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Example of bianisotropic electromagnetic crystals: The spiral medium
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In this paper the electromagnetic properties of bianisotropic electromagnetic crystals are studied. The crys-
tals are assumed to be rectangular lattices of perfectly conducting helicoidal spirals. The analytical theory of
dispersion and plane-wave reflection refers to the case when the spiral step and the radius are small compared
to the wavelengths in the host medium. The periods of the lattice can be arbitrary. Explicit closed-form
expressions are derived for the effective material parameters of the medium in the low-frequency regime. The
medium eigenmodes are elliptically polarized, and one of them propagates without interaction with the lattice.
As to the other eigenmode, the lattice has strong spatial dispersion even at extremely low frequencies in the
direction along the spiral axes. Numerical examples are given. An analogy between the spiral medium and the
medium of loaded wires is indicated.
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I. INTRODUCTION

Electromagnetic and photonic band-gap structures att
a lot of attention in view of many potential applications~e.g.,
@1#!. Usually, these artificial media are formed as perio
arrangements of dielectric or conducting inclusions~or voids
in an isotropic matrix!. The cell geometry is normally quite
simple ~spheres, circular cylinders, etc.!. We introduce the
concept of bianisotropic~or magnetoelectric! electromag-
netic crystals. In these structures, as in quasihomogen
bianisotropic media, electric and magnetic fields are coup
through the medium response@2#. In other words, electric
fields cause both electric and magnetic polarizations,
also magnetic fields not only magnetize but also electric
polarize the medium. Obviously, more complicated prop
ties of the material allow more possibilities in the design
microwave or optical devices.

The well-known optical activity phenomenon@3# was
studied in composite chiral photonic crystals with a heli
lattice of dielectric spheres in@4#, using numerical modeling
Three-dimensional lattices~sc, fcc, and bcc! of dielectric
spiral-shaped elements were considered in@5#, and it was
shown that the band-gap structure depends on the geom
of the elements, but not only on the lattice geometry. Mic
wave magnetoelectric coupling in media can be due to n
reciprocal properties of inclusions@3,6# or to the complicated
geometrical structure of the medium@2#. In this work we
explore the second possibility and study aspiral medium, a
periodic medium formed by long spiral ideally conductin
inclusions ~helixes!. The effective-medium regime of thi
medium was considered in@7#.

The special interest of the structure under consideratio
based on its wide range of possible applications, beginn
with the design of frequency and polarization filters and e
ing with the synthesis of high impedance surfaces in
microwave frequency region@8#. To simplify the study~with-
out loss of general properties!, we model helices as sets o
connections of straight wires and coils, as depicted in Fig
in the same manner as was done in@9#. The same structure
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was also considered in@10# and its plasmonic behavior wa
revealed.

In this paper we present an analytical model of a tw
dimensional lattice of infinitely long and thin parallel pe
fectly conducting helices. In this the structure the polariz
tions of the eigenwaves in the medium become elliptical d
to bianisotropy effects. At the same time, these magnetoe
tric coupling effects are combined with spatial dispersi
effects as in electromagnetic~or photonic! crystals where the
spatial resonances of the lattice determine the stop ba
Moreover, the helicoidal spirals have special resonant pr
erties~the parallel resonance of the loop inductance and
interturn capacitance! which lead to the resonant behavior
the whole medium at frequencies close to the helix in
vidual resonance~which is the antiresonance!. The structure
under consideration can potentially offer great opportunit
for control of the dispersion properties of artificial materia
and it can possibly be used for prospective frequency
polarization filtering of the microwave signals.

II. ANALYTICAL APPROACH

Let the spiral medium be formed by a rectangular latt
of helicoidal spirals with periodsa3b, spiral pitchc, radius
of a turnr, and radius of wiresr 0 ~see Fig. 1!. In this theory

FIG. 1. Geometry of the spiral medium.
©2003 The American Physical Society22-1
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we restrict consideration to the case when the wavelengt
the host medium and the lattice periods are large comp
to the spiral pitch and diameter:r ,c!a,b,l. The periods of
the lattice can be arbitrary with respect tol. Also, assume
that the radius of the wires is small compared with the sp
pitch and turn diameter:r 0!2r ,c.

