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Evaluation of Smagorinsky-based subgrid-scale models
in a �nite-volume computation
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SUMMARY

Smagorinsky-based models are assessed in a turbulent channel �ow simulation at Reb = 2800 and
Reb = 12 500. The Navier–Stokes equations are solved with three di�erent grid resolutions by using a
co-located �nite-volume method. Computations are repeated with Smagorinsky-based subgrid-scale mod-
els. A traditional Smagorinsky model is implemented with a van Driest damping function. A dynamic
model assumes a similarity of the subgrid and the subtest Reynolds stresses and an explicit �ltering
operation is required. A top-hat test �lter is implemented with a trapezoidal and a Simpson rule. At
the low Reynolds number computation none of the tested models improves the results at any grid level
compared to the calculations with no model. The e�ect of the subgrid-scale model is reduced as the
grid is re�ned. The numerical implementation of the test �lter in�uences on the result. At the higher
Reynolds number the subgrid-scale models stabilize the computation. An analysis of an accurately re-
solved �ow �eld reveals that the discretization error overwhelms the subgrid term at Reb = 2800 in the
most part of the computational domain. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: large-eddy simulation; subgrid-scale model; channel �ow; �nite-volume method

1. INTRODUCTION

In large-eddy simulation, the �ow is divided into two size-dependent parts. The large-scale
motion is sensitive to the boundary conditions and it is solved from the governing equa-
tions, whereas the small-scale motion is modelled. Smagorinsky [1] derived an eddy viscosity
subgrid-scale model based on a Boussinesq approximation. Deardor� [2] computed a fully
turbulent channel �ow by using the Smagorinsky model. In order to avoid the excessive
damping, he lowered the Smagorinsky constant in the model to the value of 0.1 from 0.17,
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which is obtained theoretically by assuming the inertial range dynamics. Moin and Kim [3]
applied a van Driest damping function to reduce the near-wall viscosity even further. The
Smagorinsky model is absolutely dissipative and it is based on resolved strains. With gradi-
ent �ows, non-zero residual stresses are predicted even for laminar �ows. Piomelli et al. [4]
modi�ed the length-scale by adding an intermittancy function to turn o� the model during the
early stages of transition. Germano et al. [5] introduced a model that computed the coe�-
cient as the calculation progresses. The model introduces a coarser test �lter, and the subgrid
stresses and the subtest stresses are modelled with the Smagorinsky model. The model pro-
vides a mechanism for the backscattering of energy from the small eddies to the large ones
and it can adjust to the local �ow. In a channel �ow, a proper asymptotic behaviour near the
wall was obtained and a transition from laminar to turbulent compared well with �nely re-
solved direct numerical simulation (DNS). No ad hoc damping functions were needed. Lilly
[6] suggested solving the dynamic coe�cient by using a least-square method. Piomelli [7]
extended the Reynolds number up to 47 100 (based on the centre-line velocity) and obtained
good results with modest grid sizes, although the computations were resolved to the wall.
Most of the large-eddy simulations over the past years have been performed by using spectral
methods, where the idea of �ltering is realized ideally. Computations of �ows in complex
domains, frequent cases in engineering applications, are di�cult to solve by employing the
spectral methods, and are usually performed with �nite-di�erence or �nite-volume methods.
Balaras et al. [8] studied high-Reynolds-number channel �ows with dynamic model combined
with a di�erence method. They applied approximate boundary conditions and were able to
obtain good results with coarse grids. Najjar and Tafti [9] studied the discrete test �lters at
a low Reynolds number Re� = 180. They found that a high-order test �lter produced a lower
turbulent viscosity than a top-hat test �lter. This dynamic procedure also sensed dissipative
upwind-biased scheme and adjusted the dynamic constant accordingly. However, in their con-
clusion they were not convinced that inclusion of the SGS model would always produce better
results in �nite-di�erence approximations. The reason for this is due to numerical errors rather
than due to the model itself, they concluded. Najjar and Tafti [10] studied the e�ect of the
grid resolution in the channel �ow simulation at a higher Reynolds number, Re� = 1050. The
coarse grid simulation predicted too low wall stresses and the core velocities were too high.
They concluded that a coarse grid could not capture the energy-producing near-wall structures.
The application of the test �lter in all the directions (i.e. also in the inhomogeneous direction)
decreased the SGS stresses. Sagaut et al. [11] computed the channel �ow with various self-
adaptive SGS models combined with a �nite-di�erence scheme at Re� = 180 and Re� = 400.
A general trend was that the addition of the SGS models decreased the wall stress.
In this study, a fully turbulent channel �ow at Reynolds numbers 2800 and 12 500 (based on

the bulk velocity) is the test case in the study of large-eddy simulation with a co-located �nite-
volume technique. The results from simulations with the constant and the dynamic Smagorin-
sky SGS models are compared to a non-modelled simulation. The e�ect of the grid resolution
on the results is studied with and without the SGS model. The discrete test �lter is imple-
mented according to the trapezoidal rule and Simpson rule in the dynamic model.
In the next section, the governing equations and the models are presented. In Section 3, the

numerical methods and implementations are described. In Sections 4 and 5, the characteristics
of the test cases are described and the results are discussed. In Section 6, an instantaneous
�ow �eld of a very �ne grid simulation is analyzed in order to study the discretization error
present in the large eddy simulations. The conclusions are drawn in Section 7.
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2. GOVERNING EQUATIONS

Incompressible and isothermal Navier–Stokes equations are written in tensorial notations

@ui
@xi

= 0 (1)

