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The problem of plane-wave diffraction on semi-infinite orthorhombic electromagnetic �photonic� crystals of
a general kind is considered. Boundary conditions are obtained in the form of infinite system of equations
relating amplitudes of incident wave, eigenmodes excited in the crystal, and scattered spatial harmonics. The
generalized Ewald-Oseen extinction principle is formulated on the base of deduced boundary conditions. The
knowledge of properties of infinite crystal’s eigenmodes provides an option to solve the diffraction problem for
the corresponding semi-infinite crystal numerically. In the case when the crystal is formed by small inclusions
which can be treated as point dipolar scatterers with fixed direction the problem admits complete rigorous
analytical solution. The amplitudes of excited modes and scattered spatial harmonics are expressed in terms of
the wave vectors of the infinite crystal by closed-form analytical formulas. The result is applied for the study
of reflection properties of metamaterial formed by cubic lattice of split-ring resonators.
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I. INTRODUCTION

Electromagnetic crystals are artificial periodical structures
operating at the wavelengths comparable with their
periods.1–3 At the optical frequencies such structures are
called photonic crystals. The inherent feature of these mate-
rials is the existence of frequency bands where the crystal
does not support propagating waves. The band gaps are
caused by spatial resonances of the crystal lattice and
strongly depend on the direction of propagation. It means
that electromagnetic crystals are media with spatial
dispersion.4–6 The material parameters; permittivity and per-
meability for such materials, if they can be introduced at all,
depend on the wave vector as well as on the frequency. No-
tice that the homogenization approach is not the most con-
venient way for the description of electromagnetic crystals
even at low frequencies. It often requires the introduction of
additional boundary conditions in order to describe boundary
problems correctly, and this involves related complexities.
The photonic and electromagnetic crystals are usually stud-
ied with the help of numerical methods.1–3 Analytical models
exist only for a very narrow class of the crystals. Some types
of the crystals can be studied analytically under a certain
approximation, but the strict analytical solution for a photo-
nic crystal is an exception.

The goal of the present paper is to demonstrate how
boundary problems for electromagnetic crystals can be effec-
tively studied using analytical methods. The paper is sepa-
rated into two parts. In the first part the boundary conditions
for electromagnetic crystals of a general kind are deduced in
the form of an infinite system of equations relating ampli-
tudes of the incident wave, excited eigenmodes of the crys-
tal, and scattered spatial harmonics. This system can be in-

terpreted as a generalization of the well-known Ewald-Oseen
extinction principle �Refs. 7–9� which states that the polar-
ization of the dielectric is distributed so that it cancels out the
incident wave and produces the propagating wave. For the
electromagnetic crystals, inherently periodic structures, the
generalized Ewald-Oseen principle states that the polariza-
tion of the dielectric is distributed so that it cancels out the
incident wave as well as all spatial harmonics associated
with periodicity of the boundary. This principle expressed in
the form of the infinite system of boundary conditions pro-
vides an opportunity to solve the boundary problem for semi-
infinite crystal of a certain kind numerically if the eigenmode
problem for corresponding infinite crystal is already solved.
In the second part of the paper the proposed approach is
applied for the case of electromagnetic crystals formed by

FIG. 1. Geometry of an infinite electromagnetic crystal.
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small inclusions which can be treated as point dipolar scat-
terers with fixed direction. In this case the system of bound-
ary conditions admits a complete rigorous analytical solu-
tion. The amplitudes of excited eigenmodes and scattered
spatial harmonics are expressed in terms of wave vectors of
eigenmodes using closed-form analytical formulas. These re-
sults are unique extension and generalization of the known
Mahan-Obermair theory �Ref. 10� for the case when the pe-
riod of the crystal is compared with the wavelength. At the
end of the paper it is demonstrated how reflection from the
semi-infinite cubic lattice of resonant scatterers �split-ring
resonators� can be modeled in the regime of strong spatial
dispersion observed in such crystals.11

II. PROOF OF THE GENERALIZED EWALD-OSEEN
EXTINCTION PRINCIPLE

In this section we provide proof of the generalized Ewald-
Oseen extinction principle for an arbitrary semi-infinite elec-
tromagnetic crystal with an orthorhombic elementary cell.
First, let us consider an infinite orthorhombic electromag-
netic crystal with geometry schematically presented in Fig. 1
and characterized by three-periodical permittivity distribu-
tion:

�� �r� = �� �r + an + bs + cl� . �1�

In this expression and following in the text the two lines over
a quantity designate that the quantity is dyadic �tensor of
second rank in a three-dimensional space�. It means that we
consider the most general kind of electromagnetic crystals
formed by dielectrics.

In this paper we are using a local field approach, an un-
conventional method for description of fields inside dielec-
trics. We will operate with local parameters like polarization
density P and local electrical field Eloc, but not with average
electric field E and displacement D as usual. The similar
approach was used in Ref. 9 for rigorous derivation of the
Ewald-Oseen extinction theorem and in Ref. 6. The dielectric
can be treated as a very dense cubic lattice of point scatterers
with ceratin local polarizability. In this formulation the di-
electric permittivity �� �r� has to be replaced �see Fig. 2 for an
illustration� by the local polarizability �� �r� relating the bulk
polarization density P�r� to the local electric field Eloc�r�,

P�r� = �� �r�Eloc�r� . �2�

The expression for local polarizability in terms of dielec-
tric permittivity has the following form:

�� −1�r� = ��� �r� − �0I��−1 + I�/�3�0� , �3�

where �0 is the permittivity of free space and I� is unit dyadic.
This expression follows from the Lorentz-Lorenz formula
�Ref. 9�

Eloc�r� = E�r� + P�r�/�3�0� �4�

and material equation

D�r� = �0E�r� + P�r� = �� �r�E�r� . �5�

A. Dispersion equation

Following the local field approach one can write down the
dispersion equation for the crystal under consideration in the
next integral form

P�r� = �� �r��
V

�
G� 3�r − r�,q�P�r��dr�, ∀ r � V , �6�

where V=V�a ,b ,c� is the volume of the elementary lattice

cell, G� 3�r ,q� is the lattice dyadic Green’s function,

G� 3�r,q� = �
n,s,l

G� �r − an − bs − cl�e−j�qxan+qybs+qzcl�, �7�

which takes into account the cell-to-cell polarization distri-
bution determined by wave vector q= �qx ,qy ,qz�T,

P�r + an + bs + cl� = P�r�e−j�qxan+qybs+qzcl�, �8�

G� �r� is dyadic Green’s function of free space,

G� �r� = �k2I� + ���
e−jkr

4��0r
, �9�

n ,s , l are integer indices, and k is the wave number of free
space. The integral in �6� is singular if the point correspond-
ing to vector r is located inside of some polarized dielectric.
It has to be evaluated in the meaning of the principal value
by excluding a small spherical region around the singular
point and tending the radius of this region to zero.12

The dispersion equation �6� relates the distribution of po-
larization density P�r� and wave vector q corresponding to
the eigenmodes of the electromagnetic crystal. If the distri-
bution of the average electric field E�r� of a crystal eigen-
mode is known then the polarization density P�r� can be
found directly using material equation �5�,

