epoch reduces toe

IV. EXPERIMENTS

Three kinds of experiments were performed. The first ones
xamine the effects of the enhancements A to E that were de-
scribed previously and to examine how the algorithm behaves
under various circumstances. Even though all experimemts d
not lead to improved performance, they are still useful in

1) Complexity of weight decayieight decay is a very light understanding the inner workings of the algorithm.
operation, which is run at most once per epoch. It affectsyeve The second class of experiments compare ETree to classical
child node once, so the complexity is data analysis methods. These experiments give us baseline
performance values for classification and training timer Fo
(8) this reason we have selected algorithms that work in a rqughl
similar way as ETree. The main difference is that they are flat
To function effectively, every node models only a smaihstead of hierarchical.
portion of the data space. This means that only a few dataFinally we compare ETree to two other tree-shaped neural
vectors map to each leaf node. Thereférex N and the network systems, S-Tree and CNeT. These systems have a
complexity per round is similar divisive, hierarchical approach to data analy$isese
experiments show ETree's performance when compared to
modern systems.
We have used two different kinds of data sets for the
experiments. The first one consists of different MPEG-7

mj;ng?]mgzi)ﬂtyigf tgﬁeké?neﬁgstopgzlsﬁ?ggl(?(#gtOfatrTi;Sifeatures [17] which have been calculated for 1300 paper
P 9154 P) P urface defect images [18]. This gives us moderate sized

of mapping all data vectors to leaf nodes and then moving the . . .) .
. . atabases with dimensions around 20. The exact dimension
leaf nodes to the center of mass of their respective vectors.. . : : .
- varies somewhat depending on the descriptor being usesd. Thi

For a single epoch that means

data set represents actual industrial data. There arel @tdia
different classes which are fuzzy and overlapping and thexe

O(N log N) (7

Cpa=1-d

Owa(N).)

Ckm =N(d-h-b)+ N -d. (10) extremely difficult to classify.
We calculated the following MPEG-7 features for these
Using the same reasoning as above we find that defect images.
« Color Structure (CS)klides a structuring element over
Orm(Nlog N). (11) the image. The numbers of positions where the element

contains each particular color are stored and used as a
descriptor.

Edge Histogram (EHYalculates the amount of vertical,
horizontal, 45 degree, 135 degree and non-directional
edges in 16 sub-images of the picture, resulting in a total
of 80 histogram bins.

Homogeneous Texture (KTilters the image with a bank

of orientation and scale tuned filters that are modeled
using Gabor functions. The first and second moments of
the energy in the frequency domain in the corresponding

The k-means portion is usually run only a few times at
the end of training. In this case the computationally domina «
portion is training, not the final k-means adjustment.

3) Total complexity:The largest complexity of any part of
the algorithm isNlog N. Therefore the complexity of the
Evolving Tree is alsoN log N per epoch. To find the total e
complexity, we have to determine the total number of epochs
as a function ofN. Unfortunately the tree shape and weight
decay make determining it analytically extremely difficult

Larger databases need larger trees which indicate mor&gpoc
On the other hand if the epoch is large, more splits occur per

sub-bands are then used as the components of the texture
descriptor.

epoch. Therefore the tree grows more for large epochs tharThe other data set consists of 18 000 handwritten digits.
for small ones, indicating that less epochs are required. The digit images were normalized B2 x 32 pixels with
Empirically we have discovered that relatively few epochg56 gray scale values. 38 principal components were olgtaine
ten to twenty, are needed, even for databases of twenmising PCA and used for our experiments [19]. This is a
thousand vectors. relatively large classified database. Comparing resultth¢o

previous databases tells us how different algorithms sgple one in either case. Nodes with a distance of one share a
The experiments test relative diverse areas. It is benkfizia common parent. If the search algorithm reaches that patent,
see how the algorithm performs under different circumstanc will always select the correct BMU, since that is the locally

A crucial question is the performance measure used in cooptimal solution.
parisons. We are mostly interested in unsupervised legyem At first sight the distances seem small, but they are larger
suitable measures are quantization error and clusterifigeéa than they appear. The largest distance in the figure is 9,iwhic
such as the Davies-Bouldin index. These comparisons candeeresponds to a subtree depth of 5. If we assume a splitting
found in IV-G. Visualization experiments are found in IV-F. factor of 4, this subtree would have a maximum4df= 256

However a very feasible comparison is also clustering witeaf nodes. This is approximately the size of the whole tree
ground truth available: how well do the clusters produced lysed in these tests. The conclusion is that in some cases the
the algorithms correspond to labeled classes found in ttee dggreedy BMU search may choose the wrong branch at the very
In order to carry out such classification experiments a gpotirfirst step. While this seems quite bad at first sight, it is dijtua
rule must be used. All classification results have been pbthi not. Two nodes that have a very large tree distance may still b
by using majority voting with ties broken arbitrarily anchte very close to each other in the data space. This happens when
fold cross validation. the nodes are very close to a partition line set by the topmost
nodes. This is an unfortunate side-effect of the hieraethic
structure.

