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Abstract 
 

Electricity utilities are being forced to maximise the use of their major assets while 

maintaining or improving availability of supply. Most urban environments have ageing 

underground cable networks that are extremely expensive and disruptive to replace. 

Original steady-state ratings are often being approached or even exceeded. As is 

generally known, transient rating methods that acknowledge that load transfer is usually 

less than the peak value on which steady-state ratings are based can give extra transfer 

capacity and thus extend the useful life of cables. Real-time temperature prediction 

based on actual loads can increase the utilisation of cables still further. It is imperative, 

however, that real-time temperature prediction methods allow for changing 

environmental parameters such as overall moisture content, the movement of moisture 

away from highly loaded cables, ambient temperature and the effect of external heat 

sources, because the inherent safety margin of steady-state rating is lost. 

 

This thesis takes a direct and inclusive approach to these issues, using a real-time 

formulation of a summation of exponential terms to provide a simple but consistent 

framework to model cables and their installed environment. Methods are given to 

extend the use of a thermal ladder circuit to cover the entire environment rather than just 

the cable itself because the nodal solutions in the environment support the prediction of 

moisture movement in a transient adaptation of the 2-zone approach to moisture 

migration used in the standards, where the backfill or native soil surrounding cables is 

assumed to dry when a stipulated critical temperature rise has been exceeded. One 

feature of the work is that the movement of moisture can be slowed down, an especially 

important attribute when cables are cooling after extended high temperature operation. 

Measurements from a cable-scale heating tube validate this approach. 

 

The main content of the thesis is implemented in an algorithm that consists of two parts. 

The first part analyses the environment of a buried cable system and generates the 

governing exponential equations. The coefficients and time constants of these equations 

consist of moisture and moisture migration dependent polynomials. The second part of 

the algorithm consists of the real-time implementation, with full dependence not only on 

the position of the critical isotherm delineating dry from wet regions during moisture 

migration but also the overall moisture content of the environment. The algorithm is 

validated by comparison with Finite Element Method simulations and standard based 

computations. 

 

The thesis also contains overviews of how the approach can cope with installations in 

composite plastic tubes and external sources. While the main application of the 

algorithm is to predict conductor temperatures in real time from current measurements 

and a realistic knowledge of the thermal environment of a cable, it is realised that 

operating margins can be more safely reduced if temperatures are monitored. A full 

thermal analysis of the installed cable system can lead to highly accurate algorithms 

predicting the conductor temperature from current and surface or sheath temperature 

measurements, and these plus less accurate but ‘universal’ algorithms are also 

presented, as a development of earlier work.  

 

Keywords: Cables, underground cables, moisture migration, ampacity, real-time rating 
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Preface 
 

It might be worthwhile to begin with a brief, more or less chronological summary of the 

work that has preceded this thesis. The first task, which formed part of my Master’s 

thesis in 2001, was to develop a real-time algorithm for predicting the temperature rise 

of a cable conductor over the cable’s surface, given that the latter can be measured, 

whereas the high-voltage former can not. The foundation of this algorithm, the real-time 

form of an exponential expression involving a single coefficient and thermal time 

constant, was handed to me ‘on a plate’ by Professor Lehtonen. Although I tried hard, I 

could not find a better basis for the resulting algorithm, and thus my Master’s work 

largely involved polishing someone else’s idea.  

 

My conversion to the exponential, thermal circuit approach to model the heat transfer in 

a cable was reluctant, but when I continued the work to model the total temperature rise 

of a cable conductor over ambient, the roles were reversed and I had to convince the 

professor that summing exponential expressions was still appropriate. The idea was 

hardly original, but my reasons for using a thermal circuit to model the entire cable 

temperature rise were influenced by what, I hope, are ideas that are original enough to 

justify this audacious endeavour to become a doctor of technology!
1
 

 

   

 

                                                
1
 For a note on the use of the first person, you may like to look at Appendix C, but the convoluted and 

speculative nature of that section of the thesis will hopefully not infect the rest of this work too much! 
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1 Introduction 
 

The reader should be assured that the main themes underlying this thesis are 

rudimentary but, being an applied area of engineering, they are numerous, as we are 

involved with the behaviour of a relatively simple (thermally speaking) but significant 

power system component in a potentially complex environment.  

 

The main issue, given that conductors are not perfectly conductive, is that the resistance 

of a conductor will give rise to losses roughly proportional to the square of the current 

being transferred. These losses manifest as heat. Electrical insulation is required to keep 

the current where it belongs, i.e., in the conductor, and the allowable temperature of the 

cable insulation is what determines the maximum current level and thus power transfer. 

Temperatures themselves are problematic if excessive. What is more, the failure 

mechanisms of cables are usually thermo-mechanical in nature, arising from heating and 

cooling cycles that eventually impose cumulative mechanical stresses too high for joints 

and terminations to tolerate. 

 

Unfortunately, good electrical insulators tend to be good thermal insulators. 

Furthermore, cables are often located underground where the soil or backfill that 

surrounds the cable acts as an even greater impediment to heat dissipation. In addition 

to the I
2
R losses in the conductor there are also losses in the sheath and armour of cables 

due to circulating currents. In some cases eddy currents may be of consequence. The 

alternating voltage over the insulation also gives rise to dielectric losses, which become 

thermally significant in extra high voltage cables. Loss calculations are not the main 

concern in this thesis, but their application to the temperature calculations is of course 

illustrated. 