FIG. 2. Illustration for the replacement of the dielectric permit-
tivity by the local polarizability.
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P�r� = ��� �r� − �0�E�r� . �10�

The reverse operation is possible only for space regions filled
by dielectric with �� �r���0. The distribution of the electric
field in free space regions, if required, has to be calculated
using the next integral representation

E�r� = �
V

G� 3�r − r�,q�P�r��dr�. �11�

For our proof of the generalized Ewald-Oseen extinction
principle we have to transform dispersion equation �6� into
the form corresponding to summation by layers in the x di-
rection. The expression for the lattice dyadic Green’s func-

tion G� 3�r ,q� �7� can be rewritten using a summation over
planes in the form

G� 3�r,q� = �
n=−�

+�

G� 2�r − an�e−jqxan, �12�

where G� 2�r� is the grid dyadic Green’s function

G� 2�r� = �
s,l

G� �r − bs − cl�e−j�qybs+qzcl�. �13�

Applying Poisson summation formula by both indices s
and l one can express the grid dyadic Green’s function in
terms of the spatial Floquet harmonics. This expansion is
also called a spectral representation

G� 2�r� = �
s,l

�� s,l
sgn�x−a�e−j�ks,l

sgn�x�·r�, �14�

where

�� s,l
± =

j

2bc�0ks,l
†ks,l

± � �ks,l
± � I��‡, ks,l

± = �±ks,l
x ,ks

y,kl
z�T,

ks
y = qy +

2�s

b
, kl

z = qz +
2�l

c
, ks,l

x = �k2 − �ks
y�2 − �kl

z�2.

The square root in the expression for ks,l should be chosen so
that Im��·��0. The sign � corresponds to half spaces x
	a and x�a, respectively.

Using �12� the dispersion equation �6� can be rewritten in
the following form which will be used later on:

P�r� = �� �r� �
n=−�

+� �
V

G� 2�r − r� − an�P�r��e−jqxandr�.

�15�

B. Semi-infinite crystal

Now let us consider a semi-infinite crystal �half space x

a, see Fig. 3� excited by a plane electromagnetic wave
with wave vector k= �kx ,ky ,kz�T coming from free space

Einc�r� = Eince
−j�k·r�. �16�

The origin of our coordinate system is intentionally shifted
by one period into the free space since it simplifies rather

cumbersome calculations which are presented below and
causes exponential convergence of the series in the final ex-
pressions.

Due to the periodicity of the semi-infinite structure along
y and z axes the distribution of the excited polarization along
these directions is determined by the phase of the incident
wave

P�r + am + bs + cl� = P�r + am�e−j�kybn+kzcl�, �17�

for any r�V and m
1.
The electric field produced by the polarized semi-infinite

crystal has the form

Escat�r� = �
n=1

+� �
V

G� 2�r − r� − an�P�r� + an�dr�. �18�

The total local electric field is the sum of incident and
scattered �produced by polarization of crystal� fields. Follow-
ing the local field approach we can write

P�r� = �� �r��Einc�r� + Escat�r�� . �19�

Combining �18� and �19� we obtain an integral equation
for the polarization in the semi-infinite crystal excited by an
incident wave

P�r� = �� �r��Einc�r� + �
n=1

+� �
V

G� 2�r − r� − an�P�r� + an�dr�	 .

�20�

Now let us suppose that the dispersion equation �6� is
solved under the condition that a wave vector has the form
q= �qx ,ky ,kz�T with unknown x component qx, and the set of

FIG. 3. Geometry of an semi-infinite electromagnetic crystal.
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eigenmodes 
(Pi�r� ,qx
�i�)�, characterized by the x component

of wave vector qx
�i� and polarization distribution Pi�r�, is

found. In addition, we include in this set only the eigen-
modes which either transfer energy into the half-space
x
a �dqx

�i� /d�	0� or decay in the x direction �Im�qx
�i��

�0�. In such a case the polarization of the semi-infinite crys-
tal excited by the incident wave �16� can be expanded by the

eigenmodes of the infinite crystal as follows:

P�r + am� = �
i

AiPi�r�e−jqx
�i�am, ∀ r � V,m 
 1.

�21�

Substituting �21� into �20� and using �16� we obtain

�
i

AiPi�r�e−jqx
�i�am = �� �r��Eince

−jk�r+am� + �
n=1

+�

�
i

Ai�
V

G� 2�r − r� − a�n − m��Pi�r��e−jqx
�i�andr�	 . �22�

Splitting the series in the dispersion equation �15� one can derive the following auxiliary relation:

Pi�r�e−jqx
�i�am = �� �r��

n=1

+� �
V

G� 2�r − r� − a�n − m��Pi�r��e−jqx
�i�andr� + �� �r� �

n=−�

0 �
V

G� 2�r − r� − a�n − m��Pi�r��e−jqx
�i�andr�.

�23�

Substituting �23� into �22� and following the fact that
det
�� �r���0 we obtain

�
i

Ai �
n=−�

0 �
V

G� 2�r − r� − a�n − m��Pi�r��e−jqx
�i�andr�

= Eince
−jk�r+am�. �24�

Further, substituting �14� into �24�, changing the summa-
tion order, and evaluating the sum of the geometrical pro-
gression by index n, we get

�
s,l
��

i

Ai

�� s,l
+ �

V

Pi�r��ej�ks,l
+ ·r��dr�

1 − ej�qx
�i�−ks,l

x �a 
e−j�ks,l
+ ·�r+am��

= Eince
−jk�r+am�. �25�

C. The generalized Ewald-Oseen extinction principle

The left part of Eq. �25� represents an expansion of the
right part into a spatial spectrum of Floquet harmonics. The
right part represents an incident spectrum of Floquet har-
monics containing only the single incident plane wave �16�
with k=k0,0

+ . Equating coefficients in the left and right parts
of �25� we obtain

�� s,l
+ �

i

Ai

�
V

Pi�r��ej�ks,l
+ ·r��dr�

1 − ej�qx
�i�−ks,l

x �a
= �Einc, �s,l� = �0,0� ,

0, �s,l� � �0,0� .
�
�26�

The values in the right side of �26� are the amplitudes of
the incident spatial harmonics �all harmonics except funda-
mental one have zero amplitudes�, and the series in the left

side are the amplitudes of the spatial harmonics produced by
the whole semi-infinite crystal polarization in order to cancel
these incident harmonics. It means that Eq. �26� represents
the generalization of Ewald-Oseen extinction principle �see
Refs. 7–9 for classical formulation in the case of dielectrics�:
the polarization in a semi-infinite electromagnetic crystal ex-
cited by a plane wave is distributed in such a way that it
cancels the incident wave together with all high-order spatial
harmonics associated with periodicity of the boundary �even
if they have zero amplitudes as in the present case�. The
additional words related to high-order Floquet harmonics is
the main and principal difference of the Ewald-Oseen extinc-
tion principle formulation for electromagnetic crystals as
compared to the classical case of isotropic dielectrics.

