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Abstract—An analytical theory of electromagnetic waves in artificial
media formed by a rectangular lattice of thin ideally conducting
cylinders using the local field approach is developed. As a result,
the transcendental dispersion equation is obtained in closed form and
solved numerically. Typical dispersion curves are calculated. Using
these results, the reflection problem from an interface between a half
space of wire medium and free space is solved for plane-wave excitation.
In the low-frequency approximation a simple analytical formula for the
frequency dependent effective dielectric permittivity is established.
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1. INTRODUCTION

Artificial materials for application in microwave regime have been
known for a long time. One of the most attractive features of composite
materials is the fact that some unique and exotic material properties
can be realized. For example, new realizations and new applications
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for composite media with negative permittivity and permeability were
suggested recently. One possible realization of material with negative
permittivity is the use of a three-dimensional lattice formed by thin
parallel conducting wires. This structure is known in the microwave
engineering for a long time as an artificial dielectric [1, 21], and we
will call it wire medium. In the literature wire media have received
increasing attention recently because of potential new applications, for
example as antenna reflectors. They can be used also in the synthesis of
artificial impedance surfaces [2]. More recently, wire media formed by
long but finite-length wires were studied [3], and some new interesting
phenomena described, such as angular windows of wave propagation.

This paper presents the results of an analytical investigation
of electromagnetic properties of wire media. The results describe
eigenwave properties and plane-wave reflection from an interface with
such a material, and give a simple model for the medium parameter in
the quasi-static regime.

There are many known numerical techniques and enough
complicated theories describing electromagnetic properties of the
structure of our interest. For example, in [4] the propagation of
electromagnetic waves through arrays (square and hexagonal) of
perfectly conducting cylinders for both fundamental polarizations is
studied using generalized Rayleigh method (expansion by cylindrical
harmonics). The properties of dispersion diagrams are investigated and
a comparison with the quasistatic limit is done. The Green functions
and lattice sums are calculated by an original method [5].

In the optical frequency band near the plasmon resonance metals
can be effectively described by a dielectric permittivity depending on
the frequency. In this case in electrodynamic terms a square grid
of metallic cylinders is modelled as an equivalent grid of dielectric
cylinders with a frequency dependent permittivity. The dispersion
characteristics of such metallic systems are studied in [6–9] using the
plane-wave expansion method, and the transmission characteristics are
considered in [10, 11] using the transfer matrix method [12]. All these
methods can be successfully used for perfectly conducting cylinders
also.

A lot of attention is paid to discussions of a low-frequency band
gap existence in [13]. The analysis is based on calculations using
computer codes based on rigorous theories of scattering. The authors
show that the structure can be simulated as a material that has a
plasmon frequency in the microwave domain and can be used as an
antenna substrate.

A very interesting approach to the analysis of media formed by
long but finite wires is presented in [3]. The material is split into its
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elementary planes, and the periodic method of moments is applied for
characterization of each plane. The effective wavenumber is determined
from the theory of periodic structures. The artificial material has a
small propagation band at low frequencies due to the finite size of
wires and a classical bandgap at higher frequencies.

Although there are several available numerical techniques for
modelling of metallic periodic grids of infinite cylinders, there has been
very modest progress in developing exact and approximate analytical
models. The well known method based on the transmission line theory
[1] is accurate only if the ratio between the lattice constants of the
media is sufficiently large (in this case the quasistatic approach can be
applied for the description of interaction in densely packed planes of
wires and the single-mode approach for the interaction between these
planes). The analytical results in [4] are too complex. A considerably
simpler analytical method for the calculation of the band structure
of grids from ideally conducting cylinders is presented in [14]. That
approach is based on ideas of spatial averaging.

Here we introduce a simple and in the same time exact analytical
theory of dispersion and reflection from media formed by lattices of
thin ideally conducting cylinders using the local field approach in the
manner similar to that used for three-dimensional lattices of scatterers
in [15].