@ui
@t
+
@uiuj
@xj

= −1
�
@p
@xi

+ �
@2ui
@xj@xj

(2)

where i and j = 1; 2 and 3 correspond to x; y and z. A repetition of the index within the term
stands for a summation convention, ui is the velocity in the i-direction, p is the pressure, �
is the density and � is the kinematic viscosity �=�. Equations for large-eddy simulation are
derived by �ltering the Navier–Stokes equations in space. The �ltering operation is de�ned
by

�f(r; t) =
∫
V
G(|r− r′|)f(r′; t) dr′ (3)

where V is the volume of �ltering and G is the �lter function, which must satisfy the
normalization condition ∫

V
G(|r− r′|) dr′ = 1 (4)

The length of the �lter � divides the length-scales are resolved large ones and subgrid-scale
(SGS) ones. After applying the �ltering operation we obtain from Equations (1) and (2)

@ �ui
@xi

= 0 (5)

@ �ui
@t
+
@ �ui �uj
@xj

= −1
�
@ �p
@xi

− @�i;j
@xi

+ �
@2 �ui
@xj@xj

(6)

where the incompressible form of the SGS stresses is written as

�ij = uiuj − �ui �uj (7)

SGS stresses interact between the resolved (grid) scales and the unresolved (subgrid) scales.
Equations (5) and (6) are often produced implicitly by the discretization and no explicit �lter-
ing is usually carried out in solving them. A �nite-volume or a �nite-di�erence dicretization
involves a top-hat �lter, which is written in one dimension as

G(x − x′) =


1
�
; if |x − x′|6 �

2
;

0; otherwise
(8)

In order to solve the large-eddy Equations (5) and (6), the SGS stresses (7) must be modelled.
The SGS model removes the energy from resolved scales mimicking the dissipative scales
that are solved inaccurately. Probably the most widely used SGS model is the Smagorinsky
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model [1], which is an eddy viscosity model based on the Boussinesq approximation of the
form

�ij − �ij
3
�kk = −2�T �Sij = −2C�2| �S| �Sij (9)

which relates subgrid-scale stresses �ij to the eddy viscosity �T and the resolved-scale strain
rate tensor

Sij =
1
2

(
@ui
@xj

+
@uj
@xi

)
: (10)

Above, | �S| =
√
2 �Sij �Sij is the magnitude of the strain tensor, and the length scale � is

computed as (�x1�x2�x3)1=3, where �xi is the grid spacing in the i-direction. A value of
0.17 for the constant Cs can be justi�ed on a theoretical basis; however, in a channel �ow
Deardor� found that a smaller value 0.1 is better [2]. Furthermore, in the vicinity of the walls,
the eddy viscosity must be reduced. This is usually carried out with the van Driest damping
function:

�T =
[
Cs(1− e−y+=25)�

]2
| �S| (11)

Germano et al. [5] presented a dynamic SGS model, where model coe�cients are calculated
during the simulation. This is based on the application of two di�erent �lters. In addition to
the grid �lter G, a test �lter Ĝ is applied. The test �lter width �̂ is larger than the grid �lter
width �, usually �̂ = 2�. The grid �lter and the test �lter are applied to the momentum
equations (2) to obtain the following equation:

@ �̂ui
@t
+
@ �̂ui �̂uj
@xj

= −1
�
@ �̂p
@xi

− @Tij
@xi

− � @2 �̂ui
@xj@xj

(12)

where subset stresses are given by

Tij = ûiuj − �̂ui �̂uj: (13)

The test �lter is now applied to the grid-�ltered equations (6)

@ �̂ui
@t
+
@ �̂ui �̂uj
@xj

= −1
�
@ �̂p
@xi

− @�̂ij
@xi

− @Lij

@xi
+ �

@2 �̂ui
@xj@xj

(14)

Lij = �̂ui �uj − �̂ui �̂uj (15)

Using Equations (12) and (14), the expression for Lij can be written as

Lij = Tij − �̂ij : (16)

Equation (13) represent the subtest-scale stresses whose length-scale is less than the subtest
�lter width �̂. Equation (16) represent then the resolved turbulent stresses by the scales
between the grid �lter width � and the subtest �lter width �̂. Both �ij and Tij are modelled
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by the same functional form of the Smagorinsky model:

�ij − �ij
3
�kk = −2C�2| �S| �Sij = −2C�ij (17)

Tij − �ij
3
Tkk = −2C�̂2| �̂S| �̂Sij = −2C�ij (18)

Substitution of stresses (17) and (18) into Equation (16) with the assumption of a slow
variation of C(C(x; y; z; t) ≈ Ĉ(x; y; z; t)) gives

Lij − �ij
3

Lkk = −2C
(
�̂
2| �̂S| �̂Sij − �2| �̂S| �Sij

)
(19)

In order to solve the set of equations for C in Eq. (19), Lilly [6] proposed solving
Eq. (19) in the least-square sense. The error

Q =
(
Lij − �ij

3
Lkk − 2CMij

)2
(20)

where

Mij =
(
�̂
2| �̂S| �̂Sij − �2| �̂S| �Sij

)
(21)

is minimized by requiring @Q=@C = 0, which gives

C(x; y; z; t) = − LijMij

2MijMij
(22)

The numerator LijMij can have both positive and negative values. This indicates that the
model can account for the backscatter of the turbulent energy, i.e. the energy is transferred
from the small eddies to the large eddies. This happens in real �ows locally at some instants
of time although the long time-average energy transport is from the large eddies to the small
eddies. The non-positive viscosity hence produced tends to cause a numerical instability or
even a singularity. In a turbulent channel �ow, it is a common procedure to average the
denominator and the numerator in homogeneous directions [5, 8, 9]

C(y; t) = − 〈LijMij〉xz
2〈MijMij〉xz (23)

3. NUMERICAL METHODS

3.1. The �ow solver

The equations governing incompressible and isothermal Navier–Stokes �ow are turned into a
conservative form ∫

