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Low-frequency spatial dispersion in wire media
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This work is dedicated to the theoretical analysis of wire media, i.e., lattices of perfectly conducting wires
consisting of two or three doubly periodic arrays of parallel wires which are orthogonal to one another. An
analytical method based on the local field approach is used. The explicit dispersion equations are presented and
studied. The possibility of introducing a dielectric permittivity is discussed. The theory is validated by com-
parison with the numerical data available in the literature.
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l. INTRODUCTION along a unit vectord(|d|=1) can be characterized by a

o i ) “polarizability” «, relating the complex amplitude of the
In the recent years the periodic metallic lattices have,quced current and the local electric fiePC
found many applications in both optical and microwave ’

ranges(see, for example, in Refl,2]). However, some fun- | = a(rok,q-d)E®-d. (1)
damental problems have not been resolved yet, even for typi;|ere k is the wave number of the host medium aget
cal metallic electromagnetic crystals. One of them is the:qH is the longitudinal component of the wave vector of the

problem of low-frequency spatial dispersion in wire media ti de. The followi ion o b-
(WM). The low-frequency spatial dispersion of a simple Wiregi?l%%g%l;gefT% €. The Tollowing expression tofwas o

medium (a doubly periodic regular array of parallel wijes
has been studied only recently in R¢8]. In the present (K- q) 2 VK2 = g%rg -t
paper this theory is generalized for double and triple wire “(To:K:a) = a1 log ty ,
media. The study of spatial dispersion effects in the above-
mentioned variants of WM has been started in R&f. How- (2)
ever, this studybased on the numerical approaghfar from  \herey~0.5772 is the Euler constant amg: \;‘m is the
complete. Our theory significantly complements the resultgyave impedance of the host medium.
of Ref.[4]. Itis an analytical one, and in order to validate it,
a comparison to the results from Ré4] is carried out. (2) % an

The unit cells of the lattices under study are shown in Fig.
1. They consist of tw@2d, or double wire mediumor three \:

\ -
(3d, or triple wire mediump doubly periodic regular arrays of \ oL
parallel infinite wires which are orthogonal to one another. D Q)
N

The wires are assumed to be perfectly conducting. The host
medium is a uniform lossless dielectric with permittivity Y | A
and permeabilitywy. We denote the radii of wires directed ¢
along x, y, and z axes asry, ry, andr, respectively. The X \

periods of the lattice along, y, andz axes are denoted b, = o = >
and c, respectively. The lattices are spatially shifted with 0 X
respect to each other by a half peri@de Fig. 1. The wires

axis positions in the chosen coordinate system are deter- (b)

mined by the following equations: '\bfz Ty a2

4—‘
(i) the x-directed wiresy=bn+b/2 andz=cl+c/2, B
(i) they-directed wiresx=am+a/2 andz=cl, 4z \ 7
N/
™\
N

(iif) the z-directed wiresx=am andy=bn, \
wherem, n, and| are integers.

In order to model an electromagnetic response of a wire, y 2
we apply the local field approach. We assume that the wire S
diameters are small compared to the wavelength. Thus, every
wire can be described in terms of effective linear current b \ . o
referred to the wire axis. The wire with radiug oriented 0 X'

e/ c

on

FIG. 1. Unit cells of double wire mediurte) and triple wire
*Electronic address: belov@rain.ifmo.ru medium(b).
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2_ 2 1(0)
Clk.G0dy.0za.0) = 77(|;jkaZ) l é cos k;sol)r;%cis @
. (i sink?a b )
2o\k" coskVa- cosqa  27n|
+ E(Iog—\ﬂkz‘#ng + 'y) + JE] , (6)
T A7 2
where

2
k§“>=—jJ(qy+2—T) -k, (7)
and we choose F{g@}>0. Those formulas physically cor-
respond to the representation of the WM as a set of parallel
grids (of z-directed wirey located parallel to one another
with perioda along thex axis (see also Fig. 4 for the case of
2d WM). Every grid radiates the spectrum of Floquet har-

FIG. 2. Simple wire media: a doubly periodic lattice of parallel monics with wave vector$kf(n),qy+277n/b,qz)- The series

ideally conducting thin wires.

with summation ovem on the right-hand side of6) de-
scribes the contribution of the high-order Floquet modes to

Let the eigenmode under consideration have the wavéhe electromagnetic interaction of those grids. The dispersion
vectorq:(qx,qy,qZ)T. Expressing the local field produced by equation follows from(1) and (4):

all wires except the reference one through the current in-
duced in the reference wire, we obtain the dispersion equa-

tion. It relates the components @fto k (i.e., to frequency).