 

Insulation materials have been and continue to be developed to provide a good 

compromise between electrical resistivity and thermal conductivity, noting that 

dielectric losses due to the voltage should also be minimised. Whatever the merits of the 

various cable constructions, their thermal behaviour is relatively predictable and 

although the cables themselves are by no means trivial to model, the analysis methods 

are well documented. This thesis primarily focuses on the thermal behaviour of the 

cable environment, which is somewhat more challenging to predict as it is typically 

subject to seasonal variation in terms of its ability to dissipate heat. Because the 

tendency, which this thesis supports, is towards transient rating and temperature 

prediction based on real-time current measurements, load transfer is likely to increase in 

transmission and subtransmission cable connections and MV cable feeders. This added 

to the economic restraints that utilities are increasingly under means cables are 

increasingly likely to reach temperatures that will cause drying out of the area around 

the cables, which in turn will dramatically reduce the ability of the cable environment to 

dissipate the heat generated by the cables. 

 

This thesis meets these challenges head-on: real-time prediction of temperatures from 

current measurements embodying thermal instability in realistic cable environments and 

even more accurate temperature prediction of the hottest conductor’s temperature if 

temperature measurement at some point in or on the cable is available.  
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An early investigation of the step response of cables of various sizes in various 

installation configurations led me to believe that all installations can be modelled by 

summing a sufficient number of exponential terms of the form A(1-exp(-t/τ)), and this is 

related in the first part of Chapter 2. Because the main aim of this work is to produce 

real-time algorithms and because such an exponential form is ideally suited for 

conversion to a real-time form requiring no initial conditions, as is shown in section 2.2, 

the thesis in large part concerns the modelling of common installations in terms of a 

thermal circuit and then seeing how changes in the cable environment are reflected in 

the coefficients and time constants of the governing exponential equations. 

 

It must be stated at this stage that the idea to use a thermal circuit
2
 to model the 

temperature rise of a cable is by no means new. After all, it is used in the standards, 

(IEC 60287, 2001) and (IEC60853, 1989), to model the cables themselves and there is 

some indication in the literature, for example (Thue, 2003), at least schematically, of the 

use of a thermal circuit for modelling the entire installation including the cable 

environment.  

 

The standards, however, use the exact analytical solution for a line source in an infinite 

environment in conjunction with Kennelly’s hypothesis (Kenelly, 1893)
3
 to account for 

the fact that a cable environment is semi-infinite in nature. Additionally, because the 

effect of the environment is not immediately fully felt at the conductor, an attainment 

factor (Morello, 1958) is used to account for the heat accumulation in the cable during 

the early part of a transient. These things will be discussed more deeply in the text, but 

it is important to stress here and now why I have adopted to use a thermal circuit, which 

requires the lumping of what is really the distributed heat capacity of the constituent 

parts of the cable and its installed environment to discreet nodes.  

 

The inherent limitation of the otherwise excellent standard approach is the use of the 

superposition of step changes in the cable losses from an initial steady-state condition to 

arrive at a transient response. This works admirably if the environment is thermally 

stable, but the challenge we will tackle in this work is to achieve a real-time application 

that does not require initial conditions, can fully accommodate major deviations from 

linear behaviour, namely moisture migration and overall moisture-related change to the 

environment, and does not require the storage of a large amount of historical data. As 

will be revealed in the following pages, a lumped parameter approach that yields a 

summed series of exponential terms provides a most convenient means to achieve this, 

and that is why such a method is considered most suitable for the task at hand. 

 

Despite all this, it may be that the most practical means nowadays to rate difficult cable 

installations, or even simple installations in a realistic manner, are to employ numerical 

computation methods – recent work in this regard includes (Li, 2005) and (Su et al, 

2005) – in particular the finite element method (FEM). Various software packages are 

now available that are easy to use and can yield transient solutions at any point in the 

                                                
2
 A thermal circuit is the thermal equivalent of an electrical RC circuit, where temperature is analogous to 

voltage, thermal resistances and capacitances are analogous to their electrical namesakes, and a heat 

source is equivalent to a current source. 
3
 I make this reference through another reference, (Thue, 2003), having been unable to unearth this much 

referred-to publication myself. 
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cable’s thermal field (within sensible boundaries) in environments that can have any 

number of regions with differing thermal parameters. The power of modern
4
 computers 

allows a very fine mesh to be used near heat sources and in non-linear regions without 

compromising the size of the overall field necessary to approach ‘semi-infinity’. A real-

time application, however, is likely to be computationally too heavy for a utility to have 

a FEM simulation running for each cable installation of concern. In this thesis FEM 

simulations are used to rigorously test the theoretical accuracy of the algorithms in cases 

where adequate field measurements are unavailable, but no significant contribution to, 

or presentation of, numerical techniques is to be found in these pages. 

 

One aim of this thesis is to enable conductor temperature estimation based on current 

measurements only, and the reader is referred to (Anders and Brakelmann, 2004) for 

another approach to this most practical of subjects. 

 

A major point to keep in mind, when assessing approaches employed to predict cable 

temperatures in real time, is that it is the temperature of the hottest conductor in each 

cable configuration that is of interest. The fact that the methods presented in this work 

make wholesale simplifications of the thermal conditions remote from the cable is of no 

consequence if the analogous models that simplify the analysis adequately predict the 

hottest temperatures. 

 

For example, in keeping with the standards, cable installations consisting of 3 single-

phase cables will be modelled as a single phase in a modified environment. However, 

the semi-infinite environment of a buried cable system will be modelled as a finite 

cylindrical equivalent, which facilitates the generation of a thermal circuit that closely 

approximates the temperatures that are important. The thermal circuit has nodes at the 

conductor, perhaps the cable sheath but definitely the cable surface, and nodes 

logarithmically distributed in each homogeneous region of the environment. The 

thermal capacitances are appropriately lumped to each node. This yields exponential 

equations for each nodal step response and, as far as the environment is concerned, an 

assumed logarithmic temperature distribution between each node allows appropriate 

location of the critical temperature that delineates the dry from wet regions when 

moisture migration is occurring. The effects of the position of this dry zone and the 

overall change in the moisture content of the environment due to seasonal changes are 

computed in terms of variable coefficients and time constants in the governing 

exponential equations, excusing the apparent contradiction in this last statement! 