The important question is, however, whether the inoptimal-
ity in the search algorithm affects the classification rates

A. Effects of regularization

Effects of the regularization coefficientwere examined by
tr.a_lnln_g the tree with different values and comparing thesel partial answer can be found in Figure 5. It has the per-class
sification results. We used a very aggressive splitting reehe

> classification percentages for the different algorithmbe T

to amplify the differences. All experiments were done Withy|aye performances fluctuate slightly for different ssias.

the homogeneous texture data set. The results can be seqdfe of the methods is better for all the classes. This is
Flg.ure.Z. The results follow the theory quite nicely. Trezesi caused by the overlapping classes, where improving thé tota
which is measured as t_he total amount of nodes, depends ERS happens at the expense of some classes. Averaged result
strongly on the coefficient, and smaller trees produce WOrSEs 5194 for regular ETree, 52% when using two BMUs and
classification rates. This degradation is not strong blitvetiy 5% for the global BMU. The last rate approaches the result

clear, but this is due to the very small splitting threshol or regular k-means (Figure 7 (a)). This is understandable a

as most of the resulting nodes are somewhat redundar]t. Wg global BMU algorithm reduces to a variant of k-means as
verified these results by measuring the average quantizatig, o cribed in subsection I11-C. Quantization error behawves

error. We found that it increased from 0.12 to 0.16 s WRo same way with global BMU search having the smallest
decreased the regularization coefficient. The decreasehiead rror

same linear shape as the classification error. In practice w
have found that values of between 0.85 and 0.95 produceh
quite good results.

®he intuitive behaviour would be that if the system can not
nd the real BMU it should not be able to model the data
properly. This seems not to be the case here. The explanation
lies in the way the Evolving Tree handles the data space. Each
B. Removing layers leaf node explains only a very small portion of the data space

For simplicity we removed whole layers at a time. We used @ Vector maps to a node, then very probably vectors in
the homogeneous texture data set. The tree was trained tdtBdmmediate vicinity map to the same node. This happens
larger than usual so we would have more layers to removehether the node is the global BMU or not. Obviously this

The results in Figure 3 show that the Evolving Tree degradB&operty does not always hold, which is why using the global
very gracefully. The classification rate drops dramatjcafily BMU gives better results.
after three layers are totally removed from the tree. Attt These results indicate that there is no pressing need to
the rate goes rapidly to zero. This makes the Evolving Tré@place the greedy BMU search with another algorithm. Using
very robust against small errors in its lowest layers. several BMUs gives only an insignificant performance boost.
Using global BMU gives a bigger improvement. The draw-
back is that the search tree is ignored, so the computational
C. Better search for the BMU complexity increases significantly. One of the design goéls

Figure 4 shows the differences between the regular BMie Evolving Tree has been scalability to very large prolsiem
search and the two new algorithms. After training the BMUghich makes the global BMU search unsuitable.
were found using all the algorithms and the tree distances
between these were calculated. The plots show the distribut . o
of distances from the regular BMU to ones obtained with tHg: Child node initialization
alternative methods. These results are for the edge hastogr The main results can be seen in Figure 6. Figure a lists
database, but others gave very similar results. the results for four different algorithms. The first bar i€ th

The first thing we notice is that the regular algorithm findeegular ETree, the second bar uses the optimal BMU search
the global BMU only approximately 46% of the time. Thedescribed above. The third one uses the PCA initializatiah a
second observation is that there are no instances of destatte fourth one combines PCA and optimal search. The results

0.52 275
N
0. \
. \A N\
T 04 A § 175 \
N\ £ N
§ 046 % N
] 3 N
g 0.44 \~ =
75
0.42
25
041 0‘95 0‘9 0‘55 0‘5 0‘75 0‘7 0"35 0‘5 0‘55 0‘5 01‘55 0‘4 0235 0‘3 0‘25 0‘2 0‘15 0‘1 01 0‘95 0‘9 0.‘85 0‘8 0‘75 0‘7 0‘65 O‘S 0‘55 0‘5 0‘45 0‘4 0135 0‘3 0‘25 0‘2 U.‘IS D‘!
Regularization coefficient Regularization coefficient
(a) Classification decay (b) Tree size decay
Fig. 2. Effect of regularization coefficient to performanbemogeneous texture data set.
0.55
0.5 \
0.45
0.4 \\
0.35
) N
£ 03
5 N
£ 025
2 N\
0.2 \
0.15 \
0.1
0.05
0 T T T T T)
0 1 2 3 4 5 6
Removed lavers
Fig. 3. Performance degradation when removing layers, honeagesntexture data set.
Tree distances, 2 BMUs Tree distance, optimal BMU
0.8 0.8
0.7 0.7
0.6 + 0.6
0.5 + 0.5
0.4 + 0.4
0.3 + 0.3
0.2 0.2 -
0.1 0.1 H
0 M ’_‘ ﬂ ’_‘] 0 = ’_‘ ﬂ]
T T T T T T T T T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
(@ (b)

Fig. 4. Tree distances to regular algorithm’s BMU on the edigeogram database.