[a!(ro,k,0) = C(K,0,0y, 0, @,b) ]I = 0. (8)
Taking into account expressioKi2) and(6) one can rewrite

Then we can introduce effective material parameters of theg) in the following form:

wire medium which fit this dispersion equation. In this paper
we widely use the results obtained in our preceding papers
[3,5] for a simple WM. Therefore, in the next section a very

short overview of those works is presented.

Il. SIMPLE WIRE MEDIA

The geometry of a simple wire medium comprising the

z-directed wires is shown in Fig. 2.

The currents in the wire with numbefsn,n) (counted
along thex andy axes, respectivejyare related to currerit
induced in the referenageroth wire through the wave vec-

tor q,
| mn = |ej(qxarn+q:/bn) i

)

Since the field re-radiated by the wifm,n) is proportional

L1 sink%a
27ty bK? coskPa - cosq,a

1
(K2 - qi)[—log
'

1 sinkVa 1 )
+ - 1=0.
go( bk" cosk!Ma- cosqa 2mn|
9

Note, that this is a real-valued dispersion equation. The real
part of polarizability(2) which is responsible for radiation
reaction is cancelled by real part of interaction constént

Equation(9) has three types of solutions.

(1) Ordinary waves, in the case where0 in (9). They
have no electric field component along wirés,=0) and
propagate without interaction with the lattice. Their disper-
sion plot corresponds to the host medium and is shown in

to I, the local electric field acting on the zeroth wire can Fig. 3 by thin lines.

be expressed in terms of the so-calldghamic interaction

constant C
EX° = C(K, 0, Gy, 03, b)!, (4)

where(see in Refs[3,5]):

k)
C(k,quQy, gp,a,b)=- TZ
X E [HgZ)(V,’mRm’n)e—j(qanqybn)], 5)

(m,n)#(0,0)

Rnn=y(@m?+(bn)? and all (m,n) except m=n=0 are
summed up. Expressigb) can be rewritten in the following
form [5]:

(2) Extraordinary waves, in the case where the expression
in square parentheses (i) equals zero. They correspond to
the nonzero currents# 0 and have the nonzero longitudinal
component of electric field&,# 0. Their dispersion proper-
ties are described in detail in R¢%]; their dispersion curves
are presented in Fig. 3 by thick lines.

(3) Transmission-line mode€TLM), in the case where
(k2—q§):0 in (9). Those waves propagate along the wires;
they are TEM waveqE,=0), but | #0. Their dispersion
equationq%zk2 has no restriction for componendg, q,, and
the phase shift of the currents in the adjacent wires can be
arbitrary[3].

Under the quasistatic limka< 27 and|gla< 2, the dis-
persion equation for extraordinary waves transforms to

046616-2



LOW-FREQUENCY SPATIAL DISPERSION IN WIRE MEDIA PHYSICAL REVIEW EO0, 046616(2004)

1.6

1.4}

12¢

7k

1 L

Normalized frequency, ka/(2w)

q

0.8} T q =

/
0.6} >/ X
0.4} S
02t N

0 1 it 1 1 1
M r X M ‘/a/z'

Normalized wave vector, qa/n . L
FIG. 4. The structure of a double wire medium is represented as

FIG. 3. Dispersion curves of wire media with filling ratio @ Set of planar wire grids.

f:wrS/a2:0.001(square lattice Thin lines, ordinary waves; thick
lines, extraordinary waves. TLM are not shown. I1l. DOUBLE WIRE MEDIA

s 2 2 2 o o Now, let us consider a double wire medium which is com-
q° =0 + oy + o =k - kg, (100 prised ofy-directed and-directed wires. It is shown in Fig.
4 as a set of parallel grids located along thaxis. Below,

here the following notations are used:
W wing ! us the local field approach is going to be applied taking the