 

In this way we will end up with exponential equations that govern the temperature 

responses of interest with coefficients and time constants that have dependence on the 

critical radius for moisture migration and the moisture content of the entire cable 

environment, which is related in terms of the saturation index (before moisture 

migration) of the material nearest the cables. Underlying all this is a floating ambient 

temperature reference that includes seasonal ambient temperature variation and the 

temperature raising effect at the conductor of interest of external heat sources, which, lo 

and behold, can also be modelled by summing exponential expressions! 

 

                                                
4
 ‘Modern’? The time of writing is the very early part of the 3

rd
 millennium... 
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Put in a real time form these dependencies do not pose any problem, as the thermal 

environment is in effect re-evaluated at every time increment and the nodal 

temperatures then head off in the appropriate fashion towards hypothetical steady-state 

targets that are also re-evaluated at every time increment.  

 

Stable, robust, and computationally light, but the process to get there is not so trivial 

and forms the engaging topic spelt out, blow by blow, in the following pages!   

 

 

 

1.1 Scope of the research work 
 

In a nutshell, the potential application of the main themes presented in this work are 

very wide, covering not only buried power cables but other heat transfer problems 

where variable heat sources are subject to changing thermal conditions. The applications 

in these pages are necessarily more limited, however, and the focus is on cable 

installation techniques common in southern Finland. 

 

These installations are high voltage cables, which are generally located in a buried 

trench filled with sand or crushed rock backfill, and medium voltage cables, which are 

buried in a usually backfilled region either in a composite plastic tube or protected by an 

inverted ‘u’-section cement cover. The burial depths are usually 0.7 m for the MV 

cables and 1.1 m for the high voltage cables. The algorithms have been developed with 

these cables in mind, but a 380 kV XLPE cable is also investigated, to check the general 

validity of the approach. The configuration of the cables is generally trefoil or flat 

touching, while our practical testing for moisture migration has involved a cylindrical 

heat source. The measured results from the cylindrical heat source give confidence in 

the validity of our approach to moisture migration. The ability to simulate multi-cable 

configurations using FEM gives us confidence that the single-phase analysis approach 

we take does not generate too much error.  

 

Although outside the scope of this thesis, we have performed a lot of practical work 

involving thermal tests of backfill samples, onsite thermal resistivity tests and a certain 

degree of temperature monitoring on actual cable installations. The combination of 

matching practical results to analytical and numerical simulations where possible, gives 

us faith that the numerical simulations can be trusted to test our own algorithms, as we 

are unable to physically recreate every installation and load scenario in the field. 

 

It is only honest when talking about ‘scope’, to mention what lies outside the scope of 

this thesis. I must confess that spaced installations have not received any specific 

treatment. That is, the algorithm that is developed deals well with installations where 

the three single-phase cables of a 3-phase cable system are touching, either in flat or 

trefoil configuration, but will overestimate the short-term temperature response of the 

hottest cable if the cables are more than a few centimetres apart. The way to treat this 

kind of configuration is covered in principle, given that I have dealt with external 

sources, but not directly. 
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1.2 Motivation 
 

It is wise, at this stage, to stress why it has been felt necessary to redress the century-old 

question of cable rating when there is already a wealth of research work, standards and 

collective experience in this area.  

 

The first point is rather philosophical. Even if researchers are involved in areas that are 

unlikely to give rise to major breakthroughs, it is essential that the knowledge base in 

areas that are still vital for the basic infrastructure that today’s society expects and 

enjoys is kept alive. Power systems are moving underground in urban and industrial 

areas, but questions such as cable rating perhaps lie outside the scope of undergraduate 

courses and need to be dealt with in research programmes. The supply of energy in 

whatever form and in whatever market paradigm that prevails is an essential public 

service, and so knowledge of the operating condition of major assets to ensure efficient 

but reliable delivery is of benefit to all parties. This makes this kind of research a ‘win-

win’ endeavour. 

 

The second point is that when I started this work there were two glaring gaps that 

appeared when perusing the cable rating literature. The first is that standard based rating 

procedures do not treat moisture migration for cyclic load profiles other than by 

modifying the cyclic rating factor that equates the peak current in a known and 

repetitive profile to a steady-state current that has the same thermal effect. This is not 

much help to a cable operator faced with an unpredicted emergency load who wants to 

know when to start shedding loads, or how long maintenance can last before the cables 

left in service will exceed limits. 

 

The other issue, which motivated part of my Master’s thesis (Millar, 2002), was that 

several years ago, when fibre optic based temperature monitoring was becoming 

available, there did not appear to be any mention of an algorithm that would compute 

the critical conductor temperature from the measured sheath or surface temperature of a 

cable. From this work, it seemed logical to develop our early (very simple) algorithms 

to enable conductor temperature prediction in real-time when only current measurement 

and some knowledge of the environment is available.  

 

It must be admitted that these deficiencies in cable rating have received the attention of 

other parties, in particular (Anders et al, 2003). Real-time rating algorithms have been 

also developed by KEMA (de Wild et al, 2004)
5
.  Nevertheless, I am confident that the 

work in these pages, which deals with all the above concerns in one integrated real-time 

algorithm, although the predictive rating part has still to be finalised, has enough unique 

features and combines a number of established techniques in a new way (a new ‘soup 

recipe’ using established ingredients) to justify this thesis.    

 

 

                                                
5
 I have no idea how much common ground there may be between my work and the excellent and 

commercially available products of KEMA. I note that their ‘Dynamic Thermal Model’ behaves in much 

the same way as my algorithm, converging to a correct estimation even if initial conditions are wide of 

the mark, but understandably, the details of their work do not appear in the public domain. 
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1.2.1 Motivation for real-time temperature prediction algorithms 
 

Although the subject still warrants further development, the rating of cables according 

to steady-state conditions or hypothetical load profiles is well developed, and was not 

the main motivation for my work. We
6
 wanted to tackle the issue of the actual operating 

conditions, in real time, of the major power system components. My part of the cable 

research at HUT was to look at cable rating and, given that cable voltage stresses are 

generally constrained by surge arresters and so on, the single most important operating 

parameter is temperature.  

