
middle of the forbidden band (the narrow peaks) is caused by the
phase parameter �� of the unit cell, whereas the anisotropy pa-
rameter (�/� � 0.067) is responsible for their position.

The simulation results are therefore in excellent agreement with
the measurements. Above 4 GHz, slight discrepancies are well
explained by the imperfections from the connectors and the
matched terminations.

5. CONCLUSION

We have investigated, both theoretically and experimentally, a
periodic lattice made of N � N four-port networks interconnected
by transmission lines, looked upon as discrete 2D photonic
bandgaps of finite size. Our method is completely analytical and
based upon a restricted set of so-called “canonical” parameters.
The S parameters of the entire network, exhibiting typical forbid-
den bands, are related to the properties of the unit cell. The
measurements obtained on a microwave prototype are in excellent
agreement with the simulations.

Due to the simplicity of the unit cell (reciprocal, passive, and
lossless), the structure studied herein should be considered as a

mere prototype; the same method can be extended to more sophis-
ticated networks. In this study, we were interested in the intrinsic
response of the discrete crystal only, with all external ports match-
ing. However, the same approach can be applied to any arbitrary
boundary condition. Moreover, such a high degree of symmetry is
not mandatory; the powerful approach of linear algebra would still
hold in the case of symmetry breaking, as would be the case for
artificial “doping” (by “defect” insertion or local network substi-
tution). Taking the losses into account would only add one degree
of freedom; besides, other classes of 2D symmetry could also be
considered.

The analytical approach is not only a simple way to describe a
discrete crystal, but is also a fast tool to synthesize spectral
functions such as filtering, addressing, or switching. We are cur-
rently working on these kinds of potential applications.
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ABSTRACT: Veselago medium (also called double negative material,
backward medium, left-handed medium) is a medium with both negative
isotropic dielectric permittivity and permeability. It has the effect of back-
ward waves with negative (anomalous) refraction, in contrast to the usual
forward waves with normal refraction in normal isotropic dielectrics and/or
magnetics. In this paper, examples of the existence of backward waves (with
respect to the interface) without negative refraction, and negative refraction
without backward waves in uniaxial dielectrics with negative permittivity
along the anisotropy axis, are presented. Considering these examples in-
creases the possibility of designing backward wave materials and negative

Figure 9 Comparison between simulated and experimental results: (a)
transmission coefficient �S43�; (b) reflection coefficient �S33�. Simulation
(dashed line) and measurements (solid line)

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 37, No. 4, May 20 2003 259

© 2003 Wiley Periodicals, Inc. Reprinted, with permission, from P.A. Belov, Microwave and Optical Technology Letters, Vol. 37, No. 4, pp. 259-263, 2003.



refraction materials without using magnetic media. © 2003 Wiley Periodi-
cals, Inc. Microwave Opt Technol Lett 37: 259–263, 2003; Published on-
line in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/
mop.10887
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1. INTRODUCTION

In the 1960s Veselago theoretically proposed a new class of media
with extraordinary properties [1]: a material with both negative
dielectric permittivity � and magnetic permeability �. Such a type
of material is called Veselago medium. In the literature Veselago
medium is also called backward medium [2, 3], left-handed me-
dium [4–7], or double negative medium [8]. Recently, Veselago
medium has attracted a lot of attention due to very interesting
potential applications. The possibility of perfect lens construction
was predicted by Pendry in [9]. The perfect lens design uses the
property of anomalous (negative) refraction of a Veselago medium
interface. The subwavelength cavity resonator design was invented
by Engheta in [10] and is based on the backward wave property of
Veselago medium.

There is a very important question for applications regarding
possibilities of designing backward wave and/or negative refrac-
tion materials without using magnetic media. It is possible to use
different kinds of photonic (electromagnetic) crystals in various
regimes for this purpose [11–15]. In such media, the effects appear
near spatial resonances (stopbands) of the structure, then the char-
acteristic period of the crystal becomes comparable with the wave-
length. Thus, photonic crystal can be used in the design of super-
lenses [14, 15], but it is impossible to use them for subwavelength
cavity resonator design due to the small thickness of the media
layer in comparison with the necessary wavelength.

Very interesting focusing effects (near-perfect lenses and near-
field imaging) were found for slabs of negative dielectric constant
isotropic materials [16–18]. It is important to consider properties
of anisotropic dielectrics in order to check for backward wave
and/or negative refraction effects.

In [2] the properties of uniaxial magneto-dielectrics with neg-
ative parameters were discussed in detail. It was shown that
negative (anomalous) refraction for one polarization can be
achieved in a uniaxial magneto-dielectric, even if only one of the
four material parameters are negative. In this paper two interesting
refraction effects, using uniaxial dielectrics with negative material
parameters, are considered and discussed in detail. Examples of
positive refraction of the wave, which is backward with respect to
the interface and negative refraction of the forward wave, are
possible.