We consider the general case of wave propagation~arbi-
trary angles between the wave vector and the spiral axes!. To
take into account the electromagnetic interaction of the h
ces, we model every helix as lines of electric and magn
currents both referred to the spiral axis. This means that
neglect the effect of helix polarization in the direction o
thogonal to its axis. An electric current line produces ax
electric field and does not produce any axial magnetic fie
and a magnetic current line produces axial magnetic field
does not produce any axial electric field. This means t
there is no electromagnetic interaction between the elec
and magnetic currents. Therefore, the interaction of hel
can be described through known interaction constants
tained for lattices from straight line currents in@11,12#. How-
ever, spirals possess bianisotropic properties, which me
that the local electric field excites magnetic currents in s
rals, and the local magnetic field excites electric currents
describe this effect we use the model of a helix suggeste
@9#, which replace the uniform helix by a set of colline
straight wires connected to the split loops as shown in Fig
The analytical theory@9# gives a simple expression for th
current induced in such a spiral by local electric and m
netic fields. Using this simple model allows one to derive
explicit scalar dispersion equation, as was done for a lat
of straight conducting wires in@11#.

A. Polarization of an individual spiral

We assume the radiusr and the pitchc to be small enough
compared to the wavelength and the lattice periods so
the current distribution in the turns of any spiral can be c
sidered as uniform. Consider an individual helix excited
external electricE and magneticH fields. Assume that the
dependence ofE and H on the helix axisz is harmonic:
e2 jqzz. A unit length piece of the spiral can be modeled a
circuit with impedanceZ relating the electromotive forceE
and the currentI at its center@9#:

I 5E/Z. ~1!

The electromotive force per unit length is the sum of t
axial component of the electric field and the following co
tribution of the magnetic field:

E5Ez2hgHz , g56 jkpr 2/c. ~2!

The signs1 or 2 in formula ~2! correspond to the right o
left handedness of the spiral. From Eq.~2! we can see that an
elliptically polarized wave withEz2hgHz50 does not in-
teract with the spiral.

The impedanceZ is the sum of the impedances of straig
wire pieces with unit total length and the impedances
loops per unit length of the spiral:
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Z5Zwire1Zloops. ~3!

An expression forZwire was derived in@11#:

Zwire5
h~k22qz

2!

4k
S 12 j

2

p H ln
Ak22qz

2r 0

2
1geJ D , ~4!

whereh is the free-space wave impedance,k5vA«0m0 is
the wave number in free space, and«0 andm0 are the per-
mittivity and permeability of free space,ge'0.5772 is the
Euler constant. It is easy to modifyh andk for the case when
the host medium is a homogeneous isotropic dielectric
stead of free space.

The impedance of the loopsZloops was calculated in@9#
within the frame of the quasistatic model as a parallel c
nection of input capacitance and inductance, both referre
the loop split. The input inductance is the sum of the se
inductance of the loop and the mutual inductance betw
the reference loop and all other loops of the same spiral.
input capacitance includes the self-capacitance of the l
and the mutual capacitance between the reference loop
other loops of the spiral.

We can ignore the real part of the loop impedance~radia-
tion resistance of the loop!. In regular structures of arbitrary
scatterers the radiation resistance of an individual scatt
and the real part of the interaction constant of the lattice fr
those scatterers give the imaginary part of the dispers
equation. If the scatterers are lossless the imaginary pa
the dispersion equation is zero@6,11,12#. So the radiation
resistance per unit length of the spiral cancels the real pa
the interaction constant. For the imaginary part ofZloops we
have

Im$Zloops%5
k22qz

2

ck2

v~L01M !

12v2~L01M !C0

, ~5!

L05m0r S ln
8r

r 0
22D , ~6!

M5
m0r

2p (
n51

1`

GS 2r

cnD , ~7!

C05
4p2e0r

ln
8r

r 0
2kK

. ~8!

The factor (k22qz
2)/k2 in Eq. ~5! takes into account thez

dependence of the spiral currentI (z)5I (0)e2 jqzz. G(x) is a
tabulated function@13#, for which a good approximation fo
the casea<4r is known @13#:

G~x!5
p2x3

4 S 12
3

4
x21

75

128
x41••• D . ~9!

k andK determine the elliptic integral:
2-2
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K5E
0

p/2 dx

A12k2 sin2x
, k5

r 2

r 210.25c2
. ~10!