Substitution of �21� and �14� into �18� allows us to ex-
press the scattered field in the half space x�a in terms of
spatial Floquet harmonics

Escat = �
s,l

Escat
s,l e−j�ks,l

− ·r�, �27�

Escat
s,l = �� s,l

− �
i

Ai

�
V

Pi�r��ej�ks,l
− ·r��dr�

1 − ej�qx
�i�+ks,l

x �a
. �28�

Note that the formula for the amplitudes of scattered Floquet
harmonics �28� contains series which have the same form as
�26� and differs only by the sign of the x components of
wave vectors ks,l

± = �±ks,l
x ,ky ,kz�T corresponding to the spatial

harmonics propagating into the half spaces x�a and x	a,
respectively.

If the eigenmodes of the crystal 
qx
�i� ,Pi�r�� are known

then one can solve the system of linear equations �26� and
find amplitudes of excited eigenmodes 
Ai�. With the use of
these amplitudes the scattered field can be found by �28�.
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This provides a numerical method which allows one to solve
the problem of plane-wave diffraction by a semi-infinite
electromagnetic crystal using the knowledge of eigenmodes
of the infinite crystal. This fact is very important since at the
moment the reflection and dispersion problems for electro-
magnetic crystals are usually solved by separate numerical
approaches. The expressions �26� and �28� create a link be-
tween these two problems and show how results of disper-
sion studies can be used in order to describe reflection prop-
erties of electromagnetic crystals.

Until this point we considered only one incident wave
with wave vector k=k0,0

+ , but from �25� it is clear that we
could consider also other incident spatial harmonics with
wave vectors ks,l

+ and get similar results as �26�, but the non-
zero terms at the right side of the equation would correspond
to the respective incident spatial harmonic. Using the prin-
ciples of superposition we obtain that if the semi-infinite
crystal is excited by the whole spectrum of incident spatial
harmonics with amplitudes Einc

s,l and wave vectors ks,l
+ , then

the following system of linear equations is valid:

�� s,l
+ �

i

Ai

�
V

Pi�r��ej�ks,l
+ ·r��dr�

1 − ej�qx
�i�−ks,l

x �a
= Einc

s,l . �29�

The scattered field is given by �28� as in the case of one
incident wave. Equation �29� represents the cancellation of
all incident spatial spectra by induced polarization of the
crystal in accordance with the above formulated generalized
Ewald-Oseen extinction principle.

D. Formulation of boundary conditions

In the preceding section we proved the generalized
Ewald-Oseen extinction principle for the case of semi-
infinite electromagnetic crystal described by certain periodic
permittivity distribution �� �r� excited by a plane wave com-
ing from free space. In order to extend this theory to the case
when the incident wave comes from a homogeneous isotro-
pic dielectric with permittivity � it is enough to change �0 in
all formulas to �. Physically it means that we have to con-
sider the polarization of the crystal with respect to the host
material with permittivity �, but not free space. In the model
of a dense cubic lattice of point dipoles it means that the
lattice is located inside this host material. This approach is
very unusual since it can lead to results which are strange at
first. For example, free space happens to have a negative
polarization density with respect to dielectrics with �	�0.
This can be simply explained since free space with respect to
these dielectrics is like real materials with ���0 with respect
to free space; they indeed have negative polarization density.

The meaning of polarization density becomes relative au-
tomatically when the replacement of �0 to � is made. In order
to avoid the use of this ambiguous polarization in the final
formulae it is possible to express the polarization density in
terms of the average field using �5�. The resulting expres-
sions provide a complete set of boundary conditions for in-
terface between a semi-infinite electromagnetic crystal and
isotropic dielectric

E�r� = ��
s,l

�Einc
s,l e−jks,l

− r + Escat
s,l e−jks,l

+ r� , x � a ,

�
i

AiEie
−jqir, x 
 a ,� �30�

�� s,l
+ �

i

Ai

�
V

��� − �0I��Ei�r��ej�ks,l
+ ·r��dr�

1 − ej�qx
�i�−ks,l

x �a
= Einc

s,l , �31�

�� s,l
− �

i

Ai

�
V

��� − �0I��Ei�r��ej�ks,l
− ·r��dr�

1 − ej�qx
�i�+ks,l

x �a
= Escat

s,l , �32�

where we use following notations:

�� s,l
± =

j

2bc�ks,l
†ks,l

± � �ks,l
± � I��‡, ks,l

± = �±ks,l
x ,ks

y,kl
z�T,

ks
y = qy +

2�s

b
, kl

z = qz +
2�l

c
, ks,l

x = �k2 − �ks
y�2 − �kl

z�2.

k is the wave number in the dielectric with permittivity �,
qi= �qi

x ,ky ,kz�T and the square root in the expression for ks,l

should be chosen so that Im��·��0.
The expressions �31� and �32� relate amplitudes of inci-

dent Einc
s,l and scattered Escat

s,l spatial harmonics corresponding
to tangential wave vector kt= �ky ,kz�T and the periodicity of
the boundary �rectangular lattice with periods b and c� with
amplitudes Ai of eigenmodes �Ei ,qi

x� excited in the semi-
infinite crystal.

The presented set of boundary conditions is complete;
these equations are enough to determine amplitudes of ex-
cited eigenmodes and scattered spatial harmonics if the
eigenmodes 
�Ei ,qi

x�� of infinite crystal corresponding to tan-
gential wave vector kt are known. But this set is not unique.
One can immediately suggest using classical boundary con-
ditions �the continuous tangential component of an electric
field and a normal component of electric displacement at any
point of the boundary x=a� which being expanded into the
Fourier series will also grant a complete set of linear equa-
tions relating amplitudes of incident, scattered, and excited
modes.

The advantage of Eqs. �31� and �32� as compared to any
other boundary conditions is such that they have a very spe-
cial form which can admit an analytical solution. We will
demonstrate it in the next section for the special case of
electromagnetic crystals formed by small scatterers which
can be treated as point dipole with fixed orientation. But this
is not the only case when an analytical solution of �31� and
�32� can be obtained. Recently, Silveirinha �Ref. 13� demon-
strated that the method proposed by ourselves can be suc-
cessfully applied for studies of reflection from semi-infinite
wire medium, material with strong low-frequency spatial
dispersion.14 Unfortunately, we cannot provide solutions of
Eqs. �31� and �32� for the general case. However, we can
give some recommendations and an example as to how these
equations can be solved using the method of characteristic
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function. We hope that with some modification this method
can be used for other special cases as well.

III. LATTICE OF UNIAXIAL DIPOLAR SCATTERERS

If the scatterers which form electromagnetic crystal are
small as compared to the wavelength then sometimes they
can be effectively replaced by point dipoles. It is assumed
that the dipole moment of such a dipole is determined by a
local field acting to the scatterer and the field produced by
the scatterer is equal to the field created by the dipole. The
polarizability which relates the induced dipole moment and
the local field acting to the scatterer is the only parameter
which depends on the shape of the scatterer in such a local
field approach.

Generally, the field produced by any scatterer can be pre-
sented using expansion by multipoles. The electric and mag-
netic dipoles are first and second order multipoles. For some
scatterers, the electric or magnetic dipole moments dominate
over high-order multipoles. It means that some scatterers be-
have as electrical dipoles, some others as magnetic. Below
we will only consider such scatterers. The scatterers which
have both electric and magnetic dipole moments of the same
order or whose quadrupole or other high-order multipoles
can not be neglected are out of the scope of our consider-
ation. Moreover, below we will consider only scatterers
which can be replaced by dipoles with fixed orientation.

