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Abstract—In this paper, we present a model of straight wire
dipole scatterers loaded by arbitrary lumped loads in the dipole
center. These particles can be used as inclusions of custom-design
composite materials or electrically controllable metamaterials.
The model, together with the Clausius–Mossotti formula and an
analytical model for reflection and transmission in dipole arrays,
allows to find loads required to realize the desired electromagnetic
properties of the composite and estimate its realizability with the
use of various bulk loads.

Index Terms—Artificial materials, composite sheet, effective
permittivity, wire dipole.

I. INTRODUCTION

USUAL artificial dielectrics use simple-shape inclusions
like metal spheres or needles. The possibilities for the

material design are clearly limited by the electromagnetic
properties of the inclusions. If one wants to have more freedom
in the design and control of the inclusion properties, one of
the natural choices is to use small (in wavelength) wire dipole
antennas loaded by bulk impedance circuits. Indeed, a small
piece of wire scatters as an electric dipole, imitating a molecule
in a usual dielectric, and by appropriately choosing the load, its
polarizability as a function of the field frequency can be tuned
to provide the required design parameters of the metamaterial.
We call these artificial mediametamaterialsbecause the
loads can contain electronic circuits that can be electrically or
optically controllable. In contrast to composite materials like
artificial dielectrics, the effective material properties cannot be
derived from only inclusion material, concentration, and shape.

Probably for the first time artificial media formed by loaded
wire dipoles attracted much interest with respect to the studies
of chiral media for microwave applications (see, for example,
a review in [1]). Conducting particles of the helical shape were
used to design chiral microwave composites. The canonical
helix [2] is a combination of a short dipole antenna and a small
loop antenna connected so that one of the antennas is the load
for the other. Analytical models for the polarizabilities of these
loaded antennas were developed in [3]. That and similar models
were used to study possible realizations of more complex
bianisotropic [4], nonlinear [5], and other complicated metama-
terials [6], [7]. Another application for arrays of loaded dipoles
is in the control and electrical tuning of frequency selective
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Fig. 1. Geometry of a loaded conducting wire.

surfaces [8]–[10]. The loads, usually capacitors or inductors,
have been used to shift the half-wavelength resonant frequency
of wire dipoles [9]. With the use of negative-resistance circuits,
wave amplification can be achieved [10]. Numerical methods
like the periodical method of moments have been used to
analyze such loaded arrays [10].

This paper is devoted to the problem of metamaterial syn-
thesis, with the goal to find the load impedances needed to re-
alize the desired effective electromagnetic properties of com-
posites from small loaded wire dipoles. Obviously, to attack
such problems an analytical model of the composite response
is needed. The analytical model of loaded wire dipoles of [3]
has been successfully used for several applications, however, its
accuracy is limited due to the assumption of triangular current
distribution along the antenna. Although this is a very good ap-
proximation for a short transmitting dipole antenna, in case of
an arbitrary load this assumption can be invalid. In this paper, we
derive a more general and accurate formula for the inclusion po-
larizability. Furthermore, with the help of the Clausius–Mossotti
formula, we solve for the load impedance required to realize any
given effective polarizability of the artificial material.

II. POLARIZATION OF LOADED WIRE DIPOLES

Let us consider a thin metal wire with the total length, wire
radius , that is loaded by a bulk impedance in its
center (see Fig. 1). We are mostly interested in the analytical
modeling of the polarization of the wire at low frequencies when
the particle is much smaller than the wavelength ( ) by
an external electromagnetic field directed along the wire
axis. In particular, we need to know the electric dipole moment
induced in this “artificial molecule” by the external field. Al-
though in many applications the inclusions are small compared
to the wavelength, we will first develop a model without this
restriction and then consider the simplified formulas for small
particles.