2 27l same approximation as was done in our earlier wfk
- s ' (11) (where we have studied a doubly negative metamaterial in a
log— + F(r) similar way). Thus, the approximation is as follows: the elec-
2o tromagnetic field produced by a single grid of wires at a
s= \5@, r=a/b, andF(r)=F(1/r) is given by distance from the grid/2 is considered as a field of a sheet
- of the average currenl. That approximation is accurate
1 cothiznr) =1\ ar enough under the condition where the wavelength in the ma-
F(r)=- 5'09 r+ n% (f) +—- (12 yix is large compared to the grid periodsb<27 and kc

<2) and perioda is not smaller than periods, c. In this

Parametek, corresponds to the effective plasma frequencycase they-oriented grids interact with theoriented grids by
of the latticewy=Kq/ Vequo. FOr square latticea=b one has the fundamental Floquet harmonic. Other harmonics are eva-

F(1)=0.5275. Comparing10) with the well known disper- nescent and their contribution to this cross-polarized interac-
sion equation of uniaxial dielectrics, we obtain an effectivetion is negligible.

relative permittivity of 1d WM in the following form: We can express thém,n)-numberedz-directed current
_ through the referencgeroth z-directed current,,
s = £ZgZg + XoXo t , 13 )
& =E&LpL oXo T YoYo ( ) I(Zm,n)(z) - Ize|(qxam+qybn+qzz). (15)
2 .
s(kq)=1- kzko . (14) The same rule holds foy-directed currents,
-0 |§/m,|)(z) = | @l ham-alay) (16)
The dependence of dielectric permittivity gpgiven by(14) The currents, andl, are related to the local electric fields

does not dlsappear u_ntll the frequency becomes_zero_. Th'a?cting on thez- andy-directed reference wire8 and £°°
means that wire media have low-frequency spatial disper; e z y
. . . . . through polarizabilitiesy, ,,
sions. There is no low-frequency spatial dispersion for the Y
extraordinary waves in the only case where.the wave propa- l,= aZE'ZOC, l,= ayE'y"C, ay, = alry,Ka,,), (17)
gates across the wirég,=0). At low frequencies the propa- o
gation of those waves can be described in terms of plasmavhich fit (2). Both
like permittivity £=1-k2/k? (see also Ref[6]). Relative to ~ andy arrays,
those waves the wire medium behaves as a cold, nonmagne- loc _ =) , =(y) Eloc _ =(y) 4 (2

. . . . . E;"=E7+E) E,"=E) +E”. 18
tized plasma(a continuous dielectric mediumin other z z 2y 4 4 (18)
propagation directions the wire medium behaves differently. Copolarized termsE(ZZ) and EY could be expressed
In Ref. [3] we discuss the importance of the low-frequencythroughl, andl, applying(4):

spatial dispersion in d wire media. Below, we show this @

phenomenon theoretically ind2and 31 WM. E)” =C;4,Cr= C(K, 0y, 0y, 0z a,b), (19

E° and EY° contain contributions of
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EY = Cyyly,Cyy = C(K, Gy, ~ G, Gy,a,0). (20) Cy,=€%C,yclb
The cross componemEiy) and Ey) could be expressed _ 70y, j&¥?codq,a/2)sin(k,a/2) @7
throughl, andl,, respectively, k.kb cosq,a— coska '

EY=Cyy,, EY=Cyl,.

The cross-polarized interaction facto,,, are evaluated K- llog c
below. Substituting equatiori¢9)—(21) into (17) we obtain a Y

system of equations

(Cyy=a;H)ly+Cyl,=0,

Czyly+ (sz_ a’;l)lz: 0.

(22

Substituting(2), (6), and(26) into (23), we derive an explicit

21) dispersion equation,

1 sink.a
m ~2mr, ckcoska—-cosg.a

1 sin B§”)a 1
2| -
nz0\cBy’ cosB’a~cosga 2mn|

1 b 1 sink,a
X (k2= gd)| =l + .
( qz)[ T 0g27rrZ bk, cosk.a - cosg.a

1 sin BVa 1
First of all, it should be noticed that the solution (#2) +Eo
n#

whenl, ,=0 corresponds to the ordinary waves with polar-

ization along thex axis, propagating in the plarig-z). The 4q§q§ coqq,a/2)sin(ka/2) \?