The typical example of the scatterer which behaves as an
electric dipole with fixed orientation at microwave frequen-
cies is a short metallic cylinder or piece of wire which can be
loaded by some inductance in order to increase its polariz-
ability �Ref. 15� �see Fig. 4�b��. At optical frequencies it can
be a prolate metallic cylinder which has strong plasmonic
resonance. The typical magnetic scatterer at microwave fre-
quencies is a split-ring resonator �Ref. 16� �see Fig. 4�a�� if
the bianisotropic properties of this scatterer are neglected or
canceled using the method suggested in �Ref. 17�. At optical
frequencies the split metallic rings �Refs. 18 and 19� behave
as magnetic scatterers with a fixed orientation of dipole mo-

ment. Metallic spheres which also can be replaced by point
dipoles are out of the scope of our consideration since the
orientation of their dipole moments depends on the direction
of the external field.

A. History of the problem

Later in this section we present an analytical solution for
the problem of plane-wave diffraction on semi-infinite elec-
tromagnetic crystals formed by point scatterers with known
polarizabilites, but before that we have to describe the his-
tory of this problem. An attempt to obtain such an analytical
solution was made by Mahan and Obermair in a seminal
work.10 Analytical expressions for reflection coefficients and
amplitudes of excited modes for a semi-infinite crystal were
obtained in terms of wave vectors of the infinite crystal
eigenmodes. However, this theory is not free from draw-
backs. Mahan and Obermair treated the interaction between a
reference crystal plane of a semi-infinite crystal and its N
nearest-neighbors exactly, neglecting the other crystal planes.
That is why this approximation is called the “nearest-
neighbor approximation.” Such an approach allows one to
introduce fictitious zero polarization at the imaginary crystal
planes in free space over the semi-infinite crystal. This ma-
nipulation gave a set of equations which were treated in Ref.
10 as additional boundary conditions. It will be shown below
that if the interaction between planes is taken into account
exactly but not restricted to a finite number of neighboring
planes then the fictitious polarization of imaginary planes
turns out to be nonzero. In the work of Mead20,21 it was
already shown that the nearest-neighbor approximation ap-
pears to not be a strict one. Mead states that if serious dis-
agreement appears in the cases then the interaction between
crystal planes falls off not sufficiently fast with distance. In
other words, the results of Mahan and Obermair are valid
only when the high-order spatial Floquet harmonics pro-
duced by the planes rapidly decay with distance. Mahan and
Obermair considered only the normal incidence of the plane
wave. Within such a restriction their approach is valid in the
case when the periods of the structure are small as compared
with the wavelength in the host medium. The strong dis-
agreement with the exact solution appears when one high-
order Floquet harmonic happens to be propagating one. This
fact is illustrated below by a numerical comparison.

The work10 caused numerous extensions.22–24 The Mahan
and Obermair approach was generalized for the cases of ob-
lique incidence,22 both possible polarizations of the incident
wave,24 various lattice structures of the crystal,22 tensorial
polarizability of scatterers,24 and even diffraction of the
finite-size slabs of the crystals were considered.23 Note that
all the listed works use the same nearest-neighbor approxi-
mation and their applicability is restricted as described
above. In order to avoid this trouble one needs to use another
model for interaction between crystal planes. The simplest
one is the so-called “exp model” suggested by Mead20,25

which assumes that interaction can be described by a single
decaying exponent. In terms of spatial Floquet harmonics
this approach is equivalent to neglecting all high-order Flo-
quet harmonics, except the one with the slowest decay. The

FIG. 4. Geometries of scatterers which can be modeled as di-
poles with fixed orientation: �a� split-ring resonator, �b� inductively
loaded wire.
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exp model as well as the nearest-neighbor approximation
allow us to solve the problem of excitation analytically for
both normal20 and oblique25 incidences. The exp model of
Mead gives a set of two equations which correspond to the
generalized Ewald-Oseen extinction principle formulated in
the present paper. The first equation of Mead is the same as
one of the equations given by the nearest-neighbor approxi-
mation. It describes the fact that the incident electromagnetic
wave �fundamental Floquet harmonic� inside the semi-
infinite crystal is canceled by induced polarization of the
crystal. This fact was pointed out in the �Refs. 10, 20, and
24�. The second equation clearly expresses the fact that in-
duced polarization also cancels the second Floquet harmonic
�taken into account in the exp model� of the incident wave
which has zero amplitude, but unfortunately it was not noted
by the authors. The system of these two equations is solved
in Ref. 20 and the amplitudes of excited eigenmodes and an
expression for reflection coefficient are obtained.

It is possible to modify the exp model in order to obtain
an exact solution. For that purpose one simply should take
into account all Floquet harmonics in the interaction between
the crystal planes. This has been done by authors of the
present paper and the results are presented below. As it was
shown above, it turns out that every incident Floquet har-
monic �even if it has zero amplitude� is canceled by the
induced polarization following the generalized Ewald-Oseen
extinction principle. It provides an infinite system of equa-
tions relating amplitudes of excited eigenmodes. This system
can be truncated and then the number of equations in the
system turns out to be equal to the number of Floquet har-
monics taken into account. Such a finite system can be easily
solved analytically for the case when only two Floquet har-
monics are taken into account �this is the exp model of
Mead20�, but in the case when one would like to take into
account more Floquet harmonics this approach requires nu-
merical calculations. We avoid the truncation of the system
of equations and offer a closed-form rigorous analytical so-
lution which is simple and explicit.

Note, that a “formally closed solution” for the problem
under consideration was proposed by Mead in Ref. 21. In
this solution there is a contour integral of a certain function
given in the form of infinite series. However, the calculation
with the help of such a formally closed solution requires
serious numerical efforts. The main idea of the work21 is
based on the introduction of a characteristic analytical func-
tion which allows one to determine all parameters entering
the expression for the reflection coefficient. It is shown that
knowledge of its roots allows one to recover this function
and obtain analytical expressions for all amplitudes of ex-
cited eigenmodes and for the reflection coefficient, conse-
quently. Unfortunately, these roots were not found in Ref. 21.
That is why the contour integration was used in Ref. 21 in
order to bypass the problem of these roots finding. In fact, as
it is shown below, the roots of this characteristic analytical
function are determined by the wave vectors of Floquet har-
monics and can be easily expressed analytically. This fact is
a consequence of the generalized Ewald-Oseen extinction
principle.

One could directly apply general results �26� and �28� to
the problem under consideration. It is enough to replace po-

larization density of eigenmodes by the three-dimensional
delta function corresponding to the point of location of the
dipolar scatterer in the unit cell and one could obtain the
system of linear Eqs. �26� and �28� which correspond to the
boundary conditions in the present case as it is shown below.
However, we prefer to re-deduce all the expressions by mak-
ing the same steps as in the previous section but for the case
of point scatterers. We suppose that it is a very useful step in
order to demonstrate the physical background of the compu-
tations undertaken in the previous section as a specific ex-
ample.

