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Abstract

The aim of this thesis was to investigate bioanalytical applications of electro-

chemiluminescence (ECL), which refers to the generation of light at the surface

of an electrode. Two types of ECL detection were studied: anodic ECL and ca-

thodic hot electron-induced ECL (HECL). In anodic ECL light is generated at

traditional electrode materials, such as noble metal or carbon, while in cathodic

HECL thin insulating �lm-coated electrodes are used, and light generation is ini-

tiated by tunnel emission of hot, energetic electrons. Both types of ECL provide

high spatial control.

ECL applications for hybridization assays were investigated. Short 15-base oligonu-

cleotide probes were immobilized on gold and oxide-coated silicon and aluminum

electrodes. Hybridization with complementary targets was detected by ECL. Re-

sults showed that the oligonucleotides were successfully immobilized and high sur-

face probe density was achieved. Labeled targets were detected at subnanomolar

concentration levels. Two base pair mismatches were successfully discriminated.

A homogeneous hybridization assay where hybridization was detected by quench-

ing of anodic ECL of a Ru(bpy)2+3 label by another luminophore (Cy5) was per-

formed on thin �lm carbon electrodes. The quenching e�ciency was 78% when

the distance between the label moieties was short (� 2 nm). Also, an immunoas-

say on double barrier aluminum/aluminum oxide electrodes with Tb(III) chelate

as the HECL label was performed.

A microuidic system was fabricated in poly(dimethylsiloxane) (PDMS) and glass

with integrated carbon �ber and platinum electrodes, and tested for direct ECL

detection of guanosine. The magnitude of electroosmotic ow (EOF) in PDMS

microchannels was determined using the current monitoring method. Results

revealed that the origin of the surface charge in PDMS is the same as in silica,

but its amount is considerably lower.
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1. Scope and outline of the thesis

1.1 Motivation and background

Electrochemiluminescence, or electrogenerated chemiluminescence (ECL), is light

generated at the surface and in close proximity of an electrode. The main mo-

tivation of this work was to investigate and further develop analytical methods

based on ECL detection. Two types of ECL were investigated: anodic ECL of

Ru(II) complexes, in which light is generated on traditional electrode materi-

als, such as a noble metal or carbon, and cathodic hot electron-induced ECL

(HECL), in which light generation is induced by electron tunneling from thin in-

sulating �lm-coated electrodes. Both types of ECL provide high spatial control,

which makes ECL an interesting detection method for analytical microsystems.

Current trends in bioanalytical chemistry are miniaturization and integration of

di�erent functionalities on a single chip. The advantages of miniaturized sys-

tems are reduced reagent consumption, increased reaction rates, portability, and

parallelization. The applicability of anodic ECL and cathodic HECL for bioas-

say detection was investigated as part of this research. Electrokinetic properties

of poly(dimethylsiloxane) (PDMS) and coupling of anodic ECL detection into

microuidic systems were studied.

1.2 Organization of the thesis

Chapter 2 provides an introduction to anodic ECL and cathodic HECL, as well

as to their state-of-the-art applications in bioa�nity assays. As well a short intro-

duction to microfabrication technology is provided, with emphasis on technology

needed for realization of analytical microsystems.

Chapter 3 describes a heterogeneous hybridization assay on gold electrodes. Short

15-base DNA strands were conjugated with a synthesized electrochemilumines-
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cent label, bis(2,2'-bipyridine)-5-isothiocyanato-1,10-phenanthroline ruthenium(II)

at the amino-modi�ed 5' end. Gold electrodes were derivatized with the 15-base

oligonucleotide probes via 1-(3-(dimethylamino)propyl)-3-ethylcarbo-diimide hy-

drochloride (EDC) / N-hydroxysuccinimide (NHS) cross-linking reaction and hy-

bridized with Ru(II) chelate-labeled strands. Two types of self-assembled mono-

layers were utilized for the immobilization reaction, namely 3-mercapto-propanoic

acid (3-MPA) and 16-mercaptohexadecanoic acid (16-MHA). Longer thiols were

more stable at the high electrode potentials needed for the ECL generation. The

system was sensitive down to one fmol of labeled complementary strand, detected

in 30 �L of bu�er. Mismatch discrimination was achieved both passively by wash-

ing and actively by application of negative electrode potential on electrodes prior

to detection. Active denaturing leads to better results, however. Two base pair

mismatches were discriminated at room temperature.

Chapter 4 describes cathodic HECL of rhodamine B and the application of

rhodamine derivative for heterogeneous hybridization assay on oxide-coated alu-

minum and silicon electrodes. Thin oxide �lm-coated aluminum and silicon elec-

trodes were modi�ed with an aminosilane layer and derivatized with short, 15-base

oligonucleotide probes via diisothiocyanate coupling. Target oligonucleotides were

conjugated with tetramethylrhodamine (TAMRA) dye at their amino-modi�ed 5'

end, and hybridization was detected as HECL of TAMRA. Preliminary results

indicated sensitivity down to subnanomolar level and low nonspeci�c adsorption.

The detectability of rhodamine dyes was better on oxide-coated silicon than on

oxide-coated aluminum electrodes, and two base pair mismatched hybrids were

successfully discriminated. The experimental results are useful for the design of

disposable electrochemiluminescent DNA biosensors.

Chapter 5 reports an HECL-based hybridization assay on oxide-coated silicon

electrodes, using bis(2,2'-bipyridine)-5- isothiocyanato-1,10-phenanthroline ruthe-

nium(II)-labeled oligonucleotide strands as HECL luminophores.

An immunoassay based on HECL detection of Tb(III) chelate-labels on double
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barrier Al/Al2O3/Al/Al2O3 electrodes is presented in Chapter 6. Primary cap-

turing antibodies were physically adsorbed on electrodes and immunoreaction

was detected using Tb(III) chelate-labeled complementary antibodies. The de-

tectability was improved with respect to single barrier Al/Al2O3 electrodes.

Chapter 7 reports a homogeneous ECL quenching-based hybridization assay.

Short oligonucleotide probes were labeled with electrochemiluminescent bis(2,2'-

bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester-bis(he-

xauorophosphate) ruthenium (Ru(II)) and a complementary strand was labeled

with photoluminescent Cy5 dye. Upon hybridization of the complementary strands,

the ECL of the Ru label was quenched 78%. The ECL results were compared

with photoluminescence results. Under the experimental conditions employed it

appears that luminescence resonance energy transfer (LRET) occurs when Ru(II)-

label is photoexcited, but not when it is excited via ECL.

The possibilities and challenges of integration of ECL detection with microuidic

systems fabricated in poly(dimethylsiloxane) (PDMS) are considered in Chapter

8. This chapter consists of two parts: a description of a microuidic system fabri-

cated in Pyrex and PDMS with integrated carbon-�ber and platinum electrodes

for anodic ECL detection, and a determination of EOF in PDMS microchannels

by current monitoring method.

A summary of the work is presented in Chapter 9. The main characteristics of

the various methods are noted, together with the advantages and disadvantages

of each. The outlook for future is suggested.

1.3 Author's contribution

Writing of this thesis has been done solely by the author. All the work described

in Chapters 3 and 5 was done by the author. This included planning of the exper-

iments, microfabrication of the devices, carrying out of the experimental work,

3



and interpretation of the results under the supervision of Prof. Milena Koudelka

and Prof. Sakari Kulmala. The �rst part of the work described in Chapter 4, the

investigation of the HECL properties of a rhodamine dye, was planned and per-

formed with other members of the HECL team at HUT, mainly Qinhong Jiang,

who carried out most of the experimental work. The work recounted in the second

part of Chapter 4, the hybridization assay, was planned by the author who also

carried out most of the experimental work, under the supervision of Prof. Sakari

Kulmala. The experimental work described in Chapter 6 was done under the su-

pervision of Prof. Sakari Kulmala by the author together with Markus H�akansson

and other collaborators. All the experimental work described in Chapter 7 was

performed by the author, while the planning and interpretation of the results was

done together with Dr. Sander Koster and Prof. Milena Koudelka. The planning

of experiment, microfabrication of the devices, measurements, and results related

to ECL detection of guanosine, as reported in Chapter 8, were performed by the

author alone. The investigation of the electrokinetic properties of PDMS/PDMS

and PDMS/glass microchannels was part of a collaboration project between the

research team of Dr. Elisabeth Verpoorte at IMT, and Prof. Wolfgang Thormann

from the University of Berne, Switzerland. The experiment was planned by Prof.

Thormann. All measurements were performed solely by the author, while the

results were interpreted by the author together with Dr. Sander Koster, Dr.

Verpoorte, and Prof. Thormann.
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2. Introduction

This chapter provides an introduction to electrochemiluminescence (ECL), its

relation to other types of luminescence, and its state-of-the-art applications in

bioanalysis. As the present trends in chemistry are miniaturization and the in-

tegration of di�erent functionalities on a single chip, an introduction is given to

the microfabrication technology used for realization of analytical microsystems.

2.1 Electrochemiluminescence (ECL)

2.1.1 Generation of luminescence

Luminescence is de�ned here as an emission of light from compounds in the ex-

cited state. Depending on the nature of the process that leads to the excited state

of a luminophore (a luminescent molecule), it is usual to distinguish between pho-

toluminescence, chemiluminescence (CL), and electrochemiluminescence (ECL).

In photoluminescence, a luminophore excited by absorption of photons of certain

energy releases light by emitting photons of lower energy than the photons ab-

sorbed. Photoluminescence methods can be further classi�ed into uorescence

and phosphorescence. Lifetimes of uorescent luminophores are in the order of

10�10- 10�6 s, while those of phosphorescent luminophores range from 10�6 to

10�3 s. Fluorescence occurs from the excited singlet state of the luminophore,

which means it has the same spin multiplicity as the ground state. Phosphores-

cence occurs from the excited triplet state, and the luminophore has a di�erent

spin multiplicity state from the ground state.1

Chemiluminescence (CL) is a process where luminescence is generated by chem-

ical reactions. The most widely used CL luminophore is luminol (5-amino-2,3-

dihydro-1,4-phthalazinedione), which emits light at 425 nm in the presence of a

suitable coreactant and a catalyst. The coreactant is usually a nonluminescent
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compound with which the luminophore has to react in order to reach the excited

state. Chemiluminescent detection methods are widely used in clinical assays

owing to the very low detection limits (down to sub-attomole level), short as-

say times, and the broad range of analytes.2 CL detection is usually targeted at

nonbound substances that can freely di�use in solution and is less suitable for

the detection of surface-bound analytes. However, the sensitivity of CL for mi-

croarray applications has been enhanced using three-dimensional microchannels

for DNA hybridization detection.3 Short DNA capturing strands were immobi-

lized on microchannels of radius 5 �m and volume 39 pL and hybridized with

horseradish peroxidase-labeled target strands.

Electrochemiluminescence, or electrogenerated chemiluminescence (ECL), can be

described as CL produced directly or indirectly as a result of electrochemical

reaction or a reaction sequence, and utilized in detection it can be classi�ed as

a spectroelectrochemical method. ECL detection has numerous applications and

is regularly reviewed.4{7 Compared with CL, it has many advantages: spatial

control, as the ECL active species are generated at the surface of an electrode

upon application of suitable potential; higher selectivity, introduced by control

of the electrode potential; and generation of ECL from certain luminophores not

known to generate traditional CL. ECL can be divided into several subclasses

on the basis of the ECL generation mechanism. Two types of ECL are discussed

here: anodic ECL and cathodic HECL. Both types can be described as coreactant

ECL, which means that the ECL of the luminophore is generated by the applied

potential in the presence of a coreactant. A coreactant is de�ned as a species

that upon oxidation or reduction produces an intermediate that reacts with an

electrochemiluminescent luminophore to produce an excited state.

2.1.2 Anodic ECL

Anodic ECL is generated on traditional electrode materials, such as noble metals

or carbon, using the conventional electrochemical set up consisting of working,
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counter and reference electrodes. Although many di�erent luminophores, includ-

ing luminol8,9 and various metal chelates of ruthenium, osmium, and other tran-

sition metals have been investigated for ECL applications,7,10{12 the most widely

used ECL luminophore is Ru(bpy)2+3 . The preference to Ru(bpy)2+3 is due to its

capability to generate ECL at room temperature, in aqueous bu�er solutions, and

in the presence of dissolved oxygen and other impurities. Since its discovery in

1959 by Paris and Brandt,13 it has found numerous applications, such as detec-

tion of amines and amino acids,14{16 codeine,17 lidocaine18 and DNA.19 It has

also been used as a label in bioassays. Most ECL-based assays rely on a reaction

between Ru(bpy)2+3 and TPA [TPA = tri-n-propylamine, (CH3CH2CH2)3N] as a

coreactant, since this reaction gives the highest ECL e�ciency of all known coreac-

tant ECL systems.20 The mechanism of the reaction has been extensively studied

and several routes leading to the generation of the excited state of Ru(bpy)2+3
have been proposed.21 One of the routes is presented in reactions 2.1 - 2.4.

Ru(bpy)2+3 ! Ru(bpy)3+3 + e� (2.1)

TPA� e� ! TPA:+ ! TPA: +H+ (2.2)

Ru(bpy)3+3 + TPA: ! Ru(bpy)2+�

3 + products (2.3)

Ru(bpy)2+�

3 ! Ru(bpy)2+3 + h� (2.4)

First, Ru(bpy)2+3 is oxidized at the electrode (reaction 2.1). The coreactant, TPA,

upon being oxidized either heterogeneously on the electrode or homogeneously

by Ru(bpy)3+3 rapidly loses a proton forming a TPA: radical (reaction 2.2). The

reaction between the newly formed radical and the ruthenium complex leads to a

formation of the excited species, Ru(bpy)2+�

3 , which emits light in a broad band

centered at 620 nm.7 A particular advantage of the system described is that

Ru(bpy)3+3 is regenerated during the ECL process, allowing a single Ru(bpy)2+�

3

species to participate in many ECL generation cycles, with consequent signal

ampli�cation.
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Several compounds can be determined by quenching of ECL. Phenolic compounds

(e.g. epinephrine,22 phenol, catechol and hydroquinones23) are reported to e�ec-

tively quench Ru(bpy)2+3 and TPA induced ECL. The proposed mechanism is the

formation of an intermediate at the electrode surface. The quenching of ECL is

solution dependent, high quenching occurring in aqueous solutions and little or

no quenching in acetonitrile.

While Ru(bpy)2+3 is by far the most commonly used ruthenium complex in ECL-

based analytical applications, some other ruthenium complexes are known to be

electrochemiluminescent. Ru(phen)2+3 , for example, exhibits high ECL intensity

at least in the presence of codeine,17 TPA,24 or oxalic acid25 as coreactant. A

ruthenium derivative with two bipyridine and one phenanthroline ligand used for

codeine determination was observed to generate 2.5-times higher intensity of ECL

compared with Ru(bpy)2+3 .17

Anodic ECL has been exploited as a detector in ow injection analysis (FIA),17,26

high performance liquid chromatography (HPLC),15 capillary electrophoresis

(CE),18,27{29 and microchip CE.24,30,31 Implementation of the ECL detection after

CE separation is challenging due to the need for decoupling of the detection elec-

tric �eld from the high voltage separation �eld. Decoupling has been successfully

achieved in end-column detection mode, by placing the detection electrode at

some distance from the capillary end, a method most notably developed by the

group of Erkang Wang.28,30 In this approach the analytes are separated in the

separation channel and separation bu�er, while Ru(bpy)2+3 is present in excess

at the detection end only. In one approach, a platinum working electrode 300

�m in diameter was placed 75 �m after the CE separation column, and lidocaine

was detected in urine samples with detection limit of 2.0 x 10�8 mol/L.18 In a

PDMS-fabricated �CE chip, ECL detection was achieved by using a transparent

indium tin oxide working electrode in the end-column mode. The system achieved

detection limits of 1.2 �M for proline, which was used as a model analyte.30 In

a di�erent approach, the high electric separation �eld was used to induce de-

tection potential at a oating, U-shaped electrode placed inside the separation
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microchannel.24 The separation �eld induced su�cient potential di�erence across

the electrode to oxidize Ru(bpy)2+3 and TPA at the one end of the electrode and

to cause ECL generation. This method was used for indirect detection of three

amino acids. Another approach been described where microuidic systems re-

lied on anodic ECL as a photonic reporter for redox reactions.32 Two-channel

and multichannel microuidic sensors based on this principle have been devel-

oped.33,34

2.1.3 Cathodic HECL

HECL is generated by a reaction sequence induced by tunnel emission of hot

electrons through a thin insulating �lm-coated electrode into an electrolyte solu-

tion upon cathodic polarization. Figure 2.1 shows a schematic representation of

HECL on an oxide-coated n-Si electrode.

Upon thermalization and solvation, these electrons become hydrated (e�aq). Hot

or hydrated electrons are capable of reducing compounds that are not electroac-

tive in aqueous solutions on noble metal electrodes. Suitable electrode materials

for HECL generation are silicon, magnesium and aluminum coated with thin in-

sulating �lms,35,36 and aluminum-doped zinc oxide coated with Y2O3.
37 Silicon

electrodes are usually heavily n+ or p+ doped to increase conductivity. The set

up for HECL is considerably simpler than that for anodic ECL as a reference

electrode is not necessary.

Many common photoluminescent and chemiluminescent labels generate HECL.

Examples include luminol and its derivatives,38,39 Ru(bpy)2+3 ,40,41 SYBR (R)

Green I,42 coumarine dyes,43 rhodamine B,44 and lanthanide(III) chelates.45,46

The most sensitive HECL luminophores discovered are terbium labels, which can

be detected down to sub-picomolar concentration. The distinct advantage of ca-

thodic HECL over anodic ECL is that various luminophores with di�erent optical

and redox properties can be excited simultaneously.38,47 Following reactions have
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Figure 2.1: Schematic representation of hot electron injection during cathodic
high-amplitude pulse-polarization on oxide-coated n-Si. Hot electrons of energy
equal to the source energy are tunneled through thin oxide �lms, <5 nm, while
in the case of thicker oxides charge transfer occurs via Fowler-Nordheim
tunneling.

been proposed to lead to the formation of the excited Ru(bpy)2+�

3 species:40,41

e�aq + S2O
2�
8 ! SO:�

4 + SO2�
4 (2.5)

Ru(bpy)2+3 + e�aq ! Ru(bpy)+3 (2.6)

Ru(bpy)+3 + SO:�
4 ! Ru(bpy)2+�

3 + SO2�
4 (2.7)

Ru(bpy)2+3 + SO:�
4 ! Ru(bpy)3+3 + SO2�

4 (2.8)

Ru(bpy)3+3 + e�aq ! Ru(bpy)2+�

3 (2.9)
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The excited species formed at the end is the same as in reaction 2.4. In the

reactions 2.5-2.9, coreactant is S2O
2�
8 , which upon reduction by hot or hydrated

electrons forms highly oxidizing radicals. An HECL-based application has been

reported for detection of organic compounds in aqueous solutions in a owing

stream using oxide-coated aluminum electrode.48

2.2 Bioa�nity assays

2.2.1 Basic principles of bioa�nity assays

Two types of bioa�nity assays are considered, namely, immunoassays and DNA

hybridization assays. Immunoassay technology has been in use over 40 years.49

Radioimmunoassays were developed by Yalow and Berson,50 who reported the

�rst use of antibodies for clinical assays in a competitive radioimmunoassay of

insulin in the 1960s. DNA hybridization assays in turn, have been intensively

investigated only during the last decade, due to the progress in genomic re-

search. Completion of the human genome sequence has shown that the num-

ber of protein-coding human genes is 30 000-40 000, only twice the number in

a worm or y.51,52 Changes or deletions of one nucleobase in a natural DNA se-

quence, so-called single-nucleotide polymorphisms (SNPs), are quite frequent in

the human genome, occurring at a rate of about one per thousand nucleotides.53

DNA microarray technology allows simultaneous analysis of the entire human

genome on a small surface. Two types of DNA microarrays are currently in use:

cDNA microarrays and oligonucleotide microarrays.54 In cDNA arrays, each im-

mobilized strand corresponds to a unique gene and is 200-500 nucleotides long,

while oligonucleotide microarrays and DNA biosensors use short, 15-50 base long

DNA strands (oligonucleotides).55 Latter format is gaining popularity due to its

simplicity and the higher sensitivity for SNP detection.

Immunoassays and DNA hybridization assays have many similarities, since both

are based on a unique biorecognition process, however, antibodies contain numer-
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ous amino and carboxylic acid groups and can be readily physically adsorbed on

unmodi�ed surfaces by combination of electrostatic and hydrophobic interactions.

Immobilization of oligonucleotides, in contrast, requires addition of a functional

group during synthesis that allows their coupling to a surface in a controlled man-

ner. The most common modi�ers are amino and thiol groups. A surface used

for immobilization of oligonucleotides should be at, homogeneous, and ther-

mally and chemically stable, and a reproducible surface treatment that allows

high density immobilization of DNA strands and o�ers low background must be

feasible. In addition, the achievement of massively parallel assays requires com-

patibility with microfabrication technologies. Oligonucleotide microarrays can be

produced either by in situ synthesis of oligonucleotides on a solid support or by

immobilization of conventionally synthesized oligonucleotides on a prepared active

microarray. Di�erent types of activated glass plates are commercially available.

The common requirements for a microarray are high chemical resistance against

solvents, mechanical stability, and, normally low intrinsic uorescence since uo-

rescence detection is the most common detection method. Important parameters

for successful hybridization are the amount of DNA probe attached to the surface,

probe length, and accessibility of the targets to the probes. Probes should not

be too close to the surface in order to allow easy access of targets. The spacer

should be at least 40 atoms long and should not contain charged groups.56 A

critical factor in DNA microarrays is the concentration of the probes available for

hybridization.

The �rst large-scale manufacturing of microarrays was done by A�ymetrix

(http://www.a�ymetrix.com) using photolithographic technology similar to that

used in the production of computer chips. The present format of the GeneChip

array uses photolithographic methods and phosphoramidite chemistry for in situ

synthesis of 500 000 di�erent oligonucleotide sequences of 25 bases on a 1.28 x

1.28 cm2 chip, each element being 18 x 18 �m in size.57

Most present bioassays rely on uorescence detection; however, electrochemical

and ECL detection methods are of great interest due to the relatively simple
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instrumentation, high sensitivity, low-cost, and easy miniaturization.58{60 Elec-

trochemical DNA biosensors are being developed as alternatives to conventional

DNA microarrays.61 Characteristic for all types of biosensors is that they incor-

porate a biologically active layer for biorecognition directly interfaced to a signal

transducer, which converts the physical parameter into a measurable analyti-

cal signal. Most electrochemical DNA biosensors are based on carbon and gold

electrodes.59 DNA biosensors are potentially useful for the detection of chem-

ically induced DNA damage and detection of the microorganisms through the

hybridization of species-speci�c sequences of DNA.62

2.2.2 Applications of ECL in bioa�nity assays

Anodic ECL of the Ru(bpy)2+3 label has been used in immunoassays and DNA

assays for over a decade.63{65 In bioassay applications analyte or its receptor is

labeled with Ru(bpy)2+3 -based derivative and ECL is detected in the presence of

TPA as coreactant. Commercial technology utilizes paramagnetic beads as solid

support for the immobilization of capturing biomolecules. Upon biorecognition

reaction with labeled target biomolecules, the beads are passed into a ow cell,

where a magnet captures the beads on the surface of an electrode. The beads are

washed to remove any unattached Ru(bpy)2+3 label and the TPA-containing bu�er

is pumped into a ow cell. ECL of the labeled analytes is generated by application

of a suitable potential and the emitted light is recorded with a photomultiplier

tube (PMT). The beads are then washed away, and the ow cell is cleaned and

prepared for the next sample. The detection limit of the bead-based ECL system

is in attomolar range.7

The commercial bead-based ECL method is widely used for detection of poly-

merase chain reaction (PCR) ampli�ed DNA fragments.63,66,67 Highly sensitive

methods are needed for the detection of PCR products in order to reduce the

number of ampli�cation cycles, as a greater number of ampli�cation cycles causes

wider variation. The bead-based PCR-ECL system has been utilized for the
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detection of various genes from viruses in human blood and serum66,68 and mea-

surement of the DNA helicase activity of Escherichia coli DNA.69 Recently, ECL

has been used for the detection of heat shock proteins from oocysts using nucleic

acid sequence based ampli�cation (NASBA) of mRNA. NASBA is an isothermal

technique that speci�cally ampli�es RNA molecules for the detection. The ampli-

�cation and detection of 10 mRNA molecules has been reported.70 The drawback

of the beads is that they are opaque, which causes signal loss from the side of the

beads not seen by a PMT. This issue has been addressed by Hsuehet al.,64 who

fabricated a ow-through microcell from silicon and glass for the ECL quanti�ca-

tion of DNA. The ECL signal of the bead-immobilized Ru(bpy)2+3 -labeled DNA

strands was generated on the interdigitated platinum thin-�lm electrodes and the

ECL signal was measured using a silicon PIN photodiode. The detection limit

was 40 fmol in a volume of 150 �l.

