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1 Introduction

1.1 Turbulent Flow

Fluid flows governed by the Navier-Stokes equations have been solved numerically
since the early days of computers. The property of fluid flow that makes it a compu-
tational challenge is turbulence. Turbulence is not exactly mathematically defined
and no analytical solutions for turbulent flows have been found. Hinze [13] gives
the following definition: “Turbulent fluid motion is an irregular condition of flow
in which the various quantities show a random variation with time and space co-
ordinates, so that statistically distinct average values can be discerned.”

Most researchers agree upon the following properties [13], [21], [38] :

e Turbulent flows are unsteady. The behaviour of the flow variables appears
to be random if monitored as a function of time at a constant point and as

a function of space at an instant moment of time.

e Turbulent flows are three-dimensional. Geophysical flows may possess two-
dimensional features in large scales, but the smallest scales are always three-

dimensional.

e Turbulent flows contain a lot of vorticity. The process of stretching the

vorticity is important in increasing the intensity of turbulence.

e Turbulent flows are highly dissipative, viscous forces dissipate kinetic energy
into heat. Unless friction from a wall or a speed difference sustains new

energy into vortices, the turbulence will die.

e Turbulent flows contain a broad spectrum. The length scale of the largest
eddies is of the order of the size of the flow geometry, the smallest scale is
of the order of the viscous size, Kolmogorov length scale. The time scales

behave correspondingly.



e Turbulent flows mix much stronger than laminar flows. This is due to the
vigorous motion of the fluid, which greatly enhances friction, heat and scalar

transfer.

The direct solution of the Navier-Stokes equations is a very intensive task compu-
tationally and it has been performed mainly for academic purposes. Traditionally,
turbulent flows have been computed with Reynolds-averaged Navier-Stokes (RANS)
equations. The flow is averaged over a time to obtain a statistically steady flow.
Another way of thinking about this process is to average a set of similar flows to
produce an ensemble average.

In large-eddy simulation (LES), the large-scale motion is resolved and the small
scales are modelled. This approach is based on the idea that the large-scale motion
is highly dependent on boundary conditions, whereas small-scale motion is assumed
to be relatively universal everywhere. The equations are filtered in space and the
division into the large and small-scale motion is dependent on the length of the filter.
LES has usually succeeded better than RANS modelling, especially in predicting
separated flows. For most engineering computations, LES is too expensive today.
Research has been done to combine RANS modelling and LES. This approach is
called hybrid RANS/LES or detached eddy simulation (DES). In this approach
RANS is used to model the flow in the near-wall region, which requires less resolution
as compared to resolving boundary layer vortices with LES. Further away the LES
is used to resolve the turbulence [7].

In turbulent flows, a wide range of scales is present. The largest scales are about
the same magnitude as the geometry of the flow. In a flow over a cylinder, the
largest vortices shed by the cylinder are of the same order as the diameter of the
cylinder. In the boundary layer, the largest eddies are proportional to the thickness
of the boundary layer. The dissipation rate at which the energy is cascaded into
smaller vortices is the energy contained in large eddies per unit mass divided by
their characteristic time scale [34]

U,3

l
2,0 _ U 1.1
eocu/u i (1.1)



Here, u is a characteristic root mean square value of the fluctuations and [ is the
integral scale. The energy dissipated directly from the large eddies is obtained by
dividing by the viscous time scale u?/(I?/v) = vu?®/I?, which is small compared to €
in Eq. (1.1).

The smallest scales of motion adjust themselves to the value of the viscosity. As the
small-scale motions have small time scales they are statistically quite independent of
the mean flow and slower large-scale motion. With that assumption, the small-scale
motion should depend only on the rate of the energy transfer from the large scales
and on the kinematic viscosity. The following scales are referred to as Kolmogorov

micro-scales of length 7, time 7 and velocity v,

n = (Pl (1.2)
T = (v)e)/?
v = (ve)Y/4

The Reynolds number at the micro-scale level nv/v is equal to one, which indicates
that the small-scale motion is quite viscous. By substituting € in Eq. (1.1) into

Egs. (1.2), the relations between the smallest and largest scales are obtained:
n/l (ul/v)—3* = Rel_3/4 (1.3)

T/t (ul/v)™V/? = Re; '/
vju = (ul/l/)’l/‘l:Re;l/Ll.

As the Reynolds number increases, so does the gap between the smallest and the
largest scales. Computational space must be discretized into a mesh where the mesh
size Az in one direction o Re;?’/ ' In a time-accurate solution, a time-step size
should not exceed Az/u. Suppose that to compute a turbulent flow in a box of size
I3, N points = (I/Ax)? are required in space. In addition, the time to be computed
is of the order of [/u. Hence, the total computational effort can be evaluated as
x (1/Re;**)* = Re?. This strong dependence of the Reynolds number gives a
quantified support to the statement in the beginning of this chapter: turbulence is

a computational challenge.
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Figure 1.1: Schematic diagram showing the mean flow and the vortex systems of
a jet in a cross-flow (adapted from [18] and [27]).

1.2 Round Jet in a Cross-Flow

Jets in a cross-flow are complex flows with many practical applications ranging
from jets into combustors to V/STOL aircraft in transition flight. Perhaps the most
familiar example in everyday life would be smoke rising from a chimney into a cross-
wind. The characteristics of a jet in a cross-flow are primarily dependent on the
momentum flux from the jet exit to the momentum flux of the cross-flow over equal
areas. When the jet and the cross-flow densities are equal, it is customary to define
the jet-to-cross-flow velocity ratio

V'et
J == 1.4
i (1.4)

where Vj; is the bulk velocity from the orifice, averaged over time and the orifice
area. Uy is the free-stream velocity of the cross-flow. The mean flow pattern with
typical instantaneous vortices is shown schematically in Fig. 1.1. The jet exits from
the pipe normal to a cross-flow and is bent over. In the interaction of the colliding

flows some typical structures are found. Ring vortices are created on the upstream



side of the jet shear layer, which rolls up by a Kelvin-Helmholz-like instability. Near
the wall there are horseshoe vortices just upstream of the jet. The counter-rotating
vortex pair (CVP) is born at the jet exit and further downstream it becomes the
dominant structure in the jet. Below the bent jet there is a system of upright wake
vortices.

Due to the great practical relevance, many experimental, numerical and theoretical
studies have been undertaken for jets in a cross-flow. Here some of them are cited.
Keffer et al. [17] measured the trajectory of the jet and the velocity along it. The
turbulent intensity was also measured along a line in the plane orthogonal to the jet
trajectory. A more complete survey was conducted by Crabb et al. [6] who measured
mean and fluctuating velocity magnitudes with a laser-Doppler anemometer near the

jet exit and hot wires further downstream. The Reynolds number in their case was

RGD =

o D
VJTt = 46 700 (1.5)

where V. is the jet velocity and D is the diameter of the pipe. The velocity
ratio was either 1.15 or 2.3, the latter case being the subject of a simulation in
the present thesis. Also helium trace concentrations were measured in order to
study the spreading of the jet. Andreopoulos and Rodi [1] used a triple wire probe
to simultaneously measure all three components of velocity. The velocity ratios
were J = 0.5, 1 and 2 with Reynolds numbers Rep = 20 500, 41 000 and 82 000,
respectively. Kelso et al. [18] studied the structure of round jets in cross-flows using
flow visualization techniques and flying-hot-wire measurements. The jet-to-cross-
flow velocity ratios ranged from 2 to 4 and the Reynolds numbers varied between
440 and 6200, based on the jet diameter and free-stream velocity. They studied
various jet structures extensively. The concensus of opinion of many authors (eg. [1]
and [18]) is that the CVP is formed by the shear layer vorticity emanating from
the pipe flow. Kelso et al. described a roll-up mechanism of the jet shear layer
that contributes to the CVP. Peterson and Plesniak [27] altered the direction of the
channel flow to feed the jet through short holes into a cross-flow. If the channel

is in the same direction as the cross-flow, a pair of vortices exists within the hole



with the same sense of rotation as the CVP. A pair of vortices with the opposite
sense of rotation existed as the channel flow was contrary to the cross-flow. The
in-hole vortices interact with the CVP affecting the its strenght. They found that
the weaker CVP has a lower trajectory and increased spanwise spreading.

Jets in a cross-flow have also been studied by simulations. Yuan et al. [40] per-
formed LES at two jet-to-cross-flow velocity ratios, 2.0 and 3.3, and two Reynolds
numbers, 1050 and 2100, based on the cross-flow velocity and the jet diameter. They
discretized the computational area into a total of 1.34 x 10% control volumes. The
jet in a cross-flow measured by Crabb et al. [6] was modelled with LES by Wille [39].
He used both a coarse and a fine mesh, which included 88 440 and 997 920 mesh
points, respectively. Considering the Reynolds number of 46 700, based on the jet
bulk velocity and the jet exit diameter, both grids are quite coarse even if the near-
wall boundary layers were modelled. Wille does not explicitly state whether the
Reynolds number is the same as in the experiment. Wegner et al. [37] studied tur-
bulent mixing using LES. They varied the angle between the jet and the cross flow.
The mixing was enhanced as the angle was increased, i.e. as the jet was directed
against the cross-flow. The baseline flow in their simulation was that measured by
Andreopoulos and Rodi [1].