B. Dispersion equation

Let us consider an infinite crystal formed by point dielec-
tric dipoles with some known polarizability � along a fixed
direction given by unit vector d, �� =�dd. The case of mag-
netic dipoles can be easily obtained from the theory for di-
electric ones using the duality principles. The scatterers are
arranged in the nodes of the three-dimensional lattice with an
orthorhombic elementary cell a�b�c located in free space,
see Fig. 5.

The distribution of dipole moments corresponding to an
eigenmode with wave vector q= �qx ,qy ,qz�T is described as
pn,s,l=pe−j�qxan+qybs+qzcl�, where n ,s , l are integer indices of
scatterers along the x-, y-, and z-axes, respectively, and p is a
dipole moment of the scatterer located at the center of coor-
dinate system. Following the local field approach p can be
expressed as p=��Eloc ·d�d, where Eloc is a local electric
field acting to the scatterer. The local field is produced by all
other scatterers which form the infinite crystal and can be
given by the formula

Eloc = �
n,s,l

�G� �Rn,s,l�pn,s,l, �33�

where G� �r� is the three-dimensional dyadic Green’s function
of the free space �9� and the summation is taken over all
triples of indices except the zero one. Accordingly the fol-
lowing dispersion equation for the crystal under consider-
ation is obtained �compare with �6��:

�−1 = ��
n,s,l

�G� �Rn,s,l�e−j�qxan+qybs+qzcl�d	 · d . �34�

FIG. 5. Geometry of an infinite electromagnetic crystal formed
by uniaxial dipolar scatterers.
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In order to evaluate sums of series in �34� we use a plane-
wise approach.26 According to this approach the dispersion
equation takes the following form:

�−1 = �
n=−�

+�

�ne−jqxan. �35�

The coefficients �n describe the interaction between
planes and include the information on transverse wave vector
components qy, qz as well as on a geometry of a single plane
�lattice periods b, c�. For n�0 coefficients �n can be ex-
pressed using expansion by Floquet harmonics. For n=0 the
calculation of coefficient �0 �describing the interaction inside
a plane and expressed in the form of a two-dimensional se-
ries without the zero term� requires additional efforts �see
Refs. 11, 26, and 27 for details�.

The electric field produced by a single plane �namely a
two-dimensional grid b�c of point dipoles with the distri-
bution ps,l=pe−j�qybs+qzcl�� located in the plane x=0 is equal
to

E�r� =
j

2bc�0
�
s,l

�ks,l
sgn�x� � †ks,l

sgn�x� � p�‡
e−j�ks,l

sgn�x�·R�

ks,l
x ,

�36�

where ks,l
± = �±ks,l

x ,ks
y ,kl

z�T, ks
y =qy + �2�s /b�, kl

z=qz+ �2�l /c�,
ks,l

x =�k2− �ks
y�2− �kl

z�2, and k is the wave number of free
space. One should choose the square root in the expression
for ks,l so that Im��·��0. The sign � corresponds to half
spaces x	0 and x�0, respectively.

The formula �36� defines an expansion of the field pro-
duced by a single grid of dipoles in terms of plane waves and
it can be obtained using a double Poisson summation for-
mula to the series of fields produced by single scatterers in
free space. These plane waves have wave vectors ks,l

± . They
are also called Floquet harmonics and represent a spatial
spectrum of the field �compare with �14��. Floquet harmonics
are widely used in the analysis of phased array antennas.28

Using �36� we get the following expression for �n �n
�0�:

�n = �
s,l

�s,l
−sgn�n�e−jks,l

x a�n�, �37�

where �s,l
± = �k2− �ks,l

± ·d�2� / �2jbc�0ks,l
x �. After the substitution

of �37� into �35�, changing the order of summation and using
the formula for the sum of the geometrical progression we
obtain the dispersion equation in the following form:

�−1 = �0 + �
s,l
� �s,l

−

ej�ks,l
x +qx�a − 1

+
�s,l

+

ej�ks,l
x −qx�a − 1

	 . �38�

This is a transcendental equation expressed by a rapidly con-
vergent series. Dispersion properties of the crystal under
consideration can be studied with the help of the numerical
solution of the latter equation. The case of dipoles oriented
along one of the crystal axes of the orthorhombic crystal has
been considered in, Ref. 11; the dispersion equation was
solved and typical dispersion curves and isofrequency con-
tours for resonant scatterers were presented.

C. Semi-infinite crystal

Now let us consider a semi-infinite electromagnetic crys-
tal, the half-space x
a filled by the crystal formed by point
dipoles �see Fig. 6�. The structure is excited by a plane elec-
tromagnetic wave with the wave vector k= �kx ,ky ,kz�T and
the intensity of the electric field Einc. Let us denote the com-
ponent of the incident electric field along the direction of
dipoles as Einc= �Einc ·d�. The axis x is assumed to be normal
to the interface. The tangential �with respect to the interface�
distribution of dipole moments in excited semi-infinite crys-
tal is determined by the tangential component of the incident
wave vector. It means that pn,s,l= pne−j�kybs+kzcl�, where the
polarizations of zero-numbered scatterers from planes with
the index n �parallel to the interface� are denoted as pn
= pn,0,0. The plane-to-plane distribution 
pn� is unknown and
it has to be found. Using the local field approach one can
write the infinite linear system of equations for this distribu-
tion as

pm = ��Eince
−jkxam + �

n=1

+�

�n−mpn�, ∀ m 
 1. �39�

The distribution 
pn� of polarization in the excited semi-
infinite crystal can be determined solving the system of Eqs.
�39�. The known distribution of polarization allows us to
determine the scattered field in the half-space x�a with the
help of the expansion by Floquet harmonics �36�

E = �
s,l

Es,le
−j�ks,l

− ·R�, �40�

where the amplitudes of Floquet harmonics are the follow-
ing:

Es,l =
j

2ab�0ks,l
x �ks,l

− � †ks,l
− � d�‡�

n=1

+�

pne−jks,l
x an. �41�

FIG. 6. Geometry of a semi-infinite electromagnetic crystal
formed by uniaxial dipolar scatterers.
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If the crystal supports propagating modes, it is quite dif-
ficult to find a solution of �39� numerically. Simple methods
such as a system truncating �considering a slab with finite
thickness instead of half-space like in Ref. 29� results in
nonconvergent oscillating solutions which have nothing to
do with actual solution of �39�.

D. Expansion by eigenmodes

In order to solve �39� accurately one has to use an expan-
sion of the polarization by eigenmodes �Ref. 10�

pn = �
i

Aie
−jqx

�i�an, �42�

where Ai are amplitudes of eigenmodes and qx
�i� are the x

components of their wave vectors. Every eigenmode is as-
sumed to be a solution of the dispersion equation �38� with
the wave vector qi= �qx

�i� ,ky ,kz�T. In formula �42� the summa-
tion is taken by eigenmodes which either transfer energy into
half-space x
a �dqx

�i� /d�	0� or decay along the x axis
�Im�qx

�i���0�.
Let us assume that the dispersion equation �38� is solved

�for example numerically� and the necessary set of eigen-
modes 
qx

�i�� is found. Then the substitution of �42� into �39�
will replace the set of unknown polarizations of planes by a
set of unknown amplitudes of eigenmodes

�−1�
i

Aie
−jqx

�i�am = Eince
−jkxam + �

n=1

+�

�n−m�
i

Aie
−jqx

�i�an.