A. Particle Polarizability

As is well-known from the antenna theory (e.g., [11]), in the
transmitting regime the current distribution along a thin wire
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excited by a point voltage source at its center is approximately
sinusoidal

(1)

and in the receiving mode, for a short-circuited antenna

(2)

Here, and are the current amplitudes at the
antenna center that depend on the source power, andis the
wavenumber in the surrounding medium. The distribution of
current along a wire antenna illuminated by an electromagnetic
wave and loaded by an arbitrary load is a linear combination of
these two functions. In the low-frequency limit the current dis-
tributions are modeled by simpler functions

(3)

as can be seen from the Taylor expansion of (1) and (2).
For a receiving wire antenna loaded by in its center we

can find the current in the antenna center as

(4)
Here, is the input impedance of the wire antenna, and
is the induced electromotive force. We stress that the electro-
motive force is determined by the distribution of the current on
the antennain the transmitting mode, the distribution function

. If the external electric field is uniform along the wire, the
integral expressing the electromotive force in (4) reads

(5)

where the approximation is valid for .
Let us rewrite (4) as

(6)
In this form, the total current is presented as a superposition of
two contributions: the first term is the current induced in the
short-circuited antenna by the incident field [formula (4) with

], and the second term is the current generated by an
equivalent voltage source at the position of
the load. The first part of the current is induced by the incident
field directly, and the second part is “scattered” by the antenna
load.

Now we can apply (1)–(2) and find the total current distribu-
tion along the loaded wire

(7)

or, in terms of the current in the load

(8)

Consideration of two limiting cases is instructive. If ,
we get

(9)

as should be in the short-circuit case. If , we have

(10)

Note that in this case . For short wires in this case along
the two arms there is a quadratic distribution with the quarter
amplitude at the two separate parts of the antenna. The charge is
distributed according to the linear law, and the distribution is the
same on the two arms. The current distributions are illustrated
by Fig. 2 for some various load impedances.

The knowledge of the current distribution makes it possible
to calculate the induced electric dipole moment:

(11)
where is the charge distribution. In this paper, we restrict
the analysis to the dipole moment of the particle. Higher-order
moments can be easily calculated by appropriate integrations,
since the charge distribution is known. Let us only note that the
first nonzero higher-order moment is of the third order (because
the charge distribution is antisymmetric), and all magnetic mo-
ments are zeros. After a simple integration we find the polariz-
ability defined as

(12)
Here we have assumed that is uniform over the wire volume
and used formula (5). In the quasi-static regime the formula for
the polarizability (12) simplifies to

(13)
For , we have a resonance where the po-

larizability becomes infinitely high, as expected. Close to this
resonance, the current distribution along short wires is nearly
triangular, since the second term in (7) dominates. This is the
reason why a simple model of [3] that assumes the triangular
current distribution gives very good estimations near the par-
ticle resonance. That simple model can be also useful, since the
resonant region is the most interesting for applications: reso-
nant particles can be strongly excited. We can also observe that
for the polarizability becomes zero (this takes
place due to a specific current distribution, such that the dipole
moments induced at the two arms of the wire cancel out, see
Fig. 3). One can conclude that it is possible to effectively tune
the polarizability of a wire by varying its load.

The range of realizable properties of small scatterers is nat-
urally restricted by the limitations in the design of electrically
small loads with required input impedances. Realization ofpas-
siveloads with, for example, large values of inductance can be
impractical, but at least with the help of active electronic circuits
this restriction can be significantly relaxed.
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Fig. 2. Distribution of current along a short wire scatterer for different load impedancesZ .

Fig. 3. Distributions of charge and current for wire scatterers loaded byZ = �4Z . In this case, the total induced dipole moment of the particle is zero.
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B. Dissipation in Loaded Wire Dipoles

Power dissipation in the bulk load is of course taken into ac-
count by the above formulas for the polarizability, simply the
load impedance is a complex number if there is some dissipa-
tion in the load. To account for losses in the wires of the dipoles,
however, more analysis is needed, mainly because the current
distribution along an antenna with nonideally conducting wires
is different from the ideal case.

In fact, the result for the current distribution along any loaded
wire receiving antenna expressed by (7) or (8) holds for lossy
wire antennas if one finds , , and with
the wire resistance taken into account. We start the derivation
from the input impedance of a wire antenna with lossy wires.
Although this is a classical problem, the derivation is given here,
since the same steps will be used in the following calculation of
the particle polarizability.