Thus, using Eq.~2! together with Eqs.~4! and~5! we obtain
a model of the individual spiral polarization by the loc
electromagnetic field.

B. Dispersion equation

The dispersion equation can be derived following@11,12#,
where the case of a wire medium was considered. Ass
the distribution of spiral currents in a lattice to be related
the wave vectorq5(qx ,qy ,qz)

T as

I m,n~z!5Ie2 j (qxam1qybn1qzz), ~11!

where I is the current in the reference spiral. An infini
lattice of spirals with currents~11! produces the following
local electric and magnetic fields acting on the reference
ral:

Ez5C~k,qx ,qy ,qz!I , ~12!

Hz5C~k,qx ,qy ,qz!I m /h2, I m5hgI , ~13!

whereI m is the magnetic current in the reference spiral, a
C(k,qx ,qy ,qz) is the so-called interaction factor of the wir
lattice calculated in@11#:

C~k,qx ,qy ,qz!52 j
h~k22qz

2!

2kb F 1

kx
(0)

sinkx
(0)a

coskx
(0)a2cosqxa

1 (
nÞ0

S 1

kx
(n)

sinkx
(n)a

coskx
(n)a2cosqxa

2
b

2punu D
1

b

p
S ln

Ak22qz
2b

4p
1g D 1 j

b

2G , ~14!

kx
(n)52 jAS qy1

2pn

b D 2

1qz
22k2, ~15!

where we choose Re$A()%.0.
Thus, the following dispersion equation can be writt

using Eq.~2! with Eqs.~12! and ~13!:

Z

12g2
5C~k,qx ,qy ,qz!. ~16!

As was noticed above, in this equation the imaginary pa
cancel out. From Eqs.~14! and ~4! it follows that
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Re$Zwire%5Re$C%5
h~k22qz

2!

4k
. ~17!

The rule of the cancellation of the loop radiation resistan
gives, by the way, an expression for it~this resistance re-
mained unknown in the theory@9#!:

Re$Zloops%52g2
h~k22qz

2!

4k
. ~18!

Finally, we obtain the real valued equation

1

11ugu2
F ln

b

2pr 0
2ugu2S ln

Ak22qz
2r 0

2
1geD G

1
2pk

h~k22qz
2!

Im$Zloops%

11ugu2
1

p

bkx
(0)

sinkx
(0)a

coskx
(0)a2cosqxa

1 (
nÞ0

S p

bkx
(n)

sinkx
(n)a

coskx
(n)a2cosqxa

2
1

2unu D 50. ~19!

The series in Eq.~19! has good convergence~as 1/n3), so, it
is easy to solve and analyze this equation numerically. T
dispersion equation~19! describes only the extraordinar
wave which interacts with spirals and excites them. The
dinary wave satisfiesEz2hgHz50 and travels in the hos
medium without interaction with the spirals.

C. Reflection coefficient from a half space

The dispersion characteristics of the lattice determine
reflection coefficient from an interface between free sp
and a half space filled with this lattice@6,11,12,14#. The ex-
pression for the reflection coefficient in the case when
incident wave with wave vectork5(kx ,ky ,kz)

T excites the
only extraordinary wave in the lattice~this polarization must
be elliptic and orthogonal to the elliptic polarization of th
incident wave, exciting only the ordinary waveEz2hgHz
50) is as follows:

R52e2 jkxa)
n51

1`

ejkxa
sin@~qx

n2kx!a/2#

sin@~qx
n1kx!a/2#

, ~20!

whereqx
n are all possible solutions of the dispersion equat

~19! with qy5ky , qz5kz . The incident wave that excite
only the ordinary mode has zero reflection coefficient a
total transmission if the host medium is free space.

III. MATERIAL PARAMETERS

In the low-frequency regime we can model the spiral m
dium as a uniaxial chiral medium described by bianisotro
material equations

D5«0«% •E1 jA«0m0k% •H,

B5m0m% •H2 jA«0m0k% •E.
2-3



in

y

BELOV, SIMOVSKI, AND TRETYAKOV PHYSICAL REVIEW E 67, 056622 ~2003!
Here, the material parameters are dyadics of the follow
form:

«% 5«z0z01x0x01y0y0 ,

m% 5mz0z01x0x01y0y0 , k% 5kz0z0 .