In this work, large-eddy simulation is studied as a method, computational tools
are constructed, and finally the method and the tools are applied to solve a jet in
a cross-flow. An isocompressiple fluid model with constant properties for kinematic
and molecular viscosity is applied. In the first chapter, the methods used in this
work are presented (Papers LILIII). In the second chapter, the computational
issues concerning turbulence simulations are studied, in particular concerning the
time advancement (Paper I). In large-eddy simulation a Smagorinsky model and its
derivatives are the most used ones. In the third chapter, the effect of Smagorinsky-
based models on a simulation is assessed (Paper II). In the fourth chapter, a parallel
solver is validated with some basic flow cases (Paper III). Finally, the solver is used
to simulate a jet in a cross-flow with various parameters in the fifth chapter (Papers

IV,V). The sixth chapter gives concluding remarks on the whole work.



2 Methods

2.1 Governing Equations

The Navier-Stokes equations for incompressible flows with a passive scalar transport

are written as

aui _
aui i auiuj _ _l 8p 4 i yaui
ot ox;  pdr; Oz \ Oz,
00  00u; o ( o0
— = 2.1
ot * 8a:j 8xj (aa$j> ’ ( )

where u; is the velocity, p is the pressure and v is the kinematic viscosity. In the last
equation @ is a scalar and « is molecular diffusivity. The molecular transport prop-
erties are considered to be constant in this work. The LES equations are formally

derived by applying a filtering operation: a filtered variable is defined as

Flr,t) = /V G(lr = ¥'|) f(x', t)dr, (2.2)

where V' is the volume of filtering and G is the filter function. After filtering
Egs. (2.1) the LES equations take the following form

o0u;
5 = 0 (2.3)
ou; = ouu; 1 op i —
06 90u; o [ 90

where u; are velocity components, p is pressure and p is a constant density. The

! (aﬂ + aﬂj) . (2.6)

= 5 aacj ax,

The subgrid-scale stress and scalar flux are

strain rate tensor is

9]

Tij = uin—Uin (27)

g = Ou;—0uy, (2.8)



respectively.

The Boussinesq approximation

0ij — ou; 0u;
Tij — ?]Tkk = —2vpS;j = —vr (8:1:- + 8x]>
yi i

relates SGS stresses 7;; to the eddy viscosity vy and the resolved-scale strain rate

(2.9)

tensor gij. The Smagorinsky model [33] for the eddy viscosity is written as
vr = (C;A)[S], (2.10)

where the parameter C is called a Smagorinsky constant, A is a length scale and
S| = \/ZEZ-]-?Z-]-. The length scale represents the cell size and it is usually computed
as V1/3. A value of 0.18 for C, has been evaluated for the inertial range dynam-
ics [21]. In the presence of a shear flow a smaller value must be used, which was
first discovered by Deardorff [8]. He studied a channel flow and found that a smaller
value for Cs = 0.1 had to be used in the presence of a strong shear-driven turbulence.
This observation has since then been confirmed by many studies. Furthermore, in
the vicinity of the walls, the eddy viscosity must be reduced. This is usually carried
out with the van Driest damping function. The subgrid-scale scalar flux can be

modelled analogously with a mixing length gradient model

v
Prggs 0x;

Depending on the flow, the molecular Prandtl number Pr and the direction and

g = (2.11)

the distance of the scalar flux to the wall, values for the turbulent Prandtl number
Prg4s ranging from 0.3 to 0.8 have been suggested [5].

Germano et al. [10] presented a new dynamic model, where the model coefficient
is calculated during the simulation. This is based on the application of two different
filters. In addition to the grid filter G, a test filter G is applied. The test filter width
A is larger than the grid filter width A, usually A = 2A. The term grid filter implies
that usually discretization takes care of the filtering in numerical computations
without any explicit procedure. The grid filter and the test filter are applied to the

momentum equations (2.1) to obtain the following equation:
aﬁz n aﬁﬁj _ _1 6}20 _ 8TZ e aZﬁz ’
ot 8:3]- P 83:1 83:1 6a:j 83;]-

(2.12)



where the subtest stresses are given by

— ~

Tij = ugij —

gl

. (2.13)

The test filter is now applied to the grid-filtered equations (2.5) ;

+ = - - + : 2.14
ot a’L'j P 83:1 63:, 8.@, Va.’L'jafL'j ( )
Lij = Uill; — Uil (2.15)
Using Egs. (2.12) and (2.14), the expression for £;; can be written as
Lij =T — Tij (2.16)

Egs. (2.13) represent the subtest-scale stresses whose length scale is less than the
subtest filter width A. Egs. (2.16) represent then the resolved turbulent stresses by
the scales between the grid filter width A and the subtest-filter width A. Let us

model both 7;; and T;; by the same functional form of the Smagorinsky model:

5ij i

Tij — ?Tkk = —QCAQ‘S‘SZ] = —2051']', (217)
(Si' ~y DD

T — ?’Tkk = —2CA?|S|S;; = —2C ;. (2.18)

Substitution of the stresses (2.17) and (2.18) into Eq. (2.16) with the assumption of
a slow variation of C' (C(z,y, z,t) = C(z,y, z,t)) gives
51’]’

»Cij — ?Ekk = -2C (Aﬂg‘gz] - A2|§‘/§'LJ) : (2'19)

In order to solve the set of equations for C in Egs. (2.19), Lilly [22] proposed solving

Eqgs. (2.19) in the least-square sense. The error

8ij ?
Q= <£ij — ?]»Ckk - 20Mij> : (2.20)
where
My = (M?@- - M?T@-,—) , (2.21)
is minimized by requiring 0Q)/0C = 0, which gives

LM,

C(z,y,2,t) = oMM
ijiVig

(2.22)
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The numerator £;;M;; can have both positive and negative values. This indicates
that the model can account for the backscatter of the turbulent energy, i.e., the
energy is transferred from the small eddies to the large eddies. This happens in
real flows locally at some instants of time, although the long time-average energy
transport is from the large eddies to the small eddies. The non-positive viscosity
hence produced tends to cause a numerical instability or even a singularity. In a
turbulent channel flow, it is a common procedure to average the denominator and
the numerator in homogeneous directions [10], [2], [26]

(LijMij)

Cwt) = =5t (2.23)

In order to solve C for complex geometries, Piomelli and Liu [28] developed the
following localized dynamic model

Ekk = —200&1']' + QC/'E]', (2.24)

where the coefficient C under the filter is replaced with an estimate C*, which is
assumed to be known. Egs. (2.24) can be solved by the contraction :
o- 1 (ﬁij - 20/*517') 0

2 Ol O

(2.25)

For C* one can use the value of the previous time step or iteration C*~!. This model
avoids some approximations of earlier models [22], [10]. An important feature is that
the coefficient calculation is based on the local information. However, the values for

C must usually be limited in order to prevent destabilizing negative viscosity [28].

2.2 Conservation Form
The continuity equation in a conservation form becomes

/ pV -dS =0, (2.26)
S

where p is the density and V = wui + vj + wj is the velocity of the fluid. The

integration is taken over the control volume faces. This constraint simply states
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that at every moment the mass flow out from the control volume equals the mass

flow in. The momentum equation in the z-direction is written as

%/VpudV—F/SpuV-ndS—l-/pnde—/ pgzdV

ou ou ou
— = 2.2
/Su( . +nya +nza>dS 0. (2.27)

Above, p is the pressure, pg, is the body force and n = n,i + nyj + n,k is a unit
normal of the control volume face. The equations in the y- and z-directions are
obtained by replacing the velocity component v with v and w and the wall-normal
component n, in the pressure term with n, and n,, respectively. The scalar equation
in a conservation form is written as

00 09 09
8t/ podv+/pev nds — / <n L g, +nza> —0 (2.28)

2.3 Temporal and Spatial Discretizations

2.3.1 Explicit Euler Scheme

The simplest way to integrate an initial value differential equation is the explicit
first-order accurate Euler method. The incompressible Navier-Stokes equations,

Eqgs. (2.27), are discretized as

. AL, A )

faces

where residual R;j; = (R,i+ Ryj+ R.j)ijx is the net sum of convective and viscous

fluxes surrounding the cell volume 75k

faces faces ou ou ou
= Z S¢,0’LL¢V¢ n¢+S¢(T$]nj ¢ = Z m¢u¢+u¢5¢ Ng~— -l—ny + Ny .
= = ox Oy 0z p
(2.30)
Here, gy = S4pVy - ny is a mass flow through the face ¢ and it is computed as
an average between the neighbouring nodes. The velocity u, can be interpolated

in many ways, but in LES a central difference is preferred, which implies that u, is

interpolated as mg. In all the solvers used in this thesis the interpolation does not
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take into account the stretching of the mesh. In such meshes, a lower-order trun-
cation error is present than the nominal truncation order suggests. The derivatives
present in the viscous fluxes FE g“c are calculated with the help of the generalized

divergence theorem of Gauss. For a scalar u the following equation applies

/V VudV = /S udS. (2.31)

Hence the derivative of u in the z-direction is obtained from

ou 1 faces
— = SNy pUg. 2.32
<ax>ijk Vi ;::1 dUe (2.32)

The derivative at the face ¢ is obtained by integrating over a surrounding volume. In
a uniform orthogonal mesh the interpolations correspond to a central difference. The
Von Neumann method shows for a linear convection equation that the explicit Euler
time advancement combined with the second-order centred scheme is unconditionally
unstable. However, the addition of a diffusion term stabilizes the scheme.

