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Nothing is as easy as it looks.

Everything takes longer than you think.

Complex problems have simple, easy to understand wrong answers.

(Murphy’s Laws)
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Introduction

Rapidly growing demand of electromagnetic materials with various exotic properties is pre-

conditioned by continuous development of novel technologies. Electromagnetic properties

of naturally available media are restricted by physical reasons, that is why strong progress

in studies of artificial materials (also called as metamaterials) is observed during last years.

These complex materials allow us to achieve extraordinary electromagnetic properties which

are sometimes even not available in natural materials. Such properties offer brilliant ap-

plications in microwave and radio engineering, optics and spectroscopy, covering the fre-

quency region from microwaves to visible range. The regularly generated novel ideas expand

this rapidly developing scientific area with extremely high rate, and promising effects at-

tract researchers from communities which stand aside from electromagnetics, like acoustics,

hydrodynamics, mechanics, etc. The most promising possibility offered by metamaterials

is sub-wavelength imaging, a possibility to overcome the diffraction limit (the general re-

striction on resolution of conventional lenses). The technique of light manipulation using

photonic crystals (superprism effect, bending waveguides, cavity resonators) and ultra-thin

high-impedance coverings (magnetic conductors) which already have found numerous appli-

cations are noteworthy as well. A detailed overview of mentioned above effects, properties

and applications is presented in the first part of the thesis.

The emphasis of the present work is on analytical modelling of metamaterials. This makes it

different from other existing studies which are mainly based on numerical simulations and ex-

periments. The local field approach is used as the main modelling technique. A wide variety

of different metamaterials has been simulated with the help of this unique method: starting

from planar grids of resonant scatterers over ground plane which behaves as an impedance

surface and finishing with two and three-dimensional lattices with complex inner geometry

and extraordinary dispersion properties. The trait of this approach is implementation of

complex mathematical manipulations related with summation of non-convergent series us-

ing the Poisson summation formula, singularity cancelation and convergence enhancement.

The goal of such transformations is to get analytical expressions which allow simple and

effective numerical calculations. An overview of the main results is presented in the second

part of the thesis. It is supported by references to the papers (attached to this work) where

detailed explanations of the results are available. The last part of the thesis is devoted to

studies of an original regime of sub-wavelength imaging which is called canalization. A short

overview of recent analytical, numerical and experimental results is presented.

1



1 Metamaterials: a historical overview

The naturally available materials have some restrictions on their electromagnetic properties.

Such materials are generally lossy and their material parameters are frequency dependent.

Sometimes, it is quite hard to find a natural material which has necessary values of material

parameters required for certain applications. This problem usually can be solved by using

artificially manufactured materials (metamaterials). These materials are specially designed

to have necessary electromagnetic properties. Some authors associate term ‘metamaterials’

with double-negative media only. In the present work the general meaning of term ‘meta-

materials’ is used. By this definition the metamaterials are artificially created media with

exotic electromagnetic properties which are usually not available in nature.

1.1 Artificial dielectrics

The first ever known metamaterials are artificial dielectrics. These materials mimic natural

materials. They usually consist of artificially created ‘molecules’: dielectric or metallic

inclusions of a certain shape (see Fig. 1). These ‘molecules’ can be distributed and oriented

Figure 1: The geometry of a generic artificial dielectric

either regularly or chaotically. The dimensions of the ‘molecules’ and characteristic distances

between neighboring ones are assumed to be small as compared to the wavelength. From

the other hand, the size of a single inclusion usually is much larger than the sizes of real

molecules and lattice periods of the natural material from which the artificial ‘molecule’ is

composed. This allows us to describe the inclusions in terms of material parameters which

fits the problem into the area of the classical electrodynamics.
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The first artificial dielectric was invented by W.E. Kock [1] and used in the design of low-

weight dielectric lenses at microwave frequencies. The artificial dielectrics have numerous

advantages as compared to natural ones. From one hand, they can be designed to have as

high permittivity as it is required for certain application and very low losses at the same

time. From the other hand, the losses can be artificially enhanced and absorbing materials

with high losses can be created. Also, artificial dielectrics usually have significantly reduced

density which is very important in the design of both dielectric lenses and absorbers at

microwave frequencies. More details about artificial dielectrics as well as extensive reference

lists are available in Sec. 12 of [2], and [3].

1.2 Wire media

A very interesting example of artificial dielectrics is the wire medium [4–9] (also called

“rodded medium”) known since 1960-s. It is a material formed by a regular lattice of

conducting wires with small radii as compared to the lattice periods, see Fig. 2. Wire medium

Figure 2: The geometry of wire medium: a lattice of parallel conducting thin wires.

has plasma-like frequency dependent permittivity: negative below the plasma frequency, and

positive but smaller than unity above. That is why it is often called “artificial plasma” since

the ideal (collisionless) electron plasma is described by permittivity of the same form. Wire

media were even used for plasma simulations [10] at microwaves. Recently, the wire medium

was re-discovered by J.B. Pendry [11] which initiated a new wave of the interest to this

material [12, 13]. The wire medium is a unique non-resonant artificial dielectric which has

negative permittivity in a very wide frequency range. This property defines the area of its

applications. The wire medium was used as one of the components for creation of double-
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negative media [14] (see the section about double-negative media below). Also, the wire

medium was used in synthesis of high-impedance surfaces [15].

1.3 Artificial magnetics

Artificial magnetics have no shorter history than artificial dielectrics. The most popular

in the present time artificial magnetics are described in details in [16], but they have been

known long time before that, since 1950-s [17–19]. Artificial magnetics are usually composed

from elements which have resonant magnetic response. The typical magnetic elements are

split-ring resonators (see Fig. 3.a) and Swiss rolls (see Fig. 3.b). The split-ring resonators

are more widely used than Swiss rolls since they can be manufactured using printed circuit

board technology. An artificial magnetic formed by split-ring resonators possesses negative

Figure 3: Components of artificial magnetics: a) split-ring resonator and b) Swiss roll [16].

permeability within a narrow frequency band near the resonant frequency of the single split-

ring resonator. That is why this material is used as one of components for creation of

double-negative media [14] (see the section about double-negative media below). Metallic

waveguides filled by such artificial magnetics support guided waves at frequencies below the

cutoff frequency of hollow waveguides which makes the waveguides sub-wavelength [20]. This

effect is used for miniaturization of guiding structures [21].

1.4 Bi-anisotropic composites

Lattices of inclusions with a complex shape (chiral and omega particles, etc., see Fig. 4)

cannot be described in terms of permittivity and permeability only, since they exhibit electro-

magnetic coupling. Electric field causes not only electric polarization of such media, but also

magnetic, as well as magnetic field causes both magnetic and electric polarizations. Such

materials are called bi-anisotropic media [22–25]. In paper [26] it was shown that even split-

ring resonators (see Fig. 3.a) possess strong bi-anisotropic properties since the dimensions

of the two split rings are different. This effect is harmful for creation of uniaxial artificial

4



magnetics discussed in the previous section. This problem was solved by introduction of

double split-ring resonators formed by rings with identical sizes [26,27].

Figure 4: Bi-anisotropic particles: a) chiral, b) omega, c) double chiral [28]

The bi-anisotropic medium is the most general kind of materials which can be described in

terms of local material parameters. They found application as radar absorbing materials

(stealth technology) and polarization transformers. Recently, also, the negative refraction

effect was reported for chiral materials [29–31].