2. FORMULATION OF THE PROBLEM

We consider “wire media”: rectangular grids of infinite wires as
depicted on Figure 1. The elementary cells have dimensions a × b.
The radius of wires is r0 � a, b. Our main goal is to build the
dispersion theory of this media and investigate the reflection of plane
electromagnetic waves from a half space filled by the artificial material.
It will be also very important to analyze possible descriptions of
the material in terms of the effective permittivity parameter in the
quasistatic limit.

Let us choose a coordinate system such that OZ-axis is the axis
of one (reference) wire, and OX and OY -axes are parallel to a and b,
respectively. In this coordinate system the radius vectors of distances
from the reference wire to the wire with numbers m,n can be written
as Rm,n = ma + nb. We assume that the wires are thin compared to
the grid periods, so that polarization perpendicular to the wire axis
is very small compared to the longitudinal one. Thus, the electric
field produced by the polarized wire in the volume outside the wires is
equal to the electric field of current lines. In studies of eigenwaves in
the infinite periodic structure we assume the plane-wave dependence
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Figure 1. The geometry of wire media: an array of parallel ideally
conducting thin wires.

of the current amplitudes in the form

Im,n = Ie−j(qxam+qybn+qzz), (1)

where I is the current of the reference wire. The time dependance is
harmonic: ejωt.

The field of every wire can be described using Green’s function
(e.g., [16])

G(r, z) =
j

4
H

(2)
0

(√
k2 − q2

z r

)
e−jqzz, (2)

where distance r is measured from the wire axis, and k is the free-space
wave number.

We need only the expression for the longitudinal electric field
component which can be obtained from (2) in the following form:

E(r, z) = −η(k2 − q2
z)

4k
H

(2)
0

(√
k2 − q2

z r

)
Ie−jqzz, (3)

where η is the free-space wave impedance.
The effective susceptibility of a wire excited by local electric field

which depends on the coordinate along the wire like Eloce−jqzz can be



Dispersion and reflection properties of artificial media 1157

found from the boundary condition on the wire surface:

α =
I

Eloc
z

=

[
η(k2 − q2

z)
4k

H
(2)
0

(√
k2 − q2

z r0

)]−1

≈
[
η(k2 − q2

z)
4k

(
1 − j

2
π

{
log

√
k2 − q2

z r0

2
+ γ

})]−1

, (4)

where γ ≈ 0.5772 is the Euler constant. Thus, we can model the wires
by lines of current with the known susceptibility (4).

3. DISPERSION EQUATION

The dispersion characteristics of the media under consideration can
be found as solutions of the corresponding eigenvalue problem. We
will follow deduction introduced in [15] for a three-dimensional lattice.
Assuming that an eigenwave has a plane-wave spatial dependence
e−j(qxx+qyy+qzz), we write the expression for the local electric field
acting on the reference wire:

α−1I = Eloc
z

= −η(k2−q2
z)

4k

∑
(m,n) �=(0,0)

[
H

(2)
0

(√
k2−q2

zRm,n

)
e−j(qxam+qybn)

]
I. (5)

Using this formula we can easily write down the dispersion equation:

α−1 = C(k, qx, qy, qz), (6)

where C is the dynamic interaction constant that describes interaction
effects in the infinite lattice:

C(k, qx, qy, qz) = −η(k2 − q2
z)

4k∑
(m,n) �=(0,0)

[
H

(2)
0

(√
k2 − q2

z Rm,n

)
e−j(qxam+qybn)

]
. (7)

The main difficulty there is of course calculation of the double series
in the expression for the interaction constant C. Direct calculation of
this series is not possible due to the fact that the series is diverging (in
the absence of losses).