If losses are small, there is no dramatic change in the current
distributions. A lossy transmitting antenna may be represented
in this case as an ideal antenna excited by two sources: a usual
point source and a distributed source corresponding to the ad-
ditional voltage drop caused by the wire resistance. Hence, the
total EMF exciting the ideal antenna is

(14)

where is the wire resistance per unit length,
is the current distribution on the lossy antenna.

From the other hand, and ,
therefore, we get

(15)
which is the first-order correction to the antenna impedance. For
short dipoles the last integral is

(16)

if the wire losses are uniform along the dipole.
First-order corrections to the current distributions may be

found by the same approach if the following two additional an-
tenna excitation problems are solved: excitation by a distributed
EMF proportional to , and excitation by a source propor-
tional to . Assuming that the normalized current distribu-
tions , are known for these two cases, one writes

(17)

and

(18)

Analogously, for the receiving regime the total EMF applied to
the ideal antenna is

(19)

and

(20)
Hence,

(21)

where

(22)

For short dipole antennas

(23)

Finally, to find the corrected current distribution the obtained
, and should be substituted into (8).

For short dipole antennas the functions and can
be approximately calculated:

(24)

(25)

The calculation is done by the induced EMF approach, assuming
triangular distribution of the current induced by a point EMF in-
serted at an arbitrary position of the dipole wire. Finally, the po-
larizability can be determined after the appropriate integration
of the current distribution. After some algebra, the result read

(26)

Note that the additional term proportional to the wire resistance
per unit length becomes large near the particle resonance.
However, the main part of the polarizability is also large near
this frequency or frequencies, and the ratio between them is still
proportional to the wire resistance .

III. M ETAMATERIALS BASED ON ARTIFICIAL WIRE DIPOLES

WITH LOADS

Suppose that a material with a certain effective permittivity is
required for a specific application. Let us try to design a meta-
material with this property using random or regular arrays of
small loaded dipole antennas.

A. Volume Composite

In general, three arrays of antennas are needed, which should
be arranged in space so that the required response is provided
for electric fields along all directions (Fig. 4).

To model metamaterials built of small loaded antennas we
will use the Maxwell Garnett approximation, assuming that the
particle size is small compared to the wavelength, so that the
inclusions can be modeled by electric or magnetic dipoles. The
other assumption is that the distances between inclusions are
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Fig. 4. A spatial arrangement of small loaded wire dipoles. Spatial distribution
can be regular or random. Particles in thex-y plane are shown. Electric dipoles
alongx andy provide the required electric properties for electric fields in this
plane. In general, there is also an array of electric dipoles alongz, that is not
seen on the picture.

large compared to the particle size. Under these circumstances,
the well-known Clausius–Mossotti formula

(27)

can be used to connect the effective permittivity of a com-
posite with the polarizability of the individual inclusionand
the inclusion concentration (the number of inclusions in the unit
volume) . ( is the matrix permittivity). Note that this approx-
imation can be also used in the regime where the particles are
resonant and their polarizabilities are rather large in the absolute
value. This follows from the analysis presented in [12] and has
been numerically verified for example in [13] and [14].

To determine what inclusion loads are needed to pro-
vide the desired response of the composite, we substitute the
loaded wire dipole polarizability (13) in (27) and solve for the
load impedance. The result reads

(28)

Let us compare the values of the two terms in the denominator
of (28). The second term, , equals

, see (27). The first term, , also contains most of
the terms in the expression for (13), only the resonant term

is missing. This means that in
the resonant regime when this term is large in the absolute value,
the second term in the denominator of (28) dominates over the
first one, and the formula can be simplified as

(29)

One can view this impedance as that of a series connection of
two loads. The impedance of the first one is the negative of the
input impedance of the antenna . The second one depends
on the required effective permittivity. So, we can say that the
frequency dispersion due to the shape and size of the metal wire
is first compensated, and then the desired behavior is created by
an additional load impedance.

