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Strong spatial dispersion in wire media in the very large wavelength limit
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It is found that there exist composite media that exhibit strong spatial dispersion even in the very large
wavelength limit. This follows from the study of lattices of ideally conducting parallel thin wire® media.
In fact, our analysis reveals that the description of this medium by means of a local dispersive uniaxial
dielectric tensor is not complete, leading to unphysical results for the propagation of electromagnetic waves at
any frequencies. Since nonlocal constitutive relations have been usually considered in the past as a second-
order approximation, meaningful in the short-wavelength limit, the aforementioned result presents a relevant
theoretical interest. In addition, since such wire media have been recently used as a constituent of some discrete
artificial media (or metamateria)s the reported results open the question of the relevance of the spatial
dispersion in the characterization of these artificial media.
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Causality imposes that all material media must be disperRefs. 3,7 following different approaches. Both analysis are
sive. In most cases this behavior results in local dispersivearried out for wave propagation perpendicular to the wires
constitutive relations, i.e., in frequency-dependent constituand show that, for electric-field polarization along the wires,
tive permittivity and permeability tensors. Nonlocal disper-the medium is characterizéd a/\,b/A <1) by a frequency-
sive behaviof(i.e., spatial dispersion which results in con- dependent effective dielectric constant given by
stitutive operators depending also on the spatial derivatives

of the mean fieldgor, for plane electromagnetic waves, on kg wS
the wave-vector componentsis usually considered as a =g 1—E =go| 17— 1)
small effect, meaningful in the short-wavelength limit. Spe- w

cifically, spatial dispersion will always appear when the

higher-order terms in the series expansion of the constitutivd "€ constantag (the corresponding wave numbes

parameters in power series of the dimensionless paramet‘e:r“’OVsO'“O) n Eq.” (1) plays the r°|e .Of an equwak‘-?nt
lasma frequency.” Thus, this medium is often called “ar-

a/\ (a is the lattice constant of the crystal ancdthe wave- t? 1 bl . the ideatollisionl lect |
length inside the mediumare not neglectetl.Thus, it is ificial plasma” since the idedcollisionles$ electron plasma

usually assumed that nonlocal dispersive reations are only described by the same equivalent parameter. If the wires

meaningful when\ approaches. The usually weak natural

optical activity of some materials is a well-known example +Z o
of the application of this principlé When such principle is €, _ - - -~ ?
translated to the analysis of discrete artificial media, also - = b - ~
called metamaterials, it would imply that nonlocal dispersive N T ~
constitutive relations are only expected to be a small ~ A 42 -
refinement of the local constitutive relations usually con- ~ . - -
sidered. However, there is at least a counterexample for this
assumption.

The parallel wire medium is a medium formed by a regu-
lar lattice of ideally conducting wires with small radii com- P
pared to the lattice periods and the wavelength, see Fig. 1. It
has been known in microwave applications for a long fiffie
as an artificial dielectric, also calleddded mediunand qua- s - -7
sistatic models of the effective permittivity are available. : -~
Recently, some attention to wire media has been paid also in - N : Ly
optics (e.g., Refs. 6,fand in the realization of left-handed = ) =8
medi&® as composite media made from lattices of long con- |- - B |k
ducting wires and split ring resonatts'? (see discussions
corresponding to that ). The electromagnetic reponse of  FIG. 1. The geometry of wire media: A lattice of parallel ide-
the specific wire medium shown in Fig. 1 is analyzed inally conducting thin wires.
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are assumed to be very thin, so that their polarization in thelinary waves propagating along any direction in the media.

direction orthogonal to the wires can be neglected, the effecOn the contrary, Eq€1)—(3) predict propagation of extraor-

tive permittivity for electric-field polarization orthogonal to dinary waves at any frequency providegd>k= w+/uqeo.