Using summation by layers corresponding to the m-index, we can
rewrite the double series through terms β(m) corresponding to each
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layer:

C(k, qx, qy, qz) =
+∞∑

m=−∞
β(m)e−jqxam, (8)

β(m) = −η(k2 − q2
z)

4k

+∞∑
n=−∞

[
H

(2)
0

(√
k2 − q2

z Rm,n

)
e−jqybn

]
, for m �= 0;

(9)

β(0) = −η(k2 − q2
z)

4k

∑
n�=0

[
H

(2)
0

(√
k2 − q2

z Rm,n

)
e−jqybn

]
. (10)

The term β(0) corresponding to the zero-plane can be calculated
using the Poisson summation formula with singularity cancellation [17]:

β(0) = −η(k2 − q2
z)

4k

∑
n�=0

[
H

(2)
0

(√
k2 − q2

zbn

)
e−jqyb|n|

]
(11)

= −η(k2 − q2
z)

2k


 1√

k2 − q2
y − q2

zb
− 1

2
+

j

π

(
log

√
k2 − q2

zb

4π
+γ

)

+
j

b

∑
n�=0




1√(
qy +

2πn
b

)2

+ q2
z − k2

− b

2π|n|





 .

For calculation of terms β(m) of the other layers the Floquet
representation can be applied:

β(m) = −η(k2 − k2
z)

4k

+∞∑
n=−∞

[
H

(2)
0

(√
k2 − q2

zRm,n

)
e−jqybn

]
(12)

= −η(k2 − q2
z)

2kb

+∞∑
n=−∞

e−jk
(n)
x a|m|

k
(n)
x

.

Here k
(n)
x denotes the X-component of n-th Floquet mode’s wave

vector:

k(n)
x = −j

√(
qy +

2πn
b

)2

+ q2
z − k2, Re{

√
()} > 0. (13)
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Substituting (12) into (8), changing the order of summation
and using the following expression for summation of the geometrical
progressions:

∞∑
m=−∞

e−jk
(n)
x a|m|−jqxam =

j sin k
(n)
x a

cos k(n)
x a− cos qxa

, (14)

we obtain a very useful expression for the calculation of the dynamic
interaction constant:

C(k, qx, qy, qz) = β(0)−η(k2 − q2
z)

2kb

+∞∑
n=−∞

1

k
(n)
x

(
jsin k

(n)
x a

cos k(n)
x a− cos qxa

− 1

)

(15)
The series here has excellent convergence. Substituting (15)

together with (4) and (12) into the dispersion equation (6) we get

1
π

log
b

2πr0
+

1

bk
(0)
x

sin k
(0)
x a

cos k(0)
x a− cos qxa

(16)

+
∑
n�=0

(
1

bk
(n)
x

sin k
(n)
x a

cos k(n)
x a− cos qxa

− 1
2π|n|

)
= 0.

This final dispersion equation is exact for thin ideally conducting wires,
the only assumption is that r0 � a, b, λ.

Let us note that we have obtained a real-valued dispersion
equation. The terms corresponding to the evanescent Floquet modes
are purely real:

1

bk
(n)
x

sin k
(n)
x a

cos k(n)
x a− cos qxa

=
1

bIm{k(n)
x }

sinh(Im{k(n)
x }a)

cosh(Im{k(n)
x }a) − cos qxa

(17)
Solving the dispersion equation (16) we can obtain dependencies

of the eigenwave propagation constants qx, qy, qz on the frequency ω.
One can see that the dispersion curves are the lines of level

corresponding to 1
π log b

2πr0
of the surface described by the other terms

in the dispersion equation (16). This surface is plotted on Figure 2.
Here, the normalized frequency is ka/(2π) = ω

√
ε0µ0a/(2π) and

Γ = (0, 0, 0)T , X = (π/a, 0, 0)T , M = (π/a, π/a, 0) are points in the
first Brillouin zone.