S
�V · n dS = 0 (24)
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@
@t

∫
V
�u dV +

∫
S

[
�uV · n+ pnx − �

(
nx
@u
@x
+ ny

@u
@y
+ nz

@u
@z

)]
dS =0

@
@t

∫
V
�v dV +

∫
S

[
�uV · n+ pny − �

(
nx
@v
@x
+ ny

@v
@y
+ nz

@v
@z

)]
dS =0

@
@t

∫
V
�w dV +

∫
S

[
�wV · n+ pnz − �

(
nx
@w
@x
+ ny

@w
@y
+ nz

@w
@z

)]
dS =0

Above, n = nxi+ nyj+ nzk is a unit normal of the control volume face. The convection and
di�usion terms are discretized with the second-order accurate Adams–Bashford scheme with
respect to time, whereas the pressure is discretized with a �rst-order accurate Euler scheme:

�Vn+1ijk = �Vnijk +
�t
2Vijk

(3Rnijk −Rn−1ijk )−
�t
Vijk

∑
faces

(pS)n+1 (25)

where Rijk contains the convective and di�usive part. This method is the simplest multi-
step method [12]. To compute Equation (25) a fractional-step approach is applied [13]. The
computation is advanced in two parts:

�V∗
ijk = �V

n
ijk +

�t
2Vijk

(3Rnijk −Rn−1ijk ) (26)

�Vn+1ijk = �V∗
ijk −

�t
Vijk

∑
faces

(pS)n−1: (27)

For the latter equations, the mass balance is required for the control volume Vijk . By perform-
ing the surface integral over the faces of the volume, a Poisson equation for the pressure is
obtained.

AW;ijkpi−1k + AE;ijkpi+1jk + AS;ijkpij−1k + AN;ijkpij+1k

+AB;ijkpijk−1 + AT;ijkpijk+1 + AP;ijkpijk =
∑
faces

(�V∗ · S)

Ap = b (28)

where the coe�cients in A are given by Majander [14]. The computation is started with an
initial guess, which is used for both previous steps. Intermediate velocities V∗ are computed
and interpolated to the cell faces to calculate the mass balance.
The Poisson equation (28) is iterated for the pressures with an algebraic multigrid solver

until the residual

L2(p) =

√
(Ap− b)2√

b2
(29)

is reduced below 10−3. This limit was found stringent enough to produce accurate results
[14]. Finally, the new velocities can be corrected from Equation (27) to obtain the result at
the new time step. Notice that no dissipation in the mass balance computation is used.
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Figure 1. Trapezoidal and Simpson �lters in three dimensions.

3.2. Numerical test �lters

The �ltering operation in one dimension over equidistant points a, b and c is de�ned as an
integral

f(b) =
∫ c

a
G(b− x′)f(x′) dx′ (30)

The top-hat �lter is then

G(b− x) = 1
c − a if |b− x|6 c − a

2

G(b− x) = 0 if |b− x|¿ c − a
2

(31)

Let us consider a numerical integration using three points a, b and c. The trapezoidal rule
leads to the following second-order accurate trapezoidal �lter [12]

f(b) = 1
4 [f(a) + 2f(b) + f(c)] (32)

Application of the �fth-order accurate Simpson quadrature leads to the following fourth-order
�lter [12]

f(b) = 1
6 [f(a) + 4f(b) + f(c)]: (33)

In two and three dimensions, the �lters can be applied in series in each dimension. The
three-dimensional �lters thus obtained are illustrated in Figure 1.

4. CHANNEL FLOW AT REYNOLDS NUMBER = 2800

The �rst test case is a fully developed turbulent �ow in a channel with a bulk Reynolds
number of 2800 de�ned as

Reb =
Ub�
�
= 2800 (34)
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Figure 2. The computational domain in the channel �ow. Periodic boundary conditions are applied in the
streamwise (x) and the spanwise directions (z). Solid walls restrict the inhomogeneous direction (y).

where Ub is the bulk velocity and � is half of the channel height H . This approximately
equals a wall shear velocity based Reynolds number

Re� =
u��
�
= 180 (35)

where u� =
√
�w=� is the wall shear velocity and �w is the wall shear stress. In these

simulations the parameters have the following values: H = 1m, Ub = 1m=s and v =
1:786 × 10−4 m2=s. Figure 2 shows a schematic picture of the channel. Periodic boundary
conditions are applied in the steamwise and in the spanwise directions, where the lengths
of the domain are 3:2H and 1:6H , respectively. These distances are actually half of those
used by Kim et al., in their direct numerical simulation [15]. They utilized a spectral method
and 192 × 129 × 160 grid points in the x-, y- and z-directions, respectively. In the wall-
normal direction, 64 cells are used and the height of the two closest cells next to the walls
is y+ = 1 in dimensionless units. This height can be approximated from the logarithmic
law

Ub
u�
=
1
	
ln

(
u��
�

)
+ B− 1

	

=
1
	
ln

(
Ub�
�

u�
Ub

)
+ B− 1

	

(
2
cf

)1=2
=
1
	
ln

[
Reb

(cf
2

)1=2]
+ B− 1

	
(36)

where the following relation has been used:

Ub
u�
=

(
2
cf

)1=2
(37)
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Table I. The parameters of the grids used.