 

The endeavour to come up with a simple online algorithm has given rise to some new 

ideas regarding basic underground cable thermal analysis. A major concern nowadays is 

to give system operators and planners a more rational basis for major asset operation 

and investment. Knowledge of the conditions of existing infrastructure is an invaluable 

aid to that end. In particular, the algorithms will enable cable operators to handle 

emergency situations much more effectively, minimising load shedding without 

compromising security. In cases where cable ratings are based on steady-state analysis 

and conservative environmental assumptions, power transfer limits can obviously be 

increased, but rather than keeping entirely clear of temperatures where moisture 

migration might occur, the algorithm expounded in this thesis enables safe entry into 

this generally forbidden territory. Even if assumptions about the environmental 

parameters have been too optimistic, transient rating based on a more realistic 

assessment of the environmental parameters generally gives back the ‘lost’ ampacity. It 

must be stressed, however, that there are situations, such as the 1998 cable failure in 

Auckland, NZ (Millar 2001), where ratings quite adequate for winter conditions have 

become wholly inappropriate when maximum loading has shifted to the summer 

months, often due to the increase in air conditioning load.
7
 This concern has motivated 

the inclusion of overall moisture dependence in the algorithm. Implementing an 

algorithm such as that contained in these pages requires a minimum amount of 

installation information, and gaining that may well give utilities a few surprises, 

unwelcome but necessary. 

 

1.2.2 Motivation for temperature monitoring leading towards prediction of 

environmental parameters from the temperature response of a cable 

 

Temperature predictions from current measurements and a questionable knowledge of 

the cable environment can only be so accurate, although, even with conservative 

environmental assumptions, a full transient algorithm that includes moisture migration 

modelling will still usually lead to much higher cable usage than a steady-state rating. In 

order to reduce operating margins as much as safely possible, online temperature 

measurements, either under the sheath or on the surface of the hottest cable, will all but 

eliminate the inaccuracy due to insufficient knowledge of the environment. This is 

where my research on cable ampacity began, and it is a fitting conclusion to the present 

work to apply what has been gained from full consideration of the environment to the 

                                                
6 ‘We’ refers to Power Systems and High Voltage Engineering at HUT. 
7
 There were many factors behind the cable failures in Auckland - the inappropriate ratings were only one 

aspect 
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algorithms that predict conductor temperature from current plus sheath or surface 

temperature measurement. 

 

The algorithms can handle seasonal adjustment of such environmental parameters as the 

thermal resistivity, ambient temperature and even the temperature above which moisture 

migration is likely to occur. If these variables can be estimated from the measured 

response of a cable, it is clear that a powerful tool will become available for real-time 

rating. It is not feasible to apply temperature sensing to all existing HV and MV cables 

in a utility, but by choosing enough typical and critical cables, the measured 

temperature response at the surface of the hottest cable could be used to supply real-

time environmental parameters to the algorithms monitoring cables with only current 

measurement. This is presented in schematic form, in order to show how the present 

algorithm, which contains so many features already, can be further developed. 

 

1.3 Research methods 

 

This research is a blend of analytical, numerical and empirical methodology.  

 

• I have the relevant IEC standards, (IEC60287, 1991) and (IEC60853, 1989), on 

a shelf behind my desk 

 

• Anders’ excellent book on cable rating (Anders, 1997) is always close at hand 

 

• The latest version of Comsul Multiphysics, a FEM based software package is 

installed on my computer 

 

• Mathcad, an software package ideal for someone a bit weak in both mathematics 

and computing, is the platform on which I run the trial versions of the algorithms 

 

• Real-time data from a heating tube (highly sensitive to changes in the thermal 

environment) we
8
 have built in the grassed yard outside the laboratory has given 

me a good feel for the best and worst scenarios regarding cable environmental 

conditions in southern Finland 

 

• The basement of the HUT library provides a wealth of classical references from 

the pioneers of cable rating 

 

• Electronic access to IEEE explore and other web based references is 

accompanied by the constant prayer that the excellent efforts of contemporary 

researchers will still leave me with enough room for an ‘original’ line of enquiry 

into cable rating matters 

 

• A pilot installation of cable surface temperature sensors strategically placed 

along the route of a major HV cable connection in Helsinki validates the low 

temperature behaviour of the algorithms 

                                                
8
 I use the royal ‘we’ here. I designed the thing and made the final connections, but Pekka Manner did the 

bulk of the donkey work plus the intricate construction of the Pt100-based sensors... 



 8 

 

• Relevant but somewhat random lab-scale probe measurements of sand backfills, 

native soils and special mixes to determine thermal resistivities and diffusivities, 

has given some idea of the dependence of moisture migration on moisture 

content and temperature 

 

The general method is to charge ahead with an idea and then, when it comes to 

publishing, have a look at the horizon to check that I have not inadvertently stepped on 

a fellow researcher’s toes – there are only so many ways to ‘skin a cat’. Academic 

research has been complimented with practical lines of enquiry, such as the thermal 

probes of various sizes for small scale lab tests – to assess, for example, the relationship 

between thermal resistivity and moisture content for a particular backfill or native soil 

sample – and for larger scale onsite investigations. The heating tube, detailed in Chapter 

8, has been a valuable tool.  

 

1.4 Contributions of this thesis 
 

It is felt that a number of significant incremental contributions have been made, and one 

or two gaps filled... 