Despite the great potential of ECL only a few examples of assays where a cap-

turing DNA strand or antibody is directly immobilized on an electrode surface

are reported.65,71,72 Miao and Bard65 performed on gold electrodes an oligonu-

cleotide hybridization assay using 23-base oligonucleotides and an immunoassay

using C-reactive protein. The ECL intensity of the hybridization with a noncom-

plementary strand resulted in a signal that was 10% of the signal of the com-

plementary strand, most probably due to the nonspeci�c adsorption. Bertolino

et al.71 fabricated a silicon-based ECL chip with interdigitated gold electrodes

and integrated photodiode. The system was used for hybridization detection and

was able to discriminate 25% mismatched strands. Firrao72 compared several

electrode materials for detection of Ru(bpy)2+3 -labeled DNA strands, and found

glassy carbon to be the best in terms of sensitivity. Detection limit of 10 pmol

for hybridized complementary strand was obtained.

Heterogeneous immunoassays on oxide-coated aluminum and silicon electrodes

with HECL as detection method have been reported.40,73{75 Capturing antibod-

ies were physically adsorbed on oxide-coated aluminum40,73,74 and silicon75 elec-

trodes, and the biorecognition reaction was detected using receptors labeled with
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HECL luminophore. Detection of PCR ampli�ed DNA strands using SYBR R

Green I as HECL luminophore has been reported.42

2.3 Microsystem technology (MST)

The main trends in analytical chemistry today are miniaturization and integra-

tion. Whereas in traditional chemistry sample preparation, separation, detection,

and other processes related to sample treatment are performed in separate steps

and usually require volumes on the order of milliliters, microfabrication technol-

ogy has enabled integration of two or more of these steps in a single chip and

reduction of volumes to sub-microliter range. Several terms are used for chemical

and biochemical microsystems: micro total analysis system (�TAS),76 microsys-

tem technology (MST), lab-on-a-chip (LOC) and biomicroelectromechanical sys-

tems (bioMEMS). Generally, the term �TAS is used for systems that incorporate

electrokinetically actuated sample separation and detection on chip.77 The �rst

instrument on a microchip was an integrated gas chromatograph.78 This initiated

the application of micromachining technology to construction of chemical analy-

sis devices. The aim in analytical microsystems is to integrate uidic, electronic

and mechanical components on a single chip or substrate. Application of MST

is highly promising in �elds of medicine and biology, particularly in regard to

diagnostic systems for body uids.79

The heart of a chemical microsystem is the microuidics, the handling of very

small amounts of uids in a controlled manner. In any miniaturization it is impor-

tant to understand scaling of di�erent phenomena, since miniaturized components

are not simply smaller counterparts of the macroscopic world. Consequences of

miniaturization include increased surface-to-volume ratio and omnipresence of the

laminar ow. Two types of ow are common in microuidic systems: pressure-

driven ow and electrically actuated ow. Pressure-driven ow is based on pres-

sure di�erence �P between channel openings according to the equation
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Q = �P=R (2.10)

where Q is volumetric ow rate and R is the uidic resistance. Fluidic resistance

depends on the geometry of the channel. For circular channels, ow rate depends

on radius of the capillary to the power of four. Reynolds number 2300 is used

to di�erentiate between laminar and turbulent ow. In microchips the Reynolds

number is smaller than one. Due to the omnipresence of laminar ow, sample

mixing occurs only due to lateral di�usion. The smaller the radius of the channel

is, the higher is the pressure needed to pump the liquid through the channel.

Electrokinetic pumping takes advantage of the surface charge of the microchannel

for moving the sample and separating di�erent components. The requirement is

that the inner wall of the microchannel is charged.

The most successfully miniaturized chemical method to date is capillary elec-

trophoresis (CE), and CE is separation method mostly used in microanalysis due

to its high e�ciency, low reagent consumption and fast separation times. Tradi-

tional CE is done in fused silica capillaries 20 - 100 cm long and 20 - 100 �m in

diameter. Due to the ionization of the capillary wall silanol groups at suitable

pH, the inner wall becomes covered with negative surface charge, and a double

layer is formed by attachment of positive ions to the wall. When an electric �eld

is applied over the capillary, the movable cationic outer layer starts to move to-

ward the cathode, dragging analytes in a plug. This electroosmotic ow (EOF) or

bulk ow acts as a pumping mechanism to propel all molecules (cationic, neutral,

and anionic) toward the detector, with separation ultimately being determined

by di�erences in the electrophoretic migration of the individual analytes. As elec-

trophoretic migration occurs, all analytes are swept toward the detector by bulk

ow. The main advantage of CE is the uniform sample plug, which allows sharp

peaks.

If the EOF is adequate but not too strong, the respective electrophoretic mo-
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bilities of the analytes lead to the formation of discrete zones by the time they

reach the detector. If the EOF is slow, di�usion of the analyte zones could result

in substantial band broadening and, under conditions of very low EOF, some of

the analytes may not reach the detector within a reasonable analysis time. If

the EOF is too fast, on the other hand, components of the mixture may not

have adequate on-capillary time for separation to occur. Electroosmotic mobil-

ity depends on viscosity of the liquid, its dielectric constant and zeta potential

of the inner capillary wall. Zeta potential, in turn, depends on surface charge

on the capillary wall, pH, and ionic strength of the electrolyte. An increase of

ionic strength decreases the double wall of the capillary, thus decreasing the EOF

and increasing the separation time. An advantage of increasing ionic strength

is reduced analyte-wall interactions. The electrophoretic mobility is determined

by size and charge of the analytes. Anions move electrophoretically toward the

anode, cations toward the cathode. The EOF is generally stronger than elec-

trophoretic mobility, so the net ow is toward the cathod, and consequently, the

elution order is cations, neutral analytes and anions. The high surface to volume

ratio of capillaries with these dimensions allow very e�cient dissipation of Joule

heat generated from large applied �elds (typically used values range from 500 to

1000 V/cm).

The typical bu�er concentration in CE ranges from 10 to 100 mM. The use of

moderately high ionic strength bu�ers is desirable for suppression of ion-exchange

e�ects between the charged analyte ions and the ionized silanol groups on the

capillary wall. However, the Joule heat associated with high ionic strength (over

100 mM) may overcome the capillary thermostating capability of the system at

higher applied voltages. Excessive Joule heating can have undesirable e�ects on

both resolution and analyte stability.

CE microchips typically have a 1 cm long sample introduction channel and a 4 cm

long separation channel, while width and height values depend on the fabrication

material. Early CE microchips were fabricated in glass, where the channel geom-

etry is semicircular due to the limitations in microfabrication technologies. Thus
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typical width ranges from 40 to 80 �m and height is in the range from 10-20 �m.

Silicon and polymer microchips allow more exible geometry, and the used width

and height values are in the same range (30-60 �m). The most common detection

method at present is laser-induced uorescence (LIF). The small injection plugs,

high electric �elds, and short separation channel lengths produce separation times

on the order of seconds or minutes. LIF requires an external excitation source,

which limits miniaturization possibilities.

Electrochemical detection methods are relatively simple and inexpensive, and

they are suitable for a broad range of analytes due to the variety of electrode

materials and electrochemical processes that can be exploited for detection. The

technologies for thin �lm deposition and fabrication are well-developed, and elec-

trodes are of small dimensions, which allows the fabrication of detectors with

minimal dead volume. The signal from an electrode is easier to register than a

LIF signal. Despite these attractive properties, a CE microchip with an inte-

grated electrochemical detector (CE-EC) has found few commercial applications

to date, and is mainly utilized in research laboratories. The main challenge for

an EC-CE system is its sensitivity to electrical noise and the need for decou-

pling of the measurement electrodes from the high voltage electric �eld needed

for electrophoretic separation.

MST plays a particularly important role in the �eld of DNA analysis, and pro-

duced the most extensively integrated analytical chips have been developed for

this purpose. Various PCR-based microuidic devices, fabricated in silicon or

polymeric materials with integrated uidic connections, heating modules and

in some cases detection electrodes, have been reported.80,81 Kajiyama et al.82

reported a thermal gradient DNA chip fabricated in silicon with p-n junction

heaters for local hybridization temperature control, which improved mismatch

discrimination e�ciency. Liu et al.83 reported an automated miniaturized device

for hybridization and gene expression analysis, which combined a semiconductor-

based microarray with microuidic elements. The device allowed in situ synthesis

of probe oligonucleotides, as well as automated hybridization and labeling steps
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on-chip. A PDMS microuidic chip for DNA hybridization has been reported.84

In this approach a PDMS microchannel was coated with photobiotin, which was

activated by exposure to UV light (254/366 nm) through a photomask in or-

der to achieve localized immobilization. Upon photoexposure the nonactivated

biotin was washed away and the activated biotin was incubated with avidin to

allow immobilization of biotin-labeled oligonucleotides. Several immunoassays

in microuidic systems have been reported.85 Traditional microtiter-based im-

munoassays are highly sensitive and reliable; however, long incubation times, on

the order of hours or even days, are common. Microuidic immunoassay and

hybridization assay formats o�er rapid reaction times on the order of minutes.

2.3.1 Basic processes in microfabrication

The fabrication of microsystem involves following main steps: photomask design,

cleaning of wafers, photolithography, deposition, and etching.86{89 The �rst step

of the process, photomask design, can be done using a suitable software pro-

gram, such as AutoCAD, Expert, or, for relatively simple structures, CleWin.

The photomask consists of opaque and transparent areas, which de�ne the de-

sired structures. Two types of photomasks are common: (i) hard masks made

of a chromium layer on a quartz plate (resolution down to 1 �m) and (ii) high-

resolution printed transparencies attached to a quartz plate (pixel resolution 7

�m), which represents a considerably cheaper solution.

Many of the processes used for fabrication of analytical microsystems have been

developed for the microelectronics industry. The need of for an extremely clean

environment requires that the fabrication is performed in clean rooms, where

laminar ow in hoods prevents the transport of dust and air mixing. Clean

rooms are classi�ed according to the purity, type 1000 signifying an environment

containing less than 1000 particles larger than 0.5 �m each per cubic foot.90 For

comparison, the air of a normal o�ce contains as many as 50 million particles of

that size in one cubic meter. People are the main source of contamination, and
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protective clothing must be worn.

2.3.2 Wafer cleaning

The processes needed for actual device microfabrication in a clean room are

schematically illustrated in Figure 2.2. The �rst step is to properly clean the

substrates, or wafers. Wet cleaning using acid, base and solvent cleanings are the

main cleaning methods. The most common wet clean method, known as RCA-

clean because it was invented at RCA Laboratories, consists of a sequence of

di�erent wet cleans e�ective in removing of di�erent types of contamination.88 A

typical cleaning sequence consist of dipping silicon wafers in a hot bath composed

of mixture of concentrated ammonium hydroxide and hydrogen peroxide for 10-

20 min, followed by rinsing with water. The mixture of peroxide and hydroxide

causes simultaneous oxidation and etching of the silicon surface, which allows ef-

�cient removal of organic contamination. Wafers are then placed into a hot bath

consisting of a hot mixture of hydrochloric acid and hydrogen peroxide for 10-20

min, which e�ciently removes metal particle contamination. A silicon surface is

covered with a native thin oxide, and this oxide is usually removed during the

standard cleaning by etching in hydrouoric acid (HF). This step can be per-

formed between the previously described steps or after them. HF cleaning leaves

the surface hydrophobic with H-termination, which greatly reduces oxidation of

the silicon surface.

At the Institute of Microtechnology (IMT), Neuchâtel, the standard process for

cleaning of silicon wafers involves cleaning in hot mixture of concentrated sul-

furic acid and hydrogen peroxide for 10 min to remove organic residues. This

is followed by rinsing with water, etching of native silicon dioxide for 1 min in

bu�ered hydrouoric solution (BHF), rinsing with water, soaking for 10 min in a

fuming nitric acid for 10 min to reoxidize the silicon surface, and �nally, rinsing

with water. Pyrex wafers are cleaned with organic solvents such as acetone and

isopropanol to remove organic residues, rinsed with water, dried, and then placed
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Figure 2.2: Schema of photolithography processes used for device fabrication
in clean room. The processes marked with * are not always performed.

for 10 min in concentrated nitric acid.

2.3.3 Photolithography

Photolithography involves three main steps: application of a photoresist (a pho-

tosensitive polymer), optical exposure to print an image of the mask onto the

photoresist, and development in a developer solution to dissolve nonpolymerized

photoresist and render visible the latent image. Before a photoresist can be ap-

plied to a wafer, wafers must be dehydrated in an oven at 120 �. To improve the

adhesion of the photoresist on the wafer, hexamethyldisilazane (HDMS) priming

is performed for 15 minutes in vapor phase, at room temperature and atmospheric

pressure. Then the photoresist is spun on the wafer, held in position on a rotating

table (spinner) by a vacuum chuck. Rotation of the spinner spins the photoresist
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homogeneously on the wafer. The thickness of the layer depends on the viscosity

of the photoresist and of the rotation speed of the spinner, faster rotation leading

to a thinner photoresist layer. After spinning the photoresist layer is prebaked to

evaporate most of the solvents, typically for 1 min baking on a hot plate heated

to 100 �. After the prebake the image is transferred onto the wafer through

optical exposure. Photoresist is then developed in a development solution. The

remaining photoresist is postbaked at 125 � for 30 min in order to harden it and

to remove residual solvents.

The photoresist can be positive or negative, which leads to a di�erent behavior

upon exposure. Upon exposure with a suitable light source, the photoactive com-

pound of a positive photoresist undergoes a photochemical reaction that changes

its molecular structure and converts it in a soluble acid species, which is then

dissolved in an alkaline developer. In negative photoresists, the polymer typically

undergoes crosslinking upon light exposure and becomes insoluble, while the non-

exposed part is dissolved in developer. Positive photoresists are more widely used

than negative. However, the most commonly used negative photoresist, SU-8, is

gaining popularity as a material for device fabrication due to its chemical re-

sistance and reliability.26,91 It is suitable for the fabrication of thick layers and

structures with high aspect ratio (>10:1).

Theoretical size of the features that can be created with a particular photoresist

depends on the wavelength of the exposure light, thickness of the photoresist layer,

and the distance between the photoresist layer and the mask. The expression for

the smallest mask feature, called the minimum linewidth, is given by89

wmin =
3

2

p
� (s+ z) (2.11)

where wmin is the minimum linewidth, s is the gap between the mask and the

photoresist surface, � is the wavelength of the exposing radiation, and z is the

thickness of the photoresist. The most common light source is a mercury spec-
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tral lamp and wavelength of 365 nm.89 Photolithography can be performed in

contact or proximity mode. In the contact mode, the mask is in contact with

the photoresist layer, and s is 0. The disadvantage of the contact mode is that

the photoresist can leave residues on the mask. In the proximity mode, there is

a distance between the mask and the photoresist layer. This minimizes defects

that result from the contact between the mask and photoresist but decreases res-

olution. A transparency mask is never completely planar due to the di�culty

of attaching it completely at to a quartz mask, and proximity mode is usually

used. In a typical fabrication process where a transparency mask is used, the

mask is brought within 25-100 �m of the resist surface. For the case of proximity

printing the equation 2.11 can be rewritten as:

wmin =
3

2

p
� � s (2.12)

The energy of the exposure depends on the type of the used photoresist and the

thickness desired.

2.3.4 Deposition of thin �lms

Various thin �lms are used in microfabrication. One of the features that makes

silicon the most useful material of the microelectronics industry is its ability to

grow a thin layer of silicon dioxide. At ambient environment, the silicon surface

is covered with an oxide layer about 1-2 nm thick. This native oxide is usually

stripped away in hydrouoric acid in wafer preparation stage as described above.

In IMT, the surface is homogeneously oxidized in hot nitric acid before oxidation.

High-quality silicon dioxide can be obtained by oxidizing silicon in water vapor

or in dry oxygen at elevated temperature (850-1200 �).89

Si + O2
850�1200 �C! SiO2(dry) (2.13)
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Si + 2H2O
850�1200 �C! SiO2 + 2H2(wet) (2.14)

Dry oxidation in pure oxygen at high temperature produces a better quality

oxide than steam oxidation, but the oxide growth occurs considerably slower.

Thermal oxidation of silicon generates compressive stress in the silicon dioxide

due to mismatch between the coe�cient of thermal expansion of silicon and silicon

dioxide. Thus, thermally grown oxide �lms thicker than one micrometer can cause

bowing of the underlying substrate.86

Chemical vapor deposition (CVD) allows deposition of silicon dioxide, silicon

nitride, and polysilicon �lms. The CVD process allows deposition of thicker

silicon dioxide layers in shorter time and at lower temperature than can be pro-

duced thermally. However, the electrical and mechanical qualities of CVD oxide

are inferior to those of thermally grown oxide. Silicon nitride can be deposited

by low-pressure CVD (LPCVD), which operates at relatively high temperatures

(500-800 �) or by plasma-enhanced CVD (PECVD), which operates at lower

temperatures (typically 300�).89 LPCVD produces stoichiometric silicon nitride

(Si3N4), while PECVD generates nonstoichiometric silicon nitride (SixNy). Sili-

con nitride is commonly used in MST because of its excellent chemical, electrical,

optical, and mechanical properties. Although SiO2 is an excellent dielectric, it

shows poorer passivating characteristics than silicon nitride in aqueous media and

it is also relatively permeable to alkali ions.86 LPCVD-produced Si3N4 �lms are

of high quality and are practically free from pinholes. PECVD SixNy is the typi-

cal encapsulating material used for the �nal passivation of devices, as a moisture

barrier and to prevent sodium di�usion. Although it is very similar to LPCVD

Si3N4, passivation is poorer and layers must be thicker, typically 400 nm instead

of 200 nm.
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2.3.5 Fabrication of thin �lm electrodes

The most commonly used metals for electrode fabrication in analytical microsys-

tems are noble metals, aluminum, and silver.89 Noble metals are deposited as thin

�lms by electron gun evaporation. The source material is placed in a crucible and

heated by e-beam under high vacuum conditions. Vapor phase is generated when

the vapor pressure of the metal exceeds that of the environment. The surface

of the substrate is kept cooler, and when the vapor of the metal comes in touch

with the substrate, it condenses by nucleation mechanism and a thin �lm grows

on the substrate. The poor adhesion of noble metals to dielectrics means that a

seed layer must be deposited �rst, usually chromium or titanium for gold, and

titanium or tantalum for platinum-group metals. Typically, 10 - 20 nm of a seed

metal layer is deposited prior to a 100-nm -thick layer of noble metal.89

Patterning of the metal electrodes can be performed by wet etching, if a suitable

etchant exists, or by lift-o� (see Figure 2.3). There are no good wet etchants

for platinum-group metals, but gold can be etched with a mixture of KI and

I2. An advantage of lift-o� is that the same mask can be utilized for fabrication

of platinum-group and gold electrodes. For microanalytical devices it may be

important that metals are deposited on an insulating surface in order to avoid

short-circuits. Therefore, before metal deposition silicon surfaces are passivated

by thermal oxidation of silicon up to a thickness of 100 nm, after which a layer of

200 nm of LPCVD Si3N4 is deposited. Direct deposition of LPCVD Si3N4 is not

desirable, as it would lead to high stress on the surface. This passivation layer

also prevents di�usion of metal into silicon.89

In a typical process used at IMT for metal electrode fabrication, a positive pho-

toresist (usually AZ 1518) is spun on a silicon or Pyrex wafer at thickness of 1 -

1.5 �m. If the electrodes are to be fabricated on nonplanar surface, e.g. channels

have been already etched, the photoresist layer must be spun thicker, or it can

be sprayed instead of spun. If the wafer containing electrodes is afterwards to

be bonded to glass, it is important to have a completely at surface. This can

25



Figure 2.3: Lift-o� process for fabrication of electrodes and the electrode
surface area de�ned by plasma opening of deposited thin PECVD SixNy layer.

be achieved on glass wafer by etching the openings for the electrodes in bu�ered

hydrouoric acid (BHF) solution before metal deposition. A postbake is not per-

formed when lift-o� is the next process step, as this would evaporate solvents

and make photoresist removal more di�cult. After lift-o� of the photoresist, a

layer of PECVD SixNy is deposited on the wafer and opened by plasma-etching

on suitable areas to de�ne the active surface area of the electrode.

2.3.6 Etching

Critical to any microtechnology process sequence is the ability to selectively re-

move materials with high selectivity and resolution. The etching process can be

classi�ed as wet or dry depending on whether it is done in an aqueous solution

or by plasma.88 Etching can also be isotropic or anisotropic. Isotropic etching
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means that the vertical and lateral etch rates are the same. In this case, the re-

sulting structures are hemispherical and more than twice as wide as deep because

of the initial opening in the etch mask. Material that is to be anisotropically

wet etched must be of crystalline structure. Silicon has three distinct crystalline

planes: <100>, <110>, and <111>. Silicon can be isotropically etched in a solu-

tion composed of hydrouoric acid, nitric acid and acetic acid and anisotropically

etched in 40% potassium hydroxide (KOH) heated to 80 �. The anisotropic wet

etching of silicon in potassium hydroxide is explained by the fast etch rate of the

<100> planes with respect to the <111> planes. The etch angle of the <100>

and <111> planes is always 54.74°. Another anisotropic wet etchant for silicon is

tetramethylammonium hydroxide, which is gaining popularity because it is rela-

tively easy to handle, fully compatible with electronic fabrication, and masking

is easier.88

The only chemical capable of dissolving silicon dioxide and thus glass is hydrou-

oric acid (HF). The dissolution of glass is based on a reaction of the acid with

silica, as follows:

SiO2 + 4HF! SiF4 + 2H2O (2.15)

SiF4 + 2HF! H2SiF6 (2.16)

H2SiF6 is a water-soluble product. Glass does not have crystalline structure, and

is therefore always wet etched isotropically.89 For deep glass structures, 49% solu-

tion of HF, which has an etch rate approximately of 10 �m/min, or 20% HF which

has an etch rate of approximately 1 �m/min, are used. Commercially available

silicon dioxide and glass etching solutions contain hydrouoric acid bu�ered with

ammonium uoride (NH4F) and are sold as bu�ered hydrouoric acid (BHF).

Conventional BHFs consist of mixtures of 40% NH4F and 50% HF. Depending

on the individual application, the compositions vary from almost pure 40% NH4F

solutions to less concentrated HF-solutions with 13% HF and about 30% of NH4F.

The etch rates of these solutions vary from 1.3 nm/min to 342 nm/min.
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Preparation of the mask for etching is of great importance, since the mask deter-

mines the structural accuracy of the later device structures. A good mask must

both very well adhere to the wafer and have excellent resistance to the etching

solution. In the ideal case,a photoresist can be used as a mask. Photoresist

masks show low defect density, are relatively cheap, and o�er manifold property

variations due to the wide variety of polymeric materials available. The risk of

photoresist lift-o� during the etching process must be considered. Pure HF solu-

tion exhibits strong penetration into the glass-photoresist interface and destroys

the mask quickly, while BHF solutions are less aggressive. Thus, photoresist

masks can be used when shallow structures in glass are desired, while etching of

deeper structures requires a hard mask. Examples of common hard masks for

etching processes are silicon dioxide, silicon nitride, polysilicon and chromium.

Polysilicon is used as an etching mask for glass at IMT. In a typical process, a

200-nm-thick LPCVD polysilicon layer is deposited and photoresist is spun on

it. After photolithography, the exposed polysilicon is opened with reactive ion

etch (RIE). Polysilicon is a su�ciently protective layer against 20% and 50%HF.

After the channels are su�ciently etched, polysilicon is etched in 40% KOH at 60

�. The dissolution process is fast taking only 5-10 min. The LPCVD polysilicon

process is compatible with standard lithographical processes and no underetch-

ing, except that isotropically induced, is generated. Widely used etch masks for

silicon are silicon nitride and silicon dioxide.88,89

The terms dry etching, plasma etching, and reactive ion etching (RIE) are used

synonymously. RIE is done in a vacuum chamber with reactive gases excited

by RF �elds. The glow discharge generates active species that react with the

surface and produce volatile compounds. RIE is very suitable for etching of silicon

nitrides, which can be wet etched only in boiling phosphoric acid. RIE can be used

for isotropic or anisotropic etching depending on the gases and etched material.