Grid Nx Ny Nz �x+ �y+min �y+max �z+

Coarse 16 64 16 71 1.0 16.8 36
Medium 32 64 32 36 1.0 16.8 18
Fine 64 64 64 18 1.0 16.8 9

Here, cf is the skin-friction coe�cient, which can be solved from Equation (36) after intro-
ducing the values 	 = 0:41 and B = 5:0. Hence, u� is solved from Equation (37) and the
dimensional distance from the wall in terms of y+ can be solved from

yn =
y+�
u�

(38)

The stretching ratio of the cells is 1.10 in the wall direction. The cell height next to the centre-
line is 16:8�y+min. Calculations are carried out with three di�erent grids, whose streamwise
and spanwise cell densities vary. The parameters are given in Table I. The streamwise length
of the box in dimensionless units is approximately 1140�x+. The periodic boundary condition
is set for all the variables. The pressure �eld is divided into two �elds. A periodic �eld is
solved from the Poisson equation just as in the spanwise direction. The bulk velocity is kept
constant with a PID controller by adjusting a time-dependent gradient �eld, which is added
to the streamwise convective �ux in Equation (26). The controller is de�ned as

e= (ṁset − ṁout)=ṁset

�pn+1 =�pn + Kpe+ KI
∫ Tn

Tn−Tl
e dt + KD

de
dt

(39)

where e is the relative mass �ow error and �p is the pressure di�erence driving the
�ow. TI = 10�t is the integration time. After some experiments the coe�cients were set as:
KP = 100, KI = 10=TI = 1=�t, and KD = 20�t. The variation of the relative mass �ow is
of the order of 10−6 as the �ow has developed.

4.1. Simulations with no Subgrid-Scale Model

The initial velocity pro�le for the simulation is

Uini = Ub(1− cos(4
y=H)): (40)

The �ow seems to �nd a false steady solution, unless it is provoked with an initial condition
that produces a lot of vorticity. This causes an earlier transition to turbulence and reduces the
simulation time. The simulations with the coarse, medium and �ne grids are called simulation
1, simulation 2 and simulation 3, respectively. The CFL numbers are 0.1, 0.1 and 0.2 in sim-
ulation 1, 2 and 3, respectively. The corresponding time-step sizes are then 0:008T , 0:0048T
and 0:0058T , where T = H=Ub. In other words, the numbers of time steps for a bulk mass
to pass the channel length are 400, 670 and 550, respectively. With simulation 1, the data
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Figure 3. The dimensionless Reynolds stress wrms=u� after averaging during 1900T
along one line and 500T on the whole xz-plane.

acquisition is tested. The average of velocity ui is collected continuously as

�ui;m = [(m− 1) �ui;m−1 + ui;m]=m (41)

where m is the number of the averaged instants. The averaged values of the Reynolds stresses
are recorded in a similar manner:

u′i;m = ui;m − �ui;m

u′iu′jm =
[
(m− 1)u′iu′jm−1

+ (ui;m − �ui;m)(uj;m − �uj;m)
]
=m (42)

where m is the number of the averaged instants. Since there are two homogeneous directions
present, the data can be collected at each line normal to the walls and averaged at each time
step. In more complex �ows, this is hardly the case and the mean data has to be collected along
one line. The upper and lower halves of the channel are collected separately in both cases.
The single-line data collection was started at t = 100T and it was continued until t = 2000T .
As the averaging was done over the plane, it was stopped at t = 600T . As expected, with the
latter method the Reynolds stresses converge faster, as seen in Figure 3. All the following
computation utilized data collection over the whole xz-plane. The mean skin friction coe�cient
cf = 8:18×10−3 is from the DNS conducted by Kim et al. [15], hereafter denoted by KMM.
Simulation 1 underpredicts cf by 18% giving cf = 6:70× 10−3 as an average. Simulation 2
underpredicts the mean cf = 7:86×10−3 by 4%, while simulation 3 yields an accurate result,
cf = 8:20 × 10−3. The dimensionless velocity pro�les are shown in Figure 4. Simulation 1
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SMAGORINSKY-BASED SUBGRID-SCALE MODELS 745

Figure 4. The dimensionless velocity pro�les.

Figure 5. The kinetic energy normalized by the shear velocity k=u2� .

does not predict as proper logarithmic region as simulation 2 does, although it does show
some o�set to the reference result. Simulation 3 coincides with the pro�le of KMM. Figures
5 and 6 present the Reynolds-averaged kinetic energy of turbulence normalized by the shear
velocity; k=u2� = u

′
iu

′
i =2u

2
� , and by the bulk velocity; k=U

2
b = u

′
iu

′
i =2U

2
b , respectively. It can be
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Figure 6. The kinetic energy normalized by the bulk velocity k=U 2
b .

Figure 7. The rms �uctuations of u:
√
u′u′=Ub.

observed that the normalization by the shear velocity somewhat exaggerates the di�erences
between the results, since u� varies between the simulations. As the grid becomes �ner, u�
increases. Therefore, the rest of the results are mainly normalized by the bulk velocity.

Figures 7–10 show the resolved rms �uctuations;
√
u′iu′ij=Ub, and the normalized Reynolds

stress u′v′=U 2
b .
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Figure 8. The rms �uctuations of v:
√
v′v′=Ub.

Figure 9. The rms �uctuations of w:
√
w′w′=Ub.

The computations with the coarse and the medium grid overpredict the peak of the kinetic
energy and underpredict the wall stress. The reason for this is likely an inadequate grid resolu-
tion. If the near-wall �ow structures are not properly resolved, the e�ective shear stress on the
wall is reduced. The �uctuations normal to the wall are underpredicted, which decreases the
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748 P. MAJANDER AND T. SIIKONEN

Figure 10. The dimensionless Reynolds stress u′v′=U 2
b .

momentum transfer between the wall and the core �ow. The dominant streamwise �uctuations
grow and so does the resolved turbulent kinetic energy.
The �ne-grid simulation predicts all the monitored quantities quite well, so it probably

catches most of the eddies present in the �ow. In this case, the largest deviations of the
turbulent �uctuations are located in the core �ow, when compared to the KMM results. The
grid spacings are stretched geometrically in the wall-normal direction, which increases the cell
sizes probably too much in the middle of the channel (Table I).