 

Specifically: 

 

• The means to convert a cable installation to a thermal circuit are established, to 

provide an analytical basis for generating exponential equations that govern all the 

temperature responses of interest 

 

• Although the treatment of cables installed in a plastic tube is rudimentary and 

perhaps inaccurate, the way I have incorporated this into a transient analysis might 

be of some interest and at least points a way forward 

 

• The means to generate a real-time formulation free from the strictures of 

superposition is established. Although the basic formulation is not original, it is 

developed to suit the overall response of cables, and is fully justified in terms of its 

derivation and in terms of its convergence if erroneous initial values are used 

 

• The 2-zone approach to moisture migration, which is used in the IEC standards for 

steady-state rating, is implemented in a fully transient analysis that works in real 

time via the dependent variable rx, the effective critical radius for moisture 

migration 

 

• The means to tune the simplistic but practical 2-zone approach to allow for slower 

than instantaneous moisture migration and, more crucially, the slow return of 

moisture during cooling are established 

 

• The means to model changing nominal environmental parameters due to seasonal or 

unseasonable changes in the moisture content of the cable surroundings is embodied 

into the algorithms via a second dependent variable, the saturation index of the cable 
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backfill, which can be tied to the saturation index and hence thermal parameters of 

the other environmental regions 

 

• The means to adjust sheath (and/or armour) losses in real-time are demonstrated 

 

The above are all more or less original contributions. I can’t make any guarantee that 

some of the things I have discovered have not been discovered (and perhaps disregarded 

as trivial!) by others. To the best of my knowledge I have given full references where I 

am conscious of the debt to other parties. I occasionally find that what seemed like an 

original flash of insight on my part may have been seeded by previous reading.  

 

For example, the idea to locate the hypothetical steady-state critical radius for moisture 

migration logarithmically between nodal temperatures at every time interval revealed 

itself to me as if by magic, but it may have come from the advice in section 11.6 in 

(Carslaw and Jaeger, 1959), which advises ‘assuming that the temperature distribution 

in the solid is of the steady-state type’ when treating the 2-zone problem of freezing 

around cylindrical pipes. What will be referred to in the text as equivalent cylindrical 

modelling of the cable environment is an attempt to establish practical means to obtain a 

thermal circuit. It may have been germinated by the use of a ‘fictitious’ diameter to 

delineate the boundary between a concrete duct bank and the native soil in the seminal 

work by Neher and McGrath (Neher and McGrath, 1957).  

 

A deep analysis of every contribution I may claim would seem to reveal so much 

reliance on the work of others that the ‘original’ part due to my efforts is at best 

miniscule. It is so easy to unwittingly plagiarise, and my only hope is that wherever I 

done so, I will be exposed! I think though, that if the originality of even 50% of the list 

above comes under question, enough should still be left to fulfil the doctoral 

requirements!
9
 

 

‘There is nothing new under the sun’ 

 

But while breathing may not be new, every breath certainly is! 

 

1.5 Organisation of this thesis 
 

Essentially, the idea is to let the story unfold as naturally as possible. To this end, there 

is no special literature survey section, but references and background are provided all 

through the text. In the conventional way, however, results are left towards the end, with 

the exception of a digression mid-stream, at the end of Chapter 3, which compares the 

basic algorithm for a directly buried EHV cable with standard based calculations and a 

FEM simulation without the complication of inhomogeneous regions and non-linear 

effects due to moisture migration, etc. 

 

The general line of progress is to first justify that approximating the step temperature 

response of cables with the summation of several exponential expressions is valid for a 

                                                
9
 These rather apologetic comments may seem quite out of place in the self-promoting age we live in, but, 

despite a certain degree of confidence in the integrity of this work, I live in a ‘sea of uncertainty’! 
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wide range of cable installation configurations, explain why we would want to model 

cables in this way (and by doing so, deviate from the standards, at least as far as the 

environment is concerned), show how to generate thermal circuits for common 

installation types, and then to show how to derive the governing exponential equations. 

 

This takes us to Chapter 4, where the heart of the matter lies, the modelling of changes 

in the cable environment due to overall moisture variation and to cable-heating induced 

moisture migration. How these changes can be related to changes in the time constants 

and coefficients of the governing exponential equations is the topic of Chapter 5, while 

the following chapter deals with ambient temperature and external heat sources, to make 

the algorithm complete. 

 

The algorithm is presented in flowchart form in Chapter 7, with explanatory text, to 

show how the material presented in the earlier chapters fits together, but the actual 

implementation of the algorithm in Mathcad


 is contained in Appendix A. 

 

Chapter 8 contains the results, which serve to rigorously test the algorithm alongside 

fastidious FEM simulations and also a real-world heating tube that was designed to test 

the most contentious part of the algorithm, the moisture migration modelling. Chapter 9 

indicates that the algorithm can, at least in some cases, be dramatically simplified 

without losing too much accuracy. 

 

The move is towards real-time rating, and this is schematically outlined in Chapter 10, 

although it has not yet been fully implemented as a running program. Chapter 10 also 

contains a summary of the methods we have used to model the temperature rise of a 

cable’s conductor over its surface from the most simple to the latest versions based on a 

full analysis of the cable in its installed environment. The thesis eventually reaches a 

conclusion, which discusses the missing links, future work, and the limitations and 

strengths of this phase of our research into the loading of underground power cables.  

 

A few odds and ends are relegated to the Appendices, but the main feature of this 

section is Appendix A, which lays out the full algorithm pasted in pieces from a 

Mathcad


 worksheet with accompanying comments. In order to concretise the material 

in this thesis, this shows at least one way to implement the ideas discussed in the text, 

although it is expected that more sophisticated programmers would find more elegant 

and more efficient ways to manifest the work. When algorithm subroutines are directly 

taken from Mathcad worksheets, they are presented in boxes with their own labelling 

key, ‘Alg.’. 