for random child initialization have been omitted becadssy/t search does not give better results in all cases. This is most
are all but identical to the regular initialization scheri@is likely caused by the very difficult nature of the data set as
is expected, since the first couple of update rounds effdgtiv discussed earlier. PCA's good performance on edge histogra
move the nodes around in a pseudo-random fashion. is countered by the drop in classification rate in the other tw
. . . I cases. Overall the PCA initialization does not seem to predu
All the methods give almost identical classification resunnoticeable improvements. A negative effect is that trajnin

Only edge histogram seems to benefit from the PCA initializgr, .o grow very large, because PCA is a computationally
tion, but only a few percents. Interestingly the optimal BMU '

0.9

0.8
0.7

0.6

M Regular
r [2 BMUs
[Optimal BMU

0.5

0.4~

Percentages

0.3
0.2

0.1

1 2 3 4 5 6 7 8 9 10 1 12 13 14

Fig. 5. Classification rates for the different BMU algorither class using edge histogram.

0.6

o Standard deviance of subtree size

[275

05+ L
250
0.45 [225
0.4 — 200
[l Without PCA -
0357 [| without PCA (optimal 17508
034 | BMU) 150 1— "\ Original
@ Pca 125 A\ \ Pca
0.25 — | PCA (optimal BMU) 100 S *+ Random
02+ L .
75 3
0.15 - 50 \‘
0.17 — 25 N ~
0.05 — 0 T T T d
2 3 4 5 6
0 T
Homogtex Edgehist Colorstruct Layer
(a) Classification rate (b) Subtree size
Fig. 6. Comparing different initialization schemes.
costly operation. ably better qualification results, its computational coemjtly

PCA initialization does have its benefits as can be se&nnot usually justifiable.
in Figure 6 (b). It shows the standard deviation of subtree
sizes for every layer in the Evolving Tree. This particulaF. Comparison to K-means clustering
tree was grown with very aggressive splitting parametess, s First we ran the classification tests on the Evolving Tree.
the differences between algorithms can be seen more cleaflfter those tests we checked how many leaf nodes the trees
Smaller deviance is better because it implies a more batanéed on average. Then we did the comparison tests with k-
tree. means using the same amount of clusters. The main results
The random initialization tree is slightly more balancedrth can be seen in Figure 7.
the regular tree. The difference is not very large, thougbAP First in subfigure (a) we have classification results for
produces the most balanced trees. The difference betweles small database. In this case the classification rates are
different algorithms is very small at layer three and almosimost identical. Interestingly the k-means adjustmeghgly
insignificant at layer four. worsens ETree’s results. This indicates that with mediwedsi
The results above suggest that PCA initialization could hiatabases the algorithm optimizes the leaf node locations
used in the top layers if tree balance is absolutely vitals Thvery well by itself, so the k-means adjustment is not needed.
is usually not the case since the regular ETree produces quinother factor is most likely the fuzzy nature of the data.
a good search tree. Another problem is that computing tResults with other MPEG-7 data sets were very similar.
principal components for a large data base is an expensivd’erformance on the larger database is very interesting.
operation. Since the PCA initialization does not yield ceti The regular ETree algorithm achieves approximately 80%

1100

1000

900

800

700

0.8 -
600

0.7 [—

0.6 —

0.5 [|MEtee
[Etree k-means
0.4 I— |OKmeans

Percentages

Training time in seconds

087 — 200
0.2 —

0.1 —

0

texture ! itten digits Etree Etree kmeans K-means

(a) Classification percentages (b) Training time for handwritten digits

Fig. 7. Comparison to k-means clustering.

classification rate. Using the k-means adjustment raisesndnlinear and in our cases reduces the dimensionality quite
noticeably to 87%. Plain k-means obtains the extremely goddastically, the resulting images should be analyzed quite

result of 95%. This is an expected result, since the clustentically.

centers in k-means are not constrained by the search tree, buFigure 8 (a) shows the locations of data vectors, ETree and

they can move more freely. SOM nodes, and k-means cluster centers. We have used the

This freedom does come with a heavy cost, though, as Wwemogeneous texture data set which has 1300 vectors. Almost
can see in subfigure (b). It lists the running times of tensrosall of them are in the dark clump in the middle of the picture.
validated training/query rounds. Both versions of the Evgy Only roughly one to two hundred vectors are further away.
Tree take only two minutes, while k-means take up to a hdfvery algorithm has its own way of distributing nodes betwee
hour. This figure shows clearly the benefits of the search tréleese two areas.