dispersion equation for such wavesqf$+q§:k2, 0,=0. Set- = ICbe '
X

bB" cospVa- cosqa 2|n|

28
cosqg,a— coska (28)

ting the determinant of22) equal to zero, we obtain a dis-

persion equation for the extraordinary wavég,# 0), where
-1 -1 M) _ _ 2m\? 5,
(ny—ay NCp— a )_CyzCzyzo- (23 B =] qy+T +q, ~ K,
It should be noted that the expressions in parenthes@s3jn o \2
are exactly the dispersion equations for the simple wire me- I3§“> =—j \/<qz+ l) + q§ - K2,

dia (from y wires andz wires, respectively

In (23) coefficientsC,, ,, are defined fron(6), (19), and
(20). Now, let us calculate coefficient,, andC,, using the
approximation of current sheets which has been mentione
above. Thez component of the electric field produced by a
sheet with surface currer,(y,z)=yo(l,/c)el®*%? at the

The signs of all square roots are chosen so thét/ﬁ}» 0.
The dispersion equatiai28) cannot be simplifiedexcept the
uasistatic limif even in a special case wherg=r, anda
=b=c. In fact, the perfect square can be obtained on the
left-hand side of(28) if one neglects the contribution of

arbitrary distancex from the grid can be expressed by the high-order Floquet harmonics expressedrbgeries. How-

formula[8],

_ 79 B
Ey’z(x’y’ Z) - E(XLKZJZN(y1Z)e ]kxlxa

Ke=— Vg + 0 - K?

ever, this approximation leads to the wrong results for the
shape of isofrequencies. Therefore we do not use it.

The preliminary analysis af28) reveals some special so-
lutions. There are two solutions which correspond to TLM:
the first isqy=k,q,=0, qy is arbitrary; the second one &
=k,q,=0, gy is arbitrary. Those waves propagate either along

(24) they wires (when the electric field averaged over the lattice

unit cell is polarized along) or along thez wires (when the
averaged electric field is polarized alogg They are TEM

Summing up(24) over allm-numbered layers, we can write |\ 5ves as well as TLM in simple WNB]. The component,

+oo
- %Y e-jqxame-i\m-%lkxa
o 2kke 2 '

m=—o

The summation result is the following:

_ 79,0, je ¥%codg.a/2)sin(kal2)

Y7 kke cosq,a - cosk,a

is a free parameter for TLM and plays the role of a phase
shift between the currents in the adjacent grids of wjBis

(25 At first sight, it seems strange that the electric field with

non-zeroz component can propagate aloygacrossthe
z-directed wires below the “plasma” frequeng@yhich is the
cutoff frequency for such waves idMWM). However, it is
possible. When the TLM propagates along thevires, all
grids of z wires are excited; however, the superposition of

(26)  their fields exactly vanishes in the planesam+a/2, where

the grids ofy wires are located. This result can easily be
obtained analytically for arbitrary nonzetp and g;=k. For

Taking into account the phase shift betweeandy grids we  the same reason it is also possible foy-polarized TLM to

obtain

propagate along.
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When q,=m/a or g,q,=0, the right-hand side of28) 1.6
equals zero and the equation splits into two separate equa-
tions similar to(9) and describing the extraordinary waves in
two simple WM. Forg,=0 (or g,=0) the absence of the
interaction between two simple WM's is trivial, since the
propagation holds in the plar(@-z) [or (x-y)] and the elec-
tric field is polarized orthogonally tg-directed wiregor to z
wires). However, the interaction between twal WM'’s is
also absent whem,=m/a. At low frequencieska<l the
equationg,=/a corresponds to the excitation of TLM
both y and z arraysvith polarization directions alternating
alongx. The existence of this kind of TLMwhich does not
transport energy at alis specific for 21 WM.

More detailed study of28) requires numerical calcula-
tions and their results are presented below.

Normalized frequency, ka/(2m)

Normalized wave vector, qa/n

IV TRIPLE WIRE MEDIA FIG. 5. Dispersion diagram of a double wire media with filling

Analysis of triple wire media can be carried out in the ratio f=2mr5/a?=0.002 (cubical cell and equal radii Thin lines,

same way as described above. Similarly28), we obtain ~ modes of the host mediufsingular points of Eq(28)], thick lines,
modes of the @ WM.