4.2. Simulations with subgrid-scale models

The channel �ow computations are repeated with two di�erent SGS models, a constant and
a dynamic Smagorinsky model. The constant Smagorinsky model employs the van Driest
damping function of Equation (11)

�T =
[
Cs(1− (e−y+=25))�

]2
| �S|:

The value of Cs is 0.1 and the length-scale � = (�x1�x2�x3)1=3 = V 1=3. The dynamic model
computes the constant from Equation (22), after which it is averaged in the homogeneous x-
and z-directions as in Equation (23):

C(y; t) = − 〈LijMij〉xz
2〈MijMij〉xz

As discussed in Section 2, the dynamic model needs the velocity �eld and the related quanti-
ties at two resolution levels. Two di�erent �ltering formulas are used, trapezoidal and Simpson
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Figure 11. The dimensionless velocity pro�les from the coarse-grid simulations.

�lters, which are presented in Figure 1. In the following, the trapezoidal and Simpson im-
plementations of the dynamic models are denoted as ‘T ’ and ‘S’. The �ltering operation is
done in all the three dimensions and no special treatment is used in the cell next to the solid
surface. The total viscocity is restricted from being negative:

�tot = max(�+ �T ; 0) = max(v+ C(y; t)�2| �S|; 0) (43)

This limitation allows a backscattering e�ect whose magnitude is that of a molecular viscosity.
The eddy viscocity is calculated after the pressure and the velocities have been solved at each
time step.
The computations are initialized by the previous solutions with no SGS model. The time

of the modelled coarse grid computations in 400T . In Figures 11 and 12, the velocity pro-
�les and the resolved kinetic energy from the simulations with the coarse grid are shown,
respectively. In Figure 13 the resolved kinetic energy has been normalized by the shear ve-
locity, which notably emphasizes the di�erences between the simulations. Also, the peak of
the kinetic energy seems to have grown with the SGS models, whereas Figure 12 shows the
opposite.
The corresponding normalized Reynolds stresses are shown in Figures 14–17. The additional

turbulent viscosity laminarizes the �ow even further and the velocity of the core is increased.
The Smagorinsky model a�ects all the monitored quantities least and the dynamic model with
the trapezoidal �ltering most.
In Figure 18, the averaged eddy viscosity produced by the SGS models is shown. It is

seen that the dynamic models predict greater eddy viscosity in the core of the �ow than the
Smagorinsky model. On the other hand, the viscosity from the dynamic model decreases faster
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Figure 12. The kinetic energy normalized by the bulk velocity k=U 2
b . The results

are from the coarse-grid simulations.

Figure 13. The kinetic energy normalized by the shear velocity k=U 2
� . The results

are from the coarse-grid simulations.

as the position moves towards the wall. A reference result is taken from the computations
of Najjar and Tafti [9]. The reference solution has been obtained with the grid size �x+ =
35:3 and �z+ = 8:8. In the wall direction the grid size is stretched from �y+min = 1:4 to
�y+max = 14:1.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:735–774



SMAGORINSKY-BASED SUBGRID-SCALE MODELS 751

Figure 14. The rms �uctuations of u:
√
u′u′=Ub. The results are from the coarse-grid simulations.

Figure 15. The rms �uctuations of v:
√
v′v′=Ub. The results are from the coarse-grid simulations.

For the results shown here, Najjar and Tafti, hereafter denoted by NT, used a staggered
non-dissipative Harlow–Welch scheme with several �ltering formulas. In the �gures, Cases 2
and 3 correspond to a trapezoidal �lter with the length-scales �̂ = 2� and �̂ =

√
6�, respec-

tively. A high-order accurate seven-point �lter is employed in Case 4 and the length-scale
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Figure 16. The rms �uctuations of w:
√
w′w′=Ub. The results are from the coarse-grid simulations.

Figure 17. The dimensionless Reynolds stress u′v′=U 2
b . The results are from the coarse-grid simulations.

�̂ = 2�. NT did not apply a �ltering operation in the wall-normal direction. Figure 19 shows
the dynamic coe�cient C and the van Driest damping on the Smagorinsky coe�cient. The
Simpson �ltering yields lower values than the trapezoidal one in the present computations.
The longer length-scale applied by NT results in lower viscosity and the seven-point �ltering
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Figure 18. The eddy viscosity produced by the subgrid-scale models with the coarse-grid. The reference
solution is from Najjar and Tafti [9].

Figure 19. The subgrid-scale model coe�cients with the coarse grid. The reference
solution is from Najjar and Tafti [9].
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Figure 20. Distribution of the subgrid-scale Reynolds shear stress with the coarse grid.
The reference solution is from Najjar and Tafti [9].

Figure 21. The dimensionless Reynolds stress u′v′=u2� . The results are from the coarse-grid simulations.

reduces the value further. The distribution of the SGS Reynolds shear stress is shown in
Figure 20. The peak value of the SGS stress is quite high with the Smagorinsky model, about
23% of the peak value of the resolved turbulent stress in Figure 21. For the dynamic models,
the corresponding contribution is smaller, ca. 8% (S) and 11% (T).
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Figure 22. The dimensionless velocity pro�les from the medium-grid simulations.

Figure 23. The kinetic energy normalized by the bulk velocity k=U 2
b . The results

are from the medium-grid simulations.

The computing time for the modelled cases is 200T with the medium grid and 150T with
the �ne gird. Figures 22–31 show the results from the simulations with the medium grid and
Figures 32–41 from the simulations with the �ne grid. As a general observation, it can be
stated that the skin friction is reduced by the SGS models, as seen in Table II. The reason for
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Figure 24. The rms �uctuations of u;
√
u′u′=Ub. The results are from the medium-grid simulations.