The author of the present work has defended his MSc thesis about interaction in two-

dimensional regular grids of bi-anisotropic particles. The thesis was based on works [32–39].

1.5 Double-negative and indefinite media

A special place within metamaterials is occupied by double-negative media (DNG), materials

with both negative permittivity ε and permeability µ. Growing interest in these exotic media

Figure 5: Prof. Victor G. Veselago on the left with Prof. Ari Sihvola on the right, coining
the name “Veselago medium” (Espoo, Finland, 2002)
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was excited only very recently by paper [40] of J.B. Pendry [41], in spite of the fact that

DNG were described by V.G. Veselago in his work [42] in 1968. In the literature, materials

with negative permittivity and permeability are often called as left-handed media [14,43–45]

following the original term proposed by V.G. Veselago [42], but in this thesis the term

double-negative media [46, 47] is used. Sometimes, DNG are also called as backward-wave

media [48,49], negative-index materials [50,51], or even Veselago media, see Fig. 5. Double-

negative media attract attention due to very interesting possible applications. For example,

a possibility of perfect lens construction was predicted by Pendry in [40] (see the section

about sub-wavelength imaging below) and a sub-wavelength cavity resonator was invented

by Engheta in [52]. Plane electromagnetic waves in double-negative media are backward:

the wave vector and the Poynting vector are oriented in the opposite directions (the group

velocity is negative). As a result, the negative refraction effect is observed at interfaces

between isotropic dielectrics and double-negative media. A possibility of negative refraction

and backward-wave effects has been known since 1904 [53–58], long time before the discovery

of DNG. In 1940 Russian academician L.I. Mandelshtam (see Fig. 6) even read lectures about

Figure 6: Academician L.I. Mandelshtam (1879-1944)

a possibility of negative refraction and backward waves at the physical faculty of Moscow

State University [59]. The studies of double-negative materials have been continued and

developed very rapidly in the present time, see special issues [60–62] and overviews [63–66].

Extensive lists of publications and additional information about double-negative materials

are available at on-line resources [41,67–69].

The group of R. Shelby and D. Smith [67] offered a realization of a uniaxial version of double-

negative medium [14] with the help of a lattice of wires and resonant magnetic scatterers,

see Fig. 7. In their design a lattice of wires (wire medium) is responsible for negative

permittivity, and a lattice of split-ring resonators allows one to create negative permeability.
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Figure 7: Realization of double-negative material at microwave frequencies [43]

Negative refraction in the Shelby-Smith structure was experimentally proven [43, 51, 70] at

microwave frequencies. To the present time double-negative media with such design are

created for frequencies up to tetrahertz region [71, 72] and even an isotropic geometry is

proposed [73]. The Shelby-Smith structure is not a unique design of double-negative media.

There are also other possible realizations, like [47,74–76].

An intermediate position between artificial dielectrics and magnetics, and double-negative

media is occupied by so-called indefinite media in which the principal components of the

permittivity and permeability tensors have different signs. Such materials were studied

in [77–79] where a variety of effects including negative refraction, backward-wave effect, near-

field focusing were demonstrated. Anisotropy of the media introduces additional freedom in

manipulation of its dispersion and reflection properties [48].

1.6 Photonic and electromagnetic crystals

Artificial dielectrics operate at long wavelengths as compared to the lattice periods. In such

regime the inclusions interact mainly quasi-statically. A completely different situation ap-

pears in the case of so-called electromagnetic crystals [80,81] operating at higher frequencies

where interaction between inclusions is dynamic. Electromagnetic crystals are artificial peri-

odical structures operating at the wavelengths comparable with their period. In the optical

frequency range they are called photonic crystals [82–86]. The inherent feature of such media

is the existence of frequency bands where the material does not support propagating waves.

These bands are called bandgaps, and therefore these crystals are sometimes called electro-

magnetic or photonic bandgap structures. The bandgaps are caused by spatial resonances

appearing in the crystal and strongly depend on the direction of propagation. It means that

electromagnetic crystals are media with spatial dispersion [87–89]. Material parameters for
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such media depend on the wave vector as well as on the frequency (if they can be introduced

at all). The homogenization approach is not the most convenient way for the description of

electromagnetic crystals. It requires introduction of additional boundary conditions in order

to describe boundary problems correctly, and this involves some related complexities.

Figure 8: The first photonic crystal with a complete bandgap (yablonovite) [90]

The interest to photonic crystals arose about eighteen years ago. The start for investiga-

tions of photonic crystals was given by pioneer works [91,92] of E. Yablonovitch [93] and S.

John [94] in 1987 reporting strong localization of photons and inhibited spontaneous emis-

sion due to electromagnetic bandgaps. Note, that a detailed investigation of the effect of a

photonic bandgap on the spontaneous emission of embedded atoms and molecules has been

performed by V. P. Bykov [95, 96] fifteen years earlier. The first studies and demonstration

of a photonic crystal with a complete bandgap (see Fig. 8) were done by E. Yablonovitch

et al. in early 1990-s [90, 97–100]. Now photonic and electromagnetic crystals have found

numerous applications in frequency-selective devices, as waveguide and resonator compo-

nents, in both optical and microwave ranges [80–86]. They attract attention of researchers

due to very promising possibilities of light manipulation which become possible with their

help [101]. Extensive lists of publications and additional information about photonic crystals

are available at on-line resources [41,93,94,102,103].

Electromagnetic crystals are usually studied with the help of numerical methods [80,81,84,86]

such as FDTD (finite difference time domain) and MoM (method of moments), as well

as Pendry’s method [104] (which uses the condition of the field quasi-periodicity in the

crystal in order to reduce the problem to numerical solution of Maxwell’s equations for one

elementary cell) and Bloch-Floquet method [82, 83] (based on expansion of the field into

spatial harmonics). Analytical models exist only for a very narrow class of electromagnetic

crystals. There are only few geometries which can be solved rigorously, and some types of

electromagnetic crystals can be studied analytically only using certain approximations.
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1.7 High-impedance surfaces

High-impedance surfaces (HIS) are thin composite layers at the upper surface of which

impedance boundary conditions hold. If the impedance is high enough then the reflection

coefficient (with respect to electric field) from the surface happens to be close to +1 and

the HIS behaves as a magnetic wall. That is why HIS are also called as artificial magnetic

surfaces. The most well-known sample of HIS is the simple mushroom structure [105], see Fig.

9. The structure is a composite layer that contains a periodical array of metal pins connected

Figure 9: Geometry of simple mushroom structure [105]

to the ground and metal patches (hats). Its response to the incident electromagnetic wave can

be roughly modelled as that of a resonant parallel LC-circuit. There is a modification of the

mushroom structure with two-level hats [106] which allows one to significantly decrease the

frequency of operation for the fixed thickness of the structure and to make it tunable. There

is a number of other HIS realizations which are not suitable for wide practical applications

due to complexity in manufacturing. The exceptions are screens with complex-shape slots

suggested and studied in [107], but these screens are very penetrable for radiation at the

resonance that restricts possible applications.

The most promising application of high-impedance surfaces is preconditioned by the fact that

the interaction of horizontal antennas with HIS is constructive (in contrast to the interaction

with ordinary metallic screens which is destructive). Also, besides of the magnetic wall effect

for waves, the HIS can suppress (in a certain frequency band) surface waves. Thus, HIS are

prospective candidates for screening of near field and reduction of specific absorption rate

(SAR) keeping antenna efficiency to be high enough [108]. More detailed information about

HIS is available in [109].