We should note that the obtained dispersion equation (16) looks
asymmetric with respect to an interchange of a and b together with
kx and ky. Obviously, it must be symmetric due to the symmetry
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Figure 2. Illustration for the dispersion equation. The lines of level
of this surface corresponding to the value 1

π log b
2πr0

are the dispersion
curves of the eigenmodes.

of equation (7), from which we have started the derivation. We have
checked numerically this fact and proved that expression (16) does
possess this symmetry property. This means that one can use instead
of (16) its equivalent form

1
π

log
a

2πr0
+

1

ak
(0)
y

sin k
(0)
y b

cos k(0)
y b− cos qyb

+
∑
n�=0

(
1

ak
(n)
y

sin k
(n)
y b

cos k(n)
y b− cos qyb

− 1
2π|n|

)
= 0, (18)

k(n)
y = −j

√(
qx +

2πn
a

)2

+ q2
z − k2, Re{

√
()} > 0 (19)

with the same results.
The dispersion equation in form (16) can be easily analyzed

numerically, but it is of advantage to rewrite it in the standard form
adopted in the theory of periodical waveguides (e.g., [1, 18]):

cos qxa− cos k(0)
x a = j

η

2Zs
sin k(0)

x a, (20)
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where the effective impedance for a layer of wires reads

Zs=j
η

2


bk

(0)
x

π
log

b

2πr0
+ k(0)

x

∑
n�=0

(
1

k
(n)
x

sin k
(n)
x a

cos k(n)
x a− cos qxa

− b

2π|n|

)
 .

(21)
This impedance without taking into account the terms corresponding
to the evanescent modes does not depend on the propagation constant.
It means that in the plane-wave-interaction approximation (only the
fundamental Floquet modes between the wire layers) the dispersion
equation can be solved analytically, and we have the classical result
[18]. But if all the Floquet harmonics are taken into account, the
equivalent surface impedance (21) depends on the frequency and on the
wavevector Zs(k, qx, qy, qz), which means there are spatial dispersion
effects. A similar description for arrays of small particles was suggested
in [19].

Also it is instructive to write a simplified dispersion equation for
the axial propagation (along OY axis, qx = qz = 0) in the form:

1
π

log
b

2πr0
=

cot(k(0)
x a/2)

bk
(0)
x

+
∑
n�=0

(
cot(k(n)

x a/2)

bk
(n)
x

+
1

2π|n|

)
, (22)

k(n)
x = −j

√(
qy +

2πn
b

)2

− k2, Re{
√

()} > 0. (23)

or in the equivalent symmetrically transformed form:

1
π

log
a

2πr0
+

1

ak
(0)
y

sin k
(0)
y a

cos k(0)
y a− cos qya

+
∑
n�=0

(
1

ak
(n)
y

sin k
(n)
y b

cos k(n)
y b− cos qyb

− 1
2π|n|

)
= 0, (24)

k(n)
y = −j

√(
2πn
a

)2

− k2, Re{
√

()} > 0. (25)

In (22) the dependence on qy is only through parameters k
(n)
x ,

but in (22) the values k
(n)
y are independent on qy. Thus, we have

a different in form but equivalent expressions (22) and (24) of the
dispersion equation for the axial propagation. One can use any of
these formulae with the same result.

To verify the introduced theory, a comparison with the results
obtained in [14] has been done. The dispersion curves for a square
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grid of cylinders with the filling ratio f = πr2
0/a

2 = 0.001 have been
calculated using the introduced technique, and the result is shown on
Figure 3, where Γ = (0, 0, 0)T , X = (π/a, 0, 0)T , and M = (π/a, π/a, 0)
are points in the first Brillouin zone. Here, together with the thick lines
representing the dispersion curves for the wire medium, the dispersion
curves for free space are presented for comparison (as thin lines).
Excellent correspondence between our result and results from [4] and
[14] is observed.

0
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M  X M Γ

π

Figure 3. Dispersion curves for a square grid of cylinders with the
filling ratio f = 0.001 (thick lines) and dispersion curves for free space
(thin lines).