(Cx~ a;1)|x+ ny|y+ Cid,=0,
The dispersion equatiai@5) with substitutiong19), (20),

Cydx+ (Cyy— a)‘,l)ly +Cyl,=0, (30), and(34) is the final result for the triple wire media. The
explicit equation is cumbersome and cannot be simplified in
Cpdx+ Cyly+ (Cppm a;h1,=0, (29)  the general propagation case. However, in the special case

) when q,=0, all cross-polarized interaction termi81)—(34)
whereC,y,,,, are determined by19), (20), (26), (27), and  vanish, and the syste(@29) splits into two separate sets: the
(6) and first one is the dispersion equation of theé WM C,,=a;?,

_ the second one is the systé@P). The first case corresponds
C.x=C(k,0,,9,0y,b,c). 30 . .
0= C(K Gy Gz, G . C) (30 to the extraordinary waves propagating normally to the
Here «; is denoted asyj=«(r;,k,q) and the subscript  wires without interaction withy and z wires. There is no

means the Cartesian componefitsy,z). Other interaction spatial dispersion for those wavésee above The second

factors are as follows: case corresponds to the in-plane propagation dnVieM,
, which will be studied below. In the present paper we do not
Coy=i 7%y COS(q,C/2)sin(kLC/ z)ejqzc/Z (31)  consider the general case of the wave propagatiod WHI.

kxka cosqg,c— cosk,c

_ 7790 CoSAybIsin(kbi2) g 15 V. DISPERSION DIAGRAMS AND ISOFREQUENCIES

Cy= kka cOSQb— Coskb , (32 OF A DOUBLE WIRE MEDIUM
y y y
The dispersion diagram of a double WM for the in-plane
. 70,0y cogq,c/2)sin(k,c/2) a2 propagation(g,=0) of the extraordinary waves obtained by
Cyx= kkb cosq,c— coskc € ' (33 numerical solution o0f28) is shown in Fig. 5. The chosen
z z z parameters of the wire lattice ase=b=c, r,=r,. The filling
. ratio is f=27r2/a?=0.002.
Cou=] 70, C03q,b/2)sin(kyb/2) eriayi2. (34) We use r);otationsF:(O,O,()T, Z=(0,0,7/c)7, and
k,kc cosqyb-coskb L=(0,#/b, /c) for the central point, the-bound point, and
the corner point of the fundamental Brillouin zone, respec-
kyE _jV‘q>2<+q§—k2’ kZE —j\rq§+q§—k2_ t|Ve|y

. : . : One can notice the significant difference between Fig. 5
There are no ordinary waves in that medium since there arg. 4 the dispersion diagram of a simple wire medi(sae

no vectors orthogonal to all wires simultaneously. The deterFig_ 3. In Fig. 5 one can see within the interval [-two
minant of (29) gives the dispersion equation: extraordinary modes which do not vanish at low frequencies
(Coe— a;l)(cyy_ ;1)(sz_ a;l) k<kg and'are' not TLM. In simple WM the waves with non-
zero longitudinal(with respect to the wirgscomponent of

the electric field cannot propagate at low frequencies since
the phase shifts between the adjacent wires are small and the
. reradiation of parallel wires suppresses the wave.d\avi
—(Cyz= @) Cyy Cyx+ CyCy Lo+ C L, Cyx=0. (35 it becomes possible due to the electromagnetic interaction of

—(Cx— a’;l)cyzczy_ (ny_ a;l)cxzczx

046616-5
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1 . Y . . . L Only in a special case of the in-plane propagation, the iso-
frequency centered at tHe point has nearly circular shape
08 1 and the phase velocity of this mode coincides with that of the
06 host medium. Whenmy, # 0, the shape of this isofrequency
) becomes superquadric and modes with hyperbolic isofre-
04} —0 quency tend to the same asymptoigs,=+k. When gy
_J 44 =m/a the isofrequencies coincide with the asymptotes ex-
k 02 f %v\" =1/(2a) actly. This case corresponds to TLM discussed aljatrech
S 9 % do not transport energy The plot in Fig. 6 indicates the
o QJ Z possibility of the two refracted wavedoth extraordinary
02 | S _
wavey for the rather large sheer of incidence angles. This
04l i effect keeps at the quasistatic limit.
The 2 WM with proper orientation of wires with respect
06 1 to the medium interface can possess the low-frequency nega-
08l ] tive refraction. It follows from the fact that the angles be-
tween the group and the phase velocities for the mode cor-