2. DEFINITIONS

Trying to clarify the question about possibility of existence back-
ward wave materials without negative refraction and/or negative
refraction materials without backward waves, one needs exact
definitions in order to study desired effects. In this paper the

following terminology is used (for classification of homogeneous
plane waves in lossless media).

(i) For the direction of wave vector q in the medium with respect
to the energy flow (time-averaged Poynting vector S): for-
ward wave is a wave which has an acute angle between the
wave vector q and the Poynting vector S (S � q � 0);
backward wave is a wave which has an obtuse angle between
the wave vector q and the Poynting vector S (S � q � 0).

(ii) For the direction of the energy flow (Poynting vector S) with
respect to the tangentional component of the wave vector of
the incident wave kt (after refraction of a plane wave coming
from an isotropic dielectric): positive refraction is the phe-
nomenon when the Poynting vector S of the refracted wave
and tangentional component of the wave vector of incident
wave kt make an acute angle (S � kt � 0); negative refraction
is the phenomenon when the Poynting vector S of the re-
fracted wave and tangentional component of the wave vector
of incident wave kt make an obtuse angle (S � kt � 0).

(iii) For the direction of the wave vector q of the transmitted wave
with respect to the interface (after refraction of a plane
incident wave coming from an isotropic dielectric): forward
wave with respect to the interface is a refracted wave which
has an acute angle between the wave vector q of refracted
wave and an inner interface normal n (n � q � 0); backward
wave with respect to the interface is a refracted wave which
has an obtuse angle between the wave vector q of refracted
wave and an inner interface normal n (n � q � 0).

The property of the wave to be forward or backward is deter-
mined only by the media properties, without taking refraction
problems into consideration. At the same time, the phenomena of
positive/negative refraction and forward/backward waves, with
respect to the interface, are determined not only by the media
properties, but also by the refraction problems. The orientation of
the interface with respect to the inner geometry of the media plays
an important role here.

Pendry in [9] has used the negative refraction effect for focus-
ing, and backward wave effect to have all incoming rays in phase,
but the last demand can be achieved using forward waves also [14,
15]. Engheta in [10] has used the property of a wave to be
backward with respect to the interface.

3. GENERAL THEORY

Let us consider the properties of non-magnetic medium with the
dielectric permittivity diadic �� in the form:

�� � �_xx � ��yy � zz�, (1)

with �_ � 0, � � 0. Such material will be called negative uniaxial
dielectric.Figure 1 (a) Forward wave S � q � 0; (b) backward wave S � q � 0

Figure 2 (a) Positive refraction S � kt � 0; (b) negative refraction S �

kt � 0
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Propagation of a plane electromagnetic wave with real wave
vector q, electric field E, and magnetic field H in such media can
be described using a Maxwell’s equation in the following form:

�	j�q 	 H� � j
�� � E
	j�q 	 E� � 	j
�0H

. (2)

By substituting Eq. (2) into Eq. (1), we obtain following equation:

�
q 	 
q 	 I��� � �0

2��� � E � 0. (3)

For an eigenmode of the medium of Eq. (1), the determinant of
the dyadic in Eq. (3) must be zero, given by [1]:

det
�0

2�ij � q2�ij � qiqj� � 0. (4)

Eq. (4) is the dispersion equation [2, 19] for the medium under
consideration. The first solution of Eq. (4) corresponds to the
ordinary mode with the electric field perpendicular to both the
anisotropy axis and the wave vector:

qx
2 � qy

2 � qz
2 � k2. (5)

The second solution corresponds to the extraordinary mode [2,
19]:

��qy
2 � qz

2� � �_�k2 � qx
2�. (6)

This is the object of our interest. One can see that extraordinary
propagating modes exist in the negative uniaxial dielectric of Eq.
(1) with qx � k. Note that all eigenwaves of the negative uniaxial
dielectric are the usual forward waves: wave vector q and Poynting
vector S make an acute angle. It can be seen directly from Eq. (2)
that

q � S � q � �E 	 H�/2 � H � �q 	 E�/2 � 
�0H
2/2 � 0. (7)

4. BACKWARD WAVES WITH RESPECT TO INTERFACE
WITHOUT NEGATIVE REFRACTION

Let us consider an interface (see Fig. 4) between an isotropic
dielectric with permittivity �̃ and a uniaxial dielectric with ��
described by Eq. (1). It is assumed that �̃ � �. The interface is in
the x–y plane and is illuminated by a TM plane wave coming from
the isotropic dielectric. The wave vector ki and electric field vector
Ei lie in the x–z plane with ky

i � 0, Ey
i � 0 (see Fig. 4).