the wires isgg. Thus, both models predict qualitatively very different behav-
The aforementioned analysis suggests that this wire meers, even near the cutoff plasma frequensy where g2

dium could be modeled as a uniaxial dielectric with the fol- -0 (i.e.,a/A—0). That is, the nonlocality of the proposed

lowing local permittivity dyadic: constitutive relations affects the electromagnetic response of
_ the medium even in the very large wavelength limit, thus
e==g2yZg+ go(XpXo+ YoYo), (2)  being important for any values of th@'\ ratio inside the

medium. Other relevant differences between the predictions

whose permittivity in the axial directiors;, would be given of both models will be developed along this paper.

bY Eq._(l). Howeve_r, it will be shown_ in the following that The rigorous proof of Eq(6) is based on the local-field
this nglvehypothess leads t_o unphysmal r_esults and must b%pproach which is described in detail in Ref. 16. In Ref. 16
substituted by a nonlocal dispersive relation. In fact, assum;

) . ; o -the low-frequency stop band of the wire medium has been
ing that the medium can be described by the uniaxial dyad'%nalyzed gs weﬁl as ﬁs high-frequency band-gap structure
(2), the dispersion equation for extraordinary plane wave y '

“This analysi Is that, in the thin wi didii
: T . . ysis reveals that, in the thin wire medigiRig. 1)
fjlizéqe&c?zic\,\/rlégéﬂgslS\lvave vectordy,dy,dz)  in this uniaxial and forg,#k, two sets of modes can propagate: ordinary

(with E,=0) and extraordinarywith E,#0) waves. The
80(q§+ q§)=s(k2—q§), 3) _ordlnary waves _do not interact Wlth the wires and pr(_)p_agf_:lte
in the host media. For extraordinary waves, an explicit dis-
wherek=w/equg is the phase constant of the host matrix. persion equation connecting the wave vectay
On the other hand, these extraordinary waves correspond te (g, ,qy,qz)T with the wave number of the host isotropic
the well-known TM (to z) set of modes, allowed by the matrix k= weouo has been derived in Ref. 16. It can be
invariance of the boundary conditions alongrhus, for any  written as
extraordinary wave traveling with a phase constnélong

the z axis, theE, field must satisfy the Helmholtz equation 1 b 1 sink{®a
PR ;IHZTHO i bk{® cosk(¥a—cosg,a
EJF a—yz+(k2—q§) =0 @ 1 sink&”)a 1
with the boundary conditiofE,=0 on the wires. It is clear 170 (bkf(”) coskMa—cosq,a 27'f|n|) -

from this equation that any “plane” extraordinary wave must

satisfy 8)
5 5 Here ki”) denotes thex component ofnth Floquet mode
K(dx,ay,d,) = Vk(ayx,dy,0) +0q5. (®)  wave vector:
This last result is incompatible with E§1)—(3), as can be 52
easily seen by substitution of E(L) into Eq. (3). However, k(W= —j \/ qy+ - +92-k2, Re\JO1>0. (9
if we choose
K2 The other notations are clear from Fig. 1. Numerical solution
e(K,q,)=e0| 1— 0 6) of this dispersion equation shows that there exists a low-
e 0 kz—qg frequency stop band for all propagation directiqescept

, ) for the particular case af,=k that will be analyzed later
instead of Eq(1), then Eqs(2) and (3) become compatible | ¢t 5 simplify the dispersion equatié8) for the quasistatic

with Eq. (5), giving the following dispersion equation for the casea,b<m/k. Using the Taylor expansion of si)(and

plane wave: cos) functions for small arguments we obtain Ed) with
9P=i+a2+qi=k*—k3, (7 , 21/

where we have assumed tligt~ k (the case withg, =k will ko= S ' (10

be analyzed at the end of this papefhe above rationale |n2wr0+F(r)

suggests that the considered wire media still can be described

by the permittivity dyadic(2), but the axial permittivitye ~ wheres=\/ab, r=a/b, and