The mass balance must be obeyed at both the old (n) and the new (n + 1) time
steps which can be used to derive the Poisson equation that relates pressure and the

mass balance

AwijkPi-1,5k + ABijkDit1,jk + AsijkDij—1k + ANijkDij+1k + A ijkDije—1 +
AT,ijkpz'j,k—l—l + AP,ijkpijk = Z (PV ) S)n + Z (R' S)na (2-33)

faces faces
The coefficients and a more accurate derivation can be found in [23]. The computa-
tion is started with an initial guess. The residuals from the convective and viscous
terms are computed and the right-hand side source of Eq. (2.33) is formed with
the present mass balance included. The Poisson equation is iterated for pressures
with a multigrid (MG) solver to a preset convergence limit. Now the time step n is
completed and the result can be written. Next, the new velocities at the time step
n+ 1 are computed from the momentum equations. In Eq. (2.33), the first term on
the right-hand side is the mass balance from the present time step n, which should
be zero. This term can be retained to consider that, with an iterative method, the

equation has not necessarily converged completely.
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2.3.2 Fractional-Step Adams-Bashford Scheme

Consider again Eqs. (2.27) with convection and diffusion terms discretized in the
following second-order accurate scheme with respect to time. Pressure is discretized

with a first-order accurate Euler scheme:

PVisk = pViy + m(?)Rijk —-R7;) -

At > (pS)"H, (2.34)

‘/;j k faces

where R;j is defined by Eq. (2.30), although the sum is taken at the faces around the
control volume ijk. This method is called the Adams-Bashford® two-step scheme and
it is the simplest multistep method (see e.g. [4]). To compute Eq. (2.34) a fractional-
step approach presented by Kim and Moin [19] is applied. The computation is

advanced in two parts:

sz’jk = sz’jk + m(SRz’jk - Rijkl) (2.35)
%]
n+1 * At n+1
YR faces

For the latter equation, the mass balance is required for the control volume Vj;;. By
performing the surface integral over the faces of the volume, a Poisson equation for

the pressure is obtained:

AwiikPi—1k + AgijkDiv1jk + AsijkPij—1k + ANijkPij+1k +

A iikDijk—1 + ArijkPijk+1 + ApijPijk = Z (pV*-8), (2.37)

faces

where the coefficients are same as with the Euler scheme in Eq. (2.33).

The computation is started with an initial guess which is used for both previous
steps. Intermediate velocities V* are computed and interpolated to the cell faces
to calculate the mass balance. The Poisson equation (2.37) is iterated for the pres-
sures with a multigrid (MG) solver to a preset convergence limit. Finally, the new

velocities can be corrected from Eq. (2.36) to obtain the result at the new time step.

! Another spelling of the name found in literature is Bashforth.
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2.3.3 Implicit Scheme Based on SIMPLE.

Let us consider the following generic multistep method

Vijk [(1+ ,Y)(pv)nﬂ — (1+2y)(pV)" + fy(pV)n—l]

At
— (1-AR"+ BR™, (2.38)

where residual R also includes the pressure term. With different choices of param-
eters § and +, the following time advancement schemes can be realized, with g =
v = 0 the explicit Euler, with 8 = 1, v = 0 an implicit Euler, with g = 0.5, v =
0 a Crank-Nicolson and with 5 = 1.0, v = 0.5 a three-level implicit (3-LI) scheme.
The last two methods are second-order accurate. Equation (2.38) is linearized at

the state k£ between the solved state n and the state n + 1 to be computed:

Vijk

(1 + p(VE+ VI = VE) = (14 29)pV" +9pV" )
= (1-B)R"+7 (R’“ + [2—51 (Vi — Vk)> : (2.39)

Let us write AV = V™! — V¥ and regroup the terms as follows:

(A%(Hv)—ﬁ B—f}r) AV

= Alt(_(l +Y)VE L (1429)V? —4V™ ) 4+ (1 — B)R™ + FR*  (2.40)

From Eq. (2.40), V**! can be iterated. The scheme can be stabilized by using a
local time step. This can be done by replacing v on the diagonal by A¢/A© where
A® is the local time step of the steady-state solver [15]. Both constant and local
time steps have been applied in this thesis. Equations (2.40) are solved sequentially
within a time step. In linearization a first-order upwind scheme is used for the
convective part and simplified viscous flux to avoid a large molecule.

After linearization, the equation obtained for the velocity increment Aw is

faces

ZAnbAunb = — Z (Snw)qup’(;
nb =1

+A1t (—(1 +y)uFf 4+ (14 2y)u™ — vu"_l) + [@=B)R"+ BRY (2.41)
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where the sum on the left-hand side is over the neighbour nodes. In Au = ul;t' —uf,

the state k lies between the solved state n and the state n + 1 to be computed. The
first term on the right-hand side includes the pressure at the time level n + 1 and
in an iterative solution the term is ignored. The coefficients and a more accurate

derivation can be found in [23].

2.4 Pressure Coupling in SIMPLE

The solution of the momentum equation must be coupled with pressure. The last
two terms of Eq. (2.41) cancel when the iteration is converged. The linearized

increments Au and Ap are replaced in the following by iterative corrections u’ and

/

p:
faces
> Anting = = D SNgapl, (2.42)
nb =1

where the standard simplification utilized in the SIMPLE method is to drop the
non-diagonal terms from Eq. (2.42) to derive a manageable equation. The continuity

equation states that

faces;;

> (V" + V) 8), =0
=1
facesij faces;;
Y. (WngS) + (v'nyS)y + (w'n.S)g = — (V™ -8)g,  (243)
=1 p=1

where V* is the velocity field that does not obey the mass balance and V' is the

1terative correction.

After some assumptions and manipulations of the terms, we finally obtain the

Poisson equation for the pressure corrections

/ / / / /
BpijkDiji + BwiijkPi—1,jk T BE,ijkPit1jk + Bsijklij—16 T BNijkPiji1, +

BgijkDijr 1 + BrijrDijes1 = A, (2.44)

where the coefficients can be found in [23].
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2.5 Calculation of Cell-Face Velocities

In a co-located, orthogonal grid, the velocity does not depend on the pressure at the
same node (ijk), which can lead to a non-physical converged solution, a phenomenon
known as a checkerboard solution. Therefore, methods have been developed to
couple the pressure and the velocity in the calculation of mass balance. Rhie and
Chow [30] have presented a remedy for uncoupling, which is in wide use. Johansson
and Davidson [16] derived a simplified method that is used in the present SIMPLE

solvers. In the calculation of mass balance, the cell-face velocities are computed as

S.

i—1,jk

Ai[piﬂ,jk — 3pi-1,jk + 3Dijk — Pit1,4k]- (2.45)
4 Pi—1,jk

_ 1 _ _
uifé’jk = §(ui,1,jk + uijk) +C

The pressure term in Eq. (2.45) adds numerical dissipation. In a smooth pressure
field, the term will become negligible. The pressure term is multiplied by a constant

C' in the range 0.01 — 0.5 to adjust an optimum coupling [24].

2.6 Total Variation Diminishing Scheme

The central difference leads easily into spurious wiggles in the scalar field. In the
mean mixing fraction the values below zero and over one are present. The Total
Variation Diminishing (TVD) scheme reduces the overshoots effectively. Here, a
TVD scheme is implemented with a minmod limiter combined into a Monotone
Upwind-Centered Scheme for Conservation Law (MUSCL) [14]. With the central
difference discretization, the variables extrapolated at the cell face 7 + % from the

left- and right-hand side are

1
O = 0i+ 29(11) (0541 — 63) (2.46)
1
9;1% = Oiy1 — §¢(T;:L%)(9i+1 —0;), (2.47)

where the minmod limiter is defined as

¢(r) = min(r, 1) , 7>0

o(r)=0 , 7<0
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and the arguments of the limiter are the ratios of the consequent variables

0; —0;_1 4 Oiyo — 01
1= L=y -
2 i1 —0; s Oiy1 — 0;

If the limiter is activated the discretization becomes upwind-biased and numerical

dissipation is introduced.

2.7 Numerical Test Filters

The filtering operation in one dimension over equidistant points a, b and c is defined

as an integral

) = / G — o) f(a)da. (2.48)
The top-hat filter is then
1 —
Gh-2) = —— if |b—a <"
c—a 2
Glb—1z) = 0 Jif |b—m\>C;a (2.49)

Let us consider a numerical integration using three points a, b and c. The trapezoidal

rule leads to the following second-order accurate trapezoidal filter [4]

70 = 117(a) +2f(8) + f ()] (2.50)

Application of the fifth-order accurate Simpson quadrature leads to the following

fourth-order filter [4]

T = 51f(@) +4£0) + £(0). 2.51)

In two and three dimensions, the filters can be applied in series in each dimension.

The three-dimensional filters thus obtained are illustrated in Fig. 2.1.