Figure 25. The rms �uctuations of v;
√
v′v′=Ub. The results are from the medium-grid simulations.

this is that the stresses normal to the streamwise direction are damped, whereas the stresses in
the streamwise direction remain almost una�ected in size. In order to improve the simulation
the model should do the opposite. Furthermore, the ‘correct’ �ne grid result is also altered.
It appears that the model laminarizes the �ow via eddy viscosity. The centre-line velocity
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Figure 26. The rms �uctuations of w;
√
w′w′=Ub. The results are from the medium-grid simulations.

Figure 27. The dimensionless Reynolds stress u′v′=U 2
b . The results are from the medium-grid simulations.

is increased in the modelled coarse-grid calculations. In other simulations the models did
not signi�cantly alter the averaged velocity pro�les; the di�erences seen in the dimensionless
velocity pro�les are mainly due to the di�erences in the skin friction.
NT computed with two di�erent grid sizes, which lie between the three grid sizes used in

this study. With both grid sizes the resolved turbulent energy peak increased, as they turned
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Figure 28. The eddy viscosity produced by the subgrid-scale models with the medium grid. The reference
solution is from Najjar and Tafti [9].

Figure 29. The subgrid-scale model coe�cients with the medium grid. The reference
solution is from Najjar and Tafti [9].
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Figure 30. Distribution of the subgrid-scale Reynolds shear stress with the medium grid. The reference
solution is from Najjar and Tafti [9].

Figure 31. The dimensionless Reynolds stress u′v′=u2� . The results are from the medium-grid simulations.

on the SGS model [9]. Their staggered code may be somewhat more accurate than our code
using a co-located scheme. This could partly explain the fact that the resolved peak energy
in their �ne grid simulations is lower than that of the DNS result, whereas the peak value in
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Figure 32. The dimensionless velocity pro�les from the �ne-grid simulations.

Figure 33. The kinetic energy normalized by the bulk velocity k=U 2
b .

their coarse grid simulation is comparable to that we obtained with our medium grid. Another
reason that might enhance the e�ect is, that NT have normalized their results with the friction
velocity, which varies slightly between their simulations.
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Figure 34. The rms �uctuations of u;
√
u′u′=Ub. The results are from the �ne-grid simulations.

Figure 35. The rms �uctuations of v;
√
v′v′=Ub. The results are from the �ne-grid simulations.

The trapezoidal �ltering operation procures larger values for the dynamic coe�cient and
the eddy viscosity than the Simpson �ltering. The in�uence of the SGS model is reduced,
however, as the mesh becomes �ner. With the �ne grid, the peak SGS shear stress is now

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:735–774



762 P. MAJANDER AND T. SIIKONEN

Figure 36. The rms �uctuations of w;
√
w′w′=Ub. The results are from the �ne-grid simulations.

Figure 37. The dimensionless Reynolds stress u′v′=U 2
b . The results are from the �ne-grid simulations.

3–4% of the resolved stress peak shown in Figures 40 and 41, respectively. The magnitudes
of the eddy viscosities in the present medium-grid simulations are quite similar to the NT
results, shown in Figure 28.
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Figure 38. The eddy viscosity produced by the subgrid-scale models with the �ne grid. The reference
solution is from Najjar and Tafti [9].

5. CHANNEL FLOW AT REYNOLDS NUMBER 12 500

The second test case is a fully developed turbulent �ow in a channel with a bulk Reynolds
number of 12 500 de�ned as

Reb =
Ub�
�
= 12500 (44)

where Ub is the bulk velocity and � is half of the channel height H . In these simulations
the parameters have the following values: H = 1m Ub = 1m=s and � = 4 × 10−5 m2=s.
As in the previous case, periodic boundary conditions are applied in the streamwise and
in the spanwise directions, where the lengths of the domain are 2:0H and 1:0H , respec-
tively. In the wall-normal direction, 64 cells are used and the height of the two closest cells
next to the walls is approximated to be around y+ = 2 from the logarithmic law (36). The
stretching ratio of the cells is ca. 1.129 in the wall direction. The cell height next to the
centre-line becomes then 76 in wall units. The streamwise length and the spanwise width
of the box in dimensionless units are 2602 and 1301 in wall units, respectively. Both direc-
tions are divided into 32 cells so that the cell area normal to the wall is 80 × 40 in wall
units.

5.1. Results

Simulations are conducted with no SGS model, with the constant and the dynamic Smagorin-
sky models, as before. All the simulations are run during the time of 250T where T = H=Ub.
With the initial pro�le (40) the transition occurs at the time interval 15T–25T . The statistics
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Figure 39. The subgrid-scale model coe�cients with the �ne grid. The reference
solution is from Najjar and Tafti [9].

Figure 40. Distribution of the subgrid-scale Reynolds shear stress with the �ne grid. The reference
solution is from Najjar and Tafti [9].

are gathered during the last 200T . The CFL number is 0.15 in every simulation. The time-step
sizes become then 0:00478T; 0:00607T; 0:00579T and 0:00583T in the computations with
no model, the constant Smagorinsky model, the trapezoidally and Simpson �ltered dynamic
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Figure 41. The dimensionless Reynolds stress u′v′=u2� . The results are from the �ne-grid simulations.

Table II. The mean skin-friction coe�cient cf and the normalized centre-line velocity Uc=Ub.
Channel �ow with Reb = 2800.

Case No SGS model Smagorinsky Dynamic T Dynamic S

cf Uc=Ub cf Uc=Ub cf Uc=Ub cf Uc=Ub
KMM [15] 8:18× 10−3 1.16
Coarse 6:70× 10−3 1.151 6:05× 10−3 1.175 5:28× 10−3 1.177 5:76× 10−3 1.173
Medium 7:86× 10−3 1.156 6:93× 10−3 1.159 6:46× 10−3 1.158 6:79× 10−3 1.157
Fine 8:20× 10−3 1.160 7:85× 10−3 1.157 7:37× 10−3 1.154 7:54× 10−3 1.162

Table III. The mean skin-friction coe�cient cf and the normalized centre-line velocity Uc=Ub.
Channel �ow with Reb = 12 500.