 

 



 11 

2 The step response of cables 
 

The standards (IEC 60853, 1989) deal with the temperature rise of the cable conductor 

over ambient in two parts. The cable itself is modelled in terms of a thermal circuit with 

anything from 1 to as many as 6 loops (each loop consisting of a shunt thermal 

capacitance and a series thermal resistance). The response due to the cable environment 

is modelled as the response of a line source in a semi-infinite surrounding. The response 

of the cable conductor is the modified sum of these two responses, noting that during 

the early part of a transient some of the heat is absorbed by the cable itself, which is 

accounted for by multiplying the temperature rise of the line source by an attainment 

factor (Morello, 1958). 

 

This approach, which is detailed very well in (Anders, 1997), gives a very good 

estimation of the conductor temperature response during a transient, but has the 

disadvantage that it is not directly suited to real-time computation and that, for the 

purposes of moisture migration modelling, is a little imprecise regarding the solution for 

the surface temperature response of the cable.
10

 

 

2.1 The calculated or simulated temperature responses of cables in a wide variety 

of installation environments 
 

2.1.1 Line and composite cylindrical sources 
 

The heat equation for conduction is  
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10

 The surface temperature is somewhere between the conductor temperature minus the temperature rise 

across the cable assuming the cable surface is isothermal (infinitely thermally conductive) and the 

temperature at the cable surface radius that would be caused by a line source in a homogeneous 

environment (without the cable). It must be admitted, that there is not too much difference between these 

two except perhaps during the early part of a transient. 
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where θ is the temperature response, ρ (K m /W) and δ (m
2
/s) are the thermal resistivity 

and diffusivity of the environment, r is the distance from the line source, t is time in 

seconds and W represents a line heat source (W/m). ( )xEi −−  is the exponential integral 
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If the ground surface can be assumed to be isothermal, the solution for a buried source 

is obtained from superposition with the response of a hypothetical heat sink of the same 

magnitude and distance L above the ground surface. 
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The step response at a radius of 1.5 mm from a line source buried 100 m deep in a 

homogeneous environment as calculated with (4) is compared with a series of summed 

exponential expressions, showing that as the number of exponential expressions is 

increased, the approximation comes close to the exact analytical solution.  

 

 

Fig. 2.1. Approximating the step response of a line source with a summed exponential expression (note 

the logarithmic scale). ρ = 0.6 Km / W and δ = 0.6⋅10
-6

 m
2
 / s 

 

As Fig. 2.1 indicates, progressively increasing the number of exponential terms leads to 

convergence with the actual temperature rise of a line source. Buried cables, of course, 

do not constitute a homogeneous medium; the thermal properties of the cable are quite 

different to that of the environment, but it is the semi-infinite environment of a buried 

cable that is the most difficult to thermally model, and so Fig. 2.1 is encouraging.  
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Fully analytical solutions to the heat equation are, to say the least, challenging to derive 

for all but the simplest of geometries, but, thanks in large part to exceptional work in the 

middle of the last century, a number of solutions are available. One such solution, for a 

simplified cable with outer radius re comprising a conductor and sheath with negligible 

thermal resistance and heat capacitances Qc and Qs separated by insulation with 

negligible heat capacitance but thermal resistance T1, and buried in a homogeneous 

medium with thermal resistivity ρs and thermal diffusivity δs, is given in (Carslaw and 

Jaeger, 1959). 
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s

T
h

ρ

π 12
=  

J0, J1, Y0 and Y1 are Bessel functions of the first and second kinds, with the subscripts 0 

and 1 referring to their respective orders. 

 

Fig. 2.2 compares the step response of a simplified cable (with an 800 mm
2
 aluminium 

conductor and overall radius 83 mm) according to (5) with a 4-term exponential 

approximation. The maximum error is less than 1%. The 2
nd

 term in (4) is subtracted 

from (5) to account for the semi-infinite nature of the environment (Kennelly’s 

hypothesis).  
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  Fig. 2.2. Approximating the analytical solution of a simplified cable’s temperature rise with a 4-term 

exponential approximation 
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2.1.2 Directly buried cables 
 

The most fundamental cable installation is a direct burial in a homogeneous 

environment. Fig. 2.3 gives the response of a typical 3-phase medium voltage cable and 

a 3-phase 110 kV installation. The exact solutions are obtained using FEM simulations, 

while the exponential approximations are derived using a least-squares subroutine in 

Mathcad


. The burial depth is 0.7 m for the MV cables and 1.1 m for the HV 

installation. 
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Fig. 2.3. The step response of the hottest conductors in typical 110 kV and 20 kV installations computed 

using FEM and the curve of best fit using a 4-term exponential expression (max error 1.0%) 

 

It can be seen that the fit is exceptionally good in both cases, so that by this stage we 

have established that summing approximately 4 exponential expressions provides a 

good mathematical approximation of the step response of an underground cable at 

typical cable burial depths (<1.5 m).  

 

2.1.3 Cables in non-homogeneous environments 
 

In practice, cables in urban environments are seldom buried in anything that approaches 

a homogeneous site and so Fig. 2.4 shows a typical layout, whereby high voltage cables 

are buried in a buried concrete trench with quite different thermal parameters than the 

native soil. Two simulations are made, the first where the backfill inside the trench has a 

thermal resistivity of 0.7 K m / W, the trench has a thermal resistivity of 0.5 K m / W 

and the surrounding soil has a thermal resistivity of 1.2 K m / W. The steady-state 

temperature achieved in this simulation is used as the per unit reference for the 

following simulation, which assumes that the backfill inside the trench has dried out to 

2.5 K m / W, the concrete trench itself remains at 0.5 K m / W, and that there is a dry 

region with a radius of 0.4 m from just below the centre of the trefoil where the soil has 

dried to a thermal resistivity of 2.5 K m / W. These numbers are typical but arbitrary, 

and are used here for purely illustrative purposes. The FEM simulations have boundary 

conditions of ambient temperature at the top surface, 1.1 m above the centre of the 

trefoil installation, and at boundaries 50 m below and 30 m either side of the cables, 

making the simulation region a rectangle of 60 m x 51.1 m. 