2.8 Block Structure and Parallelization

A computational grid may be difficult to define on complex geometries by utilizing
a structured grid. A well-known remedy for this is a multi-block structure, where
the computational domain is divided between many structured blocks that are con-

nected together [15], [31]. Ghost cells are used to set the boundary condition. Two
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layers of cells are defined to ensure a second-order accuracy, if upwind-biased dis-
cretizations are used, and for the Rhie and Chow interpolation. The cell values
at the two layers at the edge of the block are transferred to the ghost cells of the
neighbouring block and vice versa. The neighbouring blocks may have a different
orientation. The connective boundary condition applies an orientation matrix and
an offset vector at each connective face. These relate the indices in the boundary
data transfer, as illustrated in Fig. 2.2. In the current version of the solver, each
face must connect completely to another face and the grid lines must be continu-
ous. The parallelization is based on dividing the blocks among different processors,
although many blocks can be assigned into one processor. The parallelization is
implemented with a standard called Message-Passing Interface (MPI) [12]. Each
block reserves a memory space which is used to transmit the boundary data with
MPLSEND and MPI_RECV operations. These operations are blocking; that is, the
control does not return to the user program until the message has been received.
Therefore, the order of communication between the processes is solved before the
computation is started. Each message sent must be received in the proper order,
otherwise the computation deadlocks. The grid should be divided as equally as pos-
sible between different processors in order to provide a good balancing. All processes
compute the problem equally but only the master process reads in an input file, a
boundary data file and the grid. The master defines the boundary data needed
and computes the order of the communication. The master transmits the data by
an MPIL BCAST command to all workers and the workers’ part of the grid by an
MPI_SEND command. A flow chart of the solver is presented in Fig. (2.3). After
reading the input data and the mesh, each process computes the local memory size
needed and allocates a one-dimensional table that contains all the flow variables.
No memory space is wasted, even if the blocks differ in size within one process or

between processes.

The computation is started with an initial guess, which is also copied at the
previous time levels. The momentum equations (2.41) are solved in series with an

algebraic multigrid solver. The mass balance is calculated with face velocities (2.45)
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Trapezoidal filter Simpson filter
1 /2 /1 1 /4 /1
2,/4 /2 4 /16 /4
1 /2 1 1 /4 1
2 4 /2 4 /16 /4
4 8 4 *1/64 16 /64 /16 *1/216
2 4 /2 4 /16 /4
1 2 1 1 4 1
2 4 /2 4 /16 /4
1 2 1 1 4 1

Figure 2.1: Trapezoidal and Simpson filters in three dimensions.

AJ
1 - J 2
-
K
DO 11=IS1,IE1 #x
O 11=1S1, DO 12=1S2,IE2
DO J1=JS1,JE1 DO J2=JS2,JE2
DO K1=KS1,KE1 o
, DO K2=KS2,KE2
12 0 10\[I1 02 11 0 -1 0\/12 (e}
J2|94-1 0 qlJ1| 4 Jo2 J1l1=l 1 ool 32 Jo1
K2 0 0 1/)\K1 KO K1 0 0 1/\K2 KO
ENDDO ENDDO
ENDDO ENDDO
ENDDO

ENDDO

Figure 2.2: The connective boundary condition takes into account a different ori-
entation between the blocks. An orientation matrix and an offset vector relates the
indices between the blocks.
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Figure 2.3: A flow diagram of the parallel code. The dashed arrows represent
communication between the processors.

that are coupled with the pressure. The mass flux error is used as a source in the
pressure correction equation (2.44), which is solved with a multigrid (MG) solver.
The MG algorithm solves the problem at the dense level first and moves the residual
to the next coarsest level as a source. The coarse grid problem is approximated from
the finer one. The process is called the Galerkin Coarse-Grid Approximation (GCA).
After the coarsest grid level, the corrections are added to the unknown of each finer
level, or the problem can be iterated also on the way up. The line Gauss Seidel (LGS)
method is used at each level as a smoother. Reference [24] and Pensala (unpublished
memorandum ‘3-D multigrid solver for Poisson-type equations’ in Finnish, HUT,
1996) give a detailed description of the MG solver. The pressure corrections p’ and

the velocity corrections are added to the pressures and the velocities multiplied by
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the under-relaxation coefficients oy, and «,, respectively. Depending on the case, «,
usually varies from 0.1 to 0.8. In order for the velocities to satisfy the continuity
equation, o, should be 1 at this stage.

The implicit momentum equations and the Poisson equations for the pressure
are solved independently in all blocks. During the iteration, a Diriclet condition
(AV,p' = 0) is set at the first ghost cell of the connective boundaries. After each
sub-iteration, cycle the boundary condition is updated for velocities and pressure
(V,p). The boundary value is lagging in time which is solved by iterating within a
time step. Let us study a particular problem in a two-dimensional situation where
four blocks meet at a corner in Fig. 2.4. After one exchange of boundary data the
value of the ghost corner cells is not correct. Rizzi et al. [31] have shown that, by
repeating the same boundary data transfer twice, the values at the corners are also
correct. In three dimensions the transfer must be repeated three times. However,
since the message passing between processes consumes time the boundary values
are transfered only once after each iteration cycle. Owing to the sub-iterations,
also a ghost corner value is correct in a converged solution. In a similar way to
that of Bui [3], all the boundary values at the connecting boundary are copied in a
single vector that is transmitted with a single message passing call. The criterion
of convergence can be set in many different ways and it can depend on any primary
variable or the balance of mass fluxes. Usually, an L;- or Ly-norm of a residual of
some variable must converge below a preset limit. As the convergence is reached,
the solution of the new time level is started by updating the variables at the old and

present time levels.
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Figure 2.4: One exchange of the boundary value does not set correct values in
the corner ghost cells where four blocks meet (b). By repeating the transfer the
values in the corner ghost cells will be updated [31] (c). In three dimensions three
successive transfers are needed.
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3 Computational Studies of Time Stepping

3.1 Motivation and Background

A stability analysis of a linear convection equation for an explicit Euler scheme with
a first-order upwind discretization reveals that a longest possible time step is limited

by the Courant-Friedrics-Lax condition

UAt
FL=-"—"<1.
¢ Ax —

In general, the limit condition above applies to all explicit methods excluding some
methods like Runge-Kutta, which may violate it by a factor of two or three. In a
simple flow case like a channel flow, this poses no restriction for a time accurate
solution. However, a complex geometry involves many parts and blocks (in struc-
tured grids) with clustering of cells near solid walls. This will probably limit the
time-step size unnecessarilly. Violating the CFL condition somewhere in the domain
may not deteriorate the overall solution but savings in the computational times can
be gained. The stability of the implicit schemes is also an advantage. It should be
mentioned that the von Neumann stability analysis of a linear convection equation
for the explicit Euler scheme with the second-order central discretization reveals
that such method is uncontionally unstable. However, the addition of a diffusion

term stabilizes the scheme.

3.2 Computations in Two Dimensions

Explicit Euler and Adams-Bashford methods are compared with an iterative implicit
three-level method based on a SIMPLE solver in Paper I. A two-dimensional vortex-
shedding flow over a cylinder is the test case. Reynolds numbers at a low-range of
100 - 1600 are used. The grid clustering near the surface depends on the Reynolds
number. The time-step size is varied and its effect on the results is studied. Finally,
a high-Reynolds number case of a biconvex airfoil (Re = 1.83 x 10°) is calculated.

All the calculations are two-dimensional although the real flow would be three-
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dimensional from Re = 400 to highly turbulent airfoil. The purpose of the two-

dimensional simulations is to compare solvers with reasonable computational cost.

3.3 Conclusions

The implicit method allows the time step to be lengthened beyond CFL = 1. The
number of iterations within the time step also grows in order to achive the same
convergence and accuracy. At Re=100 the explicit methods are five times faster
than the implicit ones with the largest time step. At the higher Reynolds number,
Re=1600, the factor is four. The maximum local C'F'L number with this time step
is approximately 30 at Re=1600, so the step is too long to capture the fine structure
in a turbulent flow. As the step size is decreased by one decade, the explicit methods
are faster by a factor of ten at Re=100. At the Reynolds number of 1600, the factor
is slightly lowered to eight. The results obtained with the Reynolds numbers of 400
and higher deviate from the measured due to the three-dimensionality of the real
flow. However, this hardly affects the comparison between the methods used and

their computational efficiency.

At the high-Reynolds number Re = 1.83 x 10° the computational mesh includes
small cells near the solid boundaries that restrict the time-step length. An implicit
method is able to use a time-step size that is about 20 times larger than that of an
explicit one. The force coefficients and the statistically gathered first and second
moments are practically identical from both calculations. Owing to the subiterations
and the solution of the implicit momentum equations, the computational time is
still slightly more than that of the explicit calculation. The difference is negligible
compared to the low-Reynolds number cases, however.