The training time is only a fraction compared to regular k- First we look at the Evolving Tree, which focuses very
means. All programs used in the timing tests were coded birongly on the dense area. There are only a few nodes in
ourselves in C++. This makes the running times comparabtee sparse data areas, but they follow the overall shapeeof th

Another interesting thing to note is that the k-means adata quite well. The two furthest nodes cover only a few data
justment to the Evolving Tree adds only a hardly noticeabiectors which are most likely outliers.
increase to the total training time, yet it improves clasatfon The SOM's rigid grid structure can be seen in the third
percentages noticeably. We can deduce that the k-meaitture as the nodes form regular structures. SOM focuses
adjustment should be used with large databases. It canléss on the dense areas than ETree. SOM’s training formulas
hypothesized that we could obtain equivalent results withoalso prevent it from covering the entire data set, it is not as
the adjustment. Unfortunately that would require a lot @ltr spread out as ETree. This is known as tiwder effectof
and error with the parameters. The k-means adjustmentsoffOM. Another consequence of the training is that there are a
a simpler way to achieve better results. lot of nodes in the semi-sparse area up and right of the center

Overall, the Evolving Tree offers a classical trade-offte t This area is likely overrepresented.
k-means algorithm. Using it seems to lose some accuracy, butast we have k-means which seems to have best captured
this is countered by the enormous decrease in computatiotied overall shape of the data cloud. There are, howeveraeve
complexity. This makes the Evolving Tree suitable for hugeutlier clusters which lie very far from the data cloud. Tées
problems that have been unfeasible to approach with cidssiare not shown on the image due to scaling issues. Another
methods. potential drawback is that k-means seems to put more weight
on the sparse areas than the data blob in the center. This
behaviour can be justified in this case since k-means obtains
the best classification results.

To obtain further insight into the behaviour of different Figure 8 (b) shows the locations of ETree nodes per layer.
algorithms, we did visualization experiments comparingd€l They show how the tree grows outwards as the training
with regular SOM and k-means clustering. Since the Evolvirgrogresses. The first two layers are rather plain. The neeg on
Tree is designed for large dimensional data, we cannot pbre more interesting. They show how the tree grows outward
them directly. We took the data and projected it to twtayer by layer. The large amount of splits at the dense dentra
dimensions using Sammon’s mapping [20]. This preserves t#@a can also be seen in every layer. Finally at layer six the
overall shape of the data cloud. Since Sammon’s mappingtiee only grows at the dense area. Weight decay prevents the

F. Visualization experiments

Data vectors

Etree leaf nodes

X xx X
x

o

Layerl

Layer2

-05 8 0 0 o% 0 ﬁ?’
x °" o o °

-1 0 1 -1 0 0
Layerd Layer5 Layer6

05 % 05 g 05

05 05 0 gﬁs} 0 0
®

05 069@0 05 05

(@) (b)

Fig. 8. Homogeneous texture data and node vector locatioisneld with Sammon’s mapping. Subfigure b shows the locatiofSToée’s nodes per layer.

outmost branches from growing. This behaviour is exactly @he nodes at the top layers partition the data space with
was predicted in the algorithm description. hyperplanes. In any non-trivial problem the clusters are-no

Leaf node locations per clas$igure 9 shows the locationsseparable so the partitioning will inevitably split someasters
of Sammon projected data vectors for each of the 14 classegn-optimally. This increases quantization error. Thigppar-
There are no clear cluster differences and many of the dassat in the second column, removing the search tree halves the
overlap significantly. Given this very difficult data setistnot quantization error. This is the trade-off of hierarchigalithe
surprising that none of the algorithms works properly fdr ahbility to do fast operations causes some losses in accuracy
cases. Class 12 demonstrates the very difficult nature of thelhis kind of error is inevitable in hierarchical data space
data set. This particular run does not have a single vectorpartitioning. Therefore these kinds of algorithms can riztam
that class. This is unfortunate, but expected, since thectief error levels of flat algorithms. The interesting questidren,
in this class are almost identical to class 11 and there dye ois how much larger the error is. If the partitions are chosen
about 30 of them. ETree assigns nodes to these classedadly, the error differences can reach an order of magnitude
some runs but not in others, resulting in the poor performanor more. The Evolving Tree does a tolerable job in this regard
in Figure 5. The overall shape of each class is somewhite error is only about three times as large as with k-means.
captured, but careful analysis locates several anomalies. This is a satisfactory result, especially since the clasgifin

Take for example class 9, which is a small clump just belopercentages are almost identical for both algorithms.
the middle area. All algorithms find this clump quite welltbu Quantization error measures the average distance from a
both SOM and k-means have spurious nodes over the meata vector to a node. Adding nodes to an existing network
cluster. Similarly class 5 is elongated to the top and right, can only decrease the error, no matter where in the data space
only SOM finds it. Overall the results mirror the above resulthey are placed. An efficient system has as few nodes as
for the total data set. The Evolving Tree has the tightesenogossible. To examine the efficiency we calculated itiverse
locations, k-means is very spread out and SOM stands betweerntization error that is, the average distance from a node to
these two. its nearest data vector. If this value is much larger thamabr
quantization error, it implies the existance of outlier lgaes
nodes which may hinder computational efficiency. The rasult
can be seen in the Figure 10 (b).