 15 

Fig. 2.5 shows the responses of the conductors of the hottest (lower) cables in both the 

thermally stable nominal environment, and in the environment with the dried-out 

region. 

 

 

 

Fig. 2.4. The region around the HV cables for the non-homogeneous environment simulations 
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Fig. 2.5. The step responses of the HV cables in both wet and dry non-homogeneous environments along 

with their respective 4-term exponential approximations 
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2.1.4 Cables in air 
 

The temperature response of cables in air is quite simple to approximate exponentially, 

although the response itself is less trivial to model accurately. Fortunately the non-

buried, or air exposed sections of a cable connection are not usually thermally limiting, 

although such sections may experience the highest average temperatures over the life of 

lightly loaded cables if ambient temperatures are higher in such environments. At this 

stage we are only interested in demonstrating the general applicability of the 

exponential approach, and so Fig. 2.6 shows the exponential nature of a typical cable 

response in air. The diameter of the cable is 0.083 m and the convection heat transfer 

coefficient is 1.32*((θsurf - θambient)/0.083)
0.25

, which is an approximate solution for 

natural convection from a horizontal cylinder (Holman, 1981). θsurf and θamb are the 

temperature of the surface of the cable and ambient temperature, respectively. Radiation 

is also modelled, assuming an emissivity coefficient of 1. The thermal properties of the 

cable itself are given in Alg. A.1 in Appendix A. 
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Fig. 2.6. Approximating the temperature response of a single cable in air with a 2-term summed 

exponential expression 

 

2.1.5 External heat sources 
 

It is likely that many cable installations are installed in environments where there are 

other significant heat sources, perhaps in the form of other cables, district heating hot 

water pipes, or even asphalt surfaces or an adjacent building basement subject to daily 

heating and cooling. In our algorithms, we combine all these effects into a time-varying 

ambient temperature relevant to the cable under consideration, but in this section, we 

will merely demonstrate the pseudo-exponential behaviour of the constituent parts. 

 

Fig. 2.7 shows the response of a remote line heat source in a homogeneous semi-infinite 

medium. (4) is adapted for this purpose, where re becomes the distance away from the 

heat source, in this case 0.5 m, and L becomes the distance of the heat source from the 

mirror image of the cable of interest. A number of locations have been investigated to 

satisfy me that exponential equations can be summed to adequately model the heat rise 

of a cable due to the step change in losses of an external line source, and Fig. 2.7 shows 
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the response of one such layout, where the burial depth is 1.1 m and the thermal 

resistivity of the environment is 1.0 K m / W. It should be noted that the first 

coefficient, also with units K m / W, is negative; in fact the per unit form of the full 

exponential expression governing the exponential approximation in Fig. 2.7 is as 

follows, where the time constants are in seconds: 
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Fig. 2.7. The temperature response at a point 0.5 m from a line heat source (but at the same burial depth) 

 

2.2 The reason to use summed exponential terms 
 

Hopefully, the scenarios illustrated in section 2.1 will convince the reader that step 

temperature changes in cables due to their own losses or the heat flux from an external 

source can be readily approximated by the summation of a number of exponential terms. 

Four terms are usually sufficient if the environment is homogeneous or the equations 

are chosen to provide the best mathematical fit to a known step response. 

 

The task now is to explain this apparent obsession with exponential representation to 

model the overall temperature rise of power cables. The foundation of temperature 

computation as a function of time when the load is continuously varying is 

superposition. This is used in the standards (IEC 60853, 1989), where the cable itself is 

treated as a thermal circuit, rendering the relevant exponential equations, and the 

environment is treated as a modified line source, whereby the temperature rise of 

interest is attenuated in the early part of the transient by a factor that accounts for the 

heat absorbed in the cable itself, Morello’s attainment factor (Morello, 1958). 

Superposition is the foundation of the method used in our approach as well but, because 

of the need to embody nonlinear effects such as moisture migration and seasonal 
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variation of the environmental parameters, we want an approach that is free from the 

strictures of superposition, namely that superposition cannot directly be used when the 

governing equations become non-linear. 

 

The primary reason for choosing to model the overall temperature rise in this way is that 

a summation of exponential terms can be easily rendered into a real-time form. In such a 

form the linear rule of superposition does not apply, as the temperature is calculated in 

terms of its movement towards a hypothetical steady-state temperature based on present 

conditions, in terms of a set of coefficients and time constants that also represent present 

conditions, and can be incrementally changed at each time iteration (usually 

corresponding to a current measurement) to reflect the changing cable environment. In 

effect, the environment is only assumed to be constant over one time interval, which is 

typically only a few minutes depending on the utility’s SCADA (Supervisory Control 

and Data Acquisition) system.  

 

The other part of this reasoning is that a summation of exponential terms points to a 

thermal circuit, so the method becomes, in essence, an extension of the standard method 

of dealing with a cable to cover the environment as well. 

 

Such an approach is hardly original. The originality in this work lies in the way we will 

use the physical foundation of a thermal circuit to generate the changes in the 

coefficients and time constants due to physical and analysable changes in the thermal 

circuit. First, however, the generation of the real-time form will be illustrated.  

 

2.2.1 The real-time formulation 

 

The origin of this method is a well-known tool used by electrical engineers to render 

operating temperatures in real-time when a steady-state rating and a corresponding 

allowable insulation temperature is known for an electrical machine, along with a 

thermal time constant. The rough and ready formulation can be represented as: 
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where θ(tI) is the temperature rise above ambient at time tI, θnom is the allowable 

insulation temperature associated with a steady-state rating Inom, θamb is the ambient 

temperature and τnom is the thermal time constant of the equipment.  