must be a nonlocal parameter of the fo(6). The conven-

tional expressior{l) would be only a particular case of Eq. 1 < [coth(mnr)—1\ ar

(6), valid for wave propagation in the-y plane. F(r)=- §|”r+nzl — Y Jts @

The main difference between the local uniaxial model,
Eqg. (1), and the proposed nonlocal model, Ef), for the  Therefore, we have shown the suitability of the suggested
parallel wire medium is that the nonlocal model predicts aapproach for the description of the wire medium, wih
stop bandat frequencies below,=kq/+/equo) for extraor-  given by Eq.(10). Parametek, here plays the role of the
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wave number corresponding to the plasma frequency. More _ 4

exactly, it indicates the upper edge of the low-frequency stop ﬁk
band. Naturallyk, as a function of two lattice periodsand 33 Ry
b is a symmetric functionkq(a,b) =ky(b,a). It means that
functionF(r) has the following property=(1/r)=F(r). For
the commonly used case of the square gad=p), F(1)
=0.5275. Expressiofl0) looks similar to the approximate
expressions for the plasma frequency developed earlier in
Refs. 2—4,6, but for thin wires it is more accurate and takes
into account the geometry of the lattice. Notice that the dis-
persion equatiofi7) for extraordinary waves is indifferent to
the direction of the wires’ axis: the wave-vector components
dx.0y,d, enter into this equation completely symmetrically.
It means that, within the low-frequency stop band, the ex- . . . : :
traordinary wave decays with the same decay factor along all 0 05 1 15 2 25 3 35 4
directions in space. The same can be said for propagation in Normalized frequency, k/k,
the first frequency passband. This isotropy of the dispersion
equation is rather surprising since the medium is strongly FIG. 2. Normalized propagation factors in a parallel-plate wave-
anisotropic. However, it can be shown from the very funda-9uide vs normalized frequency for different types of waveguide
mental facts summarized in E¢&) and(3) by assuming, as f?lli_ng: _Thin splk_j Iine;, uniaxigl dielectric with a negative perrr_1it-
usual, that Eq(1) is valid for extraordinary waves propagat- tivity; thlck sollq line, wire medlu.m;.dashed Ilqe, empty waveguide.
ing in thex-y plane. The wire medium and the uniaxial dielectric have the sdge

It is possible to transit Eq6) from the spectral domain ~ ™ (29)-
(g,w) to the physical domainr(t). The following nonlocal
material equation can be derived from E®) using the
double Fourier transform:

— local dielectric |
— wire medium

-+ empty

Normalized propagation factor, g

=3

disappears when the nonlocal model summarized in(&q.
is used. Indeed, if the nonlocal axial permittivit§) is used
for the wire medium, we observe that no transmission inside

enkZc ) , the wire medium is possible fdt<k,. At k=Kkq transmis-
D(X,Y,2) = £oE(X,Y,2) + Zof J”C(H) sion is possible only in the case of the normal incidence.
2 —oJz-c(t-t') Only if k>kg, a refracted wave appears.
XE,(x,y,2' ,t")dZ'dt’, 12 Let us next consider the guidance of electromagnetic

waves in a parallel-plate waveguide infinite in theandy
directions and bounded by parallel perfectly conducting
planes orthogonal to theaxis. Separation between the con-
ducting walls isd. We assume that this waveguide is filled
with a wire medium with the wires along tledirection. We
will consider eigenwave propagation along thexis of the
TM; mode H, ,E,,E,#0). For waveguides filled by a lo-
cal uniaxial dielectric with anisotropy axis along thelirec-
tion we have from Eq(3)

wherec=1/\equg is the speed of light in the host matrix.
Here, the area of integration in tlzet plane is the light cone
|z—2z'|<c(t—t'). In other words, the kernel in the Fourier
convolution is u[c(t—t")—|z—2'|], where u(x) is the
Heaviside step function. It means that the poixty(z) in-
side the wire mediuntdescribed as a dispersive continyum
at moment is affected by the components of electric fields
coming from the domain(x,y,z=c(t—t’)) surrounding
(along the wire axisthis point during all the past timet/( -
<t). This result illustrates the consistency of the reported 2 (L2_ 2 N m
model from the relativistic standpoint. sod=e(k~0z), O gg d) } (13