One very common way of measuring different clustering Etree and SOM have the smallest errors, while k-means’
algorithms isquantization error It is usually defined as the error is the largest. A large portion of k-means’ error most
average distance from a data vector to its nearest codebdikkly comes from the outlier points mentioned in the preso
vector. Given two similar methods, the one with the small@hapter. In other data sets the inverse error was a lot smalle
guantization error is usually the better one. Figure 10 (apme times even the smallest of the three. This shows that
shows the quantization error for the regular ETree, for ETr&-means is susceptible to outlier nodes. These don’t ysuall
without the search tree, for SOM, and k-means clusteringuatter, but they reduce the overall efficiency. ConversdlyegE
The homogeneous texture was used for these experimentsakd SOM stay very close to the data cloud. It should be
means and SOM obtain noticeably smaller quantization €rronoted that the starved nodes in k-means can be detected and
but the situation is not as straightforward. re-initialized. We have not done this because we wanted to

SOM and k-means are flat data structures, meaning thattelt against the basic k-means algorithm and also becaese th
nodes perform an identical task. The Evolving Tree, on theinitialization can be done in several different ways.
other hand, uses a hierarchical divide and conquer approactFinally we calculated theDavies—Bouldin indeX21] for

G. Quality of clustering

10

Class1 Class2 Class3 Class4 Class5 Class1 Class2 Class3 Class4 Class5
1 1 1 1 1 Xx Xy 1 1 1 1 o 1
x
05 0.5 5 05 x 05 0.5 05 05 o 05 8 0.5 ® 05
x x %, @ @0
of X X | 0 g‘ 0 0 x 0 0 0 g 0 o 0 g
g - & ® &
-05 0.5 0.5 0.5 0.5 -0.5 0.5 o 0.5 @O 0.5 0.5
o
-1 [1 -1 0 1 - [-1 0 1 -1] -1 0 -] -1 0 -1 0 1 -) 1
Class6 Class7 Class8 Class9 Class10 Classé Class7 Class8 Class9 Class10
1 1 1 1 1 1 1 1 1 1
05 05 05 0.5 0.5 05 05 Q 0.5 0.5 05 o
o x x ° §)
X X x o
0 0 0 0 0 0 0 0 & 0 0
- ; - E & ® ® @ <
-05 0.5 0.5 0.5 0.5 -0.5 0.5 o 0.5 o 0.5 0.5
-1 1] 1 -1 0 1 -1] 1 -1) 1 -1] 1 -1 0 1 -1] 1 -1] 1 -1 0 1 -1 0 1
Class11 Class12 Class13 Class14 Class11 Class12 Class13 Class14
1 X 1 1 1 1 1 1 1
x %
05 0.5 X 05 x 0.5 0.5 o 05 05 0.5 Q
) ’% 3 OO OO
0 0 % 0 0 0 o 0 0 o
x ‘x‘ S o 8
-05 0.5 0.5 0.5 -0.5 0.5 -0.5 0.5
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
(a) Data vectors (b) ETree leaf nodes
Class1 Class2 Class3 Class4 Class5 Class1 Class2 Class3 Class4 Class5
1 1 1 1 1 1 1 1 1 1
¢ B a
05 05 05 0.5 0.5 Q. 05 o 05 05 a 0.5 o 05 a
0 0 0& 0 ? 0 ? 0 of B8 0 r;hé o o 0 @?DD of &
By o =)
-05 0.5 0.5 0.5 <o 0.5 -0.5 0.5 0.5 o055 o 0.5
-1 0 1 -1 0 1 = 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
Class6 Class7 Class8 Class9 Class10 Class6 Class7 Class8 Class9 Class10
1 1 1 1 1 1 1 1 a 1 1 o
< [u]
05 05 05 05 € 05 o 05 05 g 05 . 05 8o 05
a a o =
0 0 & 0 0% 0 0 0 g o 0 a° 0 & of T, 0 5)
¢ § ° & B &P of
-05 0.5 0.5 0.5 0.5 -0.5 o 0.5 0.5 a 0.5 0.5 [
o o
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 -1 0 1
Class11 Class12 Class13 Class14 Class11 Class12 Class13 Class14
1 1 1 1 1 1 1 1
05 $ 05 05 o 05 05 o 05 05 05 o
& & 5 a g, &
0 o 0 o 0 0 § 0 E 0 0] o l
&® ® o &
-05 0.5 0.5 0.5 -0.5) 0.5 0.5 o 0.5
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
(c) SOM (d) K-means
Fig. 9. Sammon projections of the data and the different alyos.
Quantization error Inverse quantization error Davies-Bouldin index
05 05 40
0.45 (S 35
04
04 30 4
0.35 0.35
0.3+ 0.3 %7
0.25 - 0.25 20 -
0.2 02 15
0.15 — —— 0.15
10+
0.1 -1 — 0.1
el [:‘_F o 7<1_’—i_’—’—’7 N
0 T T T 0 T T T 0 T T T
ETree ETree, no Som K-means ETree ETree, no SOM K-means ETree ETree, no SOM K-means
e ree wee
(a) Quantization error (b) Inverse quantization error (c) Davies-Bouldin index

Fig. 10. Clustering results for homogeneous texture data set

the different methods. It is one of the most common measurdaster center in clustef;. S(C;, C;) is the distance between

for examining clustering validity. Its basic assumptiorttiat the centers of cluster€’; and C;. A good clustering as

a good clustering consists of compact clusters that are- walbscribed above should minimize this function.