9



2 Analytical modelling of metamaterials

2.1 Local field approach

The local field approach is usually associated with the question of the local field in di-

electrics, the Maxwell Garnett approximation [110] and formulae of Clausius-Mossotti and

Lorenz-Lorentz, see for example [111]. It allows one to show that the effective polarizability

of a molecule in a dielectric differs from its own polarizability due to interaction with other

molecules, because it is affected by the local electric field which is different from the aver-

aged one. Following deduction of Lorentz, the contribution of the interaction effect can be

expressed with the help of an interaction constant which relates contribution into the local

field produced by other molecules with the dipole moment of the molecule. Evaluation of

the static interaction constant for different crystal lattice geometries is available in [2].

For some natural dielectrics: crystals, fluids, etc., the theory described above does not

give good quantitative agreement, because the modelling of molecules by electric dipoles is

inaccurate. At the same time, artificial materials can be modelled with help of local field

theory with much better success. The known geometry of scatterers which form the artificial

material allows one to appraise applicability of the dipole approximation. In the case if the

scatterers are small as compared to the lattice periods, the local field theory gives excellent

correspondence with experiment, but in the case of less compact inclusions more complicated

methods should be applied [3].

In the papers included into this thesis the local field approach is used in the following

formulation. Considering periodical structures formed by inclusions of a ceratin shape one

can replace the inclusions by elementary scatterers (electrical or magnetic dipoles, lines

of current) if the characteristic sizes of inclusions are smaller than wavelength. Then, the

dipole moments or effective currents of the elementary scatterers can be expressed using local

polarizabilities or susceptibilities through the local fields acting on the inclusions, and the

field produced (scattered) by the inclusions is assumed to be equal to the field produced by

these elementary scatterers. This approach allows us to separate the problem of regular

structure of complex-shaped inclusions into the two separate problems: the problem of

excitation of a single inclusion by local electromagnetic fields and the problem of interaction

of elementary scatterers in regular arrays. These two problems are significantly easier to

solve as compared to the original one.

The local field approach in this formulation has been proposed by S.A. Tretyakov in his

Doctorate thesis [112] where it was successfully applied for modelling of structures formed

by bi-anisotropic scatterers. Also, it is one of the basic approaches used in the book [113].
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2.2 Planar arrays of resonant dipoles over conducting planes

The topic of resonant reflection from dipole arrays located very near to conducting planes

was considered in paper [P19]. Plane-wave reflection from regular arrays of small particles

positioned very near to an ideally conducting plane (see Fig. 10) is theoretically studied. A

method to realize extremely thin resonant coverings of ideally conducting bodies which can

provide resonance response and realize artificial magnetic surfaces is proposed. It has been

shown that this goal can be achieved using regular arrays of small dipole antennas loaded

by bulk inductive loads. Such two-dimensional regular grids of loaded wires placed over an

ideally conducting plane have been studied in detail. A simple analytical theory for plane

Ground plane
a

h

h

Dipoles

Image dipoles

a X

Y
Z

Reference dipole

Figure 10: Planar array of dipoles over ground plane [P19].

electromagnetic wave reflection from this structure has been presented for normal incidence.

From this theory it follows that the structure possesses a sharp resonance of the reflection

coefficient. At resonance the reflection coefficient from the grid equals to +1. Thus, this

structure behaves as a magnetic screen near the resonance, instead of an electric one as

for frequencies far from the resonance. Analytical formulae for calculation of the resonant

frequency and the resonance curve width are given. It turns out that this resonant frequency

is smaller than the loaded wires resonant frequency, due to field interactions between the

particles and the ground plane. Numerical calculations of reflection coefficient for structure

with some realistic parameters have been done and dependencies of the reflection coefficient

and its phase on the frequency have been plotted.

2.3 Simple wire medium

Following the local field approach the simple wire medium (Fig. 2) formed by thin wires can

be treated as a grid of linear currents flowing along the axes of the wires. This approximation
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is accurate while the transverse polarization of wires can be neglected (radii of wires are

smaller than the lattice periods and the wavelength). The susceptibility of a single wire (the

ratio between the induced current and the applied electric field) can be easily obtained using

an expression for the field produced by a linear current available at [114], see [P20] for details.

The interaction between the linear currents in the grid can be described using the dynamic

interaction constant concept. This constant is the ratio between the local electric field

created by the phased grid at the place of location of the reference wire and the current in the

reference wire. The dynamic interaction constant depends on the frequency, the wave vector

and the periods of the lattice. It can be evaluated using the Poisson summation formula for

improvement of series formed by Green’s functions describing field produced by a single wire

in the same manner as it has been done for planar arrays of wires in [115–117], see [P20] for

details. As a result, an analytical transcendental dispersion equation for the wire medium

has been obtained in [P20]. This equation allows us to study dispersion properties of wire

medium considering it as an electromagnetic crystal. Under the local field approximation

only the radius of wires has to be much smaller than the wavelength and the periods of

the lattice, but the wavelength can be comparable with the lattice periods and thus, the

spatial resonances of the lattice can be studied without any additional efforts. Typical

dispersion curves obtained in [P20] are presented in Fig. 11. The low frequency bandgap for

extraordinary modes is clearly visible. Using these results, the reflection problem from an

Figure 11: Dispersion curves for the wire medium with the filling ratio f = 0.001: thick lines
- extraordinary modes, thin lines - ordinary modes. [P20]
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interface between a half space of wire medium and free space is solved in [P20] for plane-wave

excitation. It is shown that at the plasma frequency the interface operates as a magnetic

screen (reflection coefficient for the electric field is equal to +1).

In paper [P15] it is shown that the wire medium supports three different types of modes, in

contrast to the usual uniaxial dielectrics which support two types of modes: ordinary and

extraordinary:

• TE modes (transverse electric with respect to the wires, or ordinary modes), the waves

which polarize wires across and do not induce any currents along the wires. In thin

wire approximation one can say that these are the modes which travel in free space

and do not interact with the wires.

• TM modes (transverse magnetic with respect to the wires, or extraordinary modes),

the waves which correspond to nonzero currents in the wires and nonzero electric field

along the wires. These modes are described by a transcendental dispersion equation

available in [P15, P20]

• TEM modes (transverse electric and magnetic with respect to the wires, or transmission-

line modes), the waves with nonzero currents in the wires, but with zero electric field

along the wires. These modes travel with the speed of light along the wires and can

have any wave vector in the transverse direction. Effectively, these waves corresponds

to the modes of a multi-conductor transmission line formed by the wires.

The presence of TEM (transmission-line) mode is an evidence of strong spatial dispersion

in wire media. In paper [P15] it is shown that the spatial dispersion is inherent to the wire

medium even at very low frequencies (see also [118] where the wire medium is considered as a

limiting case of an array of aligned fibers with material parameters tending to infinity). Usu-

ally, effects of spatial dispersion can be observed in crystals at the frequencies corresponding

to spatial resonances when the wavelength in free space is comparable with the periods of the

structure (usual photonic and electromagnetic crystals [80–86]), or when the wavelength in

the crystal becomes comparable with the periods of the structure due to resonant behavior

of inclusions like in the case of resonant artificial dielectrics [119] or photonic crystals made

from self-resonant inclusions [120]. The wire medium is a unique material where spatial

dispersion is observed at very low frequencies and without any resonant effects.