In the case if �_ � 0, the total internal reflection corresponding
to the inequality sin(
) � 
�/�̃ exists. But, if �_ � 0, the situation
is the opposite. For sin(
) � 
�/�̃, the wave will be completely
reflected, but for the angles with sin(
) � 
�/�̃, some part of the
wave will be transmitted through the interface.

Let us solve this reflection/transmission problem and show that
in this case we have an example of backward wave with respect to

interface and positive refraction. Using Eq. (6) we find the qz

component of the wave vector of the transmitted wave (qx � kx �
kisin 
), given by

qz � �k���_�
�2 ��̃ sin2 
 � ��. (8)

The direction of the wave vector of the transmitted wave (the
sign of qz) cannot be determined at this stage. We need to choose
correctly the direction of the power flow vector (Poynting vector)
from the interface and only after that will we be able to determine
the direction of the wave vector. Eq. (3) gives a relation for the
components of the electric field Et of the transmitted wave:

�_qxEx
t � �qzEz

t � 0. (9)

The boundary conditions give us the following relations among
the amplitudes of the electric fields of the incident Ei, reflected Er,
and transmitted Et waves:

� �Ei � Er�cos 
 � Ex
t

�̃�Ei � Er�sin 
 � �Ez
t (10)

Together with Eq. (9), this forms a system of three equations
with three unknowns, allowing us to calculate all the parameters of
the problem. The calculation shows that in order to have the
transmitted wave transmit energy from the interface into uniaxial
medium, the following inequality must be satisfied:

z � St �

�_

2qz
�Ex

t �2 � 0. (11)

Thus, one can see that qz � 0, and we must choose the positive
sign in relation (8). This means that the transmitted wave is a
backward wave with respect to the interface.

On the other hand, we have

x � St �

�

2qx
�Ez

t�2 � 0, (12)

which means that we have positive refraction.
It is also interesting to study the expression for the reflection

coefficient from the considered interface, given by
Figure 3 (a) Forward wave with respect to the interface q � n � 0; (b)
backward wave with respect to the interface q � n � 0

Figure 4 Backward wave with respect to interface without negative
refraction
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R �
�_qxcos 
 � �̃qzsin 


�_qxcos 
 � �̃qzsin 

. (13)

We find that the reflection coefficient is equal to zero if

sin 
 � ����̃ � ��_��
�̃2 � ���_� . (14)

Such a real angle always exists and is found in the region 1 �
sin(
) � 
�/�̃ if �̃ � �. The wave incident with such an angle
completely transmits with positive refraction into the uniaxial
dielectric and becomes backward with respect to interface.

If one would like to have identical described effects in any
plane of incidence (not only OXZ, as was considered) the follow-
ing double negative uniaxial dielectric should be used instead of
Eq. (1):

�� � �_�xx � yy� � �zz, (15)

with �_ � 0, � � 0.

5. NEGATIVE REFRACTION WITHOUT BACKWARD WAVES
WITH RESPECT TO INTERFACE

Next, consider an interface in the y–z plane (see Fig. 5) illuminated
by a TM plane wave coming from the isotropic dielectric with the
wave vector ki and electric field vector Ei lying in the x–z plane
with ky

i � 0, Ey
i � 0 (see Fig. 5). In this case the refracted wave

exists for all possible incidence angles and it will be shown that we
have examples of negative refraction, but forward wave with
respect to interface.

Using Eq. (6) we find the qx component of the wave vector of
transmitted wave (qz � kz � kisin 
), given by

qx � �k�1 �
�̃

�_
sin2 
. (16)

As in the previous case we will choose the sign of qx on the
base of the correct direction of the power flow vector (Poynting
vector) from the interface. Relation (9) is still valid, but the system
of Eq. (10) transforms to

� �Ei � Er�cos 
 � Ex
t

�̃�Ei � Er�sin 
 � �_Ez
t . (17)

The inequality in Eq. (11), corresponding to the demand for the
transmitted wave to transfer energy from the interface into the
uniaxial medium, transforms to

x � St �

�

2qx
�Ez

t�2 � 0, (18)

and it follows that we must take the negative sign in Eq. (16).
Thus, we have a forward wave with respect to interface.

On the other hand, we have

z � St �

�_

2qz
�Ex

t �2 � 0, (19)

which means that we have a negative refraction phenomenon.
The reflection coefficient from considered interface is

R �
�_

2qxcos 
 � �̃�qzsin 


�_
2qxcos 
 � �̃�qzsin 


. (20)

One can see that reflection coefficient is equal to zero if

sin 
 � ���_�3 � �̃�2

��_�3 � �̃2�
. (21)

In the same manner as in the previous case, such a real angle exists
if � � �̃ and is found in region 1 � sin(
) � 
�/�̃. The wave
incident with such an angle completely transmits into the uniaxial
dielectric with negative refraction and remains a forward wave
with respect to interface.