Such a medium possesses two eigenmodes for ever
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rection of propagation with so-calledaxial impedanceintro-
duced in@2#

Zz
65

Ez6

Hz6

5
h

2 j k
@~«2m!6A~«2m!214k2# ~21!

and the propagation factors@2#
q6
2 5

2k2~«m2k2!

2~«m2k2!qz
2/q21@~«1m!7A~«2m!214k2#~q22qz

2!/q2
. ~22!
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The ordinary mode, which does not interact with the s
ral medium, has the axial impedanceZz

25hg and q25k.
The absolute value of the extraordinary mode propaga
factor q15q can be found by solving the dispersion equ
tion ~19! in the quasistatic approximation, i.e., using the Ta
lor expansion of trigonometric functions as was done
@11,12#:

q25k22k0
2 ,

k0
25

2p

ab H 1

11ugu2
F ln

b

2pr 0
1

2p

hkc

v~L01M !

12v2~L01M !C0

2ugu2S ln
Ak22qz

2r 0

2
1geD G1FS a

bD J 21

, ~23!

where

F~x!5 (
n51

1` S coth~pnx!21

n D1
px

6
.

For a square gridF(1)50.5275.
Solving the system of three equationsZ25hg, q25k,

andq15q together with Eqs.~21!, ~22!, and ~23! for three
unknowns«, m, and k, we obtain explicit expressions fo
the material parameters depending on the frequency an
the propagation factor:

«512
1

11ugu2

k0
2

k22qz
2

, ~24!

m512
ugu2

11ugu2
k0

2

k22qz
2

, ~25!

k5
Im$g%

11ugu2
k0

2

k22qz
2

. ~26!

The lattice of spirals is a nonconventional uniaxial chi
medium. Even at extremely low frequencies it posses
strong spatial dispersion in the direction along the sp
-

n
-
-

on

l
es
l

axes. The nature of this phenomenon is the same as for
media@15#. It results from the infinite length of spirals in th
axial direction.

IV. NUMERICAL EXAMPLES

We have studied numerically the dispersion and reflect
properties of spiral media with various geometrical para
eters. The main principles and properties can be illustra
with an example of a square latticea3a from infinite right-
handed spirals with turn radiusr 50.15a, spiral pitch c
50.5a, and wire radiusr 050.01a. The dispersion plot for
this medium is presented in Fig. 2~thick lines!, where G
5(0,0,0)T, X5(p/a,0,0)T, and M5(p/a,p/a,0)T are
points in the first Brillouin zone. The thin lines represent t
dispersion curves for free space to show the difference
tween our medium and free space.

We calculated the reflection coefficientR for the case of
normal incidence on a half space filled by this spiral m
dium. The incident wave polarization is assumed to be ex
ing the only extraordinary wave in the lattice. The frequen
range corresponds to the regime of the single propaga
mode (ka,2p). In Fig. 3 the reflection coefficientR is

FIG. 2. Dispersion plot for a spiral medium formed by a squa
grid a3a of infinite spirals with turn radius 0.15a, pitch 0.5a, and
wire radius 0.01a.
2-4
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EXAMPLE OF BIANISOTROPIC ELECTROMAGNETIC . . . PHYSICAL REVIEW E 67, 056622 ~2003!
shown as a function of the normalized frequencyka/(2p)
together with the corresponding propagation factors plo
above it. The modes are of two types: propagating Imq)
50 and decaying Im(q),0. The decaying modes can b
further split into two types: conventional modes with exp
nential decay@Re(q)50, Im(q),0# and nonconventiona
~complex! modes, which can be considered as exponenti
decaying with alternating directions of the induced curre
in the spirals along the wave propagation direction@Re(q)
5p/a, Im(q),0#. In Fig. 3 at the top the real parts ofq for
the propagating modes are plotted, in the central part of
3 the imaginary parts ofq for decaying modes are plotted
and the decaying modes of the second type are marked
the legend Re(q)5p/a. In the plots for Re(qa/p) and
Im(qa/p), thin lines show the modes for free space cons
ered as a lattice of spirals with zero polarizability.