In the quasi-static limit the wire medium can be described by relative dielectric permittivity

of the form [P15]:

ε = ε(ω, qx)xx + yy + zz, ε(ω, qx) = 1− k2
0

k2 − q2
x

, (1)
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where x-axis is oriented along the wires (see Fig. 2), qx is the x-component of the wave

vector q = (qx, qy, qz)
T , k = ω/c is the wave number of the host medium, c is the speed

of light, k0 = ω0/c is the wave number corresponding to the plasma frequency ω0. The

spatial dispersion effect is taken into account by dependence of permittivity on the wave

vector component qx along the wires which makes permittivity a non-local parameter. The

conventional local dielectric permittivity [4–11] has the form:

ε = 1− ω2
0

ω2
.

Inconsistency of the local model for parallel wire media with non-vanishing wave-vector

component along the wires has been shown in [P15]. Dramatic differences in the predicted

behavior of the media described by the conventional local and the non-local model for the

permittivity are shown. Finally, the proposed non-local model for the permittivity has been

found to be suitable also for the description of the transmission-line modes of the structure.

Eq. (1) is the material equation in the spectral domain. The material equation in the

space-time domain can be formulated either in the differential form:

[
1

c2

∂2

∂t2
− ∂2

∂x2

]
(Dx(r, t)− ε0Ex(r, t)) + ε0k

2
0Ex(r, t) = 0. (2)

or in the integral form:

Dx(x, y, z, t) = ε0Ex(x, y, z, t) +
ε0k

2
0c

2

t∫

−∞

x+c(t−t′)∫

x−c(t−t′)

Ex(x
′, y, z, t′)dx′dt′. (3)

The plasma wave number k0 can be expressed using the following formula [P14]:

k2
0 =

2π/s2

log s
2πr

+ F (u)
, (4)

where s =
√

ab, u = a/b, a and b are periods of the wire medium (see Fig. 2), r is radius of

wires, and

F (u) = −1

2
log u +

+∞∑
n=1

(
coth(πnu)− 1

n

)
+

πu

6
. (5)

For the commonly used case of the square grid (a = b), F (1) = 0.5275. Expression (4)

looks similar to the approximate expressions for the plasma frequency developed earlier

in [4,10,11,15], but for thin wires it is more accurate and takes into account the geometry of

the rectangular lattice. This fact has been demonstrated in [121] where also an expression

for the plasma frequency of the wire medium formed by thick wires is available.
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2.4 Loaded wire medium and spiral medium

Two-dimensional electromagnetic crystals formed by rectangular lattices of thin ideally con-

ducting cylinders periodically loaded by bulk reactive impedances, so-called capacitively

loaded wire media, see Fig. 12.a, are considered in [P17]. An analytical theory of disper-

Figure 12: a) Capacitively loaded wire medium [P17] and b) spiral medium [P14].

sion and reflection from these media using the same method as in [P20] is presented. The

consideration is based on the local field approach. New opportunities offered by periodical

loading of wires are discussed. The transcendental dispersion equation is obtained in closed

form and solved numerically. Different types of the loads like inductive, capacitive, serial

and parallel LC circuits are considered. Typical dispersion curves and reflection coefficients

are calculated and analyzed. It has been found that capacitive loading makes the crystal an

ordinary artificial dielectric at low frequencies without any changes of the properties at high

frequencies (see Fig. 13.a). Inductive loading is equivalent to an effective reduction of the

wire radius and makes the low-frequency stopband narrower, but on the other hand it helps

to position the upper edge of the first stopband (where the interface has very interesting for

applications reflection properties) to lower frequencies. Resonant LC-circuit loading creates

a resonant passband (see Fig. 13.b) and very interesting reflection properties which are

rather sensitive to the position of the circuit resonance. All the described electrically con-

trollable crystals can be successfully used in the microwave regime, for example, as elements

of polarization sensitive microwave filters, antenna reflectors, and lenses. The quasi-static

limit has been studied, which has resulted in a simple analytical formula for the permittivity.

The electromagnetic properties of bi-anisotropic electromagnetic crystals are studied in [P14]

using an example of spiral media formed by rectangular lattices of perfectly conducting
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Figure 13: Dispersion diagrams for wire media loaded by: (a) capacitances, (b) parallel LC
circuits [P17].

spirals, see Fig. 12.b. The analytical theory of dispersion and plane-wave reflection refers to

the case when the spiral pitch and the radius are small compared to the wavelengths in the

host medium. Periods of the lattice can be arbitrary. Explicit closed-form expressions are

derived for the effective material parameters of the medium for the low frequency regime.

The medium eigenmodes are elliptically polarized, and one of them propagates without

interaction with the spirals. As to the other eigenmode, the medium has strong spatial

dispersion even at extremely low frequencies in the direction along the spiral axes. Chirality

factor of the medium is also very high at low frequencies. The low frequency bandgap

is observed. At the frequency corresponding to its upper edge the interface of the half-

space filled by the medium behaves as a magnetic wall for one of the eigenmodes. This

frequency is the lower edge of the mini-band related with the spiral antiresonance. Within

this mini-band there is a frequency at which the spiral medium is completely transparent

in all directions. At the frequencies higher than the antiresonance, a stopband with strong

spatial dispersion in the directions perpendicular to the spiral axes appears. Numerical

examples are given for dispersion plots, plots of the reflection coefficient and the material

parameters. A straightforward analogy between the spiral medium and the wire medium

loaded by parallel LC circuits [P17] is indicated.

2.5 Two- and three-dimensional wire media

Paper [P9] is dedicated to the theoretical analysis of wire media, i.e. lattices of perfectly

conducting wires comprised of two or three doubly periodic arrays of parallel wires which

are orthogonal to one another [122–124], see Fig. 14 (the diamond-like structure has been

considered in [125]). An analytical method based on the local field approach is used. Ex-
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Figure 14: Elementary cells of (a) two- and (b) three-dimensional wire media [P9].

plicit dispersion equations are presented and studied. A possibility to introduce an effective

permittivity is discussed. The theory is validated by comparison with numerical data avail-

able in the literature. The transmission-line modes inherent to the simple wire medium are

hybridized in the case of two- and three-dimensional wire media. Typical isofrequency con-

tours for a 2d wire medium are presented in Fig. 15. At the frequencies below the plasma

Figure 15: Isofrequency contours of a two-dimensional wire medium below (a) and above (b)
the plasma frequency [P9].

frequency the medium supports hybrid transmission-line modes only. Above the plasma

frequency also the modes related to the plasma-like behavior of the material appear. These

modes have isofrequency contours of the form of crossing ellipses (see Fig. 15.b). All these

phenomena are evidence of low-frequency spatial dispersion effects in the wire medium.
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2.6 Three-dimensional electromagnetic crystals

The problem of homogenization of bulk arrays of small scatterers operating in the applied

field as dipoles (elelectric or magnetic) has a long history. One can recall here the classical

works of Lorentz, Madelung, Ewald and Oseen. However, in what concerns the homogeniza-

tion of arrays of small resonant scatterers these classical results were revised in 1970-s taking

into account the possible shortening the propagating wave at the resonance and the strong

mutual coupling of resonant particles. It was done in the seminal work by Sipe and Kranen-

donk [119]. In paper [P6] such crystals are considered as electromagnetic crystals, but not

as homogeneous media. The electromagnetic crystal and the typical scatterers considered in

Figure 16: Typical scatterers which can be replaced by point dipoles with fixed orientation:
a) split-ring resonator (magnetic dipole), b) short loaded wire (electrical dipole); and a
three-dimensional electromagnetic crystal formed by the point scatterers [P6].