The implicit method is based on the SIMPLE algorithm, which can possibly be
improved by different derivative schemes like SIMPLEC or PISO. Another important
issue, which has been omitted in this study, is parallelization. In practice, most
turbulent time-dependent cases are computationally highly intensive tasks which are

solved in parallel systems. A common approach is to divide the physical solution
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domain into subdomains and assign each subdomain to one processor. The amount
and frequency of data exchanged between processors affects the performance. For
instance, the solution of the elliptic Poisson equation might be an intensive task in
terms of data exchange, if solved in a subdomain parallelization scheme. The effect

on the performance may differ depending on the computational algorithm used.
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4 Studies of Subgrid-Scale Modelling

4.1 Motivation and Background

Najjar and Tafti [26] studied the discrete test filters at a low Reynolds number Re,
= 180. They found that a high-order test filter produced a lower turbulent viscos-
ity than a top-hat test filter. This dynamic procedure also sensed the dissipative
upwind-biased scheme and adjusted the dynamic constant accordingly. However,
in their conclusion they were not convinced that inclusion of the SGS model would
always produce better results in finite-difference approximations. The reason for
this is due to numerical errors rather than due to the model itself, they concluded.
Najjar and Tafti [25] studied the effect of the grid resolution in the channel flow
simulation at a higher Reynolds number, Re, = 1050. The coarse grid simulation
predicted too low wall stresses and the core velocities were too high. They concluded
that a coarse grid could not capture the energy-producing near-wall structures. The
application of the test filter in all the directions (i.e. also in the inhomogeneous
direction) decreased the SGS stresses. Sagaut et al. [32] computed the channel flow
with various self-adaptive SGS models combined with a finite-difference scheme at
Re, =180 and Re, = 400. A general trend was that the addition of the SGS models

decreased the wall stress.

4.2 Computations

In Paper IT a fully turbulent channel flow at Reynolds numbers Re, = 2800 and
Re, = 12 500 (based on the bulk velocity and half the channel height) is the test
case in the study of large-eddy simulation with a co-located finite-volume technique.
The mass flow is kept constant in the simulations by adjusting the average pressure
gradient separated from that pressure solved from the Poisson equation. The results
from simulations with the constant and the dynamic Smagorinsky SGS models are
compared to a non-modelled simulation. The effect of the grid resolution on the

results is studied with and without the SGS model. At Re = 2800 calculations are
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Table 4.1: The parameters of the grids used .

Grid | N, N, N,|Az" Ayl Ayt. Azt

coarse | 16 64 16 | 71 1.0 16.8 36
medium | 32 64 32| 36 1.0 16.8 18
fine 64 64 64| 18 1.0 16.8 9

carried out with three different grids, whose streamwise and spanwise cell densities
vary. The parameters are given in Table 4.1. The discrete test filter is implemented
according to the trapezoidal rule and Simpson rule in the dynamic model. An
instantaneous flow field of a very fine grid simulation is analyzed in order to study

the discretization error present in the large-eddy simulations.

4.3 Conclusions

The channel flow at Re, = 2800 was computed first with no subgrid-scale (SGS)
model by employing three different mesh sizes. The coarse-grid calculations over-
predicted the peak of the turbulent energy and under-predicted the wall stress.
Figure 4.2 shows that streamwise stresses are over-predicted and wall normal and
spanwise stresses are under-predicted with inadequate resolution. Consequently,
the wall stresses are under-predicted with the coarse grids. It is known from
the experiments and the simulations, that in the spanwise direction there exist
streaks of high and low-speed fluid with a mean spacing of 100 wall units [20]. It
is probable that the coarse grid, with a spanwise node spacing of 36 wall units,
is unable to capture these near-wall eddies correctly. With the fine grid, all the
monitored quantities are quite close to those from the reference DNS.

Figure 4.2 shows the resolved normal stresses with the SGS models on the medium

mesh. The eddy viscosity damps the flow and the wall stresses decrease further. In
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Figure 4.1: A scheme of the channel flow at Re, = 2800 on the left. An instanta-
neous picture of the flow coloured with momentum on the right.
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Figure 4.2: Resolved normal stresses from the non-modelled simulations with dif-
ferent grids at Re = 2800.
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addition, the result from the fine grid is altered correspondingly. The eddy viscosity
from all the SGS models is decreased with the decreasing mesh spacing, but appar-
ently this ‘laminarization’ process is inadequate for all the SGS models applied. Na-
jjar and Tafti [26] used a staggered mesh with a second-order Harlow-Welch scheme
and a fifth-order upwind-biased scheme for the convection term in their study. They
concluded that the dynamic model improved the prediction capability of their re-
sult, when used with the Harlow-Welch scheme and with a minimum resolution that
would capture energy-producing mechanisms. This study, performed with a co-
located mesh and a second-order central discretization, indicated no improvements
at any grid level tested. Normalizing the results by the shear velocity is not proper,
since it varies from one calculation to another. Ignoring this fact might lead to false
conclusions, especially in assessing the influence of the SGS model on the resolved
turbulent quantities. The filtering operation affects the model output; in the current
dynamic models the top-hat filter is integrated with the three-point trapezoidal and
Simpson quadrature. The former produces about 30 % greater viscosity in the core

flow than the latter.

At the higher Reynolds number of 12 500 the channel flow was computed by uti-
lizing one grid size only. The trend in the results was similar to that of the low
Reynolds number case. The streamwise fluctuations are over-predicted and the fric-
tion is under-predicted. The non-modelled computation oscillates non-physically
and the SGS models stabilize the computation and improve the results, especially
in the core flow where the cell volumes of the stretched grid are large. The simple
Smagorinsky model accompanied by the van Driest damping function works best
among the applied models. In the dynamic model the numerical implementation
has a great effect. The volume over which the eddy viscosity is calculated becomes
relatively large. The resolution that has been applied to the case might be too coarse
for the dynamic model. On the other hand, a second-order finite-difference approx-
imation includes a lot of numerical truncation errors as small filtering molecules are
applied. A longer filter cuts the subgrid frequencies more sharply but the proper im-

plementation is more tedious and the resolution of the computation should probably
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be finer.

The discretization error was assessed at Re, = 2800. A procedure similar to that
used by Vreman et al. [35], [36] was undertaken to estimate the discretization error
and the subgrid term. The case at Re, = 2800 is computed with a dense grid size
of 128 x 64 x 128. The filtering operation to this field, which is assumed to an

accurate DNS result, yields

anUj 8@@ aTij
= 4.1
a.ij 833]' * 8@- ’ ( )

where the SGS stresses are given by
Tij = Uglhj — Uil (4.2)

The above derivatives are estimated with a fourth-order scheme in the homogeneous
directions. In the wall-normal directions the derivatives are estimated with a second-
order scheme, which takes into account the grid stretching. In a coarse LES grid
the discretization error is introduced also in the pressure term, whereas the diffusion
term is ignored, since it is smaller by the magnitude of the Reynolds number. The
relation of the discretized i-direction convective terms between two resolutions can
be written as 5 5 5 5
ww; 10p  Swm;  16p

B, 50 53y oo T 43)
where §/dz; denotes for the second-order finite volume operator used in the simula-
tions and ¢; is the error between the fine and coarse level approximations.

An instantaneous flow field was filtered by a trapezoidal formula by using 6 and 10
cells in each homogeneous direction. The filters are then 5 and 9 grid-spacings wide,
respectively. The filtered variables coincide at the wall-normal plane in the grid
nodes of the dense grid, and at the cell centre nodes of the 32 x 64 x 32 grid. At
the coarse mesh level the filters are 1.25 and 2.25 grid spacings wide, respectively. In
the wall normal direction the variables are not filtered. The accurate subgrid-scale
stresses can be defined from Eq. (4.2). The discretization error ¢; can be estimated

from Eq. (4.3) in each co-ordinate direction. The Lo-norms of ¢; and 07;;/0x;

are presented in Fig. 4.4. The quantities are computed over the xz -planes at one
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instant of solution. The estimated error dominates the accurate subgrid term by a
factor of ten even if the filter width is twice that of the grid spacing. Only in the
vicinity of the walls are both terms about equal in size. A perfect SGS model will
not necessarily improve the result in this case. However, a dissipation caused by the
eddy viscosity might stabilize the computation and remove unphysical oscillations,
as it does at Re, =12 500.

Najjar and Tafti [26] concluded that an improved result must not be taken for
granted by applying a subgrid scale model in a finite-difference calculation. If the
resolution of the grid is fine enough to provide a physically reasonable solution
without any dissipation, the present results support the same conclusion. Studies
with higher Reynolds numbers are required to clarify the advantages of the SGS

modelling in finite-volume solutions.
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Figure 4.3: Resolved normal stresses from all the simulations with the medium
grid at Re = 2800.
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Figure 4.4: The L, -norm of the estimated discretization error ||¢.|| and the
subgrid term ||07;4,/0x;|| in the streamwise, wall-normal and spanwise direction,
respectively.
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5 Parallel Solver

5.1 Motivation and Background

The channel flow described in the previous chapter is a good case for numerical and
theoretical studies in turbulence. Most flows encountered around us are certainly
more complex in terms of the flow behaviour and the domain. Furthermore, charac-
teristic Reynolds numbers are often a lot higher than those seen in this thesis so far.
In a parallel computer a computational task is divided between many processors.
In an ideal case, the single-processor execution time is decreased to the time of the
original time divided by the number of the processors used. In this section, a par-
allel multi-block solver for incompressible flow is described and validated. A spatial
discretization is based on the co-located and structured finite-volume method with
Rhie and Chow pressure coupling. The three-level implicit stepping is applied in
time advancement. A computational domain is divided into separate blocks, which
are assigned in separate processors. The Message-Passing Interface (MPI) is used
for exchanging the boundary data. Several computations are performed to validate

the solver in Paper III.