In the case of silicon, RIE is typically used for fabrication of vertical or near

vertical sidewalls. Silicon is easily etched by halogens, as the reaction products

- silicon uorides, chlorides, and bromides - are volatile at room temperature.88

Deep RIE can be used for fabrication of deep vertical walls in silicon.
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2.3.7 Bonding

Bonding together of di�erent materials is very important in the fabrication of

microchips. Pyrex is the most widely used glass in microtechnology, because of

its thermal stability and compatibility with silicon. Anodic bonding of Pyrex glass

and silicon is widely practised because the easily movable sodium ions make an

extraordinary strength of the bond.87 Two glass wafers can be bonded by fusion

bonding. Surface atness and purity are critical for successful fusion bonding, as

particles and surface roughness will undermine the bond strength. Two Pyrex

wafers can be fusion bonded at 650 �. Thin �lm deposition and structuring of

active metal electrodes is a mature and well-controlled process. A disadvantage of

glass is that it can be etched only isotropically as it does lack crystalline structure.

As noted above, successful bonding of two glass plates requires complete planarity,

a particular challenge in the bonding electrode-containing plate to glass. In this

case, the glass should be etched so that the deposited electrodes do not protrude

above the surface, which might lead to conformational problems, e. g.such as

deposition of metal at edges and metal wings. PDMS is easily reversibly or

irreversibly bonded to itself or to a glass wafer. Owing to the elasticity of PDMS

and its facility for conformational change, it can adapt to small roughnesses on

the wafer, such as metal electrodes.

2.3.8 Microfabrication in polymers

The need for transparency, electrical isolation, biocompatibility, and resistivity

to alkaline solutions has pushed the development of glass and polymer fabrica-

tion methods. The work on capillary electrophoresis on chip initially focused

on microfabrication on glass and quartz due to the mature fabrication technology

available for these materials and their chemical similarity to fused silica.92{94 Glass

is an electronic insulator, chemically stable and transparent, facilitating optical

detection, and glass chips have found wide use. Micromachining is expensive,

however, and requires clean room facilities. Additionally, glass is easily broken
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and relatively expensive. The disadvantages of glass microchips have led to the

investigation of alternative substrate materials, particularly polymers.95 Polymer

materials suitable for fabrication of CE chips need to satisfy several conditions:

they need to support electroosmotic ow, be electrical isolators and allow good

heat dissipation. Most widely investigated polymeric materials are poly(methyl

methacrylate) (PMMA), polyimide, polyethylene, polycarbonate, poly-ethylene

tere-phthalate glycol and poly(dimethylsiloxane) (PDMS).

Poly(dimethylsiloxane) (PDMS) is an elastomeric material, which has gained

much popularity in the fabrication of microuidic systems. Its advantages in-

clude low cost, rapid microfabrication by replica molding, optical transparency

in visible range down to 280 nm, nontoxicity, and easy reversible sealing to a

number of materials, including glass, another PDMS slide, silicon, and silicon

nitride.77,96 Irreversible bonding can be achieved upon plasma oxidation of slides

to be bonded. The slides are oxidized during 6 s at room temperature, and they

have to be aligned together in the next few minutes. Figure 2.4 shows the fabri-

cation of a PDMS channel using a master fabricated with a negative photoresist

SU-8.

In a typical fabrication procedure, prepolymeric liquid material is carefully mixed

with a curing agent in ratio 10:1 and degassed in a dessicator. The degassed liquid

mixture is poured on a master and left to polymerize during 3-4 hours at 65 �.

The same master can be used for the fabrication of a practically unlimited num-

ber of PDMS chips. Microuidic channels and reservoirs are easily fabricated in

PDMS. The master can be fabricated in silicon or SU-8. A signi�cant disadvan-

tage of PDMS is its hydrophobicity, which causes high adsorption and absorption

of biomolecules on its surface and into the bulk of PDMS, and di�culty in �lling

the channels with aqueous solutions.
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Figure 2.4: Rapid prototyping of PDMS structures using a master fabricated
with SU-8 negative photoresist.
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3. Hybridization assay on gold electrodes

This chapter describes a hybridization assay utilizing anodic ECL of a synthe-

sized ruthenium label composed of two bipyridine ligands and one phenanthroline

ligand for hybridization detection.1 Probes were immobilized on microfabricated

gold electrodes and hybridization was detected using ECL emission of a Ru(II)-

labeled oligonucleotide target. An electric �eld was used for mismatch discrimi-

nation.

3.1 Introduction

The most common electrode materials used in electrochemical biosensors are car-

bon and gold.2 Carbon is generally considered an excellent material for electro-

chemical detection of biomolecules because it is less prone to fouling and has a

relatively wide potential window in aqueous solutions. However, microfabrication

of glassy carbon is still at an early stage of development compared with that of

noble metals. In addition, the immobilization properties vary with the di�erent

carbon types.

Immobilization of DNA strands on gold can be readily accomplished by incor-

poration of a functional mercapto group on an oligonucleotide during synthesis.

This process is tedious, however, because the modi�cation of DNA is compli-

cated and the yield of mercapto-containing DNA is low.3,4 Another common way

to immobilize biomolecules on gold is via mercapto-carboxylic acids, which in the

presence of carbodiimides can form amide bond with an amino group present in

a biomolecule. The most common carbodiimide is 1-(3-(dimethylamino)propyl)-

3-ethylcarbodiimide hydrochloride (EDC), which is widely used for the conjuga-

tion of biological substances. It catalyzes the formation of amide bonds between

carboxylic acids or phosphates and amines by activating carboxyl or phosphate

group to form an O-acylisourea derivative, which then rapidly reacts with pri-
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mary amines.5 Covalent immobilization of amino-modi�ed oligonucleotides and

proteins is achieved in this way. N-Hydroxysuccinimide (NHS) is frequently added

to the EDC solution, resulting in the formation of an intermediate active ester,

which then reacts with amine. Thus the �nal product is the same, but the inter-

mediate is more stable and the reaction yield is usually higher.5

Theoretical calculations have shown that the electrostatic surface e�ects can in-

uence immobilization and hybridization kinetics of DNA strands, as well as the

stability of the formed duplex.6 In practice, it has been shown that, hybridiza-

tion kinetics of long DNA strands (157-864 bases) with short probes immobilized

on indium tin oxide electrodes was considerably faster upon application of low

voltage of 200 mV between the electrodes.7 A positive potential of +300 mV

vs. Ag/AgCl has been reported to increase immobilization kinetics of thiolated

oligonucleotides on gold electrodes,8{10 while negative potential of -300 mV vs.

Ag/AgCl was reported to cause denaturing of hybridized mismatched strand while

leaving complementary duplexes intact.9 Common to the above mentioned exam-

ples is that the applied electric �eld is so low that only non-Faradaic currents are

induced. In an approach described by Sosnowski et al.11 electric current pulses

were applied on hybridized strands. Single base mismatch discrimination was

achieved in DNA duplexes over length of 6 to 27 nucleotides. In order to protect

DNA from unwanted electrochemical side reactions that electric current might

induce, such as local pH change and possible radical formation, the immobiliza-

tion was performed on a 1 �m thick agarose gel layer previously deposited on the

electrodes.

3.2 Experimental section

3.2.1 Chemicals and materials

The 15-base oligonucleotides having C6 linker and amino-modi�cation at the 5'

end were purchased from MicroSynth, Switzerland. An oligonucleotide probe of

44



sequence 5'-NH2 - TTGCTAAGGATCATT-3' was used. Targets were a com-

plementary target, 5'-NH2 - AATGATCCTTAGCAA-3' and a mismatched tar-

get, 5'-NH2 - AATGATTCTGAGCAA-3', with two base mismatches (indicated

in bold). Sodium dihydrogen phosphate monohydrate, disodium hydrogen phos-

phate dihydrate, sodium tetraborate decahydrate, potassium chloride, tris(hydro-

xymethyl) aminomethane (Tris), dimethylsulfoxide (DMSO), dimethylformamide

(DMF), magnesium chloride hexahydrate, sodium dodecyl sulfate (SDS), cetyltri-

methylammonium bromide (CTAB), glycine (mixture of L- and D-isomers), n-

tripropyl-amine (TPA), 3-mercaptopropanoic acid (3-MPA), 16-mercaptohexadeca-

noic acid (16-MHA), 90%, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hy-

drochloride (EDC), N-hydroxysuccinimide (NHS), 1-methylimidazole, hexamineru-

thenium(III) chloride (RuHex), thiophosgene, calcium carbonate, and ammonium

hexauorophosphate were all acquired from Sigma-Aldrich, Switzerland. Ruthe-

nium trichloride, 99%, 2,2'-bipyridyl, lithium chloride, tin dichloride dihydrate,

5-amino-1,10-phenanthroline were obtained from Acros, Switzerland and ethanol

(0.2% H2O) from Merck, Switzerland. AZ 1518 photoresist was product of Clari-

ant, and Dow Corning poly(dimethylsiloxane) (PDMS) kit Sylgard 184 was from

Distrelec, Switzerland.

3.2.2 Synthesis of Ru(II)-1 and Ru(II)-2

Bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium (II) (Ru(II)-1) was

synthesized according to previously published procedures.12{14 Briey, bipyridine

and tri-chlororuthenium were heated and reuxed during three hours in DMF. Af-

ter solvent evaporation, the mixture was crystallized at 0� with acetone, reuxed

with water-ethanol solution, and treated with lithium chloride. The resulting

compound was reuxed with 5-amino-1,10 phenanthroline in the ethanol-water

solution for 3 hours. After ethanol was evaporated hexauorophosphate ammo-

nium salt was added. The resulting yellow Ru(II)-1 compound was puri�ed with

column chromatography. Finally, the amino group of Ru(II)-1 was converted to

the active isothiocyanato group of Ru(II)-2 compound with thiophosgene in the

presence of calcium carbonate and dry acetone.
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3.2.3 Ruthenium labeling of oligonucleotides

Oligonucleotides were labeled according to a slightly modi�ed procedure of Mole-

cular probes.15 Briey, prior to labeling, oligonucleotides were puri�ed by chlo-

roform extraction and precipitated with ethanol. Then amino-modi�ed oligonu-

cleotides were dissolved in 100 mM tetraborate bu�er, pH 8.5, to obtain a con-

centration of 250 �M. Ru(II)-2 was dissolved in a small volume of DMSO and

added to the oligonucleotide solution at 30-fold excess concentration with respect

to the oligonucleotides. This mixture was gently shaken in the dark during six

hours. Labeled oligonucleotides were precipitated by addition of 3 M NaCl and

cold absolute ethanol in a volume ratio of 0.1:2.5 with respect to the oligonu-

cleotide solution. The mixture was kept 30 min at -20 � and then centrifuged

30 min at 12 000 rpm. The supernatant was removed and the pellet was rinsed

twice with cold 70% ethanol. Labeled oligonucleotides were allowed to dry in air

for 10 min, and stored at -20 � until use.

3.2.4 Instrumentation and methods

The concentrations of probe and labeled oligonucleotides were determined by

UV-VIS measurements, performed in 50 mM tetraborate bu�er, pH 7.8, using

a Hewlett-Packard 8453 spectrophotometer. The cyclic voltammograms were

recorded using an Autolab PGSTAT12 (Eco chemi) potentiostat in three-electrode

mode against a silver pseudoreference electrode on chip made by placing a droplet

of silver conductive glue on a gold electrode.16 Cyclic voltammograms were mea-

sured in 10 mM tris bu�er, pH 7.0, sweeping potential �rst in the negative di-

rection. The ECL potential was generated with a PAR 273 potentiostat and

the signal was recorded with a PMT tube (Hamamatsu H5701-50, Switzerland)

through an optical �lter with a bandwidth 600 � 80 nm, which was controlled

with a lab-written Labview program collecting data points at a frequency of 8

Hz. A voltage of -950 V was supplied to the PMT using a lab-built high-voltage

power supply. ECL measurements were performed in 300 mM phosphate bu�er,
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pH 7.8, containing 100 mM TPA and 0.1% SDS. The ECL signal was generated

by stepping the potential from 0 to 1.15 V for a pulse period of 300 ms and

stepping back to 0 V. Denaturing experiments using electric �eld were done in

30 mM phosphate bu�er, pH 7.0. All measurements were performed at room

temperature.

3.2.5 Preparation of oligonucleotide-modi�ed gold electrodes

Gold electrodes were microfabricated by a lift-o� process on Pyrex or silicon

wafers as described in Chapter 2, and the electrode surface area was de�ned by

PECVD SixNy opening. The diameters of the working electrodes were 100 �m,

300 �m, and 500 �m, respectively. While all three working electrodes were used

for preliminary experiments and optimization, all results reported in this chapter

were obtained on the 500 �m electrode. A reservoir was made by pinching a hole of

a diameter around 3 mm in a PDMS layer, which was then reversibly sealed about

electrodes. Figure 3.1 shows a prepared gold chip with three working electrodes,

an integrated silver pseudoreference electrode, and a counter electrode.

Before immobilization, the electrodes were cleaned in 30% sulfuric acid contain-

ing 5% hydrogen peroxide for 10 min, rinsed with copious amounts of water

and dried under a stream of nitrogen. Self-assembled monolayers of 3-MPA and

16-MHA thiols were formed during one hour from 1 mM solution prepared in

absolute ethanol. After soaking in thiol solution, the electrodes were cleaned

with ethanol and water and dried in a stream of nitrogen. The amino-modi�ed

oligonucleotides were immobilized on SAM covered electrodes via EDC/NHS cou-

pling,5 which leads to a covalent bond between surface carboxylic acid and amino-

terminal of the oligonucleotide. The oligonucleotides were dissolved in 100 mM

1-methylimidazole bu�er, pH 7, containing 100 mM of MgCl2 x 6 H2O into which,

prior to immobilization, freshly prepared EDC and NHS were added to obtain con-

centrations of 100 mM and 75 mM, respectively. Then 10 �L of oligonucleotide

solution was carefully pipetted and dispensed on the three working electrodes,
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Figure 3.1: Gold chip used for heterogeneous ECL assay. The volume of the
PDMS reservoir is about 30 �L. The diameter of the largest electrode is 500
�m, that of the medium 300 �m, and that of the smallest 100 �m. Silver
pseudo-reference electrode was made by placing a droplet of silver glue on a gold
electrode and curing it at 120 � during two hours (left).

taking care not to cover the reference and counter electrodes, and left for three

hours in a humid chamber. Noncovalently attached probes were washed away

with ethanol and water and the chips were dried in a nitrogen stream.

3.2.6 Hybridization

After probe immobilization, unreacted EDC/NHS groups were deactivated by

treating the electrodes with a 30 mM phosphate bu�er containing 10 mM glycine

and 0.2% SDS for 30 min. Then the surface was blocked by treatment with 35

�g/mL of single stranded calf thymus DNA for 10 min. Labeled complementary

and mismatched strands were dispensed on working electrode and allowed to

be incubated for two hours. Hybridization was performed in 30 mM phosphate

bu�er, pH 7.5, containing 100 mM MgCl2 x 6 H2O.
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3.3 Results and discussion

3.3.1 Spectroscopic properties of the labeled compounds

Figure 3.2 shows the UV/VIS absorption spectra of Ru(II)-1 solution (a), unla-

beled 15-base oligonucleotide (b), and Ru(II)-labeled 15-base oligonuleotide (c)

measured in 50 mM tetraborate bu�er, pH 7.8. As can be seen in Figure 3.2,

the synthesized Ru(II) complex exhibits a metal-to-ligand charge transfer peak

(MLCT) at 455 nm, as well as absorption peaks at � 285 nm and � 249 nm,

comparable to the Ru(bpy)2+3 complex.

Figure 3.2: UV-VIS spectra of Ru(II)-1 complex (a), unlabeled probe (b), and
labeled complex (c). Spectra were measured using quartz cuvette with an
optical path length of 1 cm in 50 mM tetraborate bu�er, pH 7.8.

These absorption peaks could be attributed to LC � ! �� transitions and d! ��

transitions, respectively17. The concentration of unlabeled probe was determined
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from the absorbance peak at 260 nm using the absorption coe�cient value given

by the oligonucleotide provider. The spectrum of the labeled oligonucleotide

exhibits a characteristic peak at 260 nm, with Ru(II) peaks at 285 nm and 249

nm overlaid, and a MLCT peak centered at 455 nm. From the absorbance spectra

it can be deduced that the labeling e�ciency was 100%.

3.3.2 Optimization of ECL conditions

The anodic ECL is highly dependent on pH, applied voltage, and presence and

type of surfactants. We �rst measured the ECL signal in 300 mM phosphate

bu�er containing 100 mM TPA, pH 7.8, because we previously found this bu�er

suitable for the Ru(bpy)2+3 ECL generation.16

Figure 3.3: ECL e�ciency versus concentration of SDS, measured by
application of potential of 1.15 V vs. Ag pseudoreference electrode during 300
ms. Measurements were performed on the 500 �m diameter electrode. The inset
shows the molecular structure of the Ru(II)-2 label.
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The signal was very weak (see Figure 3.3). The inuence of surfactants was there-

fore investigated, the anionic surfactant sodium dodecyl sulfate (SDS)and that of

the cationic surfactant cetyltrimethylammonium bromide (CTAB). Addition of

SDS strongly increased the ECL intensity, with intensity maximum in the pres-

ence of 0.1% SDS, while further increase of the surfactant concentration caused

a slight weakening of the signal. CTAB also increased the signal but less than

SDS. Further optimization experiments and the measurements on DNA-modi�ed

electrodes were therefore done in the presence of 0.1% SDS.

Figure 3.4: ECL intensity as a function of applied potential in the presence
0.1% SDS vs. an Ag pseudoreference electrode. Measurement conditions as in
Figure 3.3.

The optimal potential for the ECL generation was found by recording a cyclic

voltammogram (CV) at 50 mV/s from 0 to 1.3 V. The maximum ECL signal

was obtained at 1.15 V vs. an Ag pseudoreference electrode integrated on the

chip (Figure 3.4). This potential was subsequently used for the ECL detection

on DNA-modi�ed electrodes.
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3.3.3 Voltammetric characterization of the modi�ed surface

Voltammetry is a common method for the characterization of modi�ed electrodes.

RuHex (Ru(NH3)
3+
6 ) binds electrostatically to DNA strands due to the negatively

charged phosphate backbone and has previously been used for surface coverage

determinations of thiolated oligonucleotides on gold.18,19 With a view to these

studies we chose RuHex for surface characterization. The 3-MPA and 16-MHA

SAMs were formed on a series of chips under identical conditions, as is described

above in the Experimental section. The presence of Mg2+ ions in the immo-

bilization bu�er is known to produce more densely packed probe �lms due to

the decreased electrostatic repulsion between adjacent DNA strands.20 Figure 3.5

shows cyclic voltammograms obtained on unmodi�ed clean gold, 16-MHA thi-

olated gold, the ester covered gold (EDC/NHS treatment), and DNA-modi�ed

gold surface. Voltammograms on two types of monolayers are very similar; there

was no detectable di�erence in monolayer formation or probe immobilization ef-

�ciency.

As can be seen in Figure 3.5, voltammograms obtained on unmodi�ed and on ester

(EDC/NHS treatment) covered gold are very similar while the reduction peak on

the SAM-covered surface is less pronounced and the oxidation and reduction

peaks are shifted. The immobilization of DNA strands clearly increases the size

of the reduction and oxidation peaks of CV. This is due to the accumulation of

RuHex at the electrode surface upon binding to the oligonucleotide strands. As

can be noticed, the reduction peak is considerably more pronounced compared

to the oxidation peak. Previously RuHex voltammograms have been shown on

similarly prepared surface, where the reduction peak of RuHex decreased upon

DNA immobilization.4 A probable explanation for this di�erence in our and the

earlier results is that we immobilized DNA strands with their 5' end, and thus we

expect them to be in an upright position. In the other case, amino groups present

in the DNA strand were used to achieve immobilization, resulting in a longitudinal

positioning of DNA with respect to the surface. No di�erence in peak splitting

was observed upon surface treatment, �Ep � 100 mV, in all cases. To calculate
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Figure 3.5: Cyclic voltammograms of 20 �M RuHex solution in 10 mM tris
bu�er pH 7.0, obtained at bare gold electrodes (dash-dot curve), at a 16-MHA
modi�ed electrode (solid curve), at a 16-MHA/EDC/NHS modi�ed electrode
(dotted curve) and at 16-MHA/EDC/NHS/DNA electrode (dashed curve),
treated with 1 �M probe solution. Sweep rate is 50 mV/s.

the surface coverage, we integrated the right-side half of the reduction peak of the

oligonucleotide-modi�ed surfaces, subtracted the area of the voltammograms in

the absence of DNA, multiplied the resulting area by two, and calculated probe

density using the following equations:19

�Ru =
Q

nFA
(3.1)

�DNA = �Ru
z

m
NA (3.2)

where �Ru is the surface saturation of RuHex, Q is charge, n is the number of

electrons transferred in the reaction, F is the Faraday constant, A is the electrode
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surface area, �DNA is probe coverage, z is charge of RuHex, m is number of nu-

cleotides in a DNA strand, and NA is the Avogadro constant. The value obtained

for the surface coverage upon treatment with 1 �M probe solution is about 9 x

1012 molecules/cm2 (dashed curve voltammogram in Figure 3.5), which is within

typical surface coverage range of DNA probes (1011 - 1013 molecules/cm2).18,21

That our SAM formation and probe immobilization were successful is shown by

i) the di�erence in voltammograms upon surface treatment with mercaptocar-

boxylic acid and probe solution, ii) the increase in reduction current of RuHex

upon surface treatment with increasing concentrations of probe solution, and iii)

the stabilization of reductive current at probe concentration of 600 nM and higher.

This indicates saturation of available probe binding sites.

3.3.4 ECL on DNA-modi�ed electrodes

Figure 3.6 shows the results of ECL assays obtained on a series of chips modi�ed

with di�erent probe concentrations (0, 10 pM, 100 pM, 1 nM, 10 nM, 50 nM,

100 nM, 500 nM and 1 �M) and incubated with a constant concentration (1 �M)

of labeled complementary and mismatched target. After the incubation time of

two hours, chips were washed with 30 mM phosphate bu�er, pH 7.0, containing

0.2% SDS, and heated to about 38 �. As can be seen from Figure 3.6, the ECL

results obtained on 3-MPA and 16-MHA surfaces were closely similar, only about

10% higher on the 3-MPA surface than the 16-MHA surface. The di�erence is

probably due to the shorter distance between the label moiety and the electrode

surface.

The negative controls and the chips derivatized with probe solution of 10 pM gen-

erated comparable intensity, indicating that the non-speci�c adsorption is very

low. Evidently the surface treatment and washings were su�cient to prevent non-

speci�c adsorption. In all cases, the ECL intensity peaked at probe concentration

of 100 nM. From that we can conclude that the optimal surface coverage and

hence, the most e�cient hybridization was achieved at this probe concentration.

54



Figure 3.6: ECL calibration curves obtained upon hybridization on 3-MPA
and 16-MHA monolayers. ECL was generated by stepping potential from 0 to
1.15 V vs Ag pseudoreference for a pulse period of 300 ms. Signal was recorded
using PMT through an optical �lter of bandwidth 600 � 80 nm. Measurement
bu�er was 300 mM phosphate, 100 mM TPA and 0.1% SDS, pH 7.8.

Peterson et al.8 have shown that at higher probe densities hybridization e�ciency

decreases due to the steric hindrance and electrostatic repulsion caused by the

immobilized probes. Signals obtained from mismatched duplexes were consid-

erably lower (approximately 50%) than those obtained with the complementary

duplexes.

Gold-thiol bond is unstable at high voltages, so to minimize thiol desorption we

used a short pulse time of 300 ms for the ECL generation. Under these conditions,

the oligonucleotides immobilized on the 3-MPA surface gave stronger signals, how-

ever, signals obtained from 16-MHA monolayer were more repeatable. One very

important di�erence between the two types of monolayers was found during the

course of the work. Longer thiols were more resistant to the high positive poten-
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tial needed for the ECL generation, probably because longer alkanethiol chains

adsorb better than the shorter ones and are better organized.22 The optimal po-

tential for ECL generation in our case was 1.15 V vs. Ag pseudoreference on

a chip. On 16-MHA monolayer the ECL signals could be measured many tens

of times, with washing in between without decrease of the signal, demonstrating

that the formed monolayer was stable. To be sure, new monolayers were nev-

ertheless formed for all assay experiments for caution. The experiments testing

electric �eld denaturing were performed only on 16-MHA formed SAMs.