separated. It is calculated using the following formula. The results are in Figure 10 (c). K-means obtains the best

" : (O results. This is quite understandable, since the DB-indears

DBI = %Z max (%) (12) compact clusters that are well separated. This is what the k-

=1 77 " means algorithm is trying to achieve as well. A much more

Here S,,(C;) is the average distance of data vectors to thieteresting result is the search tree’s effect on the Englvi

11

Tree. Using only the leaf nodes gives very roughly the sameln Figure 11 we can see the classification percentages for
results as the SOM, but the entire tree’s index value is aevhdhe different algorithms. The results are consistent wattier

lot bigger. This can be caused by one of two things: either tlegperiments. All three hierarchical systems outperforgular
clustering is bad or the clusters formed are not optimal & ttSOM. ETree and CNeT are very evenly matched, and their
DB sense, that is they are elongated and/or not well sephratgerformance is very close to k-means (in Figure 7 (a)). S-
Since the classification results are guite good, the cluster Tree has the worst performance of the hierarchical methods,
can not be totally bad. Therefore we can assume that the latiat the margin is quite small. On the larger digit database k-
condition holds. This follows from the nature of the algenit means enhanced ETree is clearly the best, CNeT holds second

as well as the hierarchical structure. place with S-Tree very close to it.
Figure 12 shows the training times for the different algo-
H. Tree trunk reorganization rithms. The times have been normalized by dividing them with

It has been established that the Evolving Tree does - .
always find the global BMU. One cause for this could | tehT lzis:;)vc\j/etr ([))n MPCE)S ?e}raE?_l:t sllg:(;I)éfNasErer thanr: tET}:e?/
that the search tree is not optimal. To examine whether @gr eimilgar ti?ng :s;' Iexﬁ a eea el seem fo have
could improve the trunk node locations after training we s . plexity. .
The Evolving Tree has the best performance in almost all

examined reshaping the tree’s trunk. We developed a bottorE tests which makes it th ferred alaorithm of the th
up algorithm that places every trunk node at the center ofsmel € tests which makes It the preterred aigorithm ot the three
pecially in classification and clustering tasks.

of its children. The reasoning is that this provides maxim&®
separation between different branches.

In our tests this did not improve the classification ratedlat a V. DISCUSSION
and on several occasions they decreased somewhat. We al%)urin our research we have discovered that the Evolvin
calculated the mean quantization error and found that tru;ilk ng - . . : . 9
reorganization increases it by an average of 5%—10%. Thes&® 'S robust aga_lnst disruptions in the algorithm. Itsurga\t'
results are most likely caused by the hierarchichal nattiteeo seems to automatically .compensate thg parameter vaﬂgtlon
algorithm. Upper layers partition the data and their cleifdr This can be a good thing or a t_aad_ thing. If the_algonthm
optimize their locations based on these partitions. Whereup;?erforms consistently weII,_ there is little need to _flddletth
layer nodes are moved, the partition lines change. Thimugwe”paranjeters. Whereas if the perf_ormance varies a lot, the
changes in the data vectors mapped to the leaf nodes. Sice |I|ty_ to fine tune the performance is oftgn essential. In ou
nodes are not in globally optimal places it is not very likel Xperiments the results have peen relatively good, so this
that the redistribution of data would lead to a better sotuti obustness ha_s been_a good thlng.))
Moving the trunk nodes would therefore require a much more On€ ©f the intéresting paradigms noted in our experiments
sophisticated algorithm. IS power through §|mpI|C|ty. The Evolving Treg has been

Above we have seen that even if we used the global BMﬂ,es'gned with a strict adheren_ce to the KISS prmélp‘lEhaF
the classification percentages remain mostly the same. The€VETY aspect of the algorithm has been kept as simple
gains that could be obtained from tree reshaping would BS Possible, but no simpler. ETree is the simplest of the

quite minimal. These two experimental results suggest tH3f€e compared hierarchical algorithms, yet it has the best
the Evolving Tree’s trunk does not require reshaping. performance. The most complex one (S-Tree) performs worst
in these experiments.

’_E'Eee’s training time. In all cases S-Tree is the slowest one
b

I. Comparison to other tree-shaped neural systems

So far we have compared ETree with classical non-
hierarchical data analysis methods. It can be argued teatth We have released our implementation of the Evolving Tree
kinds of comparisons are not totally objective due to thgs a free software package under the GNU General Public
different nature of the algorithms. We will now compare EfreLicense [23]. We encourage other researchers to use antl adap
with two other modern tree shaped neural systems, the the analysis package to their own problems.