�43�

Applying the auxiliary relation evidently following from
�38�:

�−1e−jqx
�i�am − �

n=−�

0

�n−me−jqx
�i�an = �

n=1

+�

�n−me−jqx
�i�an, �44�

the Eq. �43� can be transformed as follows:

�
i

Ai� �
n=−�

0

�n−me−jqx
�i�an� = Eince

−jkxam. �45�

It should be noted that using the definition of Mahan and
Obermair for the polarization of fictitious planes �pn

=�iAie
−jqx

�i�
an , ∀n
0� one can rewrite �45� as

�
n=−�

0

�n−mpn = Eince
−jkxam. �46�

It is evident that the assumption of Mahan and Obermair,
requiring all polarizations of fictitious planes to be zeros,
contradicts with �46�. This fact proves that the nearest-
neighbor approximation made in Ref. 10 is not accurate.

The system of equations �45� can be truncated and solved
numerically quite easily in contrast to �39�. As a result, the
amplitudes of eigenmodes 
Ai� can be found and the polar-
ization distribution can be restored using formula �42�. The
amplitudes of scattered Floquet harmonics �41� can also be

expressed in terms of excited eigenmode amplitudes by
means of substitution of �42� into �41�, changing the order of
summation and evaluating sums of geometrical progressions.
The final expression for the amplitudes of scattered Floquet
harmonics is the following �compare with �28��:

Es,l =
†ks,l

− � �ks,l
− � d�‡

2jab�0ks,l
x �

i

Ai
1

1 − ej�qx
�i�+ks,l

x �a
. �47�

One can stop at this stage and claim that the problem of
the semi-infinite electromagnetic crystal excitation is solved.
However, in this case the solution would require long nu-
merical calculations, such as solving the system �45� and
substituting the obtained solution into �47�. The possibility of
making all described operations analytically in the closed
form is shown below.

E. Analytical solution

Substituting the expansion �37� into �45� we obtain:

�
i

Ai� �
n=−�

0

��
s,l

�s,l
+ e−jks,l

x a�n−m�	e−jqx
�i�an� = Eince

−jkxam.

�48�

Changing the order of summations in �48�, taking into ac-
count that n−m�0, and using the formula for the sum of
geometrical progression, we obtain

�
s,l

�s,l
+ ��

i

Ai
1

1 − ej�qx
�i�−ks,l

x �a�e−jks,l
x am = Eince

−jkxam. �49�

This is a system of linear equations where unknowns are
given by expressions in brackets. It has a unique solution
because the determinant of the system has finite nonzero
value. Note that ks,l

x =kx only if �s , l�= �0,0�. Thus, the solu-
tion of �49� has the following form:

�
i

Ai
1

1 − ej�qx
�i�−ks,l

x �a
= �Einc/�0,0

+ if �s,l� = �0,0�
0 if �s,l� � �0,0� .

�
�50�

This equation could be directly obtained from the general
expression �26� by substitution of a delta function instead of
the polarization density of eigenmodes, but as we already
mentioned above we intentionally re-deduced it since we
suppose that it can help us to understand the background for
the deduction of �26� for general case. The values at the right
side of �50� are the normalized amplitudes of incident Flo-
quet harmonics, and the series at the left side are the normal-
ized amplitudes of Floquet harmonics produced by the whole
semi-infinite crystal polarization which cancel the incident
harmonics. Thus, Eq. �50� represents the generalization of
the Ewald-Oseen extinction principle already formulated
above for the general case of semi-infinite crystals: The po-
larization in a semi-infinite electromagnetic crystal excited
by a plane wave is distributed in such a way that it cancels
the incident wave together with all high-order spatial har-
monics associated with periodicity of the boundary.
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Note that the formula for the amplitudes of scattered Flo-
quet harmonics �47� contains series that have the same form
as �50�, but another sign in front of ks,l

x .
The amplitudes of the excited modes Ai can be found

numerically from the infinite set of Eqs. �50� and substitution
of Ai into �47� will give us amplitudes of scattered Floquet
harmonics. However, it is possible to obtain a closed-form
analytical solution of �50�.

In order to solve the set of Eqs. �50� one should consider
a characteristic function f�x� �see also Ref. 21� of the form

f�u� = u�
i

Ai
1

u − ejqx
�i�a

. �51�

Comparing �47� and �50� with �51� one can see that the func-
tion f�u� has the following properties:

�a� It has poles at u=ejqx
�i�

a.

�b� It has roots at u=ejks,l
x a, �s , l�� �0,0�, and u=0.

�c� It has a known value Einc /�0,0
+ at u=ejkxa.

�d� Its values at u=e−jks,l
x a are equal to the normalized

amplitudes of scattered Floquet harmonics.

�e� Its residues at u=ejqx
�i�

a are equal to the normalized
amplitudes of excited eigenmodes.

It is possible to restore the function f�u� using the known
values of its poles, roots, and a value at one point,

f�u� =
Eincu

�0,0
+ ejkxa �

�s,l���0,0�

u − ejks,l
x a

ejkxa − ejks,l
x a

�
i

ejkxa − ejqx
�i�a

u − ejqx
�i�a

.

�52�

The knowledge of the characteristic function f�u� pro-
vides us with the complete solution of our diffraction prob-
lem. The amplitudes of excited eigenmodes with indices n

are equal to residues of f�u� at u=ejqx
�n�

a

An = Res f ��u��u=ejqx
�i�a

=
Einc�1 − ej�qx

�n�−kx�a�
�0,0

+ �
�s,l���0,0�

ejqx
�n�a − ejks,l

x a

ejkxa − ejks,l
x a

�
i�n

ejkxa − ejqx
�i�a

ejqx
�n�a − ejqx

�i�a
,

�53�

and the amplitudes of scattered Floquet harmonics with in-
dices �r , t� can be expressed through values of f�u� at u

=e−jkr,t
x a,

Er,t =
Eince

−jkr,t
x a�kr,t

− � �kr,t
− � d��

2jab�0kr,t
x �0,0

+ ejkxa

� �
�s,l���0,0�

e−jkr,t
x a − ejks,l

x a

ejkxa − ejks,l
x a

�
i

ejkxa − ejqx
�i�a

e−jkr,t
x a − ejqx

�i�a
. �54�

The products in the formulas �53� and �54� have very
rapid convergence. It is enough to take a few terms in order
to reach excellent accuracy. The main requirement for trun-
cation of these infinite products is to take into account all
terms corresponding to propagating Re�ks,l

x �=0 and slowly

decaying Im�ks,l
x ��2� /a Floquet harmonics as well as

propagating Re�qx
�i��=0 and slowly decaying Im�qx

�i��
�2� /a eigenmodes.

F. Comparison with other theories

Let us consider the case from Ref. 10 when d=y0, and
a=b=c. In this case the formula �54� for the fundamental
Floquet harmonic �r= t=0� can be rewritten in terms of the
reflection coefficient

R = − e−2jkxa �
�s,l���0,0�

e−jkxa − ejks,l
x a

ejkxa − ejks,l
x a

�
i

ejkxa − ejqx
�i�a

e−jkxa − ejqx
�i�a

.