-1_1 08 06 04 02 0 02 04 06 08 1 responding to the hyperbolic contours in Figs. 6 and 7 can be
close to7r/2 (the normal to the isofrequency contour shows
g.alm the direction of the group velocity vector
At the frequencies close to the plasma frequemgyand
higher two other modes appear with isofrequencies centered
atI'. They are shaped as two crossing ellipses. The modes

. . with isofrequency curves close ) =tk are still present.
the two ort'hogona}l WIre arrays. This is the result of the CrOSSThe isofrequency contours for such a céserresponding to
polarized interaction of wire arrays. There are term<in

that cancel out the terms @, andC,, which are responsible \Ijvaéigzo.'r?érg’;g; Z?cfj. qé; Zg(zagnsre ths:%vmelrrt])ollz'lcg:s;;re-
for the suppression of the waves propagating obliquely in O ! % quency, yp c1

simple WM at low frequencies. quency contours in the planey,—q,) approach the asymp-

; . _ _ - totes in the same way as it happens for lower frequencies.
The h | lineska/(27)=0.1 ka/(2m7)=0. - : ;
e horizontal lineska/(2m)=0.1 andka/(2m)=0.3 in The elliptic contours located aroudd(see Fig. ¥ shrink to

his point whereq, grows and disappear wher, becomes
greater tharkg.

FIG. 6. Isofrequency contours for double wire media at
ka/(27)=0.1. Two cases,=0 andq,=m/(2a) are presented.

Fig. 5 correspond to isofrequency contours presented in Fig
6 and 7, respectively. The isofrequency contour locate
around the L point is very unusuétlose to the hyperbolic
one. In Fig. 6 one can see that the contours of isofrequencies

are rather close to four asymptotggs,= +k. In spite of the VI. QUASISTATIC CASE
rather low frequency as compared g, the isofrequency
contour located around the point (q=0) basically differs
from the isofrequency of an isotropic dielectria circle).

Let us consider a double wire medium in a quasistatic
case wherggla< and ka<m. Expanding trigonometric
functions in the dispersion equation for extraordinary waves

Y L (28) into Taylor series and keeping the two first terms in
1 ‘ ' T ' those expansions, we obtain the following equation:
08 _ |
j M), (k- g) (k2 — Q[ ~ K&(ry,a,0) — ][k ~ Ki(r,,a,b) — ]
0.61 3 ‘
0 :q)Z/Q§k€(ry! a‘l C)k(z)(rZ! a'l b) . (36)
0.4+ —. q.=U 1
— Let us consider a special case whegyer,=r anda=b=c. In
k 02r ] that casg36) could be simplified to the form
N
>\ 0 | !’— !’—
S r g VKZ = g Vk? - (K2~ kG - o — o) — 07) £ 6,0K5 =0,

02} 1
(37)

04} 1

06 whereky=Kky(r,a,a).

e ﬁ ﬁ | We can expressg, from (37) in the form

08| 1

2_12_12 q szcz) 2
Ry — S— — ' SR (@ —2ED 2 38
-1 08 06 04 02 0 02 04 06 08 I % ko I - i - 2 % (38)

In
ot In Ref. [4] the following approximate dispersion equation

FIG. 7. Isofrequency contours for double wire media atwas introduced under the conditioks=k, and g;= v"q§+q§
ka/(27)=0.3. Two cases,=0 andq,=/(2a) are presented. <K, (in our notationg
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143} ‘ ' ‘ ' ‘ ‘ ' ' ] mittivity in terms of D=gqe-E) corresponds to the zero-
value determinant of the following systemisk?+qq

- q?)E=0:

-

'

[}
T

(Sxxk2 - q§ - qg) Ex+ qquEy +0,0,E,=0,

—

-

—_
T

quyEx + (‘gyyk2 - qi - qg) Ey + quzEz =0,

OxdEx + quzEy + (“/‘zzk2 - q>2< - q)zl) E,=0. (40

This system helps to find the polarization of eigenmodes
whene is known. The study of eigenmode polarization will
be considered in our next paper.