3.3.5 E�ect of the applied electric �eld

As can be seen from Figure 3.6, mismatch discrimination was achieved by careful

electrode washing. However, we were interested to know whether the selectivity

could be improved using an electric �eld. The possibility to control surface po-

tential of the immobilization platform and thus the processes occurring on the

surface is of particular interest when work is done on electrodes, rather than

nonconductive surfaces.

A set of DNA chips was incubated with di�erent concentrations of complemen-

tary and mismatched Ru(II)-labeled strands and allowed to hybridize in passive

conditions during three hours. After washing of the chips with denaturing bu�er

(30 mM phosphate bu�er, pH 7.0), the ECL signal of the electrodes was recorded

in the ECL bu�er. Denaturing bu�er was then placed into the reservoir, and neg-

ative potential of -300 mV vs. Ag pseudoreference electrode was applied twice,

for 150 s each time. The ECL signal was always recorded in ECL bu�er. The

negative electrode potential of -300 mV vs. Ag pseudoreference electrode was

used as electrochemical side reactions, such as electrolysis of water or damage to

DNA do not take place at this potential.7,9 This is a very important point, be-

cause the distance of the oligonucleotides from the electrode surface is only about

2-3 nm (d(C-C) = 0.14 nm23), and electrode potential of -300 mV causes a �eld

gradient on the order of 108 V/m. Electrostatic surface conditions do are known
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Figure 3.7: ECL signal of complementary duplex (left) and mismatched
duplex (right), prior and after application of negative potential on the electrode
for indicated time. ECL measurements were done as described in Figure 3.5,
while negative electrode potential was applied in denaturing bu�er (30 mM
phosphate, pH 7.0).

to inuence the stability of a formed duplex, and the distance up to which surface

conditions do inuence surface-bound species strongly depends on ionic strength

of the solution.6 Thus, application of negative electrode potential is expected to

destabilize the formed duplex, the mismatched more than the matched, and the

e�ect is expected to be more pronounced in solutions of lower ionic strength. If

this is so, it could explain why we did not observe denaturing of the mismatched

duplex in the ECL bu�er. However, the inuence of the surfactant (0.1% SDS)

was not investigated and cannot be ruled out.

Figure 3.7 shows electrochemiluminograms obtained using complementary du-

plexes (left) and mismatched duplexes (right) upon application of negative elec-
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trode potential of -300 mV for 150 s. As can be seen, upon application of the

potential of -300 mV vs. Ag pseudoreference, the ECL signal of the comple-

mentary duplex remained unchanged, while the signal of the mismatched strand

decreased by approximately 50%. Further application of the negative potential

slightly decreased the ECL signal of the complementary strand, while the signal

from the mismatched strand decreased close to the background level. The same

experiment was performed in the ECL bu�er, but no denaturing was observed for

either the complementary nor the mismatched duplex.

Figure 3.8: Calibration plot on Au-chip measured with immobilized probes
using electrical denaturing. Denaturing using negative potential of -300 mV
during 300 s caused mismatched target to dehybridize while matched hybrid
gave good signal. ECL conditions as in Figure 3.7.

Figure 3.8 presents the calibration curve obtained on DNA-modi�ed electrodes

using denaturing voltage of -300 mV for 300 s before the ECL measurement. The

results show that, through control of the electrode potential, successful discrimi-

nation can be achieved between mismatched and perfect complementary strand.
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Comparison of Figures 3.6 and 3.8 reveals that better mismatch discrimination

results is obtained by electric �eld-aided denaturing compared to washing, For

example, for concentration of 10 nM of probe solution, the hybridization result

for mismatched strand after washing is about 40%, whereas after electrostatic

denaturing only about 20% of the complementary strand. A strong appeal the

mismatch discrimination achieved by control of the electrode potential at room

temperature, as compared with extensive washing, is the relative simplicity of the

approach.

3.4 Conclusions

Synthesized ruthenium complex exhibited high ECL intensity in the presence of

0.1% anionic surfactant SDS and potential of 1.15 V vs. Ag pseudoreference elec-

trode. Microfabricated gold electrodes were derivatized with 15-mer, 5' amino-

modi�ed oligonucleotides using mercaptocarboxylic acid SAM, and EDC/NHS

coupling. Two di�erent SAMs, 3-MPA and 16-MHA, were studied. The perfor-

mance in terms of immobilization was very similar, but the 16-MHA SAM was

more stable. Ru(II)-labeled complementary strands were detected down to a pi-

comolar concentration, corresponding to a total amount of one fmol. Two base

pair mismatch discrimination was achieved with and without application of an

electrode potential; however, mismatched discrimination was considerably better

when negative electrode potential of -300 mV vs. Ag pseudoreference was applied

for 300 s before the ECL detection.
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4. HECL of rhodamine and application in hybridization

assay

Chapter 4 investigates the mechanism and characteristics of HECL of rhodamine

B (RhB) on oxide-coated aluminum electrodes.1 Upon optimization of the light-

generating conditions, a heterogeneous oligonucleotide hybridization assay was

performed utilizing oligonucleotides labeled with rhodamine derivative as HECL

luminophore.2 Thin oxide �lm-coated aluminum and silicon electrodes were used

as the immobilization platform.

4.1 Introduction

Rhodamine compounds belong to a group of xanthene dyes and are widely used

in analytical chemistry, for example as active medium of dye lasers,3,4 and in bio-

analytical chemistry.5,6 Rhodamine B is excited by visible light of 560 nm, it has

a molar extinction coe�cient of 88 000 M�1 cm�1, and a photoluminescence (PL)

quantum yield close to unity. In chemiluminescence systems, rhodamine dyes are

mainly used as sensitizers.7 TAMRA (tetramethylrhodamine), one of the most

common rhodamine derivative, and it is widely used as a label in uorescence-

based bioassays8 and as an acceptor in luminescence resonance energy transfer

based assays.9

Radiochemiluminescence (RCL) is one of the least studied forms of luminescence,

but some 40 years ago it was observed that RhB produces RCL under steady

X-ray irradiation in an aqueous solution.10,11 Later RCL of RhB was studied

using pulse radiolysis with 2 �s, 4-MeV electron pulses.12 During and after the

electron pulse, one-electron reduced and oxidized radical forms of RhB (RhB�

red

and RhB�

ox) were observed, produced by the primary species of the radiolysis

of water, namely hydrated electrons and hydroxyl radicals. The oxidation of

RhB�

red by hydroxyl radical and the reduction of RhB
�

ox by hydrated electron were
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assumed to be sources of the excited species RhB*. The excitation by electron

pulses appeared to be about a thousand times more e�cient than the uorescence

induced by 24-keV x-rays at the same concentration of dye.12 The RCL lifetime

after the electron pulse was in the order of some tens of the microseconds but

could be made much longer by addition of some hydroxyl radical scavengers such

as halide ions. At pH 10 the absolute quantum yield for the reaction

RhB�

ox + e�aq ! RhB� (4.1)

was determined to be 0.018.13

It has been proposed that hot electrons are injected into the conduction band of

water during a high-amplitude pulse polarization of thin insulating �lm-covered

silicon and aluminum electrodes.14,15 Upon contact with an electrolyte solution,

the injected hot electrons are thermalized and solvated, which leads to the gen-

eration of hydrated electrons. These electrons are capable of generating highly

oxidizing species from suitable precursors, such as peroxidisulfate ions, hydro-

gen peroxide, or molecular oxygen.15,16 Thus, species with very di�erent redox

properties can be reduced simultaneously.

Controlled immobilization of oligonucleotides requires the addition of an anchor-

ing functional group during synthesis, typically amino or thiol groups. The most

common approach for the oligonucleotide immobilization is introduction of an

amino functionality onto a solid support. Self-assembled aminosilane �lms have

been deposited on a wide variety of hydroxylated surfaces, including glass,17{19

silicon dioxide,20{22 silicon nitride,23 indium tin oxide,24 and aluminum oxide.25,26

The requirement for silane deposition is the presence of OH-groups on the surface,

which allows the formation of Si-O bond between the surface oxygen and silicon

in the silanization reagent.
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4.2 Experimental

4.2.1 Chemicals and materials

Sodium tetraborate decahydrate, sodium azide, sodium nitrate, sodium nitrite,

hydrogen peroxide, sodium iodine, sodium bromide, potassium phosphate bu�er

(pH 7.5), ethanol (�0.2% H2O), and methanol (hypergrade for liquid chromatog-

raphy) were obtained from Merck. Rhodamine B, pyridine, aminopropyltri-

ethoxysilane (APTES), N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (EDA),

1,4-phenylene diisothiocyanate (PDC), L-glycine, sodium dodecyl sulfate (SDS),

N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO) were acquired

from Sigma-Aldrich. Succinimidyl ester of 5-(and 6-)-carboxytetramethylrhodamine

(TAMRA) was a product of Molecular Probes. The same sequences of amino-

modi�ed oligonucleotides were used as described in Chapter 3, but additionally a

noncomplementary sequence 5'-NH2-AAAAAAAAAAAAAAA-3' was used. The

abbreviations used for the labeled oligonucleotides in the present chapter are CT-

TAMRA (CT complementary target), MT-TAMRA (MT mismatched target) and

NT-TAMRA (NT noncomplementary target). For HECL measurements, boron-

doped p-Si (100) with resistivity of 0.01-0.02 
cm (Okmetic Oy, Finland) and alu-

minum electrodes made from 99.9% pure aluminum band, 0.3 mm thick (Merck

Art. 1057, batch 720 K22720857), were used.

4.2.2 TAMRA labeling of oligonucleotides

Oligonucleotides were labeled at their amino-modi�ed 5'-terminal according to

the procedure published by Molecular Probes, slightly modi�ed.27 Briey, prior

to labeling, oligonucleotides were puri�ed by chloroform extraction and precipi-

tated with ethanol. Then, amino-modi�ed oligonucleotides were dissolved in 0.1

M tetraborate bu�er, pH 8.5, to obtain a concentration of 250 �M. This solution

was added to a small amount of TAMRA-DMSO solution so that the dye con-

centration was approximately 30-fold of the concentration of the oligonucleotide.

65



The mixture was left to react in the dark and was gently shaken during six hours.

Labeled oligonucleotides were precipitated twice by addition of 3 M NaCl and

cold absolute ethanol, 0.1:2.5 v/v with respect to the labeling solution. The mix-

ture was kept 30 min at -20 � and then centrifuged 30 min at 12 000 rpm. The

supernatant was removed and the pellet was rinsed twice with cold 70% ethanol.

Labeled oligonucleotides were allowed to dry in air during 10 min, and were stored

at -20 � until use.

4.2.3 Instrumentation and methods

UV-Vis absorbance spectra were measured with a Hewlett-Packard 8453 spec-

trophotometer using a 1-cm optical pathlength quartz cuvette. HECL measure-

ments were carried out by using single photon counting with an instrumentation

that consisted of a Perkin-Elmer MP 1993 photon counting module with yellow

sensitive cathode and Nucleus MCS-II scaler card. The HECL signal was �ltered

with an optical �lter of bandwidth 550 � 40 nm or 600 � 40 nm. The cell

consisted of a sample holder made of Teon, a Pt-wire counter electrode and a

disposable silicon or aluminum working electrode. The e�ective area of the elec-

trode in the cell was 63.6 mm2. A laboratory-made coulostatic pulse generator28

was applied to generate cathodic pulses, and a pulse generator was adjusted to

yield cathodic pulses with 40 �C of charge and -40 V of voltage with frequency of

20 Hz. Contact angles were measured with a Drop shape analysis system (Kruss).

Aluminum electrodes were coated with 2-3 nm thick natural oxide �lm, while

silicon electrodes were thermally oxidized in cleanroom according to a previously

published procedure29 to yield a 4-nm thick oxide layer. Thickness of the oxide

�lm was determined by an ellipsometer operated at 632.8 nm (He{Ne laser).

Ultra-thin silicon dioxide �lms are known to give an erroneous refractive index

during measurement, and thus the refractive index of the SiO2 was �xed at 1.465,

a value known from thicker �lms. If the wafers were measured immediately after

oxidation, and later the next day, the thickness increased by about 0.05 nm due
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to adsorption of gases onto the surface. Silicon electrodes were diced to 9 x 9 mm

and aluminum electrodes cut to 10 x 10 mm pieces. HECL measurement were

performed in 0.05 M sodium tetraborate bu�er at pH 9.2 or 7.8 (pH adjusted

with 1 M sulfuric acid) in the case of hybridization assay. This bu�er is known

to be fairly unreactive with hydrated electrons and hydroxyl radicals, as well as

with sulfate radicals.30 Absorbance measurements were performed in 0.05 mol/L

sodium tetraborate bu�er at pH 7.8 which was adjusted with 1 M sulfuric acid.

4.2.4 Preparation of oligonucleotide-modi�ed electrodes

Before silanization, aluminum and silicon electrodes were cleaned with methanol

and water and dried in a nitrogen stream. Liquid phase aminosilanization was

performed under ambient conditions using freshly made APTES-EDA solution

(mixing ratio 1:1) at 5% total silane concentration (v/v) in methanol/water solu-

tion (99.5:0.5 v/v) for one hour. Substrates were then sequentially washed with

methanol and water, dried in a nitrogen stream and cured in an oven at 115 �

for one hour. The surface was activated in a freshly prepared solution of dis-

tilled DMF and pyridine (9:1 v/v) containing 1 mM PDC for two hours at room

temperature. The oligonucleotides were then immobilized by placing a droplet

of 20 �L of amino-modi�ed oligonucleotides in 40 mM phosphate bu�er, pH 7.0,

containing 0.150 M sodium nitrate (sodium nitrate was used instead of sodium

chloride because chloride ions can have detrimental e�ect on very thin oxide �lms)

on the surface and left overnight in a humid chamber. The substrates were subse-

quently sequentially washed with methanol and water, soaked in 0.01 M glycine

solution prepared in 40 mM phosphate bu�er, pH 7.0, for 30 min to deactivate

surface isothiocyanate groups, and dried in a nitrogen stream.

4.2.5 Hybridization

Labeled targets were dissolved in the same bu�er as used for immobilization; 30

�L of this solution was carefully pipetted to the center of an electrode and left
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to incubate three hours at ambient temperature. After that the electrodes were

washed with sodium tetraborate bu�er, pH 7.8, to which 0.2% SDS has been

added, heated to 35 �, dried in a nitrogen stream, and stored in dessicator until

HECL measurement.

4.3 Results and discussion

The HECL spectrum of RhB induced on oxide-coated aluminum electrodes and

uorescence spectrum are presented in Figure 4.1. The pro�le of the HECL

spectrum of RhB is very similar to that of the uorescence emission spectrum; in

both cases the emission maximum is at 575 nm.

Figure 4.1: HECL (dashed line) and uorescence (solid line) excitation and
emission spectra of rhodamine B. The ECL blank is shown as a dotted line.
Conditions: scanning speed 240 nm/min, Perkin-Elmer LS-50B spectrometer,
slit widths 10 nm; coulostatic pulse generator: voltage -45 V, pulse frequency 80
Hz, pulse charge 120 �C; aluminum strip cathode, platinum wire anode.
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The similarity makes it reasonable to assume that the emission is generated by the

same luminescent species in both cases. Figure 4.2 shows the pH dependence of

HECL of RhB in air-saturated tetraborate bu�er solution. The HECL intensity

of RhB is relatively stable in pH range from 3 to 9. Below pH 3 and above

pH 10 the HECL intensity decreases steeply. The probable explanation for the

decrease at low pH is a rapid conversion of hydrated electron into its conjugated

acid, a hydrogen atom (k(e�aq + H+)= 2.3 x 1010 Lmol�1s�1).30 This would hinder

reaction 4.1, which is proposed to be the initial reaction of HECL generation.

Figure 4.2: E�ect of pH on HECL of RhB: cathodic HECL during the pulse
(solid line); time-resolved HECL (dashed line). Conditions: 1 �M RhB in 0.1 M
Na2SO4 and 0.03 M Na2B4O7 supporting electrolyte solution, 0.01 M NaN3.
Solutions were adjusted to the desired pH with sulfuric acid or sodium
hydroxide. Pulse voltage -45 V, pulse charge 120 �C, pulse frequency 20 Hz.
TR-HECL signals were measured by delay 0 �s, gate time 200 �s. HECL and
TR-HECL intensities were integrated over 1000 excitation cycles. All signals
were measured through an interference �lter of 600 � 40 nm.

However, a more important reason for the rapid decrease in HECL intensity
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in both highly acidic and alkaline conditions is dissolution and damage of the

aluminum oxide �lm.31 The anodically grown oxide �lm on aluminum can be

made thicker than natural oxide.32 Anodic oxide �lms are usually regarded as a

mixture of amorphous and crystalline Al2O3.
31

The e�ect of oxide �lm thickness on HECL intensity of RhB is shown in Figure

4.3. The HECL intensity decreases rapidly when the oxide �lm thickness exceeds

3 nm because electrons tunnel without loss of energy only through ultra-thin

oxide �lms (<ca. 4 nm).

Figure 4.3: Dependence of HECL of RhB on the oxide layer thickness:
cathodic HECL during the pulse (solid line); time-resolved HECL (dashed line).
Measurements performed in 0.05 M Na2B4O7 bu�er in the presence of 0.01 M
NaN3, pH 9.2, other experimental conditions as described in Figure 4.2.

Upon increase of the oxide �lm thickness, Fowler-Nordheim (F-N) tunneling be-
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comes the predominant electron transport mechanism. Under this regime, the

electrons are �rst tunneled into the conduction band of the oxide and then het-

erogeneously transferred to the electrolyte solution from the bottom of the con-

duction band or from slightly above it at the oxide/electrolyte interface. Under

these conditions the electrons lose part of their energy during tunneling through

thicker oxide �lm, but also gain it from the electric �eld. Thus, thicker the oxide

�lm is, the less probable is the generation of hydrated electrons becomes and the

HECL intensity decreases with increase of the oxide �lm thickness.

4.3.1 E�ect of free radical scavengers on HECL

If generation of HECL of RhB is mainly caused by the excitation pathways ini-

tiated by hydrated electrons as proposed above, hydrated electron scavengers

should have striking e�ect on the HECL intensity. A group of hydrated electron

scavengers was tested to explore this possibility. It can be seen from Figure 4.4

that Co(NH3)
3+
6 is the strongest HECL quencher, and it is an approximately 10-

fold stronger quencher than nitrate and nitrite ions at the same concentration.

This is understandable in light of the second order reaction rate constants of these

scavengers with hydrated electron. k(e�aq + Co(NH3)
3+
6 ) = 8.7 x 1010 Lmol�1s�1 is

about 10 times higher than k(e�aq + NO�

3 ) = 9.7 x 109 Lmol�1s�1 or k(e�aq +NO
�

2 )

= 4.1 x 109 Lmol�1s�1).30 Although the rate constants of k(e�aq +NO
�

3 ) and k(e
�

aq

+NO�

2 )
30 are a bit smaller than k(RhB + e�aq)= 3 x 1010 Lmol�1s�1, reactions

between scavengers and hydrated electrons will predominate when concentrations

of scavengers are higher than concentration of RhB in the system. HECL of RhB

is quenched when concentrations of nitrate and nitrite ions exceed 10�4 M. Ni-

trite ions have a slightly stronger quenching e�ect on HECL than nitrate ions do.

Perhaps because nitrite scavenges hydroxyl radical [E°(NO�

2/NO
�

2 ) = 1.02 V,33

k(OH� + NO�

2 ) = 1.0 x 10l0 Lmol�1s�1,30] as well as hydrated electron.

Signi�cant quenching of HECL by Co(NH3)
3+
6 and nitrate ion supports the hy-

pothesis of hydrated electron being the primary species of the HECL excitation
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Figure 4.4: E�ect of electron scavengers on the HECL of RhB (1 �M); �lled
symbols indicate cathodic HECL, hollow symbols TR-HECL. Measurements
performed in 0.05 M Na2B4O7 bu�er, pH 9.2, other experimental conditions as
in Figure 4.2.

route. Peroxydisulfate ions and hydrogen peroxide enhance the HECL intensity of

RhB at concentration levels from 10�6 M up to 10�3 M, while further increase in

concentration leads to quenching of the HECL. The rate constant k(e�aq + S2O
2�
8 )

= 2.3 x 1010 Lmol�1s�1 30 is lower than k(e�aq + RhB) = 3 x 1010 Lmol�1s�1.

Upon reaction with hydrated electron, peroxydisulfate ions produce sulfate radi-

cal (SO��

4 ), which is a strong one-electron oxidant (E°= 3.4 V vs. SHE )34 capable

of oxidizing a number of aromatic compounds but still reacting sluggishly with

water. However, it also generates high background electroluminescence on thin

aluminum oxide �lms. Hydrogen peroxide does not enhance background electro-

luminescence under the same conditions.35 Excess concentration of S2O
2�
8 ions (>

10�3 M) quenched the HECL due to the too e�cient removal of hydrated electrons

and through the recombination reaction of SO��

4 radical (k(SO��

4 + SO��

4 ) = 5.1

x 108 Lmol�1s�1) at elevated concentration.36 Thus, the overall e�ect is the de-
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crease in both sulfate radical concentration and hydrated electron concentration.

Up to a concentration of 1 x 10�3 M hydrogen peroxide enhances HECL intensity

of RhB in analogous way as peroxydisulfate ion, while above this concentration

it quenches HECL intensity due to rapid reaction with hydrated electrons [k(e�aq
+ H2O2)= 1.2 x 1010 Lmol�1s�1].30

Previous studies35,37 have suggested that electron centers present in an oxide

�lm can act as primary oxidants capable of oxidizing hydroxide ions to hydroxyl

radicals in alkaline aqueous solution. In addition, the presence of dissolved oxygen

in an aqueous solution can produce hydroxyl radicals [E°(OH�/OH�)=2.2 V]. As

oxidizing radicals, hydroxyl radicals might directly oxidize RhB to RhB�+ in the

present system [k(OH� + RhB) = 9 x 109 L mol�1s�1]. If the scheme described

above is valid in the present system as well, hydroxyl radical scavengers would

also strongly a�ect the HECL intensity of RhB. This assumption was tested by

adding hydroxyl radical scavengers, such as ethanol and halide ions into the RhB

solution and measuring their inuence on the HECL intensity. The results are

shown in Figure 4.5.

We observed that bromide and azide ions weakly enhanced HECL of RHB in the

concentration range 10�5 M to 10�2 M, while iodide ions and ethanol quenched

the HECL at concentrations above 10�5 M. The e�ect of halides on the HECL

intensity could be explained by the following reactions:

OH� +X� ! OH� +X� (4.2)

X� +X� ! X��

2 (4.3)

X� +X� ! X2 (4.4)

These hydroxyl radical scavengers, with the exception of ethanol, produce a series

of secondary oxidizing radicals by one-electron oxidation [E°(Br�/Br�) = 1.92 V,
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Figure 4.5: E�ect of di�erent hole scavengers on the HECL; full symbols
cathodic HECL, hollow symbols to time-resolved HECL. Measurements
performed in 0.05 M Na2B4O7 bu�er, pH 9.2, other experimental conditions as
in Figure 4.2.

E°(I�/I�) = 1.33 V, E°(N�

3/N
�

3 ) = 1.33 V].33 Ethanol converts hydroxyl radical to

reducing equivalents by hydrogen abstraction [E°(C2H5OH/C2H4O
��) = -1.2 V].

The rate constants for hydroxyl radical reacting with bromide, iodide, azide and

ethanol are 1 x 1010, 1.1 x 1010, 1.2 x 1010 and 1.9 x 109 L mol�1s�1, respectively.30

Ethanol quenches the HECL due to its reaction with hydroxyl radical and the

subsequent production of strongly reducing secondary radicals (C2H4O
��) by hy-

drogen abstraction as main secondary radicals (84.3%).30 The reducing secondary

radicals cannot act as oxidants and quench HECL.

Bromide enhances HECL of RhB in the present system similarly to azide. In-

crease in concentration of bromide ions or azide ions result in the formation of

Br��2 [E°(Br��2 /2Br�) = 1.62 V] or N�

3 [E°(N
�

3/N
�

3 )= 1.3 V] through reaction with
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hydroxyl radicals.33 Both Br��2 and N�

3 are su�ciently oxidizing species to induce

Ox-Red excitation route. However, continuous increase in the concentration of

bromide or azide results in the formation of Br�3 [E°(Br2/Br
��

2 ) = 0.58 V versus

SHE]33 and self-combination of azide radicals [k(N�

3+N
�

3) = 4.4 x 109 L mol�1

s�1].36 Br�3 is not as su�ciently strong oxidant to induce HECL of RhB as hy-

droxyl radical is, and a rapid quenching of HECL was observed at concentrations

above 0.01 M.