[P6] are presented in Fig. 16. Analytical expressions for the magnetic polarizability of split-

ring resonators are available in paper [27]. The electrical polarizability of short loaded wires

has been studied in detail in [P12]. An analytical dispersion theory for the three-dimensional

lattice formed by point dipoles is presented in [P6]. The mathematical computations in this

case happens to be much more complicated than in the cases of two-dimensional crystals

considered in [P15,P17,P20]. Nevertheless, the resulting cumbersome expressions provide

excellent opportunity to analyze this type of the crystals. The result of the paper [P13] was

used as auxiliary one during complex calculations in [P6].

The main goal of the study in [P6] has been to determine the conditions under which the

homogenization of crystals formed by resonant scatterers can be made. Therefore the con-

sideration is limited to the frequency region where the wavelength in the host medium is

larger than the lattice periods. It is demonstrated that together with the known restriction

on the homogenization related with the large values of the material parameters [119] there is
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an additional restriction related with their small absolute values. From the other hand, the

homogenization becomes allowed in both cases of large and small material parameters for

special directions of propagation. Two unusual effects inherent to the crystals under consid-

eration are revealed: a flat isofrequency contour which allows sub-wavelength imaging using

canalization regime (see the corresponding section below) and birefringence of extraordinary

modes which can be used for beam splitting.

The reflection/trasnmission properties of the crystals under consideration have been ex-

tensively studied in [P4], where the problem of plane-wave diffraction on semi-infinite or-

thorhombic electromagnetic (photonic) crystals of general kind is considered. Boundary

conditions are obtained in the form of an infinite system of equations relating the ampli-

tudes of the incident wave, eigenmodes excited in the crystal and scattered spatial harmonics.

Generalized Ewald-Oseen extinction principle is formulated on the base of deduced boundary

conditions. The knowledge of properties of infinite crystal’s eigenmodes provides an option

to solve the diffraction problem for the corresponding semi-infinite crystal numerically. In

the case when the crystal is formed by small inclusions which can be treated as point dipolar

scatterers with a fixed direction, the problem admits complete rigorous analytical solution.

The amplitudes of excited modes and scattered spatial harmonics are expressed in terms

of the wave vectors of the infinite crystal by closed-form analytical formulae. The result is

applied to study reflection properties of a metamaterial formed by a cubic lattice of split-ring

resonators.

Electrically controllable nonreciprocal electromagnetic bandgap materials were considered in

paper [P18]. A simple analytical theory of dispersion for cubic lattices of small ferrimagnetic

spheres has been presented for the axial propagation along the direction of magnetization

field. The dispersion equation has been solved both analytically using a kind of averaging

and numerically in the exact formulation. The approximate solution leads to a very sim-

ple analytical formula for the propagation constant. Numerical calculations show that this

approach has a very small mismatch with the exact one for the propagating modes. For

the analysis inside the bandgap the exact solution is required, in particular near the lower

boundary of the gap. The dispersion curves for the new nonreciprocal crystal have been

plotted and it has been shown that this crystal has a very interesting bandgap structure.

The properties of the crystal very strongly depend on polarization. For the right circular

polarization a novel bandgap corresponding to the ferrimagnetic resonance is found in ad-

dition to the classical lattice bandgaps. For the left circular polarization the ferrimagnetic

bandgap has not been found, as expected. The ferrimagnetic bandgap is rather wide and its

central frequency is easily tunable by the magnetization field. At frequencies inside the gap

the lattice period can be still very small compared to the wavelengths, which is an important

feature allowing to design compact structures. The new bandgap is not complete, it exists
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only for one of the two eigenpolarizations. Although the other propagation directions have

not been considered, there is no reason to expect that the gap can exist for all propagation

directions in this anisotropic medium.

2.7 Sub-wavelength waveguides

Recently, a very unusual waveguide was proposed by R. Marques in [20] and then extensively

studied by S. Hrabar in [21]. It is a rectangular metallic waveguide periodically loaded by

resonant magnetic scatterers, split-ring resonators (SRR:s), see Fig. 17. The waveguide

supports a propagating mode within a frequency band near the resonance of SRR:s even if

Figure 17: Sub-wavelength metallic waveguide loaded by split-ring resonators [P5].

it is located below the cutoff frequency of the hollow waveguide [20, 21]. The transversal

dimensions of the waveguide happen to be much smaller than the wavelength in free space.

Thus, loading by SRR:s makes the waveguide sub-wavelength and provides a method for

miniaturization of guiding structures. The mode of the waveguide is a backward wave (the

group and phase velocities are antiparallel). This effect was interpreted in [20] in terms of the

effective double-negative media to a slab of which such waveguide is apparently equivalent.

The dispersion properties of rectangular metallic waveguides periodically loaded by uniaxial

resonant scatterers are studied in [P5] with the help of an analytical theory based on the local

field approach presented in [P6], the dipole approximation and the method of images. The

cases of both magnetic and electric uniaxial scatterers with both longitudinal and transverse

orientations with respect to the waveguide axis are considered. It is shown that in all

considered cases waveguides support propagating modes below cutoff of the hollow waveguide

within some frequency bands near the resonant frequency of the individual scatterers. The

modes are forward ones except for the case of transversely oriented magnetic scatterers when

the mode turns out to be backward. The described effects can be applied for miniaturization

of guiding structures.
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2.8 Double-negative materials

The first realization of double-negative media at microwave frequencies was proposed in

[14] as a lattice of wires and split-ring resonators. The idea has been successfully checked

experimentally in [43, 51, 70]. This structure formed by combined lattices of infinitely long

wires and split-ring resonators (see Fig. 18) is studied theoretically in [P11]. A dispersion

Figure 18: The lattice of split-ring resonators (shown as disks; the magnetic dipoles are
indicated with arrows) and straight wires. Left: front view, right: top view [P11].

equation is derived and then used to calculate the effective permittivity and permeability in

the frequency band where the lattice can be homogenized. The explicit dispersion equation

clearly confirms the existence of a narrow passband within the resonant band of the split-

ring resonators. In this passband the group and phase velocities of the propagating wave

are in the opposite directions (i.e., it corresponds to a backward wave). Negative refraction

can be explained in terms of backward waves without introducing the concept of negative

material parameters. However, in the present case the homogenization turns out to be

possible in the frequency range of backward waves. The obtained dispersion curves have

been used to calculate the effective permittivity and permeability in the frequency band

where the structure can be homogenized. It is interesting to see that the dispersion curves

agree well with the Veselago theory which predicts backward waves when both permittivity

and permeability are negative. Outside the resonant band of the split-ring resonators, the

effective permittivity of the whole structure is the same as that of the wire lattice and the

effective permeability is equal to 1. However, within the SRR resonant band, there is a sub-

band where the homogenization is forbidden because a complex mode satisfies the dispersion

equation at these frequencies. We found that the frequency region in which both ε and µ are

negative coincides approximately with the backward-wave band. In this region the frequency

dependence of the effective permittivity is abnormal. We interpret this as a result of the
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low-frequency spatial dispersion which is inherent for the wire medium in the presence of

resonant scatterers. The approximate coincidence of the backward-wave band and the band

of negative material parameters confirms, in general, the concept of the structure under

consideration as a uniaxial variant of Veselago media.