The dispersion equation has the following form:

Normalized frequency, ka

@ angle [deg] (0 + 0 — Key) (a5 + & = Key) (05 + 0 — Ke)

FIG. 8. Dependence of the normalized wave numikeeon ¢
angle near the “plasma” resonance of the wire medium with
=a/100,q,=0.17/a (dashed ling Comparison with the exact result

= (0 + 02 = KPey) 0o0; = (0% + 0 — Keyy) 0502

(solid line corresponds to the numerical data from Fig4p. - (qf + q§ - kzszz)qiq)z, - 2q)2<q§q§ =0. (41
2 o 2 5 In Ref.[4] the following expressions have been heuristically
O =~ K~ ko= qy0, — 0 - (39 introduced for components of the permittivity ofl 3VM:
The birefringence of the dispersion branches near the plasma e =1 k§(ryb,c)
frequency corresponds to the two signs on the right-hand x K-qg2 '
sides 0of(38) and(39). The difference between Eq88) and
. L i 2.2

(39) is not significant ifk~k, and g;= Vo +q <ko. kg(r a,c) ké(r ab)

In Ref. [4] the propagation of waves at the frequencies gy=1 —% g,=1 —ﬁ (42
close towy in triple wire medium has been numerically stud- k*—ay k*—q;

ied for the case wherg,=0 (in-plane propagation In that
case the presence »fwires does not influence the propaga-
tion characteristics, and our dispersion equati®r is ap-
plicable. We compare the solution @7) with results from
Ref. [4] in order to validate our theory.

In Ref. [4] one chose the following parameters:

The effects of the low-frequency spatial dispersion are
deemed to be described by termsg , in the denominators of
the components of (see also in Ref{3]).

It has been noted in Ref4] that the expressiong?2) and
the dispersion equatiof87) fit perfectly with the results of
_ . = numerical simulations fotw= w,. Following (42), the com-
=a/100(it corresponds téa~1.4), ¢=0.17/a. One calcu- ponents ofe for triple WM are the permittivities of the three

I:a}tsos Itr?liigr]n%di;:‘r?higi?oerfigr?ef?h:v(asi;éhc?eg:ﬂggr?gaegf theorthogonal simple wire media stretched along the Cartesian

lized eigenf th leo. Th oo i axes. We have assumed that the same rule holdsdfevId.
nhormalized eigen req“e”‘m. on the angigp. The angiep IS In the case of @ wire medium there are ne-directed wires
indicated in Fig. 4 q,=q; sin ¢ andqg,=¢; cos¢). The plot

ka vs o shown in Fig. 8 represents the comparisor(ad) and e,,=1. We have analytically verified thaB6) exactly

with the numerical data from Reff4]. The upper dispersion Ssmiglfjsvgr:tg(%}l)ol\fvitge eﬁe(?tlve permitivity of a double
. g form:

branch corresponds to the case where betgeg in (37)

there is a plus sign, and the Iow_er bran_ch Corre_sponds to the Egouble™ XoXo + EyYoYo + £220%0, (43)

case where there is a minus sign. This plot illustrates the

effect of the dispersion branch birefringence near thewheresy, ands,,are given by the relation@2). It should be

“plasma frequency” of wire mediurgsee ellipses in Fig.)7  noted that formula43) has been obtaine@ery recently for

Equation(37) shows that this effect holds also fag#0. 2d WM by other author$9] as a result of a very complicated

Figure 8 verifies that the quasistatic equat{8) is correct  analytical-numerical approach. Fro@?2) it follows, that at

even at rather high frequenciesdightly higher thanwg) out-  every point of the central isofrequency contour in Fig. 6

side the initial approximatioka<< . (wherek <ky andgq, ,<k) both components of the permittiv-
Now, let us turn to the consideration of the effective per-ity tensore,, ande,, are negative. The propagation of such a

mittivity of 2d WM. In the dyadic form the tensor of effec- wave (I # 0 for it and the electric field can containand z

tive relative permittivity of arbitrary anisotropic dielectric componentgis the spatial dispersion effect.