For the same lattice we have calculated the material
rameters for the case when the propagation direction is
thogonal to the spiral axesqz50. The results are plotted in
Fig. 4 as functions of the normalized frequencyka/2p. We

FIG. 3. Reflection coefficient from a half space filled with th
same spiral medium~normal incidence, spiral axes are parallel
the interface!.

FIG. 4. Effective material parameters for the same spiral m
dium (qz50) calculated using the approximate expressions~24!,
~25!, and~26! ~thick lines! and the exact solution~thin lines!.
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have compared the approximate expressions~24!, ~25!, and
~26! with the exact solution obtained using the dispers
equation~19! and the same homogenization method based
finding the mode axial impedances~21! and propagation fac-
tors ~22!. We have found that the approximation is accura
for ka/(2p),0.27. The homogenization of our particula
spiral medium is possible only forka/(2p),0.3. Indeed, in
the region 0.3,ka/(2p),0.39 the medium has no propa
gating modes and two main decaying modes~with decay
factors of the same order! ~see Fig. 3!. One of the modes ha
Re(q)5p/a, as if the effective wavelength in the mediu
were equal to the double lattice period. Such modes can
exist in a homogeneous medium. Thus, we can conclude
for electric fields in thez direction strong spatial dispersio
effects exist at all frequencies, whereas for the orthogo
directions of the electric field spatial dispersion can be
served near the resonance of the spirals.

The analytical and numerical results can be summari
as follows.

~1! The eigenmodes have an elliptic polarization. For t
ordinary mode with the eigenpolarization that satisfiesEz
2hgHz50, the medium is transparent in the whole fr
quency range where our model is valid.

~2! There exists a low-frequency band gap for the extra
dinary mode. At its upper edge@ka/(2p)50.11 in our ex-
ample# the lattice behaves as a magnetic wall for the pla
wave reflection (R511). Notice that a similar result wa
obtained earlier for lattices of inductively loaded wires@12#.

~3! At the frequency of the parallel resonance of spir
@ka/(2p)50.2 in our example# the medium becomes trans
parent for the extraordinary mode, too. Notice that a sim
result was obtained earlier for lattices from wires loaded w
parallelLC circuits @12#.

~4! For different ratios of the turn radius and the pitch t
second miniband for the extraordinary mode appears ei
in the first (ka,p) or in the second (p,ka,2p) fre-
quency band. By tuning this ratio, one can obtain a v
narrow passband~e.g., the ratio of the central frequency
the bandwidth can be made of the order of 103).

~5! Low-frequency material parameters have been fou
and analyzed for the case of normal propagation with resp
to the spiral axes. The value of the magnetic permeabilitym
is found to be always positive and close to 1. At low fr
quencies, the dielectric permittivitye is negative as for wire
media@11#. The chirality factork has nonzero and positiv
values~right-handed spirals! at low frequencies.

V. CONCLUSION

The electromagnetic properties of a bianisotropic elec
magnetic crystal~spiral medium! have been studied analyt
cally. The transcendental dispersion equation was obtaine
the closed form and numerically solved. The dispers
curves and the reflection coefficient were calculated. Due
the bianisotropy, the eigenmodes of the crystal have ellipt
polarization~with the axial ratio directly related to the spira
winding parameters!. The chirality factor of the homog-
enized medium is very high at low frequencies, as well as
medium permittivity. A low-frequency band gap is obtaine

-

2-5
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which is inherent for lattices of wires. At the frequency th
corresponds to the upper edge of this gap, the interface o
half space filled by this medium behaves as a magnetic
for the eigenmode interacting with the lattice~extraordinary
wave!. This frequency is also the lower edge of the miniba
related to the antiresonance of the individual helix. With
this miniband there is a frequency at which the lattice m
dium is completely transparent in all directions~the degen-
erate case when both modes coincide!. At frequencies higher
than the antiresonance one, a stop band appears with s
spatial dispersion in the directions perpendicular to the sp
axes.

The dispersion plots for the spiral media are similar
those of a lattice of wires loaded by resonant parallelLC
a

la
p-
ter

E
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circuits. In the low-frequency range, simple analytical fo
mulas were defined for the effective bianisotropic uniax
material parameters depending on the frequency and
wave vector. It was shown that strong low-frequency disp
sion is inherent to this medium. This effect results from t
infinite extent of spirals in the axial direction.
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