4. REFLECTION COEFFICIENT

Let us consider a plane interface between a half space filled with a
wire medium (x > 0 or index m ≥ 0) and free space. Suppose that an
incident plane electromagnetic wave Ee−j(kxx+kyy+kzz) is exciting the
medium. If we neglect the transition layer and assume that even the
first raw of wires is excited in the same way as wires in the bulk, the
layer-to-layer distribution of the currents will be given by (1), where
qx is the propagation constant which can be found as a solution of
dispersion equation (16) with qy = ky, qz = kz. This also means that
we consider the situation when there is only one propagating mode in
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the medium. In the theory of dielectrics it is known that the surface
correction is actually rather small [15]. Let us write the equations
for the current in some M -th layer located deeply inside the medium
(M � 1) through the local electric field produced by the wires and the
incident wave:

Ie−jqxaM = α


Eze

−jkxaM +


 +∞∑

m=−M

β(m)e−jqxam


 Ie−jqxaM


 . (26)

Direct calculation of the series in the right side of this equation
is a complicated problem, but we can take into account the fact that
the layer-to-layer distribution is described by the propagation constant
which is a solution of the dispersion equation for the corresponding
infinite medium. Using formulae (6) and (8) together we have

+∞∑
m=−∞

β(m)e−jqxam = α−1, (27)

which leads to
+∞∑

m=−M

β(m)e−jqxam = α−1 −
−M−1∑
m=−∞

β(m)e−jqxam. (28)

For layers with large numbers m the evanescent Floquet modes in
expression (12) for interaction parameters β(m) can be neglected:

β(−m) ≈ −η(k2 − q2
z)

2kb
e−jkxam

kx
, m � 1. (29)

Thus,
−M−1∑
m=−∞

β(m)e−jqxam = −η(k2 − q2
z)

2kbkx

e−j(kx−qx)a(M+1)

1 − e−j(kx−qx)a
. (30)

Further, we get

I = −
[
η(k2 − q2

z)
2kbkx

e−j(kx−qx)a

1 − e−j(kx−qx)a

]−1

Ez. (31)

The reflected electric field produced by the excited lattice is a sum of
plane waves generated by all the layers:

ER = −η(k2 − q2
z)

2kbkx

+∞∑
m=0

e−j(kx+qx)amI

= −η(k2 − q2
z)

2kbkx

I

1 − e−j(kx+qx)a
. (32)
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Finally, the reflection coefficient reads

R = −1 − e−j(qx−kx)a

1 − e−j(qx+kx)a
= ejkxa sin[(kx − qx)a/2]

sin[(kx + qx)a/2]
. (33)

The result depends on the reference plane. It appears of advantage
to rewrite the above equation for the plane at a half-period distance
from the first wire, measured inward the medium:

R =
sin[(kx − qx)a/2]
sin[(kx + qx)a/2]

. (34)

This value is real for propagating modes (qx is purely real). For
decaying modes inside a stop band (when qx is purely imaginary) we
have full power reflection: |R| = 1.

Also we should note, that we have deducted (34) for modes
propagating from free space into the half space filled by wires. It means
that we should take the correct sign of qx to insert it in these formulae in
accordance with the dispersion sign. We solve the dispersion equation
for real propagation constants q̃x in the range [0 . . . π/a], and for
the single-mode regime ka/(2π) < 1 we should take qx = q̃x, if
ka/(2π) < 0.5, but qx = −q̃x, if ka/(2π) > 0.5. From the two solutions
having a nonzero imaginary part of the propagation constant we should
choose decaying ones.

As a numerical example we have calculated the reflection
coefficient from a half-space filled by a square grid of cylinders with
the filling ratio f = 0.001 in the single-mode regime (ka < 2π). The
result is shown in Figure 4 as a function of the normalized frequency
ka/(2π). The reflection coefficient equals to −1 at very low frequencies.
Within the low-frequency stop band it changes its phase, so that at the
top edge of the band gap at ka/(2π) ≈ 0.25 the reflection coefficient
becomes equal to +1. In other words, the interface behaves as a metal
wall at ka → 0, but it reflects as a magnetic wall at frequencies close
to the first propagation window. The reflection coefficient remains
positive in the first propagation region 0.25 < ka/(2π) < 0.5, and it
again becomes equal to +1 at the bottom edge ka = π of the second
stop band, and after that it changes phase inside the stop band at
frequencies ka = π to ka/(2π) ≈ 0.6, and becomes equal to −1 at the
top edge. In the second propagation window from ka/(2π) ≈ 0.6 to
ka = 2π the reflection coefficient is negative.