In addition, a previous pulse radiolysis study revealed that both N�

3 and Br��2
react rapidly with RhB in aqueous solution.38 k(N�

3+ RhB) is about 5.0 x 109

Lmol�1 s�1 in an aqueous solution.38 Although the value of k(Br��2 + RhB) is

unknown, it can reasonably assumed to be similar to that of k(N�

3 + RhB). That

would explane slight enhancement of the present HECL by both N�

3 and Br��2 in

the appropriate concentration range.

Although I�[E°(I�/I�)= 1.3 V] is su�ciently strong oxidant to oxidize RhB and

generate HECL, I��2 [E°(I2/I
��

2 )= 0.21 V]33 is too weak oxidant for the generation

of RhB HECL, except at high iodide ion concentrations. Thus, a clear quenching

occurs when the concentration of iodide ion is increased.

In short, the e�ects of hydroxyl radical and hydrated electron scavengers on HECL

of the RhB system suggest that the hydrated electrons and oxidizing species with

properties similar to those of hydroxyl radical play an important role in the HECL

excitation pathway.

4.3.2 Mechanism of HECL

In principle, the HECL excitation route of aromatic luminophores can be reduction-

initiated oxidative excitation (red-ox) pathway (reactions 4.5 and 4.6) or oxidation-

initiated reductive excitation (ox-red) pathway (reactions 4.7 and 4.8). The mech-
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anisms can be written as follows:

RhB + e�aq ! RhB�� (4.5)

RhB�� +Ox� ! RhB� +Ox� (4.6)

RhB + Ox� ! RhB�+ +Ox� (4.7)

RhB�+ + e�aq ! RhB� (4.8)

RhB� ! RhB + h� (4.9)

where Ox� is a one-electron oxidant, such as hydroxyl radical or azide radical,

which is produced by scavenging the hydroxyl radical. In the reduction-initiated

pathway, RhB undergoes one-electron reduction to a radical intermediate followed

by one-electron oxidation, while in the oxidation initiated pathway the process

is reversed. The light is emitted by radiative relaxation of the excited RhB�

molecule (reaction 4.9).

4.3.3 Applicability of HECL for bioanalysis

As discussed above, both peroxodisulfate and azide ions enhance HECL inten-

sity of RhB. However, better analytical results are obtained with azide ions as

coreactants. Figure 4.6 shows calibration curves of RhB obtained on aluminum

electrode in the presence of azide ions.

As can be seen from Figure 4.6, the HECL response is linear from 1 x 10�10 to 1

x 10�5 M. A particularly interesting �nding is the relatively long HECL lifetime

of RhB, about 19 �s in the presence of azide ions and 12 �s in the presence of

peroxodisulfate ions. The time-resolved signal of RhB was recorded for 200 �s

immediately after each excitation pulse, and cathodic HECL was recorded during

the excitation pulses.
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Figure 4.6: Calibration curve of RhB on oxide-coated aluminum electrodes:
open symbols cathodic HECL, �lled symbols time resolved HECL. All
measurement were performed in 0.05 M Na2B4O7 at pH 9.2 bu�er solution
containing 0.01 mol/L NaN3, other experimental conditions as in Figure 4.2.

4.3.4 Characteristics of HECL-based hybridization assay

Figure 4.7 shows the scheme of a heterogeneous hybridization assay on thin ox-

ide �lm-coated Al or Si electrodes. The electrode surfaces were modi�ed with

aminosilane in order to produce amino-terminating layer (Section 4.2.4), which

allowed immobilization of amino-modi�ed oligonucleotides via PDC cross-linking.

After hybridization with a labeled target, a strong cathodic pulse was applied to

the electrode, which caused hot electron injection into an electrolyte solution and

subsequent excitation of the HECL luminophore, in this case TAMRA.

One of the features that make silicon the most useful material in microelectronics

is its ability to grow a thin layer of silicon dioxide. At ambient environment,

silicon surface is covered with a thin, less than 2-nm thick natural oxide layer,
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Figure 4.7: The scheme representing a heterogeneous hybridization assay on
amino-modi�ed electrode surface and hybridization detection with HECL.
Figure not to scale.

which is inhomogeneous and contains impurities. This native silicon dioxide does

not provide a su�ciently high barrier for the e�ective hot electron tunneling

necessary for an intense HECL signal. On the other hand, the HECL intensity

decreases exponentially when oxide thickness exceeds about 6 nm.29 Silicon elec-

trodes coated with a 4-nm thick thermally grown oxide layer have been used for

the hybridization assay. As shown above, natural aluminum oxide which is 2-3

nm thick provides su�ciently high energy barrier to allow electron tunneling, and

thus, aluminum electrodes coated with natural oxide were used.
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4.3.5 UV-VIS properties of labeled compounds

The concentration of the oligonucleotides and labeling e�ciency were determined

by UV-VIS spectroscopy. Figure 4.8 shows the UV-Vis spectra of rhodamine B

solution (a), unlabeled 15-base oligonucleotide (b) and TAMRA-labeled 15-mer

oligonucleotide (c) measured in 0.05 M tetraborate bu�er, pH 7.8.

Figure 4.8: Absorbance spectra of rhodamine B (a), unlabeled probe (b) and
TAMRA-labeled target (c).

The ratio of TAMRA to oligonucleotide, calculated from the absorbance peaks at

260 and 548 nm using absorption coe�cient of 95 000 cm�1L�1mol for TAMRA39

and 155 000 cm�1L�1mol for 15-base oligonucleotide (given by provider) is 1.4. No

e�ort was made to further separate labeled oligonucleotides from nonspeci�cally

adsorbed dye.
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4.3.6 HECL of TAMRA-labeled DNA

Before the hybridization experiments, the HECL intensity of TAMRA-labeled

DNA was investigated. Figure 4.9 shows the calibration curves obtained on oxide-

�lm coated aluminum and silicon electrodes in the presence of 0.01 M NaN3 as

coreactant.1

Figure 4.9: Calibration curve of TAMRA-labeled DNA on aluminum and
silicon electrodes. Measurement conditions: 0.05 M tetraborate bu�er
containing 0.01 M sodium azide, pH 7.8. Experimental conditions: pulse voltage
-40 V, pulse charge 40 �C, pulse frequency 20 Hz. The HECL intensities were
integrated over 1000 excitation cycles and the signal was recorded through an
emission �lter of bandwidth 550 � 40 nm.

Azide ions were used as coreactants, as the results presented above showed that

azide ions quench background electroluminescence while slightly enhancing HECL

intensity of RhB. Upon cathodic pulse polarization of oxide-coated aluminum or
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silicon electrode, hot electrons tunnel through the oxide �lm into the electrolyte

solution generating background electroluminescence. Several parallel mechanisms

contribute to generation of this background, but it can mostly be explained by

electron-center luminescence at the oxide/electrolyte interface and solid state

high-�eld electroluminescence inside the oxide �lm.14,16,40 Background electrolu-

minescence was lower on silicon compared to aluminum electrodes, in agreement

with previous results.29 This is the probable reason that the detection limits were

better on silicon electrodes than on aluminum, and TAMRA-labeled DNA could

be detected down to concentration of 5 x 10�11 mol L�1.

4.3.7 Characterization of modi�ed surfaces

To investigate deposition of the aminosilane layer, the contact angle of water was

measured on silicon and aluminum after each step of the surface treatment. The

contact angle is the angle at the interface of a drop of pure water and a planar sur-

face, and it provides a measure of hydrophobicity: greater the angle, the greater

is hydrophobicity. A contact angle of 49°� 1 was measured at aminosilanized Si

electrode and 48°�3 at the corresponding Al electrode. PDC treatment led to

increase of the contact angle to 63°�2 at silicon and 64°�3 at aluminum. This

was expected, as PDC treatment introduces a hydrophobic phenyl ring to the

surface.18,19 The increase of contact angle by 14° upon PDC treatment indicates

successful surface modi�cation.

4.3.8 HECL on monolayer-coated electrodes

HECL intensity of RhB is more or less constant over a wide pH range (Figure

4.2), but it diminishes as the oxide thickness increases (Figure 4.3). Thus, a thick

silane layer might quench the signal. The thickness of the aminosilane layer was

not measured, but published reports on similar modi�cation conditions suggest

it could be about 1 nm on silicon dioxide18,20 and about 2 nm25 on aluminum

oxide. The deposited silane layer could also inuence the background electro-
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luminescence. If hot electrons react by luminescent pathways with a deposited

monolayer or phenyl groups introduced on the surface, background electrolumi-

nescence would increase. To investigate the pathways, HECL and background

electroluminescence were recorded on modi�ed and unmodi�ed electrodes (Fig-

ure 4.10).

Figure 4.10: Electrochemiluminograms obtained on oxide-coated silicon (left)
and aluminum (right) electrodes, on unmodi�ed electrode (solid curve),
aminosilane modi�ed electrode (short dotted curve), PDC activated electrode
(dash-dotted dot curve) and incubated with 1 �M solution of TAMRA-label
(dashed curve). Conditions: 0.05 M tetraborate bu�er containing 0.01 M
sodium azide, pH 7.8. Experimental conditions as in Figure 4.9.

We also wished to know weather we had managed to generate an amino-terminated

surface suitable for the oligonucleotide immobilization. Contact angle measure-

ments revealed the formation of silane layer and introduction of phenyl group

upon PDC treatment, which indicates an amino-terminated surface. To con�rm

the nature of the surface, aminosilanized electrodes were incubated with 1 �M

solution of TAMRA labeling reagent dissolved in 0.05 M tetraborate bu�er, pH
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7.8, for three hours. Results shown in Figure 4.10 (i) con�rm a successful surface

treatment, (ii) demonstrate that the reagents used do not react with hot electrons

too e�ciently and do not generate signi�cant background electroluminescence in

the present measurement conditions, (iii) demonstrate that the deposited aminosi-

lane layer does not quench the analytical signal. Both HECL intensity and back-

ground electroluminescence measured are higher on aluminum electrodes than on

silicon, in agreement with previous HECL-related investigations.29 It should also

be noted that after surface treatment, background electroluminescence decreased

considerably more on silicon electrodes than on aluminum electrodes, and was

also highly reproducible.

4.3.9 HECL on DNA-modi�ed electrodes

The validity of the method was next evaluated by hybridization experiments. Fig-

ure 4.11 shows electrochemiluminograms obtained on silicon and aluminum elec-

trodes modi�ed with 500 nM of probe and incubated with 1 �M solution of labeled

complementary strand (TAMRA-CT), labeled mismatched strand (TAMRA-MT)

and labeled noncomplementary strand (TAMRA-NT). To verify that no observ-

able background luminescence is generated upon reaction of hot electrons with

nucleic acids, control experiments were performed, in which DNA-modi�ed elec-

trodes were incubated with solutions of unlabeled complementary strand. The

signals were comparable to the background electroluminescence, and it can be

concluded that nucleic acids do not generate any detectable HECL upon reac-

tion with hot electrons in the present measurement conditions. One of the major

challenges in DNA-analytics is nonspeci�c adsorption.

Figure 4.11 shows that the incubation with noncomplementary labeled strand

generates a signal comparable to the background electroluminescence, which is

signi�cantly weaker on silicon than on aluminum electrode. This result indi-

cates low nonspeci�c adsorption and con�rms that the analytical signal is due

to hybridization. While at present we can not explain the reasons for higher
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Figure 4.11: Electrochemiluminograms obtained on silicon (left) and
aluminum (right) electrodes derivatized with 500 nM probe solution and
incubated with 1 �M solution of: TAMRA-CT (dotted curve), TAMRA-MT
(solid curve) and TAMRA-NT (dashed curve). Immobilization and
hybridization were performed in 40 mM phosphate bu�er containing 0.150 M
NaNO3, pH 7.0. HECL measurement conditions as in Figure 4.9.

background and nonspeci�c adsorption on aluminum than on silicon electrodes,

a probable explanation is di�erent adsorption properties of alumina and silica.

To further evaluate the validity of the presented method for detection of DNA

hybridization, hybridization was performed with a DNA strand containing two

mismatched nucleotides (TAMRA-MT). E�cient discrimination of mismatched

strands is one of the most powerful proofs of the validity of a method. The mis-

matched strand with two noncomplementary and 13 complementary bases was

e�ciently discriminated; the signal was signi�cantly lower than upon hybridiza-

tion with the complementary strand. For some reason, the signal rise time was
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di�erent on the Al and Si electrodes, 10 and 8 �s, respectively. The mismatched

strand having two noncomplementary bases was e�ciently discriminated; how-

ever, again the signal was weaker on silicon than on aluminum. Thus, the results

are considerably better on silicon than on aluminum.

Figure 4.12: Calibration plot of TAMRA-CT on silicon electrodes derivatized
with 500 nM probe solution. Immobilization and hybridization conditions as in
Figure 4.11, HECL measurement conditions as in Figure 4.9.

Finally, the sensitivity of the system was investigated by hybridizing probe-

derivatized silicon electrodes with increasing concentration of TAMRA-labeled

complementary strand. Figure 4.12 presents the results. Comparison of Figures

4.9 and 4.12 shows that the sensitivity of the HECL detection of TAMRA-CT

is higher in the heterogeneous assay format than in the solution. There are two

explanations: (i) background electroluminescence is decreased upon surface mod-

i�cation; (ii) in heterogeneous assay format the whole sample is concentrated at

the surface of the electrode, where the detection occurs.
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Two slopes appear in the calibration curve: steeper up to a target concentration

of 1 x 10�10 M and less steep up to concentration 1 x 10�7 M. It should be

noted that the HECL intensity did not increase upon further increase of the

target concentration, which indicates saturation of the binding sites. The results

demonstrate the potential of HECL for DNA-hybridization detection. A strong

appeal of this method is the possibility to carry out multiplexing analysis using

wavelength and lifetime discrimination. In addition, microfabrication technology

for silicon is well developed, and large-scale production of silicon based sensors can

be readily envisaged. The method thus has good potential for the development

of disposable DNA biosensors.

4.4 Conclusions

The mechanism and suitability of HECL of rhodamine B for heterogeneous hy-

bridization assay were investigated using short oligonucleotides labeled with rho-

damine derivative. RhB showed high HECL intensity on oxide-coated aluminum

and silicon electrodes and its derivative TAMRA was therefore chosen for oligonu-

cleotide labeling. An amino-terminated silane layer was deposited on oxide-coated

Al and Si electrodes in liquid phase, and short 15-base amino-modi�ed oligonu-

cleotides were immobilized on the modi�ed electrodes via diisothiocyanate cou-

pling. Modi�ed surfaces were characterized with contact angle measurements and

the immobilization of a reactive uorophore.

It was demonstrated that surface treatment decreases the background electrolu-

minescence caused by the injection of hot electrons into the electrolyte solution

and increases the S/N ratio. Nonspeci�c adsorption was low and two base pair

mismatches were successfully discriminated. Thus, HECL appears to be poten-

tially useful for the detection of DNA hybridization. A possible application is

disposable silicon-based DNA biosensor. The targets were detected down to sub-

nanomolar concentration and surface treatment led to increased sensitivity due

to the lower background electroluminescence. Thus, HECL appears to o�er a
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highly useful method of detection for hybridization assays on silicon-based mi-

crosystems. Multiplexing analysis could easily be adapted into the method. The

capability for simultaneous excitation of di�erent luminophores means that the

method could easily be adapted for multiplexing analysis.

87



References

1. Jiang, Q., Spehar, A.-M., Hakansson, M., Suomi, J., Ala-Kleme, T., Kulmala,

S., Hot electron-induced cathodic electrochemiluminescence of rhodamine B

at disposable oxide-coated aluminium electrodes, Electrochim. Acta 51 (2006)

2706{2714.

2. Spehar-Deleze, A.-M., Suomi, J., Jiang, Q., de Rooij, N., Koudelka-Hep,

M., Kulmala, S., Heterogeneous oligonucleotide-hybridization assay based on

hot electron-induced electrochemiluminescence of a rhodamine label at oxide-

coated aluminum and silicon electrodes, Electrochim. Acta 51 (2006) 5438{

5444.

3. Hinckley, D. A., Seybold, P. G., Borris, D. P., Solvatochromism and ther-

mochromism of rhodamine solutions, Surface Interface Analysis 42A (1986)

747{754.

4. Mandal, K., Pearson, T. D. L., Demas, J. N., Luminescent quantum counters

based on organic dyes in polymer matrixes, Anal. Chem. 52 (1980) 2184{

2189.

5. Ma, Y., Zhou, M., Jin, X., Zhang, B., Chen, H., Guo, N., Flow-injection

chemiluminescence determination of ascorbic acid by use of the cerium(IV)-

rhodamine B system, Anal. Chim. Acta 464 (2002) 289{293.

6. Chen, H., Zhou, M., Jin, X., Song, Y., Zhang, Z., Ma, Y., Chemiluminescence

determination of ultramicro DNA with a ow-injection method, Anal. Chim.

Acta 478 (2003) 31{36.

7. Townshend, A., Wheatley, R. A., Oxidative chemiluminescence of some ni-

trogen nucleophiles in the presence of formic acid as an ancillary reductant,

Analyst 123 (1998) 267{272.

8. Hemmila, I. A., Applications of uorescence in immunoassays, Wiley-

Interscience 1991.

88



9. Wang, L., Gaigalas, A. K., Blasic, J., Holden, M. J., Gallagher, D., Pires,

R., Fluorescence resonance energy transfer between donor{acceptor pair on

two oligonucleotides hybridized adjacently to DNA template, Biopolymers 72

(2003) 401{412.

10. Sommermeyer, K., Birkwald, V. B., Pruetz, W., On the uorescence of aque-

ous solutions of aromatic compounds following excitation by roentgen rays,

Strahlentherapie 116 (1961) 354{363.

11. Sommermeyer, K., Pruetz, W., Excitation of uorescence in aqueous dye

solutions with x-rays and its dependence on linear energy transfer, Natur-

forschung A 21 (1966) 1081{1084.

12. Pruetz, W., Sommermeyer, K., Land, E. J., Light emission after pulse radi-

olysis of aqueous solutions of dyes, Nature 212 (1966) 1043{1044.

13. Pruetz, W. A., Land, E. J., Chemiluminescent reaction after pulse radiolysis

of aqueous dye solutions, J. Phys. Chem. 78 (1974) 1251{1253.

14. Ala-Kleme, T., Kulmala, S., Latva, M., Generation of free radicals and elec-

trochemiluminescence at pulse-polarized oxide-covered silicon electrodes in

aqueous solutions, Acta Chim. Scandinavica 51 (1997) 541{546.

15. Kulmala, S., Haapakka, K., Mechanism of electrogenerated luminescence of

terbium(III)-2,6-bis[N,N-bis(carboxymethyl)aminomethyl]-4-4benzoylphenol

chelate at an oxide-covered aluminium electrode, J. Alloys and Compounds

225 (1995) 502{506.

16. Kulmala, S., Ala-Kleme, T., Heikkila, L., Vare, L., Energetic electrochemilu-

minescence of (9-uorenyl)methanol induced by injection of hot electrons into

aqueous electrolyte solution, J. Chem. Soc. Faraday Transactions 93 (1997)

3107{3113.

17. Manning, M., Galvin, P., Redmond, G., A robust procedure for DNA mi-

croarray fabrication and screening in the molecular biotechnology laboratory,

Am. Biotech. Lab. 20 (2002) 16{17.

89



18. Oh, S. J., Cho, S. J., Kim, C. O., Park, J. W., Characteristics of DNA

microarrays fabricated on various aminosilane layers, Langmuir 18 (2002)

1764{1769.

19. Charles, P. T., Vora, G. J., Andreadis, J. D., Fortney, A. J., Meador, C. E.,

Dulcey, C. S., Stenger, D. A., Fabrication and surface characterization of

DNA microarrays using amine- and thiol-terminated oligonucleotide probes,

Langmuir 19 (2003) 1586{1591.

20. Chrisey, L. A., Lee, G. U., O'Ferrall, C. E., Covalent attachment of synthetic

DNA to self-assembled monolayer �lms, Nucleic Acids Research 24 (1996)

3031{3039.

21. Souteyrand, E., Cloarec, J. P., Martin, J. R., Wilson, C., Lawrence, I.,

Mikkelsen, S., Lawrence, M. F., Direct detection of the hybridization of syn-

thetic homo-oligomer DNA sequences by �eld e�ect, J. Phys. Chem. B 101

(1997) 2980{2985.

22. Zhang, F., Srinivasan, M. P., Self-assembled molecular �lms of aminosilane

immobilization capacities, Langmuir 20 (2004) 2309{2314.

23. Manning, M., Redmond, G., Formation and characterization of DNA mi-

croarrays at silicon nitride substrates, Langmuir 21 (2005) 395{402.

24. Su, H.-J., Surrey, S., McKenzie, S. E., Fortina, P., Graves, D. J., Kinetics of

heterogeneous hybridization on indium tin oxide surfaces with and without

an applied potential, Electrophoresis 23 (2002) 1551{1557.

25. Kurth, D. G., Bein, T., Thin �lms of (3-aminopropy1)triethoxysilane on alu-

minum oxide and gold substrates, Langmuir 11 (1995) 3061{3067.

26. Saprigin, A. V., Thomas, C. W., Dulcey, C. S., Jr, C. H. P., Spector, M. S.,

Spectroscopic quanti�cation of covalently immobilized oligonucleotides, Sur-

face Interface Analysis 36 (2004) 24{32.

27. Molecular probes, Eugene, USA, Amine-reactive probes (2003), mP00143.

90



28. Kulmala, S., Hakansson, M., Spehar, A.-M., Nyman, A., Kankare, J., Loikas,

K., Ala-Kleme, T., Eskola, J., Homogeneous and heterogeneous electrochemi-

luminoimmunoassays of hTSH at disposable oxide-covered aluminum elec-

trodes, Anal. Chim. Acta 458 (2002) 271{280.

29. Jiang, Q., Suomi, J., Hakansson, M., Niskanen, A. J., Kotiranta, M., Kul-

mala, S., Cathodic electrogenerated chemiluminescence of Ru(bpy)2+3 chelate

at oxide-coated silicon electrodes, Anal. Chim. Acta 541 (2005) 157{163.

30. Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B., Critical

review of rate constants for reactions hydrated electrons, hydrogen atoms

and hydroxyl radicals in aqueous solution, J. Phys. Chem. Reference Data

17 (1988) 513{886, and references cited herein.

31. Despic, A., Modern aspects of electrochemistry, Plenum press, New York,

Vol. 20 1989, pp. 400{503.

32. Diggle, J. W., Downie, T. C., Goulding, C. W., Anodic oxide �lms on alu-

minum, Chem. Rev. 69 (1969) 365{405.

33. Stanbury, D., Reduction potentials involving inorganic free radicals in aque-

ous solution, Advance Inorg. Chem. Radiochem. 33 (1989) 69{138.

34. Memming, R., Mechanism of the electrochemical reduction of persulfates and

hydrogen peroxide, J. Electrochem. Soc. 116 (1969) 785{90.

35. Kulmala, S., Ala-Kleme, T., Hakanen, A., Haapakka, K., F-centre lumines-

cence from oxide-covered aluminum cathode induced by two-step reduction

of peroxydisulfate anions, J. Chem. Soc. Faraday Transactions 93 (1997)

165{168.

36. Neta, P., Huie, R. E., Ross, A. B., Rate constants for reactions of inorganic

radicals in aqueous solutions, J. Phys. Chem. Reference Data 17 (1988) 1027{

1284, and references cited herein.

91



37. Kulmala, S., Electrogenerated lanthanide(III)luminescence at oxide-covered

aluminum electrodes in aqueous solutions and closely related studies, Ph.D.

thesis, University of Turku (1995).

38. Beaumont, P. C., Johnson, D. G., Parson, B. J., Excited state and free radical

properties of rhodamine dyes in aqueous solution: A laser ash photolysis and

pulse radiolysis study, J. Photochem. Photobiol A 107 (1997) 175{183.

39. Molecular probes, Eugene, USA, Long-Wavelength Rho-

damines, Texas Red Dyes and QSY Quenchers (27.10. 2005),

http://probes.invitrogen.com/servlets/datatable?item=6105&id=38090.

40. Kulmala, S., Ala-Kleme, T., Vare, L., Helin, M., Lehtinen, T., Hot electron-

induced electrogenerated luminescence of Tl(I) at disposable oxide-covered

aluminum electrodes, Anal. Chim. Acta 398 (1999) 41{47.