The input impedance of a short wire dipole is capacitive, so
we can substitute in (28) and write1

(30)

At this point we can observe that for the design of “dispersion-
free” lossless metamaterials (with a frequency independent and
real effective permittivity) the load circuit should be acapacitor.
The value of this required capacitance is obviously

(31)

Clearly, this value can be both positive andnegative,depending
on the required . The last case can be realized only using ac-
tive circuits. This is in harmony with the fact that dispersion-free
materials are not physically realizable using only passive ele-
ments.

In particular applications, the required materials are often fre-
quency dispersive, and some specific frequency dispersion is
desired. A typical example is the design of radar absorbing ma-
terials. We invite the reader to substitute the desired frequency
behavior of the effective permittivity into (28) to see what kind
of loads would realize that material as an array of loaded wire
dipoles.

B. Composite Sheets

Next, let us consider a single periodical array of small loaded
dipole particles. Our goal here is to determine the loads required
to realize desired reflection and transmission coefficients. As-
suming the array period is smaller than about half wavelength,
we can make use of an approximate analytical expressions for
the reflection and transmission coefficients established in [15].
That model is based on an approximate dynamic theory for the
field interaction in infinite arrays of dipoles and results in an
equivalent sheet condition for simulation of arrays. The reflec-
tion coefficient for electric fields of normally incident plane
waves on an array with square cells (array period) can be
written as

(32)

where the grid impedance normalized to
reads

(33)

Here, parameter , and the polarizability of the
loaded wire dipole has been substituted from (13). For lossless
scatterers, this simplifies to [15]

(34)

1This result is applicable for regular lattices where the radiation resistance
should be excluded from the input impedance.
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The transmission coefficient is

(35)

which follows from the fact that in our case there is no magnetic
current in the sheet, thus, the tangential electric field is contin-
uous.

Now we can easily solve for the required load impedance in
terms of the reflection coefficient. From (32) and (33) we find

(36)

where

(37)
The same formula actually determines the required load if the
transmission coefficient is given, because .

IV. CONCLUSION

This paper gives a simple analytical model for polarizabil-
ities of straight loaded wire dipoles. The present analysis ex-
tends the previous result of [3] to arbitrary (not necessarily res-
onant) particles with the help of a more accurate model of the
current distribution function. In addition, in the new model there
is no restriction on the wire length. An analytical formula for the
imaginary part of the polarizability that is responsible for power
absorption in nonideally conducting wire is also given. The par-
ticle model allows us to derive a design formula that gives the
required load impedance for realizing of a material with the de-
sired dispersion law in a definite frequency band. If one does
not impose strict restrictions on the load impedance, allowing
the load circuit to be active or controllable by external fields, in-
cluding nonelectromagnetic, it appears that in principle arbitrary
effective permittivity dispersion can be realized this way (again,
in a limited frequency band). Although the system always re-
mains causal, the limitations like the Kramers-Kronig relation
or the Foster theorem (for lossless particles) can be overcome
in this design. This is possible because in the derivation of the
Kramers-Kronig relation besides causality it is also required that
the system be linear and that the memory effects decay in time.
As a simple example, a power generating medium can be real-
ized by loading our inclusions with active loads, which clearly
violates the Kramers-Kronig relation.

However, actual realizations can be difficult, if at all possible.
Even for a quite simple requirement of the effective permittivity
that does not depend on the frequency at all, we have seen that
the required load can be anegativecapacitance. This load is of
course realizable by impedance inverter circuits (the particles
become active in the sense that there are power sources to feed
the inverter circuits), but the actual realization can be difficult,
mainly due to potential instabilities of the impedance inverters

when connected to the wire dipoles. We can finally conclude
that the present theory provides a general approach to the design
of a very general class of metamaterials, and much work is still
needed on the road to realize such active and controllable media
with desired properties. We hope that the results of this paper
clearly demonstrate the power of the metamaterial concept that
allows great flexibility in the design of artificial materials and
thin sheets.
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