�55�

Comparing that result with the final result of the �Ref. 10�
�the next formula after �C7� on page 841� one can see that
the first product in our formula �55�

� = �
�s,l���0,0�

e−jkxa − ejks,l
x a

ejkxa − ejks,l
x a

�56�

is absent in the result of Mahan and Obermair. This differ-
ence is a consequence of the fact that in our study we con-
sidered interaction between crystal planes accurately taking
into account all Floquet harmonics for any distance between
planes in contrast to the nearest-neighbor approximation
used in the approach of Mahan and Obermair.

The dependence of the product � vs normalized fre-
quency is plotted in Fig. 7 for the case of normal incidence
ky =kz=0 and kx=k. One can see that the value of the product
is nearly equal to the unity for ka�1.6�, but for ka	2� the
value of the product significantly differs from the unity. Thus
we conclude that the theory of Mahan and Obermair is valid
in the low frequency range when periods of the lattice are
small compared to the wavelength. Our theory does not have
such a restriction �within the frame of the dipole model of
electromagnetic crystal�.

The comparison with the results of Ref. 21 shows that
�55� is equivalent to formula �46� from �Ref. 21� with �

FIG. 7. Dependence of � vs normalized frequency ka / �2��.
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=exp��� where � is given by the contour integral �47� from
Ref. 21. The calculation of � using �56� requires taking into
account only a few terms in the infinite products, because
they are very rapidly convergent. This is a significant advan-
tage of our approach as compared to Ref. 21 which requires
a complicated numerical calculation of the contour integral.

In the long-wavelength limit, the series in Eq. �34� for the
cubic lattice can be replaced by the integral taken over the
whole space except unit cell V and we obtain

�−1 = ���
R3/V

G� �R�e−j�q·R�dR�d	 · d . �57�

The integral in the right-hand side of Eq. �57� can be
evaluated by means of the same technique that was used
while deducing the Ewald-Oseen extinction principle in
Ref. 9. The result is the following:

�−1 = �1

3
+

�q · d�2 − �q�2

K2 − �q�2 	 V

�0
. �58�

The obtained dispersion equation �58� can be transformed
in the common form

�̃�k2 − qd
2� = �0��q�2 − qd

2� , �59�

where

�̃ = �0�1 +
�/��0V�

1 − �/�3�0V�� , �60�

and qd= �q ·d� is the component of the wave vector q along
the anisotropy axis.

The formula �59� is a classical form of the dispersion
equation for uniaxial dielectrics9 with permittivity �̃ along
the anisotropy axis and � in the transverse plane. The expres-
sion �60� is the Clausius-Mossotti formula for the effective
permittivity of cubic lattices of scatterers.

In the long-wavelength limit the formula �54� for the am-
plitude of reflected wave simplifies as follows:

ER = −
�Einc · d��k− � �k− � d��

�k2 − �k · d�2�
kx − qx

kx + qx
, �61�

where k−= �−kx ,ky ,kz�T is the wave vector of the reflected
wave. The formula �61� represents a compact form of an

expression for the electric field amplitude of a wave reflected
from an interface between an isotropic dielectric and an
uniaxial dielectric �see, e.g., Ref. 30�. Note that in our case
the situation is simplified as compared to the general case,
because the incident wave comes from isotropic dielectric
with permittivity � which is equal to the permittivity of
uniaxial dielectric in the transverse plane. It means that an
incident wave with normal polarization with respect to the
anisotropy axis transforms at the interface in a refracted or-
dinary wave without reflection.

Let us consider the reflection problem at the special case
when d=y0, ky =0 and Einc�y0. The nonzero components of
the wave vector for the incident wave can be expressed in
terms of the incident angle �i as kz=k sin �i and kx=k cos �i.
From �59� we obtain that in this case the transmitted wave
has an x component of the wave vector equal to qx

=��̃k2 /�0−kz
2=��̃ /�0k cos �t, where �t in angle or refrac-

tion. With the result �61� we get the reflection coefficient in
the form

R =
kx − qx

kx + qx
=

n1 cos �i − n2 cos �t

n1 cos �i + n2 cos �t
, �62�

where n1=��0�0 and n2=��̃�0 are indices of refraction of
the materials. The formula �62� coincide with the classical
Fresnel equation.9 This fact can be treated as an additional
verification of the presented theory.

IV. LATTICE OF SPLIT-RING RESONATORS

In this section we apply the theory presented in the pre-
ceding sections for the study of the reflection from a semi-
infinite cubic lattice of split-ring resonators.

The general dispersion equation �6� of the integral form in
the case of point electric scatterers transforms into a tran-
scendental equation �38�. In the case when d=y0 the disper-
sion equation �38� can be rewritten in the following closed
form convenient for numerical calculations �see Ref. 11 for
details�:

�0�−1��� = C�k,q,a,b,c� , �63�

where C�k ,q ,a ,b ,c� is a dynamic interaction constant of the
form

C�k,q,a,b,c� = − �
l=1

+�

�
Re�ps��0

ps
2

�b
K0�pscl�cos�qzcn� + �

s=−�

+�

�
l=−�

+�
ps

2

2jbcks,l
x

e−jks,l
x a − cos qxa

cos ks,l
x a − cos qxa

− �
Re�ps�=0

ps
2

2bc� 1

jks,0
x + �

l=1

+� � 1

jks,l
x +

1

jks,−l
x −

c

�l
−

rsc
3

8�3l3	 + 1.202
rsc

3

8�3 +
c

�
�log

c�ps�
4�

+ �� + j
c

2�
+

1

4�b3�4�
s=1

+�
�2jkb + 3�s + 2

s3�s + 1��s + 2�
e−jkbs cos�qybs� − �jkb + 1��t+

2 log t+ + t−
2 log t− + 2ejkb cos�qyb��

− 2jkb�t+ log t+ + t− log t−� + �7jkb + 3�	 , �64�
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and the following notations are used:

ps = ��ks
y�2 − k2, rs = 2qz

2 − ps
2,

t+ = 1 − e−j�k+qz�c, t− = 1 − e−j�k−qz�c,

t+ = 1 − ej�k+qz�c, t− = 1 − ej�k−qz�c.

The calculations using �64� can be restricted to the real
part of the dynamic interaction constant C�k ,q ,a ,b ,c� only
because its imaginary part is given by a much simpler ex-
pression �see Ref. 11 for details�

Im
C�k,q,a,b,c�� =
k3

6�
. �65�

The series in �64� have excellent convergence that ensure
very rapid numerical calculations.

The case of magnetic scatterers can be considered using
the duality principle. The expression �55� can be used for a
calculation of the reflection coefficient by magnetic field
�originally, this equation represented reflection coefficient by
electric field�. The dispersion equation �63� has to be rewrit-
ten for the case of magnetic point scatterers in the following
form:

�0�m
−1��� = C�k,q,a,b,c� , �66�

where �m��� is the magnetic polarizability of the scatterers.
The analytical expressions for the magnetic polarizability
���� of split-ring resonators with geometry plotted in Fig. 4
were derived and validated in Ref. 31. The final result reads
as follows:11

���� =
A�2

�0
2 − �2 + j��

, �67�

where A is the amplitude, �0 is the resonant frequency, and
�=A�k3 / �6��0� is the radiation reaction factor. The expres-
sions for amplitude A and resonant frequency �0 in terms of
dimensions of split-ring resonators are available in Refs. 11
and 31. In the present paper we will use the typical param-
eters A=0.1�0a3 and �0=1/ �a��0�0�.