Case Rec = 13800[16] No SGS model Smagorinsky Dynamic T Dynamic S

cf 5:55× 10−3 4:59× 10−3 4:52× 10−3 3:91× 10−3 4:11× 10−3
Uc=Ub 1.135 1.106 1.111 1.097 1.105

Smagorinsky models, respectively. It is shown in Figure 42 that the simulations predict �atter
pro�le than the measured pro�le by Hussain and Reynolds at Rec = 13800 [16]. Here Rec
refers to the Reynolds number that is based on the centre-line velocity. The friction coe�-
cients are 17–30% lower than the measured value as seen in Table III. The dimensionless
pro�les in Figure 43 show a logarithmic region and the o�set is due to underpredicted fric-
tion. The resolved Reynolds stresses are presented in Figures 44–46. The reference results are
measured by Wei and Willmarth at Rec = 14 914 [17]. The results from the non-modelled
computation deviate from the other results, especially in the core �ow, and did not converge
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Figure 42. The velocity pro�les from the channel �ow at Reynolds number 12 500. The reference
measurements by Hussain and Reynolds [16].

Figure 43. The dimensionless velocity pro�les from the channel �ow at Reynolds number 12 500.

properly. The inspection of the instantaneous �ow �eld reveals that the solution is oscillating
non-physically. In the core, where the cells are large, the instability a�ects most severely.
The constant Smagorinsky model predicts the resolved quantities slightly better than the dy-
namic models do. The streamwise �uctuations are overpredicted and the �uctuations normal

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:735–774



SMAGORINSKY-BASED SUBGRID-SCALE MODELS 767

Figure 44. The rms �uctuations of u;
√
u′u′=Ub at Reb = 12 500. The reference

measurements by Wei and Willmarth [17].

to the wall are underpredicted as in the case Reb = 2800. The subgrid scale shear stresses
�sgs12 =U

2
b are plotted with the resolved turbulent shear stresses uv=U

2
b in Figure 47. The con-

stant Smagorinsky model computes a peak that is three times higher than the ones from
the dynamic model. The ratios of the peaks of the SGS stresses to the peaks of the re-
solved turbulent stresses are close to those from the computations at Reb = 2800 with the
coarse grid. The peak is also localized closer to the wall (∼ 15 in wall units) than those
predicted by dynamic models (∼ 30 in wall units). The eddy viscosity behaves as in the
lower Reynolds number case. Smagorinsky model computes the lowest viscosity in the core
�ow, whereas the dynamic models predict lower eddy viscosity in the domain near the wall
(y+ ¡ 50).

6. DISCRETIZATION ERRORS

The discretization errors may in�uence the result even more than the SGS model. Vreman
et al. studied this by computing a DNS of a two-dimensional compressible mixing layer
[18,19]. The �ow �eld at one instant of time was �ltered and the exact subgrid-scale stresses
were compared to the discretization error obtained by estimating accurate derivatives to those
of the coarse LES grid. They found that the discretization error with a second order scheme
is larger than the SGS model output, if the �ltering length is smaller than ca. 2 grid-spacing
lengths.
Here we follow a similar procedure as Vreman et al. in order to compare the discretization

error and the subgrid term. The case at Reb = 2800 is computed with a dense grid size of
128 × 64 × 128. The �ltering operation to this �eld, which is assumed to an accurate DNS
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Figure 45. The rms �uctuations of v;
√
v′v′=Ub at Reb = 12 500. The reference

measurements by Wei and Willmarth [17].

result, yields

@uiuj
@xj

=
@ �ui �uj
@xj

+
@�ij
@xj

(45)

where the SGS stesses are given by

�ij = uiuj − �ui �uj (46)

The above derivatives are estimated with a fourth-order scheme in the homogeneous directions.
In the wall normal directions then derivatives are estimated with a second-order scheme, which
takes into account the grid stretching. In a coarse LES grid the discretization error is introduced
also in the pressure term, whereas the di�usion term is ignored, since it is smaller by the
magnitude of the Reynolds number. The relation of the discretized i-direction convective terms
between two resolutions can be written as

@ �ui �uj
@xj

+
1
�
@ �p
@xi

=
� �ui �uj
�xj

+
1
�
� �p
�xi

+ ’i; (47)

where �=�xi denotes for the second-order �nite volume operator used in the simulations and
’i is the error between the �ne and coarse level approximations.
An instantaneous �ow �eld was �ltered by a trapezoidal formula by using 6 and 10 cells

in each homogeneous direction. The �lters are then 5 and 9 grid-spacings wide, respectively.
The �ltered variables coincide at the wall-normal plane in the gird nodes of the dense drid,
and at the cell center nodes of the 32 × 64 × 32 grid. At the coarse mesh level the �lters
are 1.25 and 2.25 grid spacings wide, respectively. In the wall normal direction the variables
are not �ltered. The accurate subgrid-scale stresses can be de�ned from Equation (46). The
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Figure 46. The resolved Reynolds stress u′v′=U 2
b at Reb = 12 500. The reference

measurements by Wei and Willmarth [17].

Figure 47. The subgrid scale stress �sgs12 =U
2
b and resolved turbulent stress u′v′=U 2

b at Reb = 12 500.

discretization error ’i can be estimated from Equation (47) in each co-ordinate direction. The
L2-norms of ’i and @�ij=@xj are presented in Figures 49–51. The quantities are computed over
the xz-planes at one instant of solution.
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Figure 48. The scaled subgrid scale viscosity (�+ �t)=� at Reb = 12 500.