92



5. Hybridization assay on oxide-coated silicon electrodes

An oligonucleotide hybridization assay utilizing a synthesized Ru(II) label (Sec-

tion 3.2.2) as HECL luminophore is described. Silicon electrodes coated with thin

oxide �lm were used as the immobilization and detection platform.

5.1 Introduction

Ru(bpy)2+3 is the most widely used luminophore in anodic ECL, but also other

Ru(II)complexes in which some or all bipyridine ligands have been changed to

phenanthrolines generate anodic ECL signal (Chapter 3).1,2 Previous investiga-

tions3,4 have shown that Ru(bpy)2+3 generates HECL on oxide-coated aluminum

and silicon electrodes in the presence of a suitable coreactant, such as S2O
2�
8 . The

HECL generation of Ru(bpy)2+3 follows the reactions presented in equations 2.5-

2.9 (Section 2.1.3). Detection limits are reportedly better on oxide-coated silicon

compared to oxide-coated aluminum electrodes due to higher background elec-

troluminescence on Al/Al2O3 electrodes.
4 HECL of Ru(II)complexes with other

ligands than bipyridine has not been reported. An application of Ru(bpy)2+3 deriv-

ative as a HECL label in an immunoassay on oxide-coated aluminum electrodes

has been reported.3 In that work, oxide-coated silicon electrodes were physically

coated with antibodies and immunoreaction was detected by HECL of analytes

labeled with Ru(bpy)2+3 -derivative.

5.2 Experimental

All chemicals, materials, oligonucleotides, and surface derivatization processes

were as described in Chapter 4. The oligonucleotide was labeled as described in

Chapter 3, with the synthesized bis(2,2'-bipyridine)-5-isothiocyanato-1,10-phenan-

throline ruthenium label Ru(II)-2. All HECL measurements were performed in

0.05 M tetraborate bu�er, pH 7.8. Peroxydisulfate solution was added to mea-

93



surement bu�er in concentration of 1 mM immediately before HECL recording.

Light was recorded through an optical �lter of bandwidth 600 � 40 nm.

5.3 Results and discussion

5.3.1 HECL of Ru(II)-1

Figure 5.1 shows the calibration curve of the Ru(II)-1 complex measured on

silicon electrodes coated with 4-nm-thick oxide �lm in tetraborate bu�er in the

presence of peroxodisulfate ions as coreactants. Although Ru(bpy)2+3 is the most

widely used Ru(II) complex in ECL analysis, other Ru(II) complexes such as

Ru(phen)2+3 reportedly generate comparable anodic ECL. However, the ligand

type inuences the hydrophobicity of the complex and the ECL properties. In

the case of HECL,there are no reports of other Ru(II) complexes than Ru(bpy)2+3
possessing this property.

As can be seen, Ru(II)-1 could be detected down to subnanomolar concentration,

similarly to Ru(bpy)2+3 .4 HECL obtained in the absence of peroxydisulfate ions,

or in the presence of azide ions as corectants, was comparable to background

electroluminescence, as in the case of Ru(bpy)2+3 .3 Thus it is reasonable to assume

that the HECL generation also occurs according to the reaction 2.5-2.9. The

hot or hydrated electrons react with peroxydisulfate ions forming highly reactive

sulfate radicals, which in turn react with a Ru(II) complex.

5.3.2 Background luminescence on surface-modi�ed electrodes

Figure 5.2 shows background electroluminescence decay curves recorded on un-

modi�ed and modi�ed electrode surfaces. Since HECL intensity is highly depen-

dent on insulating barrier thickness, it was important to investigate the e�ect of

surface modi�cation on background electroluminescence. As discussed in Chapter
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4, background electroluminescence can mainly be explained in terms of electron

- center luminescence at the oxide/electrolyte interface solid state high-�eld elec-

troluminescence inside the oxide �lm.5

As can be seen from Figure 5.2, surface treatment caused a decrease of the back-

ground electroluminescence relative to the unmodi�ed electrode. However, the

di�erence in the background on unmodi�ed and modi�ed electrodes was consid-

erably less with Ru(II)-1 than with TAMRA (Figure 4.10). A probable reason

for this is the coreactant. The azide ions used to enhance HECL of TAMRA

also decrease the background. In the case of Ru(II) complexes, the generation of

HECL requires presence of more strongly oxidizing radicals, and peroxydisulfate

Figure 5.1: Calibration curve of Ru(II)-1 obtained on p-Si electrodes covered
with 4 nm thick thermal oxide layer, data points present the average of two
measurements. Experimental conditions: electrode area 63.6 mm2, tetraborate
bu�er containing 1 mM K2S2O8, pH 7.8, pulse charge 200 �C, pulse lengths ca.
600 �s, pulse voltage -45 V, frequency 50 Hz. HECL intensity was integrated
over 1000 excitation pulses. Inset: Decay curve of 1 �M Ru-1 solution.
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ions were found to be the best coreactants for generation of HECL of Ru(II)-

complexes. A disadvantage of peroxydisulfate ions is that they enhance the back-

ground electroluminescence.

5.3.3 HECL on DNA-modi�ed electrodes

From Figure 5.3 it can be seen that complementary strands generated the high-

est HECL signal, while noncomplementary strands generated HECL comparable

to background. The HECL signal generated from the mismatched strand con-

taining two base mismatches was clearly lower than upon hybridization with a

complementary strand.

Figure 5.2: Decay curves of background electroluminescence measured in 0.05
M tetraborate bu�er, 1 mM K2S2O8, pH 7.8, on unmodi�ed, aminosilanized,
and PDC-activated Si/SiO2-electrode. HECL measurement conditions as in
Figure 5.1.

96



These results are similar to those obtained for TAMRA and con�rm previous ob-

servations that nonspeci�c adsorption is low and that the HECL signal is due to

hybridization. To investigate the sensitivity of the assay, a set of aminosilanized

and PDC-activated silicon electrodes were modi�ed with probe solutions of di�er-

ent concentration (0, 1, 10, 100 pM, 1, 10, 100, 500, and 1000 nM) and derivatized

with a constant concentration (1 �M) of Ru(II)-2- labeled complementary strand.

The obtained calibration curve is shown in Figure 5.4.

From Figure 5.4 it can be seen that the lowest probe concentration to yield a

clearly detectable HECL signal was 10�10 M. HECL intensity reached a plateau

Figure 5.3: HECL on Si/SiO2 electrodes derivatized with 500 nM probe
solution and incubated with 1 �M solution of complementary strand
(CT-Ru(II)-2), 2-base mismatched strand (MT-Ru(II)-2), and
noncomplementary strand (NT-Ru(II)-2), measured in 0.05 M tetraborate
bu�er containing 1 mM K2S2O8, pH 7.8. HECL measurement conditions as in
Figure 5.1.
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at probe concentration of 5 x 10�7 M. It seems reasonable to conclude that at this

probe concentration the maximum surface probe density is achieved. Although

the surface density was not actually measured, it was reasonable to conclude

that all probes pipetted on the modi�ed electrode got immobilized at the plateau

probe concentration (5 x 10�7 M, V=20 �L). Taking into account the surface of

the detection area (63 mm2), the maximum surface density was then calculated as

9.6 x 1012 molecules/cm2. This result is close to the reported theoretical surface

probe density.6,7

Figure 5.4: Calibration curve obtained on aminosilane/PDC-modi�ed silicon
electrodes modi�ed with probe solution of di�erent concentrations and a
constant concentration (1 �M) of Ru(II)-2-labeled complementary strand.
HECL measurement conditions as in Figure 5.1.
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5.4 Conclusions

The Ru(II)-2 complex, composed of two bipyridine and one phenanthroline ligand

exhibited HECL comparable to the more commonly used Ru(bpy)2+3 complex. It

could be detected down to subnanomolar concentration on oxide-coated silicon

electrodes. Aminosilane modi�cation of the oxide-coated silicon electrodes al-

lowed immobilization of oligonucleotides with high surface probe density. Surface

modi�cation slightly decreased the background electroluminescence without af-

fecting the strong analytical signal. Ru(II)-labeled oligonucleotide targets could

be detected down to subnanomolar level. The results show that other Ru(II)-

complexes than Ru(bpy)2+3 can be used as HECL labels. The sensitivity and

detection limits of HECL hybridization assays could be improved by using la-

bels with long luminescence lifetimes. The results presented are useful for the

construction of DNA biosensor with HECL detection.
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6. HECL of terbium(III) chelate labels

A heterogeneous immunoassay of human thyroid stimulating hormone (hTSH) as

model analyte is described in this chapter. Double barrier aluminum/aluminum

oxide electrodes were used as solid supports for the antibody immobilization.

Immunoassay was performed in a sandwich format and Tb(III) chelates were

used as HECL luminophores for the detection of immunoreaction.

6.1 Introduction

Terbium chelates are labels suitable for photoluminescence bioassays1{3 due to

their narrow-line emission, with strongest line at 545 nm, and long luminescence

lifetimes, on the order of milliseconds. Detectable ECL of these compounds can-

not be generated in fully aqueous solutions by means of traditional electrochem-

istry.

Previous investigations have shown that Tb(III) chelates generate high inten-

sity HECL at oxide-coated aluminum electrodes upon cathodic pulse polarization

and subsequent injection of hot electrons into an aqueous electrolyte solution.4{6

Chemiluminescence of Tb(III) ions and chelates can also be generated by DC po-

larization of aluminum electrodes, but this ECL cannot be classi�ed as HECL.7

HECL has been used for biorecognition detection in immunoassays.6,8{10 Captur-

ing antibodies were physically adsorbed on oxide-coated aluminum6,8,9 and sili-

con10 electrodes, and the biorecognition reaction was detected using antibodies

labeled with electrochemiluminescent dyes. Antibodies are relatively large mole-

cules (MW � 160 kDa) containing numerous amino and carboxylic acid groups,

which means that they can be readily physically adsorbed on unmodi�ed ox-

ide surfaces through a combination of electrostatic and hydrophobic interactions.

HECL detection has been reported for both homogeneous and heterogeneous
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immunoassays.9 In both cases, nonlabeled capturing antibodies were physically

immobilized on the detection electrode. Antibodies are incubated with a sample

containing antibody-speci�c antigens (analytes) and labeled secondary antibod-

ies, and an immunorecognition reaction is allowed to take place. In a homoge-

neous assay format, measurement is taken without washing away the unbound

analytes. This format is possible with HECL because of the high spatial control

of the method. Only labels at close proximity to the electrode are excited, while

labels at a few tens of nanometers away are not excited. In a heterogeneous as-

say format, a washing step is performed and a di�erent measurement bu�er can

be used. An advantage of homogeneous assays is the simpler set up, as there is

no need for liquid handling and contamination risks are reduced. Heterogeneous

assays are usually more sensitive, however, due to the quenching e�ects of human

serum.

Our group has earlier shown that double barrier Al/Al2O3/Al/Al2O3 electrodes

where a thin layer of oxidized high-purity aluminum is vacuum-evaporated on

the top of the less pure original Al/Al2O3 electrode perform better that single

barrier oxide-coated aluminum electrodes.11 A considerably lower detection limit

was achieved with double barrier electrodes than with Al/Al2O3 electrodes.
9

6.2 Experimental

6.2.1 Materials

Monoclonal anti-TSH primary antibodies (cathing antibodies) speci�c to the �-

chain of hTSH (MOAB, lot: M-21310, catalogue number MIT0406, concentra-

tion 6.87 mg/ml) were purchased from Medix Inc., USA, and a secondary mon-

oclonal anti-TSH speci�c to the �-chain of hTSH (clone 5404, lot SPC099, con-

centration 5.5 mg/ml) was obtained from Medix Biochemica Oy Ab, Finland.

Tris(hydrosymethyl)aminomethane (Tris), sodium tetraborate decahydrate, sul-

furic acid, bovine serum albumine, sodium azide, and D-sorbitol were all from
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Sigma-Aldrich. The chelating ligands for terbium were Tb(III)-1, 2; 6�bis[N;N�
bis(carboxymethyl)aminomethyl]� 4� benzoylphenol (inset in Figure 6.1), and

Tb(III)-2, the isothiocyanate-containing derivative of Tb(III)-1. Chelates were

obtained from Orion Diagnostics Oyj, Turku, and Wallac Oy, Turku, Finland.

Aluminum electrodes from usually 99.9% pure aluminum band, 0.3-mm thick

(Merck Art. 1057, batch 720 K22720857), were covered with a 2-3-nm-thick nat-

ural oxide �lm and cut into 15 mm x 15 mm pieces. The double barrier aluminum

electrodes were fabricated as described elsewhere.11

6.2.2 Instrumentation and methods

All HECL measurements were made in 0.05 mol/L sodium tetraborate bu�er, pH

9.2 or 7.8 (pH adjusted with 1 M sulfuric acid). The excitation was carried out

either with our coulostatic pulse generator9 or with a home-made pulse generator

and Pine Instruments RD-4 potentiostat, which also allowed the use of bipolar

pulses. The HECL measurements were carried out with single photon counting

with instrumentation consisting of a Hamamatsu R 1527 photomultiplier, Stan-

ford Research Systems SR-440 preampli�er, SR-400 gated photon counter, and

Nucleus MCS-II scaler card. The immunoassay measurements were performed in

the wells of microtiter strips as described earlier.11

6.2.3 Immunoassay of hTSH

Double barrier Al/Al2O3/Al/Al2O3 electrodes were used as a solid phase for the

hTSH immunoassay. Primary antibodies were dissolved in 0.05 M Tris-H2SO4,

pH 7.8, 0.5% NaN3, and 0.025% bovine gammaglobulin to obtain concentration

of 30 �g/ml and were then physically adsorbed on the electrodes. The incubation

was allowed to progress three hours in a humid chamber, after which the surface

was washed with MES bu�er. The surface was then allowed to be saturated dur-

ing 3 h with 0.05 M Tris-H2SO4 bu�er, pH 7.75, containing 0.1% bovine serum

albumin, 0.1% NaN3 and 5% D-sorbitol. The electrodes were rinsed with bu�er
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and water, dried, and stored in dry conditions. The secondary monoclonal anti-

bodies were labeled with Tb(III)-2 as described elsewhere.11 The labeling ratio

was determined to be 5-10 label molecules per antibody. The immunoassay was

carried out in the wells of microtiter strips. First, 25 �L of standard and 175 �L

assay bu�er (0.05 M Tris-H2SO4, pH 7.8, 0.5% NaN3, 0.05% bovine gammaglob-

ulin and 0.01% Tween 20) containing labeled antibody were added. Then the

coated electrodes were added and the immunoreaction was allowed to progress

for 1 h on a shaker. Finally the electrode was washed with distilled water and

time-resolved (TR)-HECL was measured.

6.3 Results and discussion

6.3.1 HECL properties of Tb(III)labels

Figure 6.1 shows HECL emission spectra of Tb(III)-1 chelate measured on alu-

minum cathode coated with native oxide �lm. It can be seen that it has four

narrow emission peaks with the present photomultiplier, the highest centered at

545 nm. HECL of Tb(III)chelates is based on excitation of the ligand by a redox

reaction sequence initiated by hot electron injection, followed by intramolecular

excitation transfer from ligand to the central atom. The resulting HECL spectra

are similar to the photoluminescence spectra of Tb(III)chelates.

Figure 6.2 shows the decay curve of Tb(III)-1 at n-silicon electrode, which is

anodically oxidized in situ during the HECL measurement. The HECL of Tb(III)

chelates decays slowly, and the emission lasts on the order of milliseconds. This

enables application of time-resolved detection (TR), that is, measurement only

after the background solid state electroluminescence of the cathodic pulse has

decayed away. TR measurements thus tend to be more sensitive and to result in

lower detection limits, as the analytical signal can be completely separated from

the background noise.
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Figure 6.1: HECL emission spectra of 10 �M Tb-chelate measured in 0.05 M
tetraborate bu�er, pH 9.2, with an LS-50 luminometer. Molecular structure of
Tb(III)-1 is shown as an inset.

Unlike aluminum electrodes, silicon electrodes coated with natural oxide �lm

cannot be used for HECL detection because their native oxide �lm is too thin

(see Chapter 4). The native oxide �lm is preferably �rst stripped o� and then an

oxide about 4 nm thick is thermally grown. As pointed out here, however, in situ

anodic oxidation can also be applied for both aluminum and silicon electrodes.

The emission spectra and decay times of Tb(III) chelates are identical at all

thin insulating-�lm coated electrodes. A particular advantage of the use of in

situ anodic pulse is the possibility to repair the oxide �lm after damage possibly

induced by a cathodic pulse.
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Figure 6.2: Decay curve of 1 �M Tb(III)-1 at n-silicon electrodes.
Experimental conditions: 0.05 M tetraborate bu�er, pH 9.2 containing 1.0 M
Na2SO4, pulse lengths 200 �s, anodic pulse amplitude 5 V, cathodic pulse
amplitude -10 V, Pine Instruments RD4 potentiostat.

6.3.2 hTSH immunoassay

The sensitivity of the method utilizing the double barrier electrodes was inves-

tigated by incubating the modi�ed electrodes with 100 �L of increasing concen-

tration of Tb(III)-2-labeled hTHS antibody solution (0, 0.1, 0.5, 2, 10, and 50

�U/ml) during 30 min. Figure 6.3 displays the calibration curve of hTSH at

double barrier Al/Al2O3/Al/Al2O3 electrodes.

Azide ions were used as coreactant instead of peroxydisulfate ions because they

not only slightly enhance HECL of Tb(III)-labels, but they also decrease the

background electroluminescence. In addition, they prevent bacterial growth on
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Figure 6.3: hTHS immunoassay on double barrier aluminum electrodes
measured on Arcus intrument described in detail elsewhere.12 Incubation time
was 30 min. Experimental conditions: 0.05 M Na2B4O7 adjusted to pH 7.8 with
sulfuric acid, 0.03% Tween 20, 0.1% NaN3, delay time 10 �s, gate time 2.4 ms,
pulse voltage -10 V.

protein-modi�ed electrodes during storage. As Figure 6.3 indicates, the calibra-

tion range is wide and the sensitivity excellent. Compared with previous hTHS

immunoassays based on HECL of Tb(III) chelate label, the results are better.9,10

This is due to lower background electroluminescence on double than on single bar-

rier electrodes. The obtained straight line follows equation y=0.9669x + 3.62662.

R is 0.998 and SD 7.4% for �ve samples.

6.4 Conclusions

Tb(III) chelates are the best HECL labels so far. With their long lumines-

cence lifetimes and high intensity, under the present conditions, they can be
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detected down to subpicomolar levels. The long lifetimes make it possible to

use time-resolved detection, which allows e�ective discrimination of analytes

from background luminescence. Background luminescence generated at the elec-

trode/electrolyte interphase upon injection of hot electrons compromises the HECL

sensitivity of short-lifetime HECL luminophores. Owing to the numerous charged

and hydrophobic groups present in antibodies, it is fairly easy to produce antibody-

modi�ed electrodes. The set up needed for HECL generation is relatively simple:

only excitation electronics, a cell containing a counter electrode, and a lumi-

nescence measurement module are required. As the antibody-coated electrodes

can be stored several months, this method is highly promising for point-of-care

applications and disposable biosensors.
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7. Homogeneous hybridization assay

A homogeneous hybridization assay utilizing 15- and 30-base oligonucleotide probes

labeled with Ru(bpy)2+3 -moiety and hybridized with Cy5-labeled targets is de-

scribed.1 Hybridization was detected by quenching of anodic ECL of the Ru(bpy)2+3
label by Cy5 label. The ECL results are compared with photoluminescence re-

sults.

7.1 Introduction

Homogeneous hybridization assays are more attractive detection formats than

heterogeneous assays. There is no need to carry out time-consuming washing

steps, which reduce the contamination risk, and they are more amenable to au-

tomation. Ru(bpy)2+3 and other Ru(II)-complexes having bipyridine and phenan-

throline ligands have been extensively studied as sensitizers of photochemical

electron2{5 and energy transfer6{10 processes. Their long luminescence lifetimes

make them useful tools for studying the mechanism of electronic energy transfer

via quenching of their luminescence. Energy transfer can be described by the

following expression, where M can be either an electron donor and an electron

acceptor:

Ru(bpy)2+�

3 +M! Ru(bpy)3+�=+�

3 +M��=+� (7.1)

Electron transfer can occur at distances where the orbitals of an electron donor

and an electron acceptor overlap, or at longer distances if the donor and the

acceptor are connected through a bridging ligand that enhances electronic cou-

pling. Electron and energy transfer processes between Ru complexes and other

chromophores have been studied with use of various bridge molecules including

polyphenylene groups,4 amino acids,5,9 and DNA strands.10

Ru(bpy)2+3 and its derivatives have been used as energy donors in several lu-

111



minescence resonance energy transfer (LRET) based bioassays.11{14 The long

lifetime of the excited state of Ru(II) complexes makes it possible to do time-

resolved luminescence intensity measurements. A time-resolved immunoassay

where Ru(bpy)2+3 -labeled human serum albumin was used as an energy donor

and a squaranine type cyanine label as an acceptor has been described.12 The

wide emission spectrum of the ruthenium complex has been utilized for multi-

plex bioassays where di�erent dyes with absorbance spectra overlapping with the

emission spectrum of Ru(bpy)2+3 were used as energy acceptors in LRET based as-

says.13 An LRET-based oligonucleotide hybridization assay, where the resonance

energy was transferred from the laser-excited Ru(bpy)2+3 donor to a near-infrared

RB 631 acceptor has also been described.14

LRET occurs through a coulombic interaction and does not require physical con-

tact between a donor and an acceptor.7 LRET results in a decrease of the donor

emission, and an increase of the acceptor emission when it is a luminophore.

LRET can be described by the following expression, where M is an energy accep-

tor:

Ru(bpy)2+�

3 +M! Ru(bpy)2+3 +M� (7.2)

Upon photoexcitation, Ru(bpy)2+3 undergoes transition to the 1MLCT state. This

is followed by intersystem crossing with subsequent formation of the triplet state,
3MLCT, from which luminescence occurs. The Ru(bpy)2+3 spectra generated by

ECL are closely similar to those generated by the photoluminescence excitation.

Thus, the same orbitals are presumed to be involved in the emission independently

of whether the triplet is formed photochemically or electrochemically. The same

phenomena should occur, therefore, regardless of the origin of the excited state.

The interaction between electrochemically excited Ru(bpy)2+3 and other chro-

mophores has been widely investigated. Richteret al.15 have studied ECL of

dimetallic Ru(bpy)2+3 complexes connected through bridging bipyridyl ligands.

The ECL quantum yield of a dicentered Ru(bpy)2+3 complex was doubled, rela-
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tive to that of a single-centered Ru(bpy)2+3 because the bipyridyl bridges provided

weak electronic coupling between the metal centers, thus preventing electron

transfer and consequent quenching of the ECL signal. Several other attempts

to increase ECL e�ciency through the use of polynuclear Ru(bpy)2+3 complexes

have been reported. Di- and tricentered Ru(bpy)2+3 complexes, where metal cen-

ters were connected with an amino acid lysine and the dipeptide (lysine{lysine)

were synthesized.16 Although the spectral and electrochemical measurements of

these complexes showed no electrochemical or spectral interaction between metal

centers, the e�ciency of the ECL per unit of Ru(bpy)2+3 was observed to de-

crease when the number of the Ru(bpy)2+3 units was increased. The decrease

was attributed to slow di�usion of the multimetallic compound on the electrode.

Progesterone immunoassays relying on multicentered Ru(bpy)2+3 compounds were

also tested. Dendrimeric compounds containing two, four, and eight Ru(bpy)2+3
units were attached to the paramagnetic nanoparticles and subsequently precon-

centrated on the electrode surface with a magnet. In this case, ECL was observed

to be the sum of the emissions from individual Ru(bpy)2+3 units since the di�u-

sion limitations were overcome. However, high background caused by non-speci�c

binding of the multiruthenium complexes to the streptavidin-coated beads limited

the sensitivity. Zhou et al. reported a trinuclear dendritic Ru(bpy)2+3 label that

produced ECL signals two to three times as strong as monomeric Ru(bpy)2+3 .17

This molecule was tested for protein labeling in an immunoassay. Recently, a

dual-labeled molecular beacon, using ECL excited Ru(bpy)2+3 at one end as a

donor and a Black Hole Quencher-2 (BHQ-2) at the other end as an acceptor,

was described.18 A quenching e�ciency of 95% was reported.