2.9 Backward waves and negative refraction

There is a very important question for applications: is there any possibility to achieve

the effects of backward waves and/or negative refraction without using magnetic media.

The backward wave and negative refraction effects can be observed in several photonic

crystals [126–129] under certain circumstances. Usually these effects appear near spatial

resonances (stopbands) of the structure when the characteristic period of the crystal becomes

comparable with the wavelength. These new results were predicted by L.I. Mandelshtam [58]

in 1940.

The property of a wave to be forward or backward is determined only by the medium prop-

erties without consideration of refraction problems. At the same time, the phenomena of

positive/negative refraction and forward/backward waves with respect to the interface are

determined not only by the media properties, but also by the properties of the interface. The

orientation of the interface with respect to the inner geometry of the medium plays an impor-

tant role here. The accurate definitions of positive/negative refraction and forward/backward

waves with respect to the interface have been done in [P16], but the consideration was re-

stricted to the case when the incident wave comes from an isotropic dielectric. The situation

can be much more difficult in the case when the medium, from which the incident wave is

coming, is a material of general kind [130,131].

Note, that the group velocity vg = gradqω is oriented in the same direction as the Poynting

vector S in passive media where the averaged stored energy U is positive, since S = Uvg

[82,132]. From the other hand, in active and non-equilibrium media [133,134] it is possible to

meet the situation when the averaged stored energy is negative, and thus the group velocity

and the Poynting vector are oriented in the opposite directions.

Negative refraction and backward waves have different applications, in which sometimes not

both of these effects are required together. Pendry in [40] used the negative refraction effect

for focusing, and the backward-wave effect to have all incoming rays in phase, but the last

goal can be achieved using forward waves also [135]. Engheta in [52] used the property of a

wave to be backward with respect to the interface. Negative refraction and backward-wave

effects are inherent to double-negative media, but both of these effects can be observed in

other materials as well. For example, it is enough for the media to be a uniaxial dielectric,
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and this fact provides a possibility to observe negative refraction [136,137]. In this case the

negative refraction happens when the refracted wave is forward (in both general meaning

and with respect to the interface).

An overview of results related to negative refraction and backward-wave effects in electro-

magnetic and photonic crystals is available in [P10] and [138, 139]. A possibility to observe

negative refraction and backward wave with respect to the interface in uniaxial dielectrics

with negative permittivity along the anisotropy axis is discussed in [P16].

3 Sub-wavelength imaging using canalization regime

3.1 Preamble

Resolution of common imaging systems is restricted by the so-called diffraction limit, since

they operate only with propagating spatial harmonics emitted by the source. Conventional

lenses cannot transmit evanescent harmonics which carry sub-wavelength information, since

these waves exhibit exponential decay in usual naturally occurring materials. In order to

overcome the diffraction limit it is required to use another sort of materials for the con-

struction of lenses. It is required to engineer an artificial material (metamaterial) with

electromagnetic properties which dramatically differ from those of materials available in na-

ture [140]. The theoretical possibility of sub-wavelength imaging by a slab of double-negative

medium with ε = µ = −1 was demonstrated by J. Pendry in his seminal work [40]. The fo-

cusing phenomenon in Pendry’s perfect lens is based on two effects. The propagating modes

of a source are focused due to the negative refraction and the evanescent modes experience

amplification inside the DNG slab (see Fig. 19). This allows to restore sub-wavelength

details in the focal plane. The second effect happens due to the resonant excitation of sur-

Figure 19: Sub-wavelength imaging by perfect lens formed by double-negative material: a)
ray tracing corresponding to focusing of propagating modes (far-field), b) amplification of
evanescent modes (near-field) [140].
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face plasmons at the interfaces of the slab. This resonant excitation is inherent not only

to the slabs of DNG: similar effects are observed for a pair of resonant grids or conjugating

planes [141,142].

The promising theoretical predictions meet numerous practical difficulties in the creation of

double-negative metamaterials. On one hand, the major problem is the creation of materials

possessing magnetic properties at optical and terahertz frequencies [71, 72]. On the other

hand, the issues related to losses play a very important role as well. Numerous problems

are closely related with fundamental restrictions and can be hardly overcome. It is an

ambitious goal to obtain sub-wavelength resolution without DNG in the optical frequency

range. In this range the negative refraction phenomenon is observed in photonic crystals

at the frequencies close to the bandgap edges. This fact was theoretically revealed by M.

Notomi [128], confirmed by other authors [50,143] and experimentally verified by P.V. Parimi

et al. [144]. The fact that photonic crystals in certain regimes possess similar to double-

negative media properties [145] makes such materials quite prospective for the design of flat

sub-wavelength lenses. A flat superlens formed by a slab of photonic crystal was suggested

by C. Luo et al. in [135] and a possibility of sub-wavelength imaging was theoretically

studied in [146]. An experimental verification of the imaging effect was demonstrated in

[147]. The principle of Luo’s superlens is similar to the principle of Pendry’s perfect lens:

negative refraction for propagating modes and amplification due to resonant surface plasmons

for evanescent modes. Both effects are obtained without double-negative properties of a

material. Negative refraction is obtained due to a specific form of isofrequency contours

(without backward waves inherent to DNG). Further increase of the resolution for Luo’s

superlens can be achieved by simultaneously increasing the dielectric permittivity of the

host medium and decreasing the lattice period [146]. In practice, this is not a helpful way

in the optical frequency region where large permittivity for real media is related with high

losses. Also, an important factor deteriorating the image is a finite thickness of the superlens.

The eigenmodes excited in the crystal experience multiple reflections from the interfaces

and their interference disturbs the image. This destructive interference appears due to a

mismatch between the wave impedances of air and photonic crystal, and is inevitable for

some angles of incidence. In the case of Pendry’s perfect lens this defect is avoided because

the double-negative medium with ε = µ = −1 is matched with air for all angles of incidence.

C. Luo et al. in [135] partially solved the problem of matching by choosing an appropriate

thickness of the slab. In this case the slab operates as a Fabry-Perot resonator. However,

this solution is not complete since the Fabry-Perot resonance holds only for a narrow range

of incidence angles.

At the present time, there are two types of regimes which are used for sub-wavelength imaging

using photonic crystals. The both regimes are based on the use of isofrequency contours
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shrinking with growing frequency and providing negative refraction. In the first case the

isofrequency contours shrink around corner points of the first Brillouin zone [135, 146–152].

This regime is observed at frequencies near the bottom edge of the first bandgap. In the

second case the isofrequency contours shrink around the central point of the first Brilloun

zone [148,153–157] which makes this case completely similar to DNG. This regime is usually

observed at frequencies near the bottom edge of the second bandgap, but it can be achieved

at the higher bands [158,159] as well.

3.2 Canalization regime in a slab of capacitively loaded wire medium

A different regime of sub-wavelength imaging than in [40, 135] has been proposed in [P8].

This regime does not involve negative refraction and amplification of evanescent modes.

The concept is to transform most part of the spatial spectrum of the source radiation into

propagating eigenmodes of the crystal having practically the same group velocity (directed

across the slab) and the same longitudinal components of the wave vector (see Fig. 20).