Figure 49. The L2-norm of the estimated discretization error ‖’x‖ and the subgrid
term ‖@�x;xi =@xi‖ in the streamwise direction.

The discretization errors are larger than the subgrid term by a factor of 10. The longer
�lter increases the subgrid term, but the numerical error still dominates in most of the domain.
Only in the vicinity of the wall the subgrid term becomes larger, especially in the wall normal
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Figure 50. The L2-norm of the estimated discretization error ‖’y‖ and the subgrid
term ‖@�y;xi =@xi‖ in the wall normal direction.

Figure 51. The L2-norm of the estimated discretization error ‖’z‖ and the subgrid
term ‖@�z;xi =@xi‖ in the spanwise direction.

equation as seen in Figure 50. Vreman et al. found that in a two dimensional mixing layer
the subgrid term is about 25% of the discretization error as the �lter width is equal to the
grid size. As the �lter width is twice the grid size, the subgrid term is approximately equal
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Figure 52. The subgrid shear stress �12=u2� calculated exactly and by the Smagorinsky model.

to the numerical error. The initial Reynolds number based on the vorticity thickness was 200
and the �nal Reynolds number was about 1000 in their calculation [18,19]. Even a perfect
SGS model cannot produce an accurate solution in the presence of dominant numerical errors.
The shear stress components of Smagorinsky model were compared to the exact ones. The

model output was computed at the �ne grid level by using the �ltered variables and the fourth-
order accurate schemes in order to minimize the numerical errors. Figure 52 shows the exact
and the modelled shear stress component �12=u2� . It is seen that the exact stress component is
considerably larger than the modelled one. The subgrid shear stress from the actual simulation
with the medium grid show in Figure 30 is as large as the modelled subgrid shear stress
computed here. By increasing the �lter width, the exact stress is increased proportionally,
whereas the modelled stress stays nearly constant. The correlation coe�cient is around 0.4
between the exact and the modelled �12. The coe�cient is normalized by the magnitudes of the
stresses. For the other shear stresses there exists hardly any correlation. The low correlations
between the exact and Smagorinsky stresses have previously been con�rmed by Vreman et al.
[19] in plane mixing layer �ow and by Clark et al. [20] in homogeneous isotropic turbulence.

7. CONCLUSIONS

The channel �ow at Reb = 2800 was computed �rst with no subgrid-scale (SGS) model by
employing three di�erent mesh sizes. The coarse-grid calculations overpredicted the peak of
the turbulent energy and underpredicted the wall stress. It is known from the experiments and
the simulations, that in the spanwise direction there exist streaks of high and low speed �uid
with a mean spacing of 100 wall units [15]. It is probable that the coarse gird, with a spanwise
node spacing of 36 wall units, is unable to capture these near-wall eddies correctly. With the
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�ne grid, all the monitored quantities are quite close to those from the reference DNS. As the
SGS models are turned on, the eddy viscosity damps the �ow and the wall stresses decrease
further. In addition, the result from the �ne grid is altered correspondingly. The eddy viscosity
from all the SGS models is decreased with the decreasing mesh spacing, but apparently this
‘laminarization’ process is inadequate for all the SGS models applied. Najjar and Tafti [9]
used a staggered mesh with a second-order Harlow–Welch scheme and a �fth-order upwind
biased scheme for the advection term in their study. They concluded that the dynamic model
improved the prediction capability of their result, when used with the Harlow–Welch scheme
and with a minimum resolution that would capture energy producing mechanisms. This study,
performed with a co-located mesh and a second-order central discretization, indicated no
improvements at any grid level tested.
It was observed that normalizing the results by the shear velocity is not proper, since it

varies from one calculation to another. Ignoring this fact might lead to false conclusions,
especially in assessing the in�uence of the SGS model on the resolved turbulent quantities.
The �ltering operation a�ects the model output; in the current dynamic models the top-

hat �lter is integrated with the three-point trapezoidal and Simpson quadrature. The former
produces abut 30% greater viscosity in the core �ow than the latter.
At the higher Reynolds number 12 500 the channel �ow was computed by utilizing one

grid size only. The trend in the results was similar to that of the low Reynolds number case.
The streamwise �uctuations are overpredicted and the friction is underpredicted. The non-
modelled computation oscillates non-physically and the SGS models stabilize the computation
and improve the results especially in the core �ow where the cell volumes of the stretched gird
are large. The simple Smagorinsky model accompanied by the van Driest damping function
works best among the applied models. In the dynamic model the numerical implementation
a�ects a lot. The volume over which the eddy viscosity is calculated, becomes relatively large.
The resolution that has been applied to the case might be too coarse for the dynamic model.
On the other hand, a second-order �nite-di�erence approximation includes a lot of numerical
truncation errors as small �ltering molecules are applied. A longer �lter cuts the subgrid
frequencies more sharply but the proper implementation is more tedious and the resolution of
the computation should probably be �ner.
The discretization error was assessed at Reb = 2800. The estimated error dominates the

accurate subgrid term by a factor of ten even if the �lter width is twice that of the grid
spacing. Only in the vicinity of the walls both terms are about equal in size. A perfect SGS
model will not necessarily improve the result in this case. However, a dissipation caused by
the eddy viscosity might stabilize the computation and remove unphysical oscillations, as it
did at Reb = 12 500.
Najjar and Tafti [9] concluded that an improved result must not be taken for granted by

applying a subgrid-scale model in a �nite-di�erence calculation. If the resolution of the grid
is �ne enough to provide a physically reasonable solution without any dissipation, the present
results support the same conclusion. Studies with higher Reynolds numbers are required to
clarify the advantages of the SGS modelling in �nite volume solutions.
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