5.2 Test Computations

5.2.1 Steady Cavity Flow

The first test case is a steady-state cavity flow Re = % = 400. A first-order Euler
method is used to iterate a converged result and a second-order central discretization
scheme is applied for the convective and diffusive terms. The grid points are equally
distributed and the number of cells is 96 x 96 x 8, where the cells in the k-direction
are set for computational reasons, specifically for the multigrid solver. The iteration
is stopped until the Ly norm of u-velocity was decreased below 1071°. With eight
processors the number of iterations is increased by 10 % compared to that needed by
the single processor computation with a single domain. The CPU time is decreased

more than linearly as the number of processors is increased. Figure 5.1 at the left
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shows that the domain decomposition does not deteriorate the solution. The super-
linear speed-up shown at the right is probably due to the more efficient usage of a

cache memory the processor is capable of with the smaller domain assigned to it.
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Figure 5.1: Cavity flow at Re = 400. Converged u/U,-velocity along the vertical
centreline in the left and the speed-up per iteration. Reference result by Ghia et
al. [11].

5.2.2 Turbulent Cavity Flow

The second test case is a cavity flow at a Reynolds number of 10 000. The width of
the cavity (W) is half of the length and the height (L) of the cavity. This flow has
been studied experimentally by Prasad and Koseff [29).

The grid contains 64 x 64 x 32 grid cells and it is geometrically stretched from
the wall. The domain is partitioned in equal 1, 2, 4, and 8 sub-domains which are
assigned in separate processors. Large-eddy simulations were calculated with and
without a subgrid-scale model. The L;-norm of the mass balance is iterated to be
smaller than 1078. With four processors a non-modelled computation requires 9.6
iterations and a modelled one 5.8 iterations per time step for this criterion. Fig. 5.2
represents the results along the vertical and horizontal centreline. The computa-
tions over-predict the thickness and the maximum velocity on the downstream and

especially on the upstream wall. The insufficient resolution of the interior coarse
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grid might cause the discrepancies between the computed and the measured data.
The dynamic model does not affect the results much on the vertical and horizontal
centerlines. The model computes the largest viscosity near the downstream eddy,
where the flow is turbulent. The speed-up is again superlinear although not as

strongly as in the steady-state case where the mesh is smaller.

10 10 = 10
8 ‘ ‘
0.8 0.8 0.8 1
No model
....Dynomic medel
06 06 06-H o Prasad and Koseff
<~ -
X
x § 4 No model =
04 __ Nomodel AT T | Dynarmic model I o4
______ Dynamic rmodel __ B, o Prasad and Koseff o
02 © Prasad and Koseff| 02 ) 02 e
& T ° o s e S .
00 P 00 = 00 I—
—0.4 -02 0.0 0.2 04 0.6 08 10 0.0 0.2 0.4 0.6 0.8 -0.3 —0.2 —041 0.0 041
wu, ou,,,. /U, 500uy/U,?
0.2 1.0 0.3
01HES
%04 0.8 o
LQR‘O
>
] 0.6
s 01 % i No moiiel
) \ S o Dynamic mo: del
> 3 No model 3 " Prasad and Koseff
02 o > —Tomoedel S :
\ Q 04 ....Dynamic model o 7N
—03-H No model © Prasad and Koseff . \ °
...... Dynarmic model . N 00
04| © Prasad and Koseff 02 "\"i
| ‘ R S e A
-05 J T 0.0 - = e
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/L x/L x/1

Figure 5.2: Cavity flow at Re = 10000. Top : U/U,-velocity, 10usys/U, and
500uv /U2 along the vertical centreline. Bottom : V/U,-velocity, 10vpys/U, and
500uv /U2 along the horizontal centreline.

5.2.3 Fully Turbulent Pipe Flow

The third test case is a fully turbulent pipe flow at a friction velocity based Reynolds

D
number Re, = U _ 621.4, which was set by forcing the flow with a constant body
14

force. This approximately equals Re, = @ ~ 10000, where U, is the bulk flow
velocity and D is the diameter of the pipe. The shortest mesh is 1.2 D long and
consists of 5 blocks, each containing 32 x 32 x 32 cells, altogether 163 840 cells.
The height of the two cells next to the wall is approximated to be around one in

wall units (r* = 1) from the law of the wall. The stretching ratio varies between
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1.075-1.087 in the four outer blocks. The azimuthal mesh spacing RAAT at the wall
is 15 and the streamwise mesh-spacing Az" is 24. This flow was first computed
by using one Power4 processor, after which all blocks were assigned to separate
processors. The basic mesh was then multiplied and connected together, so that the
computations were performed by using multiple pipe lengths up to 30 processors.
The pipe flow may be considered a simple flow physically, but computationally it
possesses many complex features for the current Cartesian solver. Non-modelled
large-eddy simulations were calculated first. Within the time step of 0.057 (7 =
D/Uy) eight subiterations were taken, which was considered to provide a sufficient
convergence. The period during which the statistics were gathered varied between
200 T and 500 T'" depending on the mesh size. In the end, the data was averaged
also in the axial and radial directions. The velocity profile is slightly flatter than
the measured one. The streamwise rms fluctuations are over-predicted whereas
the radial rms fluctuations are under-predicted, as seen in Fig. 5.3. The fluctuations
obtained from the simulation using the shortest pipe length 1.2 D deviate somewhat

from the rest of the results. A localized SGS model was utilized with the pipe
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Figure 5.3: Results from the pipe flow at Re, = 621.4. At left streamwise fluctu-
ations with different mesh lengths. The effect of the SGS model on the streamwise
and radial fluctuations at the centre and the right, respectively. The reference mea-
surements by den Toonder and Nieuwstadt [9].

length of 3.6D. The model dampens slightly the resolved turbulent intensities as
shown in Fig. 5.3. Near the wall the model dampens itself excluding the need for the
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Figure 5.4: Instantaneous momentum vectors projected to a cross-section in a pipe
flow at Re, = 621.4.

van Driest damping function, which requires a distance from the wall. In complex
geometries the definition of the wall distance may be ambiguous. The scale-up of

the parallelization was linear in these calculations.

5.2.4 Conclusions

A parallel, finite-volume solver was developed for large-eddy simulation. The al-
gorithm is based on a traditional SIMPLE technique and an implicit iterative time
stepping is applied. The implicit part of the solution is solved independently in each
block and process and the boundary values are exchanged only after each outer it-
eration loop. This simplifies the code a lot without much affecting the convergence.
Also, the amount of the message passing between the processes is reduced. The par-
allelization of the present solver shows good scaling in the present ideally balanced
computations. Several flows are simulated to test the solver. The local dynamic
model reduces the viscosity correctly in the vicinity of the wall without any ad hoc

damping functions.
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6 Jet in a Cross-Flow

6.1 Flow Configuration

The jet in a cross-flow considered here has been experimentally studied by Crabb et
al. [6]. The Reynolds number Rep = 46 700 referred to the pipe flow is rather large
for an LES of the whole jet. Therefore, the computational domain has been reduced
from that of the wind tunnel used by Crabb et al.. The jet-to-cross-flow velocity
ratio J = 2.3. The setup of the jet in a cross-flow is sketched in Fig. 6.1. The number
of the control volumes (CVs) is 192 x 96 x 144 in the stream-wise, wall-normal and
span-wise directions, respectively. In addition to this, a jet pipe is represented with
110 592 CVs, altogether 2 764 800 CVs, which are equally distributed into 25 blocks.
The grid is clustered around the jet exit and the height of the first cell from the lower
wall is 0.002D, which corresponds to Ayt = 4.7 if scaled by the friction velocity of
the incoming turbulent pipe flow. The stretching factor in the wall-normal direction

is less than 1.06.  Crabb et al. found that without the jet, the height of the
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Figure 6.1: Schematics of the domain in the jet in a cross-flow. The experiment
refers to the wind tunnel used by Crabb et al. [6] whereas the LES refers to the
present computational domain size.



39

boundary layer in front of the jet exit was about 0.24D high and the free-stream
turbulence level of the channel is 0.6 %. Two different boundary conditions are

applied. First a uniform cross velocity U,, was set at the inlet.

An unsteady condition was extracted from a turbulent profile from half the chan-
nel flow 0.22D high. Above this boundary layer, a non-shear turbulent flow was
extracted from the middle of the channel flow so that the intensity was gradually
damped to zero by y/D = 0.5. Above that, a constant value was used preserving
the same mass flow through the inlet as the steady-state boundary condition. At
the lateral and top surfaces, free-slip boundary conditions were applied and a no-slip
condition was forced at the bottom wall. At the outlet a zero-gradient (Neumann)
condition was used. A zero-gradient pressure surrounded the whole area and the

average pressure level in the area was fixed.

First the case was calculated with a steady fully developed turbulent profile. The
unsteady condition was obtained from an LES of a fully developed pipe flow. The
topology of the mesh and the time-step size were different in the precursor compu-
tation. Therefore, the boundary condition velocities were interpolated spatially and
temporally in the jet computation. The sequence of the boundary values was also in-
terpolated to be periodic, whose duration corresponds to the bulk flow advancement
of two diameters in the inlet pipe.

Crabb et al. seeded the jet with helium trace and measured the mixture fraction
/6, at different locations downstream. In the cross-flow inlet /6; = 0 and in the
jet 0/0; = 1. A zero-gradient for the scalar was set at all the other boundaries. The
turbulent Prandtl or Schmidt number was set to a constant value of 0.6, which is in
the range suggested in [5].