Note that the described effect of negative refraction can be
observed for any plane of incidence (not only OXZ, as was
considered).

6. CONCLUSION

In this paper we have presented simple examples of possibilities of
negative refraction without backward waves, and backward waves
with respect to the interface without negative refraction, for ho-
mogeneous TM plane waves. The examples are based on uniaxial
dielectric with negative permittivity along the anisotropy axis. The
material is completely nonmagnetic.
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ABSTRACT: This paper reports on a new method for the determina-
tion of the performance qualities of a semi-anechoic chamber used for
electromagnetic compatibility measurements. This approach, based on
highly efficient and accurate circuital techniques, provides very good
results on low-cost desktop computers in the frequency range 30–300 MHz.
© 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 37: 263–265,
2003; Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/mop.10888
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INTRODUCTION

The design of semi-anechoic chambers for electromagnetic com-
patibility (EMC) measurements is a very complex process and
manufacturers usually carry out their designs on an eminently
empirical basis. Currently, different methods to evaluate the ex-
pected operation of anechoic and semi-anechoic chambers are
used. The most typical one, due to its simplicity, is the ray tracing
technique [1]. This approach assumes that both the transmitting
and the receiving antennae are sited in the far-field area and that
the waves are locally planed on the chamber walls. The method
uses geometrical optics (GO) to calculate the waves reflected by
the walls and considers one or more reflections depending on the
desired accuracy. All these assumptions cause the ray tracing
technique to be inaccurate at frequencies lower than 100 MHz. In
order to study the chamber behavior below this limit, methods
based on the direct resolution of Maxwell’s equations must be
used, such as the finite-element method (FEM) [2], the finite-
integration technique (FIT) [3], or the finite-difference time-do-
main (FDTD) method [4]. All these approaches transform the 3D
Maxwell’s equations into an algebraic problem and provide the
full-wave electromagnetic field in a finite set of points. However,
the accuracy of these methods strongly depends on the size of the

final algebraic problem and, for actual chamber analysis, they
become rather slow and require huge amounts of computer mem-
ory. To achieve good results in a reasonable time it is necessary to
use very expensive and large multiprocessor computers. There are
various technological alternatives to cover the walls of the cham-
ber in order to reduce the reflected power and make it operate like
an open area test site (OATS) [5]. The work presented in this paper
focuses on the analysis of those chambers using ceramic ferrite
tiles. To this end, a new and very accurate method with a relatively
low computational cost has been developed for the analysis of
semi-anechoic chambers in the range of frequencies between 30
MHz and 300 MHz. This method has been validated by comparing
the computed results with measurements performed inside a real
chamber.

THEORETICAL DEVELOPMENT

Our developed method is based on the application of modal
analysis on Cartesian coordinates, combined with techniques sim-
ilar to those used in microwave circuit theory [6]. The analysis of
the chamber is performed for two orthogonal polarizations—hor-
izontal and vertical—defined according to the chamber floor,
which is considered as an electric wall. For the sake of symmetry,
only half of the structure is analyzed. To this end, an electric or
magnetic wall is situated on the horizontal plane (for cases of
vertical and horizontal polarization, respectively), as shown in
Figure 1. The walls, covered with absorbent material, are treated as
if they were ports in a microwave network and numbered 1 to 4
(see Fig. 1).

The solution for the Maxwell’s equations in the empty volume
of the semi-anechoic chamber is decomposed as an addition of the
homogeneous solution plus a particular solution of the inhomoge-
neous equation. The homogeneous solution may be obtained by
using the modal analysis method as a summation of rectangular
harmonics. The effect of the walls on the homogeneous component
of the field is taken into account by means of the [F] matrix, which
relates certain tangential components of the homogeneous electric
and magnetic fields at each port, given by


Hh� � 
F�
Eh�, (1)

where [Eh] and [Hh] are the vectors of the modal coefficients from
the homogeneous electric and magnetic fields, respectively.

The effect of the absorbent walls on the total field is considered
by means of a generalized admittance matrix [Y], which relates
certain components of the total tangential electric and magnetic
fields at each port, given by


H� � 
Y�
E� (2)

with [H] and [E] the modal coefficient vectors from the total
electric and magnetic fields within the chamber, respectively. If the
walls are covered with ferrite tiles over a dielectric layer (usually
wood), the admittance matrix may be obtained, assuming that the
ports are uncoupled with each other (the admittance matrix will
then be block diagonal). To calculate the admittance sub-matrices
corresponding to each access we have used a model of shorted
waveguides, through which the corresponding modes propagate.
The total electric and magnetic fields may be decomposed, as
mentioned above, as the addition of the homogeneous and the
inhomogeneous field vectors:


H� � 
Hh� � 
Hi�, 
E� � 
Eh� � 
Hi�, (3)
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