In the following we will describe some relevant effects in ] ]
the analyzed parallel wire medium, associated with the spdf £>0, Eq.(13) gives a cutoff fork<z/d and propagation
tial dispersion. Refraction and reflection of plane waves at 407 k>/d. In contrast, ife<0, propagation is allowed
plane interface show strong differences between the locathenk</d (and forbidden fok> m/d). Within this pass-
and nonlocal models. Let us consider an interface betweep@nd a backward waved@/do<0) propagates, as one can
an isotropic dielectric with the permittivity; and a uniaxial ~S€€ in Fig. 2thin solid lineg. _ _
dielectric withe described by Eq(1). The interface is inthe ~ This amazing behavior disappears if one fills the wave-
y-z plane and it is illuminated by a plane wave coming fromguide with the analyzed nonlocal wire medium. Using Eq.
the isotropic dielectric. The wave vector and electric-field(7), We have in this case
vector lie inx-z plane @,=0,E,=0). The incidence angle

of the plane wave isf. If &;>¢,, £<0, and sif(6) 2, 2 2 - , [m\°

<gole; the wave will be completely reflected, but for Qe ta;=k?—kg, 0=\ K*—k5— E) . (19
Sirf(6)>go/e; some part of the wave will be transmitted

through the interface. This transmitted wave will be an ex-and we obtain the usual frequency behavior: cutoff kor
traordinary wave, as it follows from its polarization state, <./(7/d)?+ ko2 and propagation fok>/(7/d)*+ koz. An

and can be excited at any frequency. This amazing behavidncrease of the cutoff frequency is observed compared to the

k2—
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case when there is no filling medium, as one can see in Figorresponds to the transmission-line wave with,
2 (thick solid line and dashed line = o exp(=jq, -r,), wherer,=(x,,y,)" is the location of
Let us finally analyze the propagation of plane wavesine nth wire in the transversg-y plane.
along the wire medium for the particular caseqpf=k. In In summary, it has been shown that parallel wire media
this case, the nonlocal permittivity along theaxis (6) be-  nssess very strong spatial dispersion effects at any frequen-
comes infinite. To avoid the singularity problem we use Majag including the very large wavelength limit. An analytical
terial equation of the fornE=¢"'D. In this case, the Max- model for the nonlocal permittivity dyadic of these media
well equations have plane-wave solutions for all frequencieshas been presented and discussed. Inconsistency of the local
For these waves the transverse wave VeQIGF(qX,Qy)T is model for parallel wire media with nonvanishing wave-
arbitrary. The waves are transverse with respect to the wirgector component along the wires has been shown. Dramatic
axis: H,=0 andE,=0. The electric field is parallel to the gifferences in the predicted behavior of that media, arising
transverse wave vectay, XE=0. o from the use of the conventional local and/or the nonlocal
Such waves can be interpreted as transmission-line modegodel for the permittivity are shown. Finally, the proposed
propagating along the parallel wires. In fact, a seNahfi- o ical model for the permittivity has been found to be also
nite parallel wires can be viewed as a system of coupleditapie for the description of the transmission-line modes of
transmission lines. This system can suppiirdegenerate  he siructure. We feel that the reported results open the ques-
transmission-line waves witH,=0, E,=0, and phase con- jon of the role of spatial dispersion in the adequate charac-
stantq,=k. The electric field of these waves can be obtaineqerization of discrete metamaterials as effective media, at
from least if arbitrary directions of propagation and/or polarization
; of the electromagnetic field should be considered in the
E= = (Udytuydy) pixy)exp —jkz), (15 analysis. In additi%n, an example has been presented of an
where¢(x,y) is a quasielectrostatic potential taking constanteffective medium in which spatial dispersion is important at
but arbitrary valuegp, (n=1,2, ... N) at each wire. In fact, any frequency, in contrast with some commonly assumed
the plane wave with transverse wave numberand q,=k ideas about the physical relevance of this effect.
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