7.2 Materials and methods

7.2.1 Chemicals and materials

The synthetic oligonucleotides were purchased fromMicrosynth (Balgach, Switzer-

land) (see Table 7.1). Strands Cy5-A2 and Cy5-A3 were purchased labeled,
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whereas strand A1 was labeled in the laboratory. Bis(2,2'-bipyridine)-4'-methyl-4-

carboxy-bipyridine-ruthenium N-succinimidyl ester-bis(hexauorophosphate) (Ru(bpy)2+3
label), Tris(2,2'- bipyridyl)ruthenium(II) dichloride hexahydrate (Ru(bpy)2+3 x 6

H2O), tri-n-propylamine (TPA, 98%), dimethylsulfoxide (DMSO), sodium dode-

cyl sulfate (SDS) and boric acid were purchased from Fluka (Buchs, Switzerland).

Sodium dihydrogen phosphate monohydrate, disodium hydrogen phosphate di-

hydrate, sodium tetraborate decahydrate and ethanol (0.2% H2O) were obtained

from Merck (Darmstadt, Germany) and Cy5-dye was from Amersham Bioscience

(Freiburg, Germany). The ECL bu�er was prepared by dissolving TPA and SDS

in 300 mM phosphate bu�er to obtain concentrations of 100 mM TPA and 0.1

w-% SDS. Final pH of the ECL bu�er was 7.8.

Table 7.1: Name and sequence of the used oligonucleotides

Name Sequence
Ru-A1 5'-ACATTTTGCTGCCGG-C6-NH2-Ru(bpy)

2+
3 -3'

Cy5-A2 5'-Cy5-CCGGCAGCAAAATGT-3'
A2 5'-CCGGCAGCAAAATGT-3'
Cy5-A3 5'-Cy5-AAAAAAAAAAAAAAA-3'
Ru-B1 5'-GATTACGAATCCGATTTGCTAAGGATCATT-Ru(bpy)2+3 -3'
Cy5-B2 5'-Cy5-ATCCTTAGCAAATCGGATTCGATTCGTAATC-3'
Cy5-B3 5'-Cy5-TAGCAAATCGGATTCGATTCGTAATC-3'
Cy5-B4 5'-Cy5-AAATCGGATTCGATTCGTAATC-3'

7.2.2 Instrumentation and methods

The electrochemical cell consisted of carbon interdigitated (C-IDA) working and

counter electrodes with a spacing of 2 �m and total area of 1 mm2, as described in

detail previously.19 An Ag pseudoreference electrode was integrated on a chip. Po-

tential was applied with a potentiostat (PAR EG&G 273), and the ECL-generated

light signal was collected with a photomultiplier tube (model Hamamatsu H5701-

50, Schuepfen, Switzerland), installed close to the electrochemical cell. A voltage

of -950 V was supplied to the PMT using a laboratory-built high-voltage power

supply. Two di�erent optical �lters (600 � 80 nm and 670� 40 nm) were used

to �lter ECL generated light. The ECL signal was collected by a 10x microscope
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objective, �ltered by a band-pass �lter and measured by PMT and recorded

with a PC using a lab-written Labview program, which collected 8 points per

second. Cyclic voltammetry of Cy5 was performed with an IBM voltammetric

analyzer (EC/225) using a standard Ag/AgCl reference electrode. All potentials

are reported against an Ag/AgCl reference electrode. All measurements were

performed at room temperature. The UV/VIS absorption spectra of labeled

oligonucleotides and free dyes were measured with an UV/VIS spectrophotome-

ter (Hewlett-Packard 8452A).

7.2.3 Oligonucleotide labeling procedure

The oligonucleotide strands A1 and A2 were labeled with Ru(bpy)2+3 via a C6

linker to their amino modi�ed 3'-end. One milligram of Ru(bpy)2+3 dye was

dissolved in 50 �L of DMSO, and the oligonucleotides were dissolved in 0.1 M

tetraborate bu�er, pH 8.5, mixed and added to the dye solution. The solution

was gently shaken in a shaker and left to react at room temperature in the dark

overnight. Labeled oligonucleotides were precipitated twice by addition of 1/10

of volume of 3 M NaCl and 2.5 fold volume of cold, absolute ethanol. The

mixture was kept 30 min at -20 � and centrifuged for 30 min at 12000 RPM.

The supernatant was carefully removed and the pellet was rinsed twice with cold

70% ethanol. Labeled oligonucleotides were allowed to dry in air during 10 min,

and then were stored at -20 �. Before the hybridization experiment, the pellet

was redissolved in deionized water.

7.2.4 Hybridization assay

For the hybridization step a constant concentration of Ru-A1 strand was com-

bined with various concentrations of the labeled complementary Cy5-A2 strand.

The same was performed with the nonlabeled complementary strand A2 and la-

beled noncomplementary strand Cy5-A3, respectively. The hybridization was

performed in 50 mM phosphate bu�er containing 150 mM NaCl, pH 7.0. The
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samples were heated to 65 � for 1 hour and allowed slowly to cool to room

temperature in a water bath. Before the ECL measurement, 500 �L of the ECL

bu�er was added to the samples. Measurement volume was 500 �L.

7.2.5 Determination of the labeling e�ciency

The labeling e�ciency of the 3'-amino group of the A1 strand with Ru(bpy)2+3
label was determined by absorbance measurements of free Ru(bpy)2+3 and Ru-

labeled oligo. Based on the Lambert-Beer law the labeling e�ciency was calcu-

lated to be 50%. The unlabeled oligonucleotides were not separated from the

solution. The degree of labeling of the other oligonucleotides was reported by the

supplier to be 100%. The absorption and emission spectra of Ru(bpy)2+3 were

red-shifted upon hybridization, which is in agreement with previous reports.8 No

shift was observed in the absorption spectra of free and conjugated Cy5.

7.3 Results and discussion

7.3.1 Electrochemical and spectral properties

LRET requires an overlap of the donors emission and the acceptors excitation

spectra. From Figure 7.1 it can be seen that the photoluminescence emission

spectrum of Ru(bpy)2+3 overlaps with the excitation spectrum of Cy5.

Before the hybridization experiments, the electrochemical and spectral properties

of the system were characterized. The CV of Ru(bpy)2+3 in an aqueous solution

has previously been reported on C-IDAs.20 From the cyclic voltammogram of Cy5

recorded in aqueous solution, it was visible that an irreversible oxidation of Cy5

occurred at approximately 0.70 V and a reduction at approximately -0.65 V vs.

an Ag/AgCl reference electrode.1
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Figure 7.1: Normalized photoluminescence emission spectrum of 2 �M
Ru(bpy)2+3 oligonucleotide, uorescence excitation and emission spectra of 1 �M
Cy5, measured in 0.05 M phosphate bu�er, pH 7.0.

The spectral and electrochemical properties of the labeled oligonucleotides used

in this work are listed in Table 7.2,

Table 7.2: Electrochemical and spectral data of the Ru(bpy)2+3 and
Cy5-labeled oligonucleotides
Sample �ex (nm) �em Eox (V) Ered (V) E0�0 (eV)
Ru(bpy)2+3 450 610 1.1 -1.3 2.08
Ru-A1 460 620 1.1 -1.3 2.06
Cy5-A2 650 670 0.70 -0.65 1.88

where Eox and Ered are the �rst one-electron oxidation and reduction potentials of

the electron donor and acceptor, respectively, and E0�0 the 0-0 transition energy

of the dye. This 0-0 transition energy is obtained from the equation 7.321
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E0;0 = hc�0�0 (7.3)

where h is the Planck's constant, c is speed of light and �0�0 is the wavenumber

for the 0-0 transition of the dye. This 0-0 wavenumber can be obtained from21

�0�0 =
(�max;abs + �max;em)

2
(7.4)

where �max;abs and �max;em correspond to maxima of absorption and emission of

the appropriated dye. This equation is not valid for Ru(bpy)2+3 , however, because

its emission occurs from triplet state, which has energy of 2.12 eV.22

7.3.2 ECL of hybridized samples

In the case of LRET, when Ru-A1 is excited through ECL, the emission of

Ru(bpy)2+3 centered at 620 nm should be quenched, while the emission of Cy5 at

670 nm should be induced. To investigate this, a constant concentration of 0.75

�M Ru-A1 was hybridized with 0-1.9 �M of its complementary Cy5-A2 strand

and the ECL signal was generated by scanning the voltage from -0.1 V to 1.3 V at

a scan rate of 100 mV/s. The signal was measured at two di�erent wavelengths,

using bandpass �lters of 600 � 80 nm to monitor the emission of Ru(bpy)2+3 and

670 � 40 nm to monitor the emission of Cy5. Figure 7.3 shows the normalized

ECL as a function of the molar ratio of Cy5-A2 and the Ru-A1 strands. It also

includes results of control experiments performed with the nonlabeled comple-

mentary strand A2 and the labeled noncomplementary strand Cy5-A3. It can be

seen that at both measured wavelengths, the ECL intensity of Ru-A1 strongly

decreased upon hybridization with increasing concentrations of Cy5-A2. The de-

crease of the signal indicates that the uorescence emission of Cy5 has not been

induced even though the ECL was quenched. It should be noted that Cy5 itself

118



does not have any detectable ECL under the conditions employed.

Figure 7.2: ECL after hybridization of Ru-A1 with nonlabeled target (A2),
Cy5-labeled complementary target (Cy5-A2), and Cy5-labeled
noncomplementary target (Cy5-A3).

All nucleotides are known to quench the emission of certain luminophores to some

extent,23,24 which raises the question whether the ECL quenching is due to the

hybridization with the complementary strand. This was investigated in a con-

trol experiment where a constant concentration of 0.50 �M Ru-A1 strand was

hybridized with di�erent concentrations (0-1.0 �M) of the unlabeled A2 strand.

The ECL signal remained constant, indicating that quenching was due to the

interaction with Cy5 and not with the complementary strand. This study con-

�rmed previously published results which have indicated that the luminescence

of the photoexcited Ru(bpy)2+3 does not change upon hybridization with non-

labeled complementary strand.14 Direct generation of ECL by a redox reaction

sequence between guanines in a DNA strand and Ru(bpy)2+3 has been reported

by Dennany et al..25 The group made 10-nm thin �lms composed of alternative

layers of [Ru(bpy)2(PVP)10] and DNA, PVP standing for poly(4-vinylpyridine).
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They observed direct ECL emission with guanines and Ru(bpy)2+3 as reagents,

while the other nucleotides did not generate any noticeable ECL signal. As our

control experiment with the nonlabeled complementary strand showed, however,

there was no interaction between the Ru(bpy)2+3 label and the complementary

strand in our system. To determine whether the ECL of the Ru-A1 strand is dy-

namically quenched by the free Cy5 dye, up to 30-fold excess of Cy5 was added to

the 0.030 �M Ru-A1 solution. No change in the signal was observed. This result

was con�rmed by a hybridization experiment where a constant concentration of

0.50 �M Ru-A1 strand was hybridized with 0-1.0 �M labeled, noncomplementary

Cy5-A3 strand.

7.3.3 Photoluminescence measurements

The same samples were measured with a luminescence spectrometer. With ex-

citation wavelength of 450 nm, Ru(bpy)2+3 is e�ciently excited, while the direct

excitation of Cy5 is very low. Figure 7.4 shows the intensity of the hybridized

sample composed of 0.75 �M Ru-A1 and 1.5 �M Cy5-A2 (dashed line) and the

emission of 0.75 �M Ru-A1 alone (dashed dotted line). While the emission of Ru-

oligo decreased that of Cy5 remained constant. Figure 7.4 includes the combined

emission spectra of the individual labeled oligonucleotides, scaled to the size of

the hybrid emission, to facilitate comparison. As can be seen, the emission peaks

of the hybridized oligonucleotides are shifted and deformed with respect to the

free parent strands.

These results lead to two important conclusions: (i) the quenching of the Ru(bpy)2+3 -

label emission occurs regardless of the excitation mode and (ii) the quenching of

the ECL occurs only when the Cy5 and Ru(bpy)2+3 moieties are in close proximity.

Two quenching mechanisms are known to take place at small intermolecular dis-

tances: electron transfer and static quenching. These mechanisms are discussed

below.
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Figure 7.3: Photoluminescence of 750 nM 15-mer Ru-A1 strand alone (dashed
line) and hybridized with 1.5 �M of complementary Cy5-A2 strand (solid line)
in phosphate bu�er containing 300 mM TPA. Individually measured emission
spectra of Ru-A1 and Cy5-A2 strand are shown in dotted line, scaled to size of
the duplex for purposes of comparison. Excitation wavelength was 450 nm, slit
width of excitation and emission monochromators 5 nm.

7.3.4 Electron transfer

For quenching by electron transfer to be observed, the reaction must be thermo-

dynamically allowed. The free energy change of the electron transfer reaction can

be estimated using the Rehm-Weller equation:21

�G = Eox � Ered � E0�0 + C (7.5)

where Eox is the �rst one-electron oxidation potential of the electron donor and

Ered is the �rst one-electron reduction potential of the acceptor in the solvent
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under consideration. C is a coulombic term related to the energy of the sepa-

rated ions. In polar solvents like water it is su�ciently small that it can be ne-

glected.23,24 As Cy5 has a lower oxidation potential than Ru(bpy)2+3 it is clearly

a better electron donor. The free energy change of electron transfer from Cy5 to

Ru(bpy)2+3 is -0.06 eV when Ru(bpy)2+3 is excited through ECL, and +0.12 eV

when Cy5 becomes excited by LRET, calculated using equation 7.3 and the val-

ues from Table 7.2. The calculated negative Gibbs free energy indicates that the

electron transfer from Cy5 to Ru(bpy)2+3 is possible and might cause quenching.

The free energy change for photo-induced electron transfer from guanine to Cy5

is +0.25 eV,23 which means that guanine cannot quench the emission of Cy5 by

electron transfer.

7.3.5 Static quenching

Static quenching occurs when two luminophores are in very close proximity, and it

implies either the existence of a sphere of e�ective quenching or the formation of a

ground state nonluminescent complex.21 In static quenching, the emissions of both

donor and acceptor are decreased. However, the quenching e�ciency depends

on the hydrophobic and electrostatic interactions between the luminophores. Al-

though the major force that brings luminophores together in a hybridization assay

is the binding a�nity of the complementary strands, the possibility exists that

the two labeled moieties have enough a�nity to form a nonluminescent ground

state complex. It is di�cult to estimate the extent of the interaction between the

luminophores. However, since the Ru(bpy)2+3 -label is positively charged and the

Cy5 negatively, there is electrostatic attraction between them. The spectral prop-

erties of dyes in a ground state complex are known to di�er from their parent dyes.

From Figure 7.4 it can be seen that the emission of the hybrid is not a sum of the

emissions of its two parent dyes, but rather the emission peaks are signi�cantly

shifted and are degenerated. In the case of LRET, the luminophores are known

to retain their intrinsic spectral properties.26 Thus, the spectral changes would

seem to suggest the formation of a complex. The formation of a nonluminescent

ground state complex can be described by the expression21
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I0=I = 1 +KC � [Q] (7.6)

where KC is the formation constant of a nonluminescent complex, I0 the emis-

sion intensity in the absence of a quencher, I the intensity in the presence of a

quencher and [Q] the concentration of a quencher, in this case Cy5-A2 strand.

The relationship between the ratio of the ECL signal of Ru-A1 in the absence and

presence of Cy5-A2 as a function of the concentration of Cy5 target was found to

be linear at low concentrations (R2=0.978, KC= 2.9 �M�1), supporting the hy-

pothesis that the ECL quenching might be due to the formation of a ground state

nonluminescent complex. It should be noted that the electron transfer quench-

ing and static quenching mechanisms are not mutually exclusive and can occur

simultaneously.

7.3.6 Determination of quenching e�ciency

To determine the quenching e�ciency, we hybridized 0.75 �M Ru-A1 with in-

creasing concentrations of Cy5-A2. The resulting ECL graphs versus applied

potential are shown in Figure 7.5. As can be seen, the ECL signal decreased

considerably upon hybridization with a rather low concentration, �M of Cy5-A2.

Figure 7.6 shows the ratio of the ECL of the signal in the presence (ECLhybrid) and

absence (ECL0) of Cy5-A2 strand plotted as a function of the molar ratio of the

hybridized sample to the pure Ru-A1 sample. The curve shows the sensitivity of

the system for nanomolar concentrations of Cy5-A2. To investigate the potential

of our system for a homogeneous hybridization assay, 1 �M of the Ru-A1 was

hybridized with 0.170 �M of Cy5-A2 in the presence and absence of 0.300 �M

Cy5-A3. This excess of the noncomplementary Cy5-A3 did not inuence the

result.
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Figure 7.4: ECL signal upon hybridization of Ru-A1 strand of constant
concentration 0.75 �M with increasing concentrations of complementary Cy5-A2
strand. Scan rate was 100 mV/s up to 1.3 V vs. Ag and back to starting
potential. The ECL signal was �ltered at 670 � 40 nm.

The quenching e�ciency can be calculated from the decrease of the donor emission

using the following expression:21

EQ =

�
1� IDA

ID

�
(7.7)

where IDA is the intensity of the D-A pair and ID that of the donor alone. The

quenching e�ciency was found to be 78% at both 600 nm and 670 nm. This is

lower than values reported for contact quenching with non-uorescent quenchers,

but compares well with values of LRET-mediated quenching.26 Better quenching

e�ciencies have been reported where a dark dye was used as an acceptor.18
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Figure 7.5: Quenching e�ciency calculated using data presented in the Figure
7.5.

7.3.7 Quenching as a function of distance between label moieties

To further investigate the nature of the quenching mechanism, 1 �M of Ru-B1 was

hybridized with equimolar concentrations of Cy5-B2, Cy5-B3, and Cy5-B4. ECL

emission of Ru-B1 did not change upon hybridization with Cy5-B2 but increased

slightly upon hybridization with Cy5-B3 and Cy5-B4. The ECL spectra of the

hybridized samples showed that this increase in emission occurred at 620 nm, and

thus was not due to LRET.

Photoluminescence spectra changed considerably upon hybridization of Ru-B1

with Cy5-labeled strands (see Figure 7.7). The photoluminescence of Ru-B1 is

strongly quenched upon hybridization with Cy5-B2, and the Cy5 emission peak,

though weak, is clearly observed. The highest LRET occurs with hybrid Ru-B1

Cy5-B3. The hybridization of Ru-B1 with Cy5-B4 results in less intense Cy5
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emission compared to Cy5-B3, while the emission of Ru-B1 is in intensity equal

to the original intensity.

Figure 7.6: Photoluminescence spectra and LRET from Ru(bpy)2+3 -label to
Cy5 as a function of distance between label moieties, measured in 0.3 M
phosphate bu�er, 0.1 M TPA, 0.01 % SDS, pH 7.8. Experimental conditions:
excitation wavelength 450 nm, excitation and emission slit widths 10 nm.

In the case of ECL, when there is only a short distance between the label moieties,

the ECL emission of the Ru-label is quenched. However, when the distance

between labels is increased to �ve nucleotides, the presence of Cy5 label has little

e�ect on the ECL e�ciency. This �nding further con�rms that the quenching of

ECL of Ru(bpy)2+3 requires close proximity of the two labels.
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7.4 Conclusions

In this chapter it has been demonstrated that, upon hybridization, the ECL signal

of the Ru(bpy)2+3 -labeled oligonucleotide is strongly quenched by the Cy5-labeled

complementary strand. The hybridization with a nonlabeled complementary or

a labeled noncomplementary strand did not change the intensity of the ECL

signal. These results suggest that static quenching and/or electron transfer are

the most likely quenching mechanisms. Since these two mechanisms are not

mutually exclusive and can occur simultaneously, it is not possible, at present,

to distinguish between them. From di�erences in photoluminescence and ECL

spectra of the hybridized samples it is clear that LRET did not occur from the

ECL-excited Ru(bpy)2+3 label to the Cy5 label in the present system.

127



References

1. Spehar, A.-M., Koster, S., Kulmala, S., Verpoorte, E., de Rooij, N.,

Koudelka-Hep, M., The quenching of electrochemiluminescence upon oligonu-

cleotide hybridization, Luminescence 19 (2004) 287{295.

2. Cooley, L. F., Headford, C. E. L., Elliott, C. M., Kelley, D. F., Intramolecular

electron transfer in linked tris(2,2-bipyridine)ruthenium(II)diquat complexes,

J. Am. Chem. Soc. 110 (1988) 6673{6682.

3. Ryu, C., Wang, R., Schmehl, R. H., Ferrere, S., Ludwikow, M., Merkert,

J. W., Headford, C. E. L., Elliot, C. M., Photoinduced electron transfer in

linked ruthenium(II) diimine-diquat complexes: linkage dependence, J. Am.

Chem. Soc. 114 (1992) 430{438.

4. Barigelletti, F., Flamigni, L., Balzani, V., Colling, J.-P., Sauvage, J.-P., Sour,

A., Constable, E. C., Thompson, A. M. W., Intramolecular energy transfer

through phenyl bridges in rod-like dinuclear Ru(II)Os(II) terpyridine-type

complexes, J. Am. Chem. Soc. 116 (1994) 7692{7699.

5. Mecklenburg, S., Peek, B. M., W., B., Meyer, T. J., Photoinduced electron

transfer in redox-active lysines, J. Am. Chem. Soc. 113 (1991) 8540{8542.

6. Ward, M., Barigelletti, F., Control of photoinduced energy transfer be-

tween metal-polypyridyl luminopores across rigid covalent, exible covalent,

or hydrogen-bonded bridges, Coord. Chem. Rev. 216-217 (2001) 127{154.

7. Cola, L. D., Belser, P., Photoinduced energy and electron transfer processes

in rigidly bridged dinuclear Ru/Os complexes, Coord. Chem. Rev. 177 (1998)

301{346.

8. Wilson, G. J., Sasse, W. H. F., Mau, A. W.-H., Singlet and triplet energy

transfer processes in ruthenium(II)bipyridine complexes containing covalently

bound arenes, Chem. Phys. Letters 250 (1996) 583{588.

128



9. Maliwal, B., Grynzynski, Z., Lakowitz, J. R., Long-wavelength long lifetime

luminophors, Anal. Chem. 73 (2001) 4277{4285.

10. Lakowicz, J. R., Piszczek, G., Kang, J. S., On the possibility of long-

wavelength long-lifetime high-quantum-yield luminophores, Anal. Biochem.

288 (2001) 62{75.

11. Youn, H., Terpetschnig, E., Szmacinski, H., Lakowitz, J. R., Fluorescence

energy transfer immunoassay based on a long-lifetime luminescent metal-

ligand complex, Anal. Biochem. 232 (1995) 24{30.

12. Augustin, C. M., Oswald, B., Wolfbeis, O. S., Time resolved luminescence

energy transfer immunobinding study using a ruthenium-ligand complex as

a donor label, Anal. Biochem. 305 (2002) 166{172.

13. Kurner, J. M., Klimant, I., Krause, C., Pringsheim, E., Wolfbeis, O. S., A

new type of phosphorencent nanospheres for use in advanced time-resolved

multiplexed bioassays, Anal. Biochem. 297 (2001) 32{41.

14. Augustin, C., Ruthenium-ligand complexes as luminescent probes for polari-

sation and energy transfer systems, Ph.D. thesis, University of Regensburg

(2001).

15. Richter, M., Bard, A. J., Kim, W., Schmehl, R. H., Electrogenerated chemi-

luminescence. 62. Enhanced ECL in bimetallic assemblies with ligands that

bridge isolated chromophores, Anal. Chem. 70 (1998) 310{318.

16. Sta�lani, M., Hoss, E., Giesen, U., Schneider, E., Hartl, F., Josel, H.-P.,

Cola, L. D., Multimetallic ruthenium(II) complexes as electrocemilumines-

cent labels, Inorg. Chem. 42 (2003) 7789{7798.

17. Zhou, M., Roovers, J., Robertson, G. P., Grover, C. P., Multilabeling bio-

molecules at a single site. 1. Synthesis and characterization of a dendritic label

for electrochemiluminescence assays, Anal. Chem. 75 (2003) 6708{6717.

129



18. Wilson, R., Johannsson, M. K., Photoluminescence and electrochemilumines-

cence of a Ru(II)(bpy)3-quencher dual-labeled oligonucleotide probe, Chem.

Communications 21 (2003) 2710{2711.

19. Fiaccabrino, G. C., de Rooij, N. F., Koudelka-Hep, M., On-chip generation

and detection of electrochemiluminescence, Anal. Chim. Acta 359 (1998)

263{267.

20. Fiaccabrino, G. C., Koudelka-Hep, M., Hsueh, Y. T., Collins, S. D., Smith,

R. L., Electrochemiluminescence of tris(2,2'-bipyridine)ruthenium in water at

carbon microelectrodes, Anal. Chem. 70 (1998) 4157{4161.