Tree [22] and CNet [11]. Their main differences to ETree Qur implementation is a very light weight C++ program
are that they don't use the neighborhood function and thgihich should run on almost any platform. It has been tested on
splitting rules are more complex. CNeT also utilizes thes€la| inux, IRIX and Tru-64. There are also several helper ssript
information in splitting the nodes which makes it a supedlis coded in Python. These scripts make it easy to preprocess
algorithm. data, run tests and analyze the results. The package comes

All three systems are based on competitive learning apgih extensive documentation. The documents include dsuser
have tree structure that grows as the training progressggide, data format descriptions and so on. It also contains a
Algorithmically S-Tree is the most complicated and ETreRyperlinked reference documentation describing evergsgla
is the simplest. We examined both classification perforraangnction and file.
and training time. All the algorithms were coded in C++, SO The package can be downloaded framt p: // www.

CPU time comparisons are fair. The parameters for all @iffer cj s. hut . fi/research/ et ree/ .
systems were obtained by experimentation, the best resslt w
chosen for every algorithm. 1Also known as the “Keep it simple, scientist” principle.

VI. SOFTWARE PACKAGE

12

0.55

05 =
045 -| -

0.4 -
0.35 | =

|l K-means ETree
W SOM

— | STree
[CICNeT

0.3 r

M ETree

025 " |msom
0.2 - L |Es-Tree

[JCNeT

Percentage
Percentage

0.15 —
0.1 —
0.05 —

Homoge- Edge his- Color struc-
neous tex- togram ture
ture Digits

(a) MPEG-7 features (b) Handwritten digits

Fig. 11. Classification percentages for ETree, SOM, S-TreeGNeT.

1.5
1.4
1.3 1
1.2
1.1

14
0.9
0.8 —
0.7
0.6 —
0.5 —
0.4
0.3
0.2
0.1

0

W ETree
W S-Tree
M oNeT

[K-means ETree
Il S-Tree
@ CNeT

Training time
Time

Homoge- Edge his- Color struc-
neous tex- togram ture
ture Digits

(a) MPEG-7 features (b) Handwritten digits

Fig. 12. Normalized training times for ETree, S-Tree and CNeT.

VIlI. CONCLUSIONS ACKNOWLEDGEMENTS

We have analyzed and compared the Evolving Tree against "€ authors would like to thank Mr J. Rauhamaa of ABB

many different systems. ETree’s performance is quite clo§Y for his help and comments. The financial suppor} of the
to classical, nonhierarchical algorithms but it is notiga 1echnology Development Centre of Finland (TEKES's grant

faster, in our tests an order of magnitude. Complexity asialy 40120/03) and ABB oy is gratefully acknowledged. We would
indicates that the difference becomes even larger as thesiz /S0 like to thank Petri Turkulainen for coding and running
the data set grows. This makes ETree suitable for several s§@me of the experiments.
tasks that have been too slow with nonhierarchical methods.
We also find that ETree outperforms similar kinds of algo- REFERENCES
rithms. It is also simpler, which is not only a virtue in its ow
i i i inati id1] T. Kohonen,Self-Organizing Maps3rd ed. Berlin: Springer, 2001.
I’Ight, bu.t also makes Implementa.tlon an.d appllcaﬂon eas'iz J. Blackmore and R. Miikkulainen, “Incremental grid grewgi Encoding
Several improvements to the baS'C. algorlt.hm were suggest high-dimensional structure into a two-dimensional featurep,min
and analyzed. They, too, are relatively simple, but some of Proceedings of the IEEE International Conference on Neltetworks
them still manage to improve the overall performance. Th? vol. 1, 1993, pp. 450-455. o

h hanaes illustrate that the basic algorithm is quaibeist 3] B. Frltzkg, Growing cell structures — a self-organigimetwork for
ot e_*r c 9 . 9 q unsupervised and supervised learningéural Networksvol. 7, no. 9,
against alterations. pp. 1441-1460, 1994.

(4

(5]

[6

(7]

8]

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

J. Bruske and G. Sommer, “Dynamic cell structure learns guglsf
topology preserving mapReural Computationvol. 7, no. 4, pp. 845—
865, 1997.

E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marhogft8earching
in metric spaces, ACM Computing Surveysol. 33, no. 1, pp. 273-321,
March 2001.

P. Koikkalainen and E. Oja, “Self-organizing hierarchli feature maps,”
in Proceedings of 1990 International Joint Conference on Meur
Networks vol. I, San Diego, CA, 1990, pp. 279-284.

V. J. Hodge and J. Austin, “Hierarchical growing cell wsttures:

TreeGCS,"IEEE Transactions on Knowledge and Data Engineering

vol. 13, no. 2, pp. 207-218, 2001.

H.-H. Song and S.-W. Lee, “A self-organizing neural tfee large-set
pattern classification,JEEE Transactions on Neural Networkgol. 9,
no. 3, pp. 369-379, May 1998.

F. Luo, L. Khan, F. Bastani, |. Yen-Ling, and J. Zhou, “ArBmically
growing self-organizing tree (DGSOT) for hierarchical stering
gene expression profilesBioinformatics 2004. [Online]. Available:
http://bioinformatics.oupjournals.org/cgi/contengtitbct/bth292v1

M. Dittenbach, A. Rauber, and D. Merkl, “Recent advanedgth the
growing hierarchical self-organizing map,” iRroceedings of the 3rd
Workshop on Self-Organizing Mapser. Advances in Self-Organizing
Maps. Lincoln, England: Springer, June 13-15 2001, pp. 146-—

S. Behnke and N. Karayiannis, “Competitive neural tréms pattern
classification,”IEEE Transactions on Neural Networkeol. 9, no. 6,
pp. 1352-1369, November 1998.