media can be written as=g,XoXo+&yYoYo+e,ZoZo. The We have also proved that the whole systgt) holds in

dispersion equation of anisotropic dielect(iollowing from  our model of a triple wire media. The quasistatic analog of

Maxwell’s equation and from the definition of relative per- (35) has the form
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(k2 - q)Z()(kZ - qi)(kZ - qg)[kZ - ké(rx,b,c) -] (y-2) whereas botty and z components of the permittivity
tensor are negative. For the other one the isofrequency con-
2_ 12 — 22 — 12 o2 tour is nearly hyperbolic.
X[~ k(a0 =gk - lolrzab) - o] (iv) Near the plasma frequency the two other waves ap-
pear with crossing isofrequency contours.
~ (K = g)[K* - Kg(reb,c) - qz]qiqgkg(ry,a,c)kg(rz,a, b) The materials under consideration could find various ap-
plications due to the properties discussed in this paper. We
~ (K = q@)[K? = k§(ry,a,0) — g?Jog0zkd(re. b,c)Kj(r . a,b) would like to note especially such applications as creation of
a low frequency superprism and design of materials with
~ (K= 0))[K? - K5(r,a,b) — 9?]aaik(ry, b,c)k(ry,a,c) negative refraction. Those properties of double WM will be
discussed in a future paper.
+ quqf,qﬁké(rx,b,c)kg(ry,a,c)kf,(rz,a,b) =0. (44 Finally, let us discuss the problem of the homogenization

of WM. Equation(41) relates three unknown components of
It coincides with the dispersion equatio#l) if the permit- g, three components of the wave vectpand the frequency

tivity takes the form[see relationg42)]: (or wave numberk). The components ofy are related
- N N 45 through dispersion equation witt It is clear that the prob-
Etriple = ExxXoXo T &yyYaYo T €22020- (45) lem of & has no unique solution in this formulation. The

We have thus verified that dielectric permittivities fat &nd ~ same concerns @ WM. Though (42) fits our dispersion
3d wire media in the form43) and (45) suggested in Ref. equations, this result is heuristic and the permittivity has
[4,9] fit successfully in our theory. We have analytically veri- been introduced and not derived. Is it reasonable to try to
fied, that the quasistatic analogs of dispersion equat@®)s find other possible expressions fe?

and (35) in the form (37) and (44) coincide with the It is well known that the effective material parameters of
dispersion equations of anisotropic dielectrics spatially dispersive media have meaning other than those of

(43) and (45). continuous media. The effective susceptibility of such media
in the presence of a point source depends on the source po-

VIl. CONCLUSION sition and has nothing to do with the effective medium sus-

ceptibility for plane waves. The usual boundary conditions

In the present paper we have generalized a recently devedre not valid on the medium interface. So, the material pa-
oped analytical theory of a simple wire medium to the caseameters are not very helpful in solving the boundary prob-
of double wire media and obtained some results for tripldem for media with spatial dispersion. The goal of the ho-
WM. We have validated our theory by comparison with Ref.mogenization of WM is modest: to describe the low-
[4] and proved that the effective permittivity oizand 3 frequency propagating properties of an infinite medium in
WM introduced in Refs[4,9] fits our dispersion equations terms of those parameters. Therefore, all we need is to intro-
fairly well. duce the permittivity which wouldl) describe all effects we

We have theoretically revealed the effects of low-fre-can reveal solving the corre@fuasistatig dispersion equa-
quency spatial dispersion fod2VM, such as the following. tion and(2) allow one to find the polarization of eigenmodes

(i) Propagation of-polarized TLM alongy wires is not  correctly. For both @ and 31 WM the permittivity (42) com-
suppressed by the presencezoifires(the same is correct for prises all the dispersion properties at low frequencies
the y-polarized TLM propagating along). (ka<1). As to eigenwaves polarization, the res(#®) re-

(i) There are TLM which can exist in bothandz arrays  quires further study, which will be also presented in a future
simultaneously. These modes do not transport energy, singaper.

the directions of the currents in wires are alternating along
the x axis.

(iii) There are two propagating modes at low frequencies
w<wy Which are not TLM and not ordinary waves. One The authors are grateful to Mario Silveirinha for very
mode has nonzero electric field component in the plandruitful discussion.
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