The dispersion properties of the cubic lattice of split-ring
resonators with such parameters have been extensively stud-
ied in Ref. 11. Using the theory of the present paper we will
study reflection properties of such metamaterial. Let us con-
sider the case of the cubic lattice �a=b=c�, normal incidence
�ky =kz=0�, and the magnetic field of the incident wave along
the direction of the magnetic dipoles d=y0. The numerical
solution of dispersion equation �66� with qy =ky =0 and qz
=kz=0 allows one to get a set of wave vectors of excited
eigenmodes 
qi

x�. These wave vectors are plotted at the top of
Fig. 8 as functions of normalized frequency ka. The point
ka=1 corresponds to the resonant frequency �0 as split-ring
resonators. One can see that the propagating modes �Im�qx�
=0� exist only for ka
0.978 and ka
1.044. It means that a
partial resonant band gap is observed for ka
� �0.978,1.044�. At the frequencies inside of the band gap

all the eigenmodes decay with distance. Note, that such de-
caying modes exist at all frequencies, not only inside of the
band gap. The Fig. 8 shows only the eigenmodes with slow-
est decay �Im�qx���1.5� /a. There is an infinite number of
other decaying modes which decay with distance more rap-
idly. The contribution of such modes into the reflection co-
efficient is negligible as it was shown above. The decaying
modes can be separated into the following three classes.

�i� Evanescent modes, the modes which have Re�qx�=0;
they decay exponentially from one crystal plane to the other
one.

�ii� Staggered modes, the modes which have Re�qx�
=� /a; they exponentially decay from one crystal plane to the
other one by absolute value, but the dipoles in the neighbor-
ing plane are excited in out of phase; and

�iii� Complex modes, the most general case of the decay-
ing modes which have Re�qx��0; they experience both ex-
ponential decay and phase variation from one crystal plane to
the other.

The evanescent modes are the most common type of de-
caying modes. They can be observed in dielectrics with
negative permittivity, for example. The staggered modes are
limiting the case of the complex modes and can be widely
observed in periodical structures in the vicinity of the band
gap edges; see, for example, Refs. 32 and 33. The complex
modes of the general kind are quite exotic for common ma-
terials.

In the system under consideration we are able to observe
all three kinds of mentioned decaying modes. The presence

FIG. 8. �Color online� Dependencies of the normalized wave
vectors qxa /� of excited eigenmodes �imaginary and real parts� and
the reflection coefficient R calculated using �55� on normalized fre-
quency ka for a semi-infinite cubic lattice of split-ring resonators
with A=0.1�0a3 and �0=1/ �a��0�0�.
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of staggered and complex modes are evidence of spatial dis-
persion in this material reported in Ref. 11. The staggered
modes exist for ka
0.984, evanescent modes for ka

1.015, and complex modes for ka� �0.984,1.015� �see
Fig. 8�. One can see that for a fixed frequency from the range
ka� �0.978,0.984� there are two staggered modes and in the
range ka� �1.015,1.044� there are two evanescent modes.
Actually, in the range ka� �0.984,1.015� there are also two
complex modes which have the same imaginary parts but
differ by a sign of the real part. Thus, we conclude that for
every frequency from the range ka� �0.95,1.08� that we
consider the incident wave will excite in the crystal a pair of
modes with �Im�qx���1.5� /a �propagating and staggered,
two staggered, two complex, two evanescent or propagating,
and evanescent�. Using the usual approach one has to intro-
duce an additional boundary condition to solve this problem
since the usual condition of tangential component continuity
is not enough in the case of excitation of two modes.

Using the theory introduced in the previous section it is
enough to substitute obtained wave vectors of eigenmodes
into �55� when the reflection coefficient is calculated. The
reflection coefficient is plotted at the bottom of Fig. 8. One
can see that at the frequencies in the vicinity of the bottom
and top edges of the band gap the semi-infinite crystal oper-
ate nearly as the electric and magnetic walls, respectively, as
was predicted in Ref. 32. At the frequency ka=0.984 the
reflection coefficient is equal to +1 �electric wall�, and at
ka=1.044 it is −0.8+0.6j �nearly magnetic wall�. Note that
the frequency corresponding to the electric wall effect is not
equal to the bottom edge of the band gap and there is no
frequency exactly corresponding to the magnetic wall effect.
By using the usual formulas for the reflection coefficient
from the magnetic and Clausius-Mossotti formulas, which do
not take into account the effects of spatial dispersion, one
could get the idea that magnetic and magnetic wall effects
have to happen at the edges of the band gap. Our study
demonstrates that if the spatial dispersion is taken into ac-
count accurately then it is not so.

Thus, we have demonstrated how the proposed theory can
be used for modeling the reflection from semi-infinite crys-
tals with spatial dispersion. Our theory can be treated as a
generalization of the results of Mahan and Obermair,10 which
have been widely applied for modeling of various kinds of
reflection problems. We hope that the present generalization
can find many more applications in the modeling of the re-
flection from spatially dispersive materials since it has no
restriction on the period of the lattice to be smaller than the
wavelength and allows us to consider electromagnetic crys-
tals of the general kind.

V. CONCLUSION

In this paper an approach for solving problems of plane-
wave diffraction on semi-infinite electromagnetic crystals is
proposed. The boundary conditions for the interface between
isotropic dielectric and electromagnetic crystal of the general
kind are deduced in the form of an infinite system of equa-
tions relating amplitudes of incident wave, excited eigen-
modes, and scattered spatial harmonics. This system of equa-
tions represents mathematical content of the generalized
Ewald-Oseen extinction principle which is formulated in this
paper; the polarization of the semicrystal excited by the
plane wave is distributed in such a way that it cancels the
incident wave together with all high-order spatial harmonics
associated with the periodicity of the boundary. In our opin-
ion, the proof of the generalized Ewald-Oseen extinction
principle presented in this paper is an important theoretical
fact which helps us to understand the interrelation between
reflection and dispersion properties of electromagnetic crys-
tals. If the eigenmodes of the infinite crystal are known then
the system can be solved numerically, which provides a nu-
merical method for solving the diffraction problem under
consideration. We believe in the quite good prospects for the
application of the described method in further studies of di-
electric and even metallic electromagnetic crystals at both
microwave and optical ranges.

For the special case when the crystal is formed by small
scatterers which can be effectively replaced by dipoles with
fixed orientation, the deduced system of equations is solved
analytically using a method of the characteristic function.
The closed form expressions for the amplitudes of excited
eigenmodes and scattered spatial harmonics are provided in
terms of rapidly convergent products. These expressions can
be treated as a generalization of the classical result of Mahan
and Obermair10 for the case when the period of the lattice
can be large as compared to the wavelength. The proposed
method is applied for the calculation of the reflection coeffi-
cient from semi-infinite crystal formed by resonant magnetic
scatterers �split-ring resonators� at the frequencies corre-
sponding to the strong spatial dispersion.
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