21. B.Valeur, Molecular uorescence: principles and application, Wiley-VCH

Verlag 2001.

22. Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., von

Zelewsky, A., Ru(II) polypyridine complexes: photophysics, photochemistry,

electrochemistry and chemiluminescence, Coord. Chem. Rev. 84 (1988) 85{

277.

23. Dietrich, A., Buschmann, V., Mueller, C., Sauer, M., Fluorescence resonance

energy transfer FRET and completing processes in donor-acceptor substi-

tuted DNA strands: a comparative study of ensemble and single-molecule

data, Rev. Molecular Biotech. 82 (2002) 211{231.

24. Torimura, M., Kurata, S., Yamada, K., Yokomaku, T., Kamagata, Y., Kana-

gawa, T., Kurane, R., Fluorescence-quenching phenomenon by photoinduced

electron transfer between a uorescent dye and a nucleotide base, Anal. Sci.

17 (2001) 155{160.

25. Dennany, L., Foster, J., Rusling, J., Simultaneous direct electrochemilumines-

cence and catalytic direct voltammetry detection of DNA in ultrathin �lms,

J. Am. Chem. Soc. 125 (2003) 5123{5128.

26. Marras, S. A. E., Kramer, F. R., Tyagi, S., E�ciencies of uorescence res-

onance energy transfer and contact-mediated quenching in oligonucleotide

probes, Nucleic Acids Res. 30 (2002) 1{8.

130



8. ECL applications in PDMS-based analytical

microsystems

The fabrication of a microuidic chip of PDMS and glass for electrochemical or

ECL detection is described. A carbon �ber working electrode was integrated with

a Pt counter and pseudoreference electrodes into a microuidic chip. Guanosine

was used as model analyte. The electrokinetic properties of PDMS microchannels

were determination.1

8.1 Introduction

PDMS is gaining popularity as a material for fabrication of chemical microsystems

due to its transparency, exibility, electrical isolation, and easy bonding to a

number of materials such as another PDMS slide, glass, silicon, silicon dioxide and

silicon nitride.2 An almost unlimited number of PDMS devices can be replicated

from a single master. Because of their exibility, PDMS slides can easily adapt

to the conformational structures of electrodes, thus allowing easy integration of

metal electrodes fabricated on a glass or silicon wafer with a microuidic system

fabricated in PDMS. The main disadvantage of PDMS is its hydrophobicity, which

is caused by its repeating groups, -O-Si(CH3)2. Hydrophobicity makes it di�cult

to �ll PDMS microchannels with aqueous solutions and leads to adsorption and

absorption of biomolecules on the channel walls and into the bulk of PDMS.

These problems can be overcome by performing suitable surface modi�cations.3

Gas permeability of PDMS has been utilized for power-free pumping in PDMS

microchannels.4

As described in Chapter 2, anodic ECL of Ru(bpy)2+3 can be used in two detection

modes: (i) direct ECL detection where the analyte is a coreactant and Ru(bpy)2+3
is present in excess (typically in mM concentration range), (ii) labeling of an

analyte with a Ru(II)-label and using TPA as a coreactant (typically 50-100 mM
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range). The former detection mode has been used to detect amino acids, codeine,

lidocaine, guanine, and oxalic acid, among others. The interest in this method

stems from the fact that it does not require a time-consuming and costly labeling

procedure, but the disadvantage is lack of selectivity. The selectivity problem can

be solved by coupling ECL detection with a separation technique, such as capillary

electrophoresis (CE). The movement of uid in CE is due to the electroosmotic

ow, which is inherently dependent on the surface properties of the separation

channel.

The most common detection method in microchip CE is laser induced uorescence

(LIF), which requires an external excitation source and labeling of the analytes

with a photoluminescent luminophore. The advantage of ECL over uorescence

is that there is no need for an external excitation source. In addition, direct ECL

circumvent the need for analyte labeling. As the sample volumes in microchip

CE systems are very low, in the order of hundreds of picoliters, the detection

method has to be very e�cient. A few �CE-ECL systems based on direct ECL

have been reported.5{7 In a typical case, the analytes (coreactants) are separated

due to their di�erent mobility in a separation bu�er, and Ru(bpy)2+3 is added in

excess (typically in mM concentration range) in a detection reservoir. Addition

of a relatively large and charged molecule to a separation bu�er is di�cult, due

to its inuence on EOF and adsorption on channel walls.

Electrokinetic pumping is based on a surface-driven phenomenon which makes it

very suitable for microsystems. Electrokinetic pumping takes advantage of the

surface charge of the microchannel for sample moving and separation of analytes.

Silica-based surfaces become negatively charged at pH values above their pKa

values. Thus, materials like silica, glass, and PDMS can support EOF, but the

magnitude of EOF depends of the density of the surface charge. Rapid bioassays

can be performed in microudic systems. Standard DNA-hybridization assays

and immunoassays rely on di�usion to achieve hybridization or immunoreaction.

Owing to the very small di�usion coe�cients of these molecules, long reaction

times, in order of several hours to overnight, are needed. Miniaturization has
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bene�cial inuence on the hybridization rate due to the reduced mass transfer

distances and proportional increase of initial concentration.8 For these reasons,

it was of interest to investigate the magnitude of EOF in PDMS microchannels.

8.2 Experimental section

All chemicals employed were of analytical grade and obtained from Sigma-Aldrich,

Switzerland.

8.2.1 Fabrication of an ECL microsystem

PDMS structures were manufactured by replica molding, channels in Pyrex were

etched in 10% HF (Section 2.3.6), and Pt electrodes were fabricated by lift-o�

process (Section 2.3.5). Due to nonplanar structures on wafer, the photoresist (AZ

1518) was deposited in thickness of 15 �m. Channel width at the wider section

was 200 �m and at the thinner section 50 �m, while the depth was 15 �m (Figure

8.1). Upon fabrication of PDMS slab for carbon �ber electrodes, the width and

height of the master and depth of the PDMS groove were measured with an Alpha-

Step pro�lometer (KLA-Tencor, San Jose, CA, USA). It was observed that the

PDMS stucture were smaller than the master. The shrinkage of the structures

in lateral direction is up to 20%, and 25-30% in height(based on measurement of

three di�erent structures).

8.2.2 EOF measurement

PDMS/PDMS devices were made by reversibly sealing two PDMS slabs, and hy-

brid PDMS/glass devices by reversibly sealing a PDMS slab with Corning Pyrex

7740 wafer of 100 mm diameter. PDMS channels were formed by replica molding

using a silicon master (Section 2.3.8), and the channel widths were estimated by

scanning electron microscopy. The depths and widths of the master and the chan-
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nels were measured with an Alpha-Step pro�lometer. Cross-sections of PDMS

microchannels were trapezoidal, with a cross-sectional area of 1035.5 �m2 (68 �m

wide across the top, 41 �m across the bottom and 19 �m deep). The channel

lengths of the PDMS/PDMS devices were 6.1 cm and for the PDMS/glass struc-

tures, 5.9 cm. Prior to the measurements, the channels were conditioned with 0.1

M NaOH for at least 60 min, washed with deionized water for 3 min, and ushed

for 10 min with bu�er. The treatment with 0.1 M NaOH was found not to de-

crease the hydrophobicity of native PDMS. The introduction of aqueous solutions

into the PDMS/PDMS channel was facilitated by �rst �lling it with a polar or-

ganic solvent (isopropanol or ethanol).9,10 All the solutions were �ltered with a

disposable 0.45 �m syringe �lter (Semadeni, Switzerland). Data for 50-�m-ID

fused silica capillaries of 70 cm total length that are those taken from a previous

publication.11 A PC-controlled, laboratory built high-voltage power supply and a

program written in LabVIEW (National Instruments, Austin, Texas, USA) was

employed for current monitoring.

8.3 Results and discussion

8.3.1 ECL in a microchannel

One of the distinct advantages of microtechnology is the possibility to fabricate

electrodes from di�erent materials and geometries. Carbon is a particularly inter-

esting material for the detection of bioanalytes because it is less prone to fouling

and has a relatively large potential window. The microfabrication technology for

thin �lm carbon is still at a relatively early development stage, however. Figure

8.1 shows an electrode chip containing a Pyrex channel and Pt electrodes, and,

in the lower part, a bonded device where carbon �ber electrode is positioned in

a PDMS slab (Section 8.2.1).

The exibility of PDMS allows coupling of carbon �ber electrodes with noble

metals. Di�erent electrode materials are suitable for di�erent purposes, and for
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some applications it may be bene�cial to combine several materials. While noble

metal electrodes or thin �lm carbon can be deposited on silicon or glass wafers,

technological limitations do not allow their combination on a single wafer. No-

ble metal electrodes can be fabricated on non-planar surfaces by using two-step

lithography, one step to de�ne the channel, and the second to de�ne the elec-

trodes. Because of its exibility, PDMS can reversibly bond to wafers that are

nonplanar (at least on the order of 100 nm). Use of a master allows fabrication of

PDMS microchannels of di�erent geometry, whereas microchannels in glass are

always semicircular due to the isotropic wet etching of glass. The system shown

Figure 8.1: Microuidic chip with channels fabricated in Pyrex and platinum
electrodes (100 and 200 �m) fabricated in the channel. Carbon �ber (diameter
30 �m) is placed in a groove fabricated in PDMS slab and reversible bonded
with Pyrex. The distance between two platinum electrodes is �xed
lithographically to 200 �m, while the exact position of carbon �ber electrode
depends of the alignment of two slides, however, it is placed between two
platinum electrodes.
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in Figure 8.1 was tested for ECL measurement of guanosine because it is known

to generate ECL from Ru(bpy)2+3
12 and is very important analyte (e.g. GMP,

GDP, and GTP).

Figure 8.2: ECL as a function of guanosine concentration. Conditions: 1 mM
Ru(bpy)2+3 solution in 50 mM phosphate bu�er, pH 7.5. Inset: Cyclic
voltammogram of 1 mM Ru(bpy)2+3 solution in 50 mM phosphate bu�er, pH 7.5
(solid line) and measured on a 30 �m carbon �ber using platinum counter and
pseudoreference electrodes integrated into the microuidic channel. Scan speed
was 100 mV/s. Background is shown as a dashed line.

The inset in the Figure 8.2 shows the cyclic voltammogram of Ru(bpy)2+3 recorded

on a carbon �ber microelectrode integrated into a microchip with platinum counter

and pseudoreference electrodes. Guanosine could be measured as ECL with lin-

ear range extending from 1 to 100 �M. It is important in microuidic systems to

place electrodes close to each other, to insure stable potential. A long distance

between the electrodes in a microchannel is problematic, especially in the low

ionic strength bu�er solutions.
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Both guanosine and guanine can induce ECL of Ru(bpy)2+3 . Guanine is the most

easily oxidized of therefore DNA bases, and many electrochemical DNA deter-

mination methods based on guanine oxidation have been reported.13{17 Guanine

has also been observed to generate ECL.12 Immobilization of probes for oligonu-

cleotide detection is very important. DNA can be immobilized on many di�erent

types of carbon, although carbon �ber is not suitable material for direct immo-

bilization of DNA.18 This becomes feasible, however, through application of a

suitable coating.19 A highly sensitive method for electrochemical DNA detection

was introduced by group of Thorp.13{15 Electrochemical oxidation of Ru(bpy)2+3
catalyses the oxidation of guanine in a DNA chain, and thus considerably higher

guanine oxidation peaks can be achieved by addition of Ru(bpy)2+3 . The general

problem with direct electrochemical as well as ECL for DNA measurement is that

it is mainly suitable for long ssDNA chains because guanine in a hybridized DNA

strand is protected by the double helix.

8.3.2 Determination of EOF in PDMS microchannels

The magnitude of electroosmotic mobility in PDMS microchannels was deter-

mined by the current monitoring method.20 The cathodic reservoir and the chan-

nel were �lled with a bu�er of concentration C, while the anodic reservoir was

�lled with a bu�er of concentration 0:95 C. Upon application of voltage, the more

dilute bu�er penetrates into the channel due to EOF, and a current decrease is

monitored until the channel is completely �lled. The electroosmotic mobility EO

was calculated according to equation:

EO =
L

tE
(8.1)

where L is the channel length (m), E is the applied electric �eld strength (V/m)

and t is the time (s) required to reach a constant current. Measurements were

performed at three di�erent voltages, namely 2000, 3000, and 4000 V. Except for
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the bu�ers with a high ionic strength (Figure 8.4), these voltages are considered

to provide currents that follow Ohm's law. EOF was measured as a function of

ionic strength at constant pH, and as a function of pH at constant ionic strength.

Figure 8.3 shows EOF as a function of pH, determined between pH 4 and 9.2 using

bu�ers with ionic strength of 32.81 mM. The bu�ers employed were composed of

200 mM acetate (pH 4.0), 48.97 mM acetate (pH 5.0), 29.93 mM phosphate (pH

5.8), 24.60 mM phosphate (pH 6.4), 17.52 mM phosphate (pH 7.0), ACES/NaOH

(pH 7.8, c(NaOH)= 32.8 mM) and 17.84 mM tetraborate (pH 9.2). The values

presented are mean values calculated for 4 to 13 determinations.

Figure 8.3: Electroosmotic mobility data determined in PDMS/PDMS
microchannel using bu�ers with an ionic strength of 32.81 mM, and similar data
obtained in a FS capillary of 50 �m ID11 using 40 mM phosphate bu�ers. Solid
lines represent �EO calculated with the silanol dissociation model with a pKa

value of 5.0, a wall mobility value at full ionization and a correction for
adsorption of anions at low pH.
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Values given for pH 4 and 5 are only estimates because measurements were dif-

�cult to perform due to extensive air bubble formation. The data obtained was

compared with data presented in the literature for fused silica.11. Solid lines

represent values calculated with the equation

�EO = �0� + �c (1� �) (8.2)

where �0 is the electroosmotic mobility at full dissociation of silanol, �c is a

corrected mobility for surface charge contributions not originating from the dis-

sociation of the silanol groups, and � is given by the relationship

� = 10(pH�pKa)=
�
1 + 10(pH�pKa)

�
(8.3)

In this equation, � is the degree of ionization of the wall, which varies from 0 to

1, pKa refers to the ionization constant of silanol, and pH is the pH value of the

solution in the channel.11,21 The sigmoidal curve for FS shown in Figure 8.4 was

obtained using a wall pKa of 5 and �0 and �c values of 6.3 x 10�8 m2/Vs and

1.0 x 10�8 m2/Vs, respectively; it is the same as in the ref. 10.11 For purposes

of comparison, the same pKa value was employed for the curve referring to the

PDMS/PDMS microchannel. Corresponding mobilities were 3.0 x 10�8 m2/Vs

and 0.1 x 10�8 m2/Vs, and they were chosen arbitrarily.

Electroosmotic mobilities are a function of the ionic strength of the bu�er.11,21{23

Electroosmotic mobility data determined in PDMS/PDMS and PDMS/glass mi-

crochannels as a function of ionic strength are shown in Figure 8.4. The data was

determined using bu�er containing 100 mMN-(2-acetamido)-2-aminoethanesulfonic

Acid (ACES)/90 mM NaOH at pH 7.8 with an ionic strength of 90 mM and dilu-

tions thereof. Multiple determinations were made (9 � n � 11), and RSD values

were found to range between 2.6 and 9.1 %.
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Compared with fused silica, electroosmotic mobility in PDMS/glass and PDMS/PDMS

microchannels was considerably smaller. It is important to note that in plasma-

oxidized PDMS microchannels electroosmotic mobilities similar to those in glass

microchannels have been reported.10 With 20 mM phosphate bu�er at pH 7 (ionic

strength of 35.25 mM) and PDMS/glass channels, EOF was determined via ap-

plication of electric �eld strengths between 300 and 800 V/cm. The obtained

value of about 4 x 10�8 m2/Vs compares well with those given in Figure 8.3. For

this con�guration, RSD values for multiple runs performed in the same chip were

<6% (n=4) and up to 10% for runs in three di�erent chips.

Figure 8.4: Electroosmotic mobility as a function of ionic strength monitored
in ACES bu�ers. Values were obtained at 2-4 kV in the PDMS/PDMS and
PDMS/glass microchannels and at 10 kV in the fused silica capillary of 50 �m
ID.11
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8.4 Feasibility of CE-ECL

To date, the most e�cient coreactant for generation of ECL of Ru(bpy)2+3 is

TPA,24 which makes label-based ECL a far more sensitive detection method than

direct ECL. The only amino acid known to generate su�ciently strong ECL for

real-world analytical applications is proline. Of the four DNA bases, only guanine

generates ECL, though owing to its electrochemical activity it can also be detected

by electrochemical methods. The most useful applications of direct ECL are the

detection of various drug molecules, such as codeine and lidocaine, which are not

easily detected by other methods. It can be expected that other new applications

will be found.

In ECL bioassays where Ru(bpy)2+3 derivatives are used as labels, TPA is used

as a coreactant in a concentration range 0.1-0.3 M. Owing to the basic character

of TPA, a bu�er with strong bu�ering capacity, typically 0.2-0.3 M phosphate, is

necessary for e�cient ECL generation. This requirement is contrary to that for

the EOF, whose magnitude is inversely proportional to the ionic strength. Thus,

CE-ECL with Ru(bpy)2+3 -labeled biomolecules cannot be readily envisaged.

8.5 Conclusions

PDMS is well suited for the fabrication of channel structures. Shrinkage of cured

PDMS with respect to the master was observed, in lateral direction up to 20%,

and in height 25-30%. The exibility and easy bonding of PDMS with di�erent

materials allows realization of various kinds of chemical microsystems and the

combination of di�erent electrode materials otherwise di�cult to combine.

Under all conditions examined in this study, PDMS/PDMS and PDMS/glass

microchannels exhibited an EOF towards the cathode. Compared with fused

silica, EOF in PDMS/PDMS and PDMS/glass microchannels is signi�cantly (50-

70%) lower, and the EOF in a PDMS/glass device is somewhat higher than in a
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PDMS/PDMS channel. With respect to the ionic strength and pH dependence

of the EOF, there is great similarity between the data obtained in native PDMS

microchannels and FS capillaries. These data support the assumption that silica

�llers in native PDMS are acting as source of surface charge and thus of EOF.11

Air bubble formation was much more pronounced at acidic than at basic pH

values, and channel conditioning was found to be very important for obtaining

a stable current and to prevent bubble formation. Conditioning of new devices

for several hours and chips that are not used for several days is strongly rec-

ommended. At pH 6:4, reproducibility of EOF was found to be satisfactory for

chemical analysis; however, at pH values < 6.4, the EOF in PDMS/PDMS and

PDMS/glass channels is rather weak and so unstable that it has to be controlled

via application of a suitable coating.25,26

Coupling of ECL detection with CE separation appears challenging. Di�erent

separation and detection bu�ers would be required, adding an additional level of

complexity to the system. However, the use of microuidic systems to increase the

speed of biorecognition reaction with separate ECL detection seems reasonable.
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9. Summary and outlook

9.1 Anodic ECL vs. cathodic HECL

The two ECL methods studied in this work are very di�erent: anodic ECL is

based on traditional electrochemistry, while HECL is a novel physicochemical

technique. The main advantage of anodic ECL of Ru(bpy)2+3 and its derivatives

is that they undergo reversible redox reactions and the same label can be recycled

many times. In addition, a large number of analytes, such as various amine-

containing compounds, oxalic acid, and guanine, can be detected directly, thus

circumventing the need for labeling. A drawback of anodic ECL is its strong

dependence upon pH, ionic strength and the presence or absence of surfactants.1

HECL intensity is largely independent of pH, but depends on the thickness of

the insulating �lm. A large number of luminophores having di�erent redox and

luminescence properties as well as di�erent luminescence lifetimes can be excited

using the HECL method, enabling both time and wavelength discrimination in

detection. Many di�erent luminescent molecules and chelates can be excited si-

multaneously using HECL. HECL luminophores are mainly used as labels, but

some coreactants, such as hydrogen peroxide, peroxodisulfate and peroxodiphos-

phate can be determined using HECL.2

The results presented in this work demonstrate that both types of ECL are suit-

able for heterogeneous oligonucleotide hybridization assays. E�cient oligonu-

cleotide assays require immobilization and subsequent suitable surface modi�ca-

tion in order to achieve high surface density of immobilized probes, controlled

orientation, and e�cient hybridization. Amino-modi�ed probes were used in

all described assays. Immobilization on gold electrodes was achieved using car-

boxylic acid terminated SAM thiol, which allowed EDC/NHS coupling of probes.

On oxide-coated aluminum and silicon electrodes immobilization was performed

using a deposited aminoterminating silane layer, which allowed cross linking of
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two amino groups with PDC cross-linker. Oligonucleotide-modi�ed surfaces were

characterized in all cases, and the results indicate that probe density on the order

of 1012 molecules/cm2 was achieved.

Oligonucleotides labeled with bis(2,2'-bipyridine)-5- isothiocyanato-1,10-phenan-

throline ruthenium(II) complex were used as luminophores for hybridization de-

tection by anodic ECL (Chapter 3) and cathodic HECL (Chapter 5). With anodic

ECL, hybridization could be detected down to probe concentration of 1 x 10�9

M, and with cathodic HECL down to 1 x 10�10 M. These results are not directly

comparable, however, due to the considerably di�erent surface areas of the work-

ing electrodes, which were 0.20 mm2 in anodic ECL measurement and 63 mm2 in

HECL measurement. Another di�erence in the results arises from the di�erent

measurement system and detector response: in anodic ECL a short pulse was

applied and ECL peak intensity was taken, while in cathodic HECL over 1000

pulses were applied and the area of the HECL signal was integrated. Two base

pair mismatch detection was achieved in both cases. Electric �eld- aided mis-

match hybrid denaturing was performed in connection with anodic ECL, while

traditional washing steps were performed in case of cathodic HECL detection.

In summary, the results in the present work show the great potential of ECL

methods for bioa�nity assays. In anodic ECL, electrodes of micrometer size were

microfabricated, whereas in cathodic HECL, the electrode were of millimeter size

and microfabrication methods were used for the growth of ultrathin oxide �lms.

Microfabrication technologies are promising for the large-scale production of low-

cost devices for ECL-based point-of-care devices and biosensors, where disposable

devices are needed to avoid contamination risk. The combination of silicon, glass,

and polymeric materials allows cheap fabrication of large numbers of microdevices

for bioanalytical applications based on ECL detection.
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9.2 Outlook

As described in Chapter 3, the electrode potential can be controlled to increase

selectivity toward mismatches. For the future, inuence of the electric �eld on

immobilization and hybridization rates and oligonucleotide orientation should be

investigated as this could provide a powerful tool for the reduction of assay times.

With the described HECL-based hybridization assays, interesting results in terms

of detection limits and sensitivity were achieved with large electrodes. Future

work should investigate the scalability of HECL detection on electrodes of con-

siderably smaller size, with the goal of achieving high-throughput measurements.

Another important issue to be investigated is the quantitative e�ect of an applied

detection potential on immobilized strands and deposited silane layer. The disad-

vantages of traditional, passive bioa�nity reactions are the long incubation times

needed due to the di�usion- limited reactions and large di�usion coe�cients of

biomolecules. A combination of microuidic elements with a detection system in

order to enhance mass transport can reduce reaction times from hours to minutes.

Both types of ECL can be applied for detection in various stages of ow sepa-

ration analysis, especially in their miniaturized versions. Anodic ECL based on

direct label-free detection has already been coupled to �CE separation systems.

Microfabrication allows easy fabrication of micrometer-size electrodes for detec-

tion of separated analytes. Coupling of CE to label-based anodic ECL may be

of interest due to the lower detection limits. In this case, high concentration of

coreactant, TPA, could be placed into a detection reservoir since its addition to

a separation bu�er is challenging when the bu�er must of high bu�ering capac-

ity. Disposable HECL-based immunosensors with integrated detection electrode

coupled to a PDMS microchannel can be envisaged. The electrode could be a

relatively large oxide-coated piece of Si or Al. Other electrode materials could

also be considered. Microuidic connections could easily be fabricated in PDMS

and bonded to the electrode. The surface of the microchannel would de�ne the

active area of the electrode, circumventing the need for an additional photolitho-

graphic step. Capturing biomolecules should be patterned at a predetermined
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place by photopatterning or in a microuidic side channel. A device prepared

in this way could be stored several months in dry conditions. Upon sample in-

jection, immunometric reaction would take place and an HECL-based response

could be measured with a relatively simple photodetector equipped with suitable

electronics and a counter electrode.
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