The startup of the calculation was quite difficult. The dynamic model did not
stabilize the computation and consequently it was not used. An excessive value for
the Smagorinsky constant C'; was set, until after some transient time, it was lowered
to a value of 0.17. Also, an under-relaxation of a few per cent was added to the
diagonal of the pressure correction equation in order for the MG solver to converge.

The time step was rather short, At = 0.0057", where T'= D /2U,. This implies that
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the bulk cross-flow advances from the inlet to the outlet during 5200 time steps.
Due to the relatively thin cells, the highest C'F'L values are around 4 at the jet exit,
however. A total of 15 sub-iterations was calculated during a time step. It might
have been possible to obtain the same results with a smaller number of iterations,
but this was not tested. The global mass balance residual reduced to a third from
the first iteration, which is a rather poor convergence within a time step. Since the
time step is globally so small, a global mass error remains small even at the first
iteration cycle. The flow was computed for a time of 113 7" from the initial state
before statistics were gathered. The statistics were gathered during 153 T, or six
flow-through times. The results were relatively converged after 87 T, especially near
the jet exit. The biggest changes were seen in non-diagonal stresses in the far field
at /D = 8. There was no need to reconsider the conclusions due to the continued
computation, however. In calendar time all this corresponds to approximately 40
days when using 25 Power4 processors of an IBM SP cluster. With the unsteady

boundary condition the statistics were gathered a time of 7.5 flow-through times.

6.2 Results

6.2.1 Flow Field

In this section, a qualitative overview of the flow field is given. The mean flow
streamlines in the jet exit region are shown in Fig. 6.2. There are some differences
between the solutions with the steady and the unsteady BC at the inlet pipe, which
from now on are referred to as LESSBC and LESUBC, respectively. Both cases are
referred to as LES in general. In the central plane upstream of the jet exit there is
a single vortex (V7), whose centre is located 0.25 D upstream of the lip. Kelso et al.
found that at a smaller Reynolds number U, D/v = 1600 there were two vortices
in front of the jet, separated by a saddle point. They also visualized a ‘hovering
vortex’ above the jet exit. The vortex originates from the collision of the jet and
the cross-flow shear layers. In Fig. 6.2 the streamlines of the LESSBC reveal three
distinguishable roll-up vortices (Va, V3, V4), two of them inside the pipe (V3, V}). In
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LESUBC the roll-up vortex V5 is not present and V, is hardly distinguishable. In
both schemes some part of the cross-flow near the surface is swept into the pipe.
The saddle point S, or the lowest point where the incoming fluid penetrates, is
located at approximately y/D = -0.2. The LESUBC shows a smaller separation
bubble inside the inlet pipe. At a Reynolds number ten times smaller, and at the
jet-to-cross-flow velocity ratios R = 2.2 and 4.0, Kelso et al. [18] reported the saddle
point locations of y/D = -0.4 and -0.16, respectively. At high velocity ratios ( > 6 )
the saddle point is located at the lip. In the symmetry plane downstream of the jet,
there resides a node (N). LESUBC predicts the location of the node slightly higher
(/D =1.1,y/D = 0.21) than LESSBC (z/D = 1.06,y/D = 0.18). A vortex is also
located right downstream of the jet exit edge (V5). Behind the jet there is a rather
strong back-flow near the flat plate. The back-flow almost reaches a velocity of the
free-stream value. The cross-flow deflects over the bending jet and accelerates to
a value of nearly twice the free-stream value. The mean vertical velocity possesses
two regions of strong upward motion. The upper region is generated directly by the
jet. In the lower region the upward velocity is at maximum about half of the jet
velocity. This motion is the fluid flowing from the node toward the jet trajectory.
Yuan et al. [40] found that at Rep = 2100 there was a clear distinction between the
sign of the vertical vorticity emerging from the left-hand side and the right-hand
side of the pipe [40]. This notion is confirmed in this case. The vorticity seems
to mix quicker in the present case, which is probably due to the higher Reynolds
number. Figure 6.3 reveals the vortices with the iso-surface of the second invariant

of the velocity gradient () defined as

_ 1 6w; 0,

Q=- (SijSij - QijQij) - 9 0z, Oz,

(NN

An animation shows that the vortex upstream of the jet exit is formed and it moves
to the lip of the jet exit where it seems to merge with the vortices of opposite sign
rising from the pipe. The merger may explain that at a distance of approximately
one diameter above the exit there is weaker coherent vorticity in front of the jet.

The animation also shows how shear layer vortex layers are shed one after another
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LESSBC LESUBC

Figure 6.2: The streamlines of the mean velocities in the symmetry plane with
different boundary conditions. In the second row magnifications upstream from the
jet exit. The separation zone is smaller inside the pipe with LESUBC including only
one vortex V3. The lee of the jet (bottom) shows a node (N) and a vortex (V).

near the exit. They move along the jet before they lose their coherence at a distance

of a few pipe diameters away from the exit.

Figure 6.4 shows an evolution of a counter-rotating vortex pair (CVP) at various
distances from the jet exit. A small CVP is present already at the jet exit (z/D =
0), which supports the idea that it is initiated by the pipe vorticity(see e.g. [18]).
Further downstream the CVP grows and the computational domain may constrain

the spreading slightly.

The resolved turbulent kinetic energy (TKE) in the symmetry plane (Fig. 6.5)



43

Figure 6.3: An instantaneous iso-surface of the second invariant of the velocity
gradient ) = 30.

shows a maximum under the jet trajectory where the flow emerging from the node
curves to join the jet. Another smaller maximum is located at the node behind the
jet. The eddy viscosity (Fig. 6.5) exhibits a local maximum under the jet trajectory
too, approximately in the same location as TKE. At the node there is no maximum.
This is prevented by a shorter length scale due to the grid clustering or a smaller
strain rate, or both. The greatest viscosity ratio, approximately 35, exists in the
shear layer near the inlet of the pipe. The resolution is far too coarse as the resolved
TKE is almost zero in the boundary layer of the inlet pipe. Poor accuracy is obtained
inside the pipe but we assume that this is not important in the simulation of the

whole jet, which is the primary focus of the present work.

6.2.2 Comparison to the Measurements

A comparison of the calculated flow field to the experiment of Crabb et al. [6]
(CDW) is conducted next. The mean stream-wise velocities in the central plane are

shown in Fig. 6.6. At x/D =-1 the present LES shows a slight acceleration near the
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Figure 6.5: At the left turbulent kinetic energy ——=-. At the right eddy viscosity

v+ Vsgs
v

contours in the symmetry plane.

resolved LES. On the other hand, Andreopoulos and Rodi [1] mention that, in the
lee of the jet with similar parameters, a reverse-flow region forms very close to the
wall in which measurements were not possible. It is possible such a recirculation
exists, but in any case the LES predict it too high up above the wall and probably
too intense. In CDW, the back-flow resides approximately between z/D = 0.75 and
3. In the LES there is no back-flow downstream of /D = 2 and the flow profile is
flatter than that of CDW. The LESUBC shows a steeper gradient in the lee of the
jet /D > 3.

The stream-wise turbulent intensity (Fig 6.7) upstream of the jet is somewhat
difficult to interpret. Without the jet, the boundary layer width is 0.24 D and
the free-stream turbulence is less than 0.6 %. It is then questionable whether the
measured turbulence level of 4 % originates from the upstream boundary layer at
z/D = -1. The fluctuations above the boundary layer width probably originate
from the vortex motion described above or some other interaction of the jet and
cross-flow. The LES captures only part of this intensity, which may be due to the
applied Smagorinsky model.

The LESUBC has a peak value u,5/Usx = 0.05 and LESSBC that of 0.02 near
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Figure 6.6: Mean stream-wise velocities in the central plane, z/D = 0: LESUBC
(—), LESSBC (- - -), CDW [6] (e).

the wall at y/D = 0.1. Apparently, the large cells at the inlet due to the clustered
mesh damp the fluctuations before interacting with the jet. The essential difference
between the two cases at the cross-flow inlet is the average profile.

Downstream of the inlet there are two maxima in the intensity profile. They reside
approximately at the location of the steepest gradient of the velocity. In general,
the turbulent intensities are rather well predicted compared to the mean velocity.

Yuan et al. [40] performed simulations to test the effect of different inlet conditions.
They tested a plug flow profile, a mean turbulent profile and a temporally evolving
pipe flow and reported that the latter boundary condition obviously improved the

result. However, they do not provide much evidence to support this conclusion.
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Figure 6.7: Stream-wise turbulence intensities in the central plane, z/D = 0:
LESUBC (—), LESSBC (- - -), CDW [6] (e).

Wille [39] set the boundary condition at the wall by setting the lateral components to
zero and the vertical component to such a value that the mean dynamic pressure was
constant. Random fluctuations were added to the profile. This condition produced
a surprisingly good agreement with CDW at y/D = 0.25 although it prevented any
upstream effect from the pipe. Fig. 6.8 shows the present jet profiles that have
approximately 10 % higher peak values than the measured one at y/D = 0.25 and
z/D = 0. Crabb et al. [6] report that the profile at the outlet is a fully developed
profile in a pipe whose length was 30 D. In the present simulation there are no
significant differences in the outlet profiles between LESSBC and LESUBC. The
LES shows a high velocity peak behind the jet indicating the intense recirculation.
Half the diameter off the symmetry plane the LESUBC profiles are higher.