Spatial harmonics produced by a source (propagating and evanescent) refract into the crystal

eigenmodes at the front interface. These eigenmodes propagate normally to the interface

and deliver the distribution of near-field electric field from the front interface to the back

interface without any disturbances. This way the incident field with sub-wavelength details

is transported from one interface to the other one. The described regime was called in [P8]

as canalization.

Figure 20: Illustration of canalization principle of sub-wavelength imaging.

Similar regimes for propagating spatial harmonics are called as self-guiding [160], directed

diffraction [161], self collimation [162–164] and tunneling [165]. One can see from the results

of papers [161,163,165] that canalization dominates over negative refraction in the superlens
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suggested in [135]. However, in these papers canalization for evanescent harmonics was not

noticed. It allows us to avoid negative refraction at all while obtaining a superlens and

achieve sub-wavelength resolution. In fact, canalization has a similar principle of operation

as a medium with zero refraction index [166]. The difference is that in our case the image is

transmitted by waves which all vary identically with the distance from the front interface,

whereas in a zero refraction index medium there is no such variation. Also, a similar effect has

been observed in bilayers of media with indefinite permittivity and permeability tensors [77]

where a pair of layers, effectively compensating the properties of each other, provides total

transmission within a wide range of transverse wave vectors.

The problem of strong reflection from a slab can be solved by choosing its thickness ap-

propriately so that it operates as a Fabry-Perot resonator. In our case the Fabry-Perot

resonance holds for all incidence angles and even for incident evanescent waves. The reason

is that after the refraction all these waves acquire the same longitudinal component of the

wave vector for which the Fabry-Perot resonator is tuned. Thus, in the canalization regime

the superlens does not suffer an image deterioration due to its finite width. Moreover, the

proposed regime helps to avoid the problems related to finite transverse size of the lenses

(inherent to DNG slabs [167]), because there are no waves traveling along the interfaces.

Figure 21: a) Capacitively loaded wire medium and b) lens formed by CLWM [P8].

The canalization regime can be implemented by using an isofrequency contour which has

a rather long flat part. Such contours are available for different types of photonic and

electromagnetic crystals. For example, the capacitively loaded wire medium (CLWM) has

flat isofrequency contours at frequencies close to the lower edge of the resonant bandgap [P8].

The CLWM was chosen in [P8] since the analytical result for the dispersion properties of the

infinite CLWM is available in [P17], and the finite size samples of CLWM with large number

of loaded wires can be easily numerically analyzed [168]. The CLWM has a bandgap near the

resonant frequency of a single capacitively loaded wire, the so-called resonant bandgap, which
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can be tuned by changing the value of the load capacitance. A high value of capacitance

allows us to locate the resonant bandgap at much lower frequencies than the first lattice

resonance [P17]. This way it is possible to obtain a bandgap at very low frequencies without

increasing the dielectric permittivity of the host medium. Note, that this resonant bandgap

has the same nature as the bandgap caused by resonant properties of a component material

as in [120] or [P18].

Figure 22: Isofrequncy contours for the canalization regime [P8].

The isofrequency contours for the canalization regime in CLWM slab are shown in Fig.

22. The circle at the left side of Fig. 22 is the isofrequency contour of the host medium

and the curve at the right side is the CLWM isofrequency contour. All propagating spatial

harmonics of a source and a wide range of evanescent ones refract into eigenmodes with

the longitudinal wave vector close to Q. There is a part of the isofrequency contour with

|kt| ≈ kmax
t which is not flat but it corresponds to a very narrow band of evanescent wave

spectrum and we neglect its contribution. The light shaded region (|kt| ≤ k) in Fig. 22

corresponds to propagating incident waves. The dark shaded regions (k < |kt| ≤ kmax
t )

correspond to the evanescent incident waves which transform into propagating eigenmodes

after refraction. Refraction of the propagating wave with kt = k
(1)
t , |k(1)

t | < k and the

evanescent wave with kt = k
(2)
t , k < |k(2)

t | ≤ kmax
t is illustrated in Fig. 22. Both waves refract

(keeping the transverse wave vector component) into eigenmodes which have longitudinal

wave vectors close to Q and practically identical group velocities (v
(1)
g and v

(2)
g ) directed

across the slab. Though the transversal components of the wave vector are retained in

the refraction (qt = kt), this does not mean the transversal propagation of refracted power
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(similar to the transmission-line modes of wire media [P15])! These components describe

the transversal distribution of the field traveling across the slab.

Figure 23: Distribution of electric field amplitude (a) and intensity (b) for the sub-wavelength
lens formed by a capacitively loaded wire medium operating in the canalization regime [P8].

The result of numerical simulation for the excitation of a CLWM slab by a point source

(from [P8]) is presented in Fig. 23. An image near the back interface is observed. The

radius of the focal spot is approximately λ/6, which means that a sub-wavelength resolution

is observed and that the canalization allows transportation of a sub-wavelength images from

one interface to the other. An experimental verification of sub-wavelength imaging using

CLWM slabs has been done in [P3] and resolution of λ/10 has been demonstrated. Though

imaging can be achieved only with the sources which are located enough close to the front

interface, the utilization of the canalization regime is advantageous as compared to Pendry’s

perfect lens. The lens can be made thick, since its required thickness is not related with

the distance to the source. It is practically important for the near-field microscopy in the

optical range, when the needle of a microscope used as a probe can be located physically far

from the tested source. Then one can use a mechanically solid superlens in order to avoid

destruction of objects under test by the microscope.

3.3 Lens formed by a wire medium for microwave frequencies

The canalization regime offers an attractive possibility for transportation of sub-wavelength

images. The main requirement for that purpose is flatness of some part of an isofrequency

contour. In [P8] it has been demonstrated that such contours are available for CLWM at

microwaves. The CLWM slab operates as an imaging device only for s-polarized incident

waves. For p-polarized waves there is another possibility to obtain a flat isofrequency con-

tour in a material. A perfectly flat and infinitely long isofrequency contour corresponds

to transmission-lines in wire medium. The imaging device formed by an array of parallel
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conducting wires (a slab of wire medium) studied in [P2] is presented in Fig. 24. At the first

sight it seems that this structure is an electrical analogue of Wiltshire’s system [169, 170].

An array of Swiss rolls, being similar to magnetic wires, is capable to transmit s-polarized

(transverse electric, TE) spatial harmonics of the source spectrum. An array of wires op-

erates in the same manner, but for p-polarized (transverse magnetic, TM) waves. In other

Figure 24: Geometry of a flat lens formed by a wire medium and a source of the form of
letter P: a) perspective view, b) front view [P2]. a = 10 mm, r = 1 mm, d = 150 mm,
h = 5 mm, f = 1 GHz.

words, an array of Swiss rolls restores at the back interface the normal component of the

magnetic field produced by a source. An array of wires restores the normal component of

electric field. At the same time, there is a serious difference between Wiltshire’s system

and a slab of wire medium. Swiss rolls are artificial resonant structures which behave as

magnetic wires only at frequencies in the vicinity of the resonance. This fact preconditions

Swiss rolls to be narrow-band and very lossy. Conducting wires in this sense are natural

electrical wires. It means that they are wide-band and practically lossless. The absence of

strong losses (inherent in Swiss rolls) in ordinary wires lifts restriction on the lens thickness.

It allows us to create sub-wavelength lenses of nearly arbitrary thickness and deliver images

with sub-wavelength resolution into far-field region of the source and beyond [P7]. The

imaging system effectively works as a telephone exchange [171] formed by multi-conductor

transmission line.