5. DENSE GRID

For dense compared with the wavelength grids the dispersion
equation (16) can be simplified using the Taylor expansion of sin and
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Figure 4. Dependence of the reflection coefficient from a half space
filled by a square grid of cylinders with the filling ratio f = 0.001 and
the corresponding propagation constant on the normalized frequency.

cos functions of small arguments and analytically solved. The result is
the following:

q2 = q2
x + q2

y + q2
z = k2 − k2

0, (35)

where
k2

0 =
2π/(ab)

log
b

2πr0
+

+∞∑
n=1


coth

πna

b
− 1

n


 +

πa

6b

. (36)

Thus, there is a stop band at low frequencies with the upper
boundary at the frequency corresponding to k0: for k < k0 q =
−j

√
k2

0 − k2, and for k > k0 q =
√
k2 − k2

0. It is interesting to
observe that k0 as a function of the lattice constants a and b is
symmetric: k0(a, b) = k0(b, a). This follows from the described above
symmetry property of the dispersion equation (16), and also can be
easily numerically checked. This fact is physically sound an obvious,
but it is not so easy to see it from expression (36).

If we introduce instead of the lattice parameters a and b their
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product s =
√
ab and their ratio r = a/b, we can rewrite (36) as

k2
0 =

2π/s2

log
s

2πr0
+ F (r)

, (37)

where

F (r) = −1
2

log r +
+∞∑
n=1

(
coth(πnr) − 1

n

)
+

πr

6
, (38)

The plot of function F (r) is presented on Figure 5. We can see that
the value of k0 is maximal at r = 1 for a fixed cell area. A numerical
investigation shows that function F (r) can be approximated in the
following manner:

F (r) ≈ π

6
(r + 1/r) −

√
log2(r) + (π/3)2/2. (39)

Such an approximation is exact for r → +∞ and r → 0 respectively,
but for other parameters it gives a small error (maximum 3.5 percent).
This approximation is adopted to give the best result for r = 1, where
F (1) = 0.5275 ≈ π/6.
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For the square grid (a = b) expression (36) simplifies, and we have

k2
0 =

2π/a2

log
a

2πr0
+ 0.5275

. (40)

The normalized width of the stop band as a function of the ratio
a/r0 is plotted on Figure 6, where we compare the exact result obtained
from a numerical solution of (16) and the approximate formula (40).
The correct numbers correspond to the part of the plot outside the
filled rectangle r < 0.1a, due to the restrictions of our theory to wires
with small radii.
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Figure 6. Normalized width of the stop band as a function of ratio
a/r0 for square grids

The media under consideration in the quasistatic limit do not
possess any magnetic properties, and the dispersion equation (35) can
be reformulated in terms of a frequency dependent permittivity:

εeff = ε0

(
1 − k2

0

k2

)
. (41)

This is a well-known classical result [13], which shows that εeff < 0 for
k < k0 and 0 < εeff < 1 for k > k0.
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6. CONCLUSION

We have presented an analytical theory of dispersion and reflection
from media formed by rectangular lattices of thin ideally conducting
cylinders using the local field approach. The transcendental dispersion
equation has been obtained in closed form and solved numerically.
The dispersion curves and the reflection coefficient for a square grid of
cylinders with the filling ratio f = πr2

0/a
2 = 0.001 have been calculated

using the introduced technique, and results are shown on Figures 3
and 4, respectively. The results have been successfully verified by
comparison with the dispersion curves presented in [4] and [14]. It has
been shown that wire media can be described by a negative permittivity
in the low frequency regime, and a simple analytical formula for the
frequency dependent effective permittivity in the plasmon-like form is
presented. In contrast to the classical analysis [1], this formula takes
into account higher-order Floquet mode interactions in the lattice. The
more recent analysis of wire media [3] requires intensive numerical
calculations for an estimation of the effective permittivity even at low
frequencies.
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