J. Pakkanen, “The Evolving Tree, a new kind of self-migang neural

13

Jussi Pakkanenreceived his M.Sc. degree in engi-
neering physics from Helsinki University of Tech-
nology in 2002. He is currently working as a re-
searcher in the Lab. of Computer and Information
Science, where he is furiously trying to finish his
Ph.D. thesis. He is the coauthor of several arti-
cles, whose topics include image analysis, content-
based retrieval, approximate indexing and unsuper-
vised learning. His current research interests revolve
around new data analysis methods that can be effi-
ciently applied to huge data sets.

Jukka livarinen received his M.Sc., Lic.Sc.(Tech.)
and D.Sc.(Tech.) degrees in computer science from
Helsinki University of Technology in 1994, 1997,
and in 1998, respectively. He is currently a re-
searcher in the Lab. of Computer and Information
Science, HUT. He is the vice chairman of the Pattern
Recognition Society of Finland. He has acted as a
referee in several conferences and journals, and is
the coauthor of several conference papers and jour-
nal articles on image analysis, pattern recognition,
and neural computing. His current research interests

include neural networks and computer vision, especiallyliegons of the

network,” in Proceedings of the workshop on Self-Organizing Maps '03elf-organizing map in image segmentation, classificationratrieval.

Kitakyushu, Japan, Sept. 11-14 2003, pp. 311-316.

J. Pakkanen and J. livarinen, “A novel self-organizirgiral network for
defect image classification,” iRroceedings of IJCNN 2008Budapest,
Hungary, 2004, pp. 2553-2556.

J. Pakkanen, J. livarinen, and E. Oja, “The Evolving€Tre- a novel
self-organizing network for data analysid\eural Processing Letters
vol. 20, no. 3, pp. 199-211, December 2004.

A. Guttman, “R-trees: a dynamic index structure for sgasearching,”

in SIGMOD '84: Proceedings of the 1984 ACM SIGMOD internationa:

conference on Management of datdlew York, NY, USA: ACM Press,
1984, pp. 47-57.

C. Bishop,Neural Networks for Pattern RecognitiorOxford University
Press, 1995.

B. S. Manjunath, P. Salembier, and T. Sikora, Edstroduction to
MPEG-7: Multimedia Content Description Interface John Wiley &
Sons Ltd., 2002.

Erkki Oja (S'75-M'78-SM'90-F’00) is the Director

of the Adaptive Informatics Research Centre and
Professor of Computer Science at the Laboratory of
Computer and Information Science, Helsinki Univer-
sity of Technology, Finland. He received his Dr.Sc.
degree in 1977. He has been research associate
at Brown University, Providence, RI, and visiting
professor at Tokyo Institute of Technology. Dr. Oja
is the author or coauthor of more than 280 articles
and book chapters on pattern recognition, computer
vision, and neural computing, and three books:

“Subspace Methods of Pattern Recognition” (RSP and J.WI@g3), which

J. Pakkanen, A. llveséki, and J. livarinen, “Defect image classificationhas been translated into Chinese and Japanese, “Kohones’ NEpevier,

and retrieval with MPEG-7 descriptors,” iRroceedings of the 13th 1999), and “Independent Component Analysis” (J. Wiley, 06tls research
Scandinavian Conference on Image Analyses. LNCS 2749, J. Bigun interests are in the study of principal component and indegencompo-
and T. Gustavsson, Eds. 6@&borg, Sweden: Springer-Verlag, June 29-nent analysis, self-organization, statistical pattercogaition, and applying
July 2 2003, pp. 349-355. artificial neural networks to computer vision and signal pssing. Dr. Oja
L. Holmstdm, P. Koistinen, J. Laaksonen, and E. Oja, “Comparison a§ member of the editorial boards of several journals and ha# lie the
neural and statistical classifiers — theory and practice|f Revanlinna program committees of several recent conferences inclu@adNN, IJCNN,

Institute, Helsinki, Research Reports A13, 1996. and ICONIP. He is member of the Finnish Academy of Sciences, diogn
J. W. Sammon, “A nonlinear mapping for data structure asisfylIEEE Fellow of the International Association of Pattern Rectigni (IAPR), and
Transactions on Computersol. C-18, no. 5, pp. 401-409, May 1969. past president of the European Neural Network Society (ENNS

D. Davies and D. Bouldin, “A cluster separation measu&EE

Transactions on Pattern Analysis and Machine Intelligeneé 1, no. 4,

pp. 224-227, 1979.

M. Campos and G. Carpenter, “S-TREE: self-organiziregsérfor data

clustering and online vector quantizatiohleural Networksvol. 14, no.

4-5, pp. 505-525, May 2001.

Free Software Foundation, “The GNU general public iee” http:/

www.gnu.org/licenses/gpl.html.