Numerical simulations of the structure presented in Fig. 24 were performed in [P2] using

CST Microwave Studio package. The lens consisting of 21 × 21 array of aluminium wires

excited by a source in the form of letter P was modelled. The working frequency f is 1 GHz,

the length of wires (the thickness of slab) d is 15 cm (half of the wavelength), the period of

lattice a is 1 cm, the radius of wires r is 1 mm. The source is placed at h = 5 mm distance

from the front interface of the lens and fed by a point current source I = 1 A. The results of

simulation are presented in Fig. 25. The source produces a sub-wavelength distribution of
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Figure 25: Distribution of electric field and its absolute value: (a), (c) at 2.5mm distance
from the front interface; (b), (d) at 2.5mm distance from the back interface [P2].

electrical field at the front interface of the slab, see Fig. 25.a. The p-polarized contribution

of the field is canalized from the front interface to the back interface and forms an image, see

Fig. 25.b. The quality of the image can be clearly seen in Fig. 25.c and d, where absolute

values of electrical field in vicinity of the front and back interfaces are plotted. The local

maxima of intensity produced by terminations of the wires are visible in Fig. 25.d. The

resolution of imaging in the present case is equal to 2 cm (double period of the structure),

which is one fifteenth of the wavelength (λ/15). The slab of wire media with parameters

as in Fig. 24 was constructed and experimental verification of the sub-wavelength imaging

with λ/15 resolution was confirmed in [P2].

The present realization of canalization regime with the help of wire medium is advantageous

at microwave frequencies, but it can not be realized in optics, where metals behave as

dielectrics with negative permittivity. It does not mean that implementation of canalization

regime in optical range is impossible. This regime can be realized using photonic crystals

[135,147], but resolution of such lenses will be restricted by the period of crystals [146] which

cannot be reduced too much due to absence of high-contrast lossless materials at the optical

range. Another possibility is to construct a uniaxial material with infinite permittivity

along the anisotropy axis. It can be done using lattices of resonant uniaxial nanoparticles or

multilayered structures [171,172].
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3.4 Metal-dielectric layered structure for optical frequencies

A lens formed by the wire medium is a unique sub-wavelength imaging device for microwave

frequencies where metals are nearly ideally conducting. At higher frequencies including

the visible range such a lens will not operate properly since metals at these frequencies

have plasma-like behavior. In paper [P1] a different structure which can operate in the

canalization regime in the optical frequency range is proposed. This is a sub-wavelength

optical “telegraph” which operates completely on the same principle as a slab of wire medium

at microwaves. For the transmission-line modes the component of effective permittivity of

wire medium (1) corresponding to the direction along the wires becomes infinite. In order

to achieve in the optical range the same properties as the wire medium has at microwave

frequencies it is required to find some uniaxial optical material which has infinite permittivity

along the anisotropy axis. Usually, it is assumed that in the optical range it is impossible to

get very high values of permittivity. It is true for natural materials, but for metamaterials,

especially uniaxial, it is not so. A high permittivity can be achieved in layered metal-

dielectric structures [171–174].

Figure 26: Geometry of layered metal-dielectric metamaterial [P1].

At the long-wavelength limit (d1, d2 ¿ λ) a layered structure presented in Fig. 26 can be

described by the permittivity tensor of the form:

ε = ε‖(xx + yy) + ε⊥zz, (6)

where

ε‖ =
ε1d1 + ε2d2

d1 + d2

, ε⊥ =

[
ε−1
1 d1 + ε−1

2 d2

d1 + d2

]−1

.

In order to get ε‖ = 1 and ε⊥ = ∞, required for implementation of the canalization regime,

it is necessary to choose parameters of the layered material so that ε1/ε2 = −d1/d2 and

ε1 + ε2 = 1. From the first equation it is clear that one of the layers should have negative

permittivity and thus, the structure has to be formed by one dielectric layer and one metallic

layer. For example, one can choose ε1 = 2, ε2 = −1 and d1/d2 = 2, or ε1 = 15, ε2 = −14

and d1/d2 = 15/14.
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Note, that no layered structure required for canalization regime can be formed using equally

thick layers d1 = d2. The layered metal-dielectric structures considered in [171,172,174] have

completely different properties as compared to the structures considered in paper [P1]. As it

is noted in [172], the structures with d1 = d2 and ε1 = −ε2 (as in [171,172,174]) correspond

to ε⊥ = 0 and ε‖ = ∞, and operates as an array of wires embedded into a medium with

zero permittivity. Such a structure can be considered as an unmatched uniaxial analogue of

so-called material with zero-index of refraction [166]. Absence of matching (µ = 1, but not

0, as it is required) causes strong reflections and restricts the slab thickness to be thin. In

contrast to this case, in the canalization regime the reflections from the slab are absent due

to the Fabry-Perot condition which holds for all angles of incidence.

Figure 27: Geometry of flat lens formed by a layered metal-dielectric metamaterial [P1]:
a) perspective view, b) side view, c) front view, d) small details. All dimensions are in nm.

In order to demonstrate how the canalization regime can be implemented using the suggested

metal-dielectric layered structure, numerical simulations using the CST Microwave Studio

package have been done in [P1]. A sub-wavelength source (a loop of current in the form of

P-letter) is placed at 20 nm distance from a 300 nm thick multi-layer slab composed of 10

nm and 5 nm thick layers with ε1 = 2 and ε2 = −1, respectively. The detailed geometry

of the structure is presented in Fig. 27. The wavelength of operation λ is 600 nm. The
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Figure 28: Distributions of the normal to the interface component of electric field at 20 nm
distances: a) from the source, c) from the back interface; and their absolute values, b) and
d), respectively [P1].

field distributions in the planes parallel to the interface of the lens plotted in Fig. 28 clearly

demonstrate imaging with 30 nm resolution (λ/20). Figs. 28.a,b show the field produced by

the source in free space at 20 nm distance. It is practically identical to the field observed

at the front interface of the lens (see [P1]), which confirms that reflections from the front

interface are negligibly small. Actually, the main contribution into reflected field comes from

diffraction at the corners and wedges of the lens. The image at the back interface of the lens

is a little bit distorted by plasmon-polariton modes excited at the back interface (see [P1]),

but this distortion disappears at 20 nm distance from the back interface as it is clearly seen

in Figs. 28.c,d.

The lens works in the canalization regime as a transmission device and does not involve

negative refraction and amplification of evanescent modes. A material with ε = −1 at 600

nm wavelength can be created by doping some lossless dielectric by a small concentration of

silver which has ε = −15 at such frequencies, in a similar manner to the ideas of works [175]

or [176]. Even more promising resolution of λ/60 = 10 nm was predicted for a layered

structure comprising 7.76 nm layers of a dielectric with ε = 15 and 7.24 nm layers of a metal
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with ε = −14. The last structure can be constructed using silicon as a dielectric and silver

as a metal, but very accurate fabrication with error no more than 0.05 nm will be required in

order to get proper result. The losses in silver in both cases are already reduced by operating

at rather long wavelength of 600 nm, but in accordance with our estimations they are still

high enough to destroy the quality of the sub-wavelength resolution. This problem can be

solved by using active materials, for example doped silicon [172, 175]. Creation of the lens

operating in canalization regime in the optical frequency range will lead to a breakthrough

in manufacturing of optical drives (DVD) whose capacity at the present time is restricted

by the diffraction limit.
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