The difference between the two cases is apparent in turbulent intensities near the
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Figure 6.8: Jet profiles near the inlet at y/D = 0.25 in the central plane, z/D =
0: LESUBC (—), LESSBC (- - -), CDW [6] (e).

jet exit in Figs. 6.9 and 6.10. The wall-normal intensity in Fig. 6.10 shows two
distinct peaks near the jet exit, corresponding to the upstream and downstream
shear layers of the pipe flow. Close to the wall (y/D = 0.25) the LESSBC predicts a
very small intensity on the upstream side, whereas both the peaks are captured by
the LESUBC. In the lee of the jet, the intensities are in a reasonable agreement with
CDW. The back-flow generates fluctuations close to the wall also in the LESSBC,
and on the upstream side the fluctuations grow closer to the measured ones further
up, which is probably connected to the development of the ring vortices. In Figs. 6.9
- 6.10, only a resolved part of the turbulent stress is plotted. Also the total stresses
including the contributions from the sub-grid scale model were gathered. Along
the lines shown it is hard to distinguish the two quantities from each other as they
lie within the line width. Wille [39] observed differences in the resolved and the
total stresses with a coarse grid (88 440 cells) but the differences are reported to be
very small with the fine mesh (997 920 cells). In the major part of the domain the
modelled stresses are negligible compared to the averaged resolved ones. However,
the resolved stresses consist of the large-scale motion, and the modelled stress is

significant in stabilizing the calculation. In the shear layers (e.g. in the inlet pipe)
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the modelled stresses might be large even if compared to the resolved stress. The
highest ratio v,y /v of approximately 35 is calculated near the pipe wall where there
is little or no resolved turbulence, as shown by Fig. 6.5. Here the near-wall grid is

too coarse and the representation of the wall friction is inadequate.
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Figure 6.9: Stream-wise turbulence intensities plotted at various distances y/D
from the wall and z/D from the central plane: LESUBC (—), LESSBC (- - -),
CDW [6] (e).

Figure 6.11 presents lateral profiles for the plane x/D = 8. The simulated jet has
dispersed as the profile has become flatter than the measured one, which is also seen
in Fig. 6.6. The Reynolds stresses are rather isotropic. In the far field velocity field
the inlet pipe BC has little effect. Considering the coarse mesh in the far field and

the short sampling time, the cross stresses u'v’/U? and u'w’/U? are well predicted.
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6.3 Scalar Mixing

In a preliminary calculation with a lower Reynolds number it was observed that
the central difference scheme led into spurious wiggles in the scalar field. The
computed mixture fraction had values lower than zero and higher than one. This
was observed also by Wille [39] who thought that using a TVD scheme would be
unacceptable for excessive smearing. In the mean mixing fraction the spurious values
were averaged off mostly. In preliminary tests a TVD-limited central difference for
scalar in the convection term reduced overshoots effectively, but not completely.
Here a MUSCL scheme is used with the minmod limiter Eq. (2.47). If the limiter
is activated the discretization becomes upwind-biased and numerical dissipation is
introduced. In the present case, a mixture fraction was restricted to lie between
0 and 1, otherwise the calculation eventually diverged. This was the case both
in the TVD-limited and the unlimited case. Fig. 6.12 shows the mean mixture
fraction in the central plane. The TVD-limited scalar does not spread as much as
the non-limited scalar. Both schemes underestimate the spreading under the jet.
The non-limited scalar fluctuates more than the limited scalar, which explains the
differences in the spreading. The schemes showed no clear difference in magnitudes
for the stream-wise turbulent scalar transport. In other directions the transport
terms were not recorded. Only a non-limited scalar discretization was used with
LESUBC. The time evolving boundary in the jet pipe affects the scalar spreading
even at the far field. The effect is stronger on the scalar field than on the velocity
field. The observations above are confirmed by the contour plot in Fig. 6.13 in the
far field plane at /D = 8. The TVD-limited scalar is shown on the right and the
non-limited scalar of the LESSBC and the LESUBC in the centre. The measured
contours of CDW are plotted with solid lines with the values next to them. Like the
experiment, the LESUBC shows a separated region for §/6; = 0.22. Apparently the
far field values are not converged completely as these regions are not symmetrically
centered. Fig. 6.13 shows that in the flow the rich helium concentration does not

coincide with the maximum velocity on the right. The flow with higher momentum



thus originates from the free-stream fluid accelerated around the jet. The simulated
velocity U/Uy is flatter on the whole plane, as also seen in Fig 6.6. The LES
contours are shown with dashed lines whose values lie in the range 0.9 - 1.04. The
smallest values are close to the bottom wall and in the centre plane, a value of 1.04

is detected also in the upper corner. The LESSBC and LESUBC velocity contours
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show no significant differences in this plot.

y/D

y/D

Figure 6.12: Mean mixture fraction in the central plane, z/D = 0. LESUBC
without any limiter (—), LESSBC without any limiter (- - -), LESSBC with the
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6.4 Conclusions

The LES of a turbulent jet in a cross-flow with the present parameters has been
performed with the steady-state and the unsteady boundary conditions. On the
whole the differences between the cases are relatively small in this flow. The LES
with the unsteady condition possesses a stronger back-flow in the lee of the jet where
the cross-streamwise velocity profiles along the vertical lines are steeper. In the far
field (/D > 8) the differences are small. The unsteady boundary increased the
mixing of the scalar. The scalar was discretized with a TVD scheme in order to
reduce the spurious wiggles, which consequently reduced also the mixing. In the
preliminary computation with a smaller Reynolds number the minmod limiter with
the second-order central difference did not completely remove the spurious values.

The resolution near the walls is probably too coarse for the present LES in which
the flow is resolved to the wall with a no-slip boundary condition. A wall model or
a hybrid RANS-LES model might be a good alternative if such a flow is computed
with a similar resolution.

The LES reproduced many phenomena present in such a flow, like the shear layer
ring vortices and the counter-rotating vortex pair. In general, a reasonable agree-
ment with the measurements was obtained. The LES predicts an intense back-flow
near the flat wall where no experimental data is available. It is possible that such
a recirculation exists, but in any case the LES predicts it to be too high above the

wall and probably too intense.
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7 Concluding Remarks

Turbulent simulations are often solved using explicit time stepping for best efficiency.
In preliminary computation conducted in two-dimensional vortex-shedding flows this
was the case too. At higher Reynolds numbers, where the difference in the cell sizes
in the computational domain increases, the extra cost of the implicit solution is
not so big any more. This is because the quality of the overall solution does not
suffer even if somewhere in the domain Courant number exceeds unity. In complex
domains the structured meshes often include small cells whose size is not determined
by the flow physics but by the geometry. In such a case, limiting the Courant number
smaller than one everywhere in the domain is not sensible.

Applying the Smagorinsky model or its dynamic derivative did not always improve
the result in channel flow computations. If the computation includes any implicit
diffusion and /or the Reynolds number is very low, the eddy viscosity produced by the
sub-grid scale model may even deteriorate the solution. A numerical discretization
error of second-order accuracy is greater by a decade or two in most of the domain
in a channel flow. This applies to the stresses. At high Reynolds numbers and
with an insufficient resolution the sub-grid scale model is needed to stabilize the
computation via eddy viscosity.

The parallel solver developed showed a linear parallelization as equally sized do-
mains were added to the computation. The localized dynamic model damped the
eddy viscosity without any ad hoc damping functions and the unphysical need for
the wall distance.

The large-eddy simulation of the jet in a cross-flow is a difficult case if compared
to previous flows computed in this thesis. The flow possesses various features; the
Reynolds number is higher and the periodic boundary conditions cannot be applied.
Throughout this work the dynamic Smagorinsky model has not shown a lot of
stabilizing features even if negative eddy viscosities are prevented. Therefore, the jet
in cross-flow was computed using the traditional Smagorinsky model. The turbulent

boundary conditions increased the spreading of the jet slightly, but in general the
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difference between the steady and the unsteady boundary conditions was quite small.
The total variation diminished (TVD) scheme was used to discretize the scalar
equation in order to remove non-physical oscillations. The TVD scheme reduced
the wiggles but did not completely remove non-physical values. The TVD scheme
reduced the spreading of the scalar. The LES reproduced many phenomena present
in such a flow and a reasonable agreement with the measurements was obtained.
The horseshoe vortex system around the exit near the wall was captured as well as
a small separation of the flow within the pipe. The shear layer vortices and their
evolution were present in an animation of the jet. The counter-rotating vortex pair
evolves immediately after the jet exit which supports the idea that the vortex pair
is initiated by the vorticity present in pipe.

The LES predicts an intense back-flow behind the jet near the flat wall where no
experimental data is available. It is possible that such a recirculation exists, but in
any case the resolution near the wall was probably not dense enough to calculate
the correct friction with the present resolution.

The simulation of the jet in a cross-flow required an enormous amount of processor
time. The computer power will have to increase vastly for LES to become practical
for most engineering applications. In particular, the resolution of the boundary layer
is expensive. Wall modelling or hybrid RANS-LES models will likely make time-
dependent and three-dimensional turbulence simulation closer to an engineering tool

- at some time in the future.
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