 

The origin of this very useful formulation is not clear, but a reference to (Douglas, 

1996) can be made, noting that in that publication it was stated that the approach is not 

suitable for underground cables – quite correctly, in the sense that the response 

predicted by a single thermal loop is a long way off the actual temperature response of a 

conductor in a buried cable over ambient. 

 

The formulation in (7) has, however, been previously used as the basis of a real-time 

algorithm to estimate conductor temperature from current and a measured surface or 

sheath temperature, with the exception that using a simple current ratio was replaced 

with a real-time assessment of the hypothetical steady-state temperature rise based on 
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present losses and current. This work, in various phases of development, has been 

presented in (Millar, 2002), (Millar and Lehtonen, 2002), (Millar and Lehtonen, 

NORDAC, 2002) and (Millar and Lehtonen, 2003). A summary of the conductor-

surface temperature algorithms is presented in Chapter 10, to show the benefits of 

increasing the complexity of the analysis. 

 

A general proof, also given in the appendix of (Millar and Lehtonen, 2005) for the real-

time formulation, is given below, noting that the conversion holds true for a summation 

of several exponential terms. 

 

If a process has a step response that can be modelled by a function f(t) consisting of N 

exponential terms: 
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So, at time tI, using superposition of a sequence of step changes: 
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The change between successive time intervals, tI-1 and tI,  is: 
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but 
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Substituting (11) into (12) gives:  
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and so, 
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It is clear that (14) requires an initial condition or, in the case of a summation of such 

terms, several initial conditions. Appendix A provides a proof of convergence if 

erroneous initial conditions are given. This was originally given in (Millar, 2002). In 

fact, if the initial conditions are based on a reasonably accurate steady-state analysis 

based on the average losses over the last week or so, the coefficients for the long time 

constants governing the environment will be in about the right place, meaning the on-

line algorithm will converge quite quickly. 

 

2.2.2 The non-linear environment 

 

The cable environment can be modelled in terms of 2 dependent variables, which will 

be explained more fully in Chapter 4.  

 

The first of these variables is the critical radius for moisture migration, rx, which has an 

(almost) direct relationship with physical reality in the case of a cylindrical heat source 

at a sufficient burial depth, being the radius from the centre of the source to the isotherm 

that delineates dry from wet conditions. In the case of multi-cable configurations and/or 

more sophisticated modelling of moisture movement away from and towards a buried 

cable, rx takes on a pseudo-reality, being the dry/wet radius that causes the appropriate 

temperature response as if moisture migration could be modelled in terms of a single-

phase equivalent with instant drying out when the cable environment attains a critical 

temperature.  

 

In other words, even if a 2-zone approach to moisture migration is considered too crude, 

there exists a virtual critical radius rx at every time instant that will give rise to the same 

temperature response at the hottest conductor as would occur in reality. We are only 
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interested in the subjective effect of the cable environment (and external heat sources) 

from the point of view of the conductor of interest. 

 

Figure 2.8 illustrates the approach, noting that the ‘wet’ and ‘dry’ thermal parameters in 

the single-phase simplification will have to be modified to account for the absence of 

the other 2 phases. The standards (IEC60287, 2001) and work by Goldenberg 

(Goldenberg, 1969) and others provide the clue how to do this, but this will be 

developed in Chapter 3. 
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Fig. 2.8. Converting reality to a simple 2-zone, single-phase approximation for convenient modelling of 

moisture migration 

 

The other dependent variable must cover seasonal and local rainfall dependent variation 

in the ‘wet’ thermal parameters of the cable environment. We can assume, for a given 

installation, that ‘dry’ means dry, i.e., the post-moisture migration dry conditions of the 

backfill or soil are constant. Many cable locations, however, will show considerable 

variation in the pre-moisture migration wet conditions, both in terms of variation in the 

thermal resistivity and diffusivity of the environment, but also the critical temperature 

rise above ambient for moisture migration. The second dependent variable, then, is hwet, 

the saturation index of the cable backfill. The saturation index represents the amount of 

free space in the backfill that is occupied by water. If the native soil has significantly 

different properties to the backfill, the relation between their respective saturation 

indices should be estimated. Note that for a given material, we can make the thermal 

resistivity and diffusivity functions of the saturation index, ρ(h) and δ(h), from 

completely dry (h=0) to fully saturated (h=1) conditions. In practice, while it is most 

logical for the algorithms to work internally in terms of moisture content, it may be 

preferable to use thermal resistivity (wet and dry, for backfill and native soil) as the 

variable program operators deal with, as this is the parameter cable and utility engineers 

are most likely to have a feel for. 

 

The equations, both in the original and real-time forms, can now be written in the form 

they will appear in the remainder of this work. 
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A given cable installation, modelled as a thermal circuit with N loops so as to yield N 

exponential terms, with known (or conservatively estimated) environmental conditions 

will have a temperature at node m of: 
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Wc represents the conductor losses, θd is the temperature rise caused by the dielectric 

losses and θamb is the ambient temperature. Tm,n and τn are the coefficients and time 

constants, where subscript m refers to the nodal response under consideration and n to 

the relevant thermal loop in the ladder circuit. The thermal resistances and capacitances 

of the thermal circuit will be modified to account for sheath and armour losses, so that 

the driving function for the algorithm is simply the time varying and temperature 

dependent losses from the conductor. 

 

Note that (15) can only deal with a time varying load in thermally stable conditions by 

superposition from an initial steady-state condition. At time tI in the real-time form, 

however, where the coefficients T and the time constants τ can now be made functions 

of hwet and rx, 
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(16) and (17) are, in fact, the heart of the real-time algorithm, very simple in form, but 

requiring expressions for the coefficients, time constants and the critical radius rx. Some 

work remains! 

 

2.3 Discussion 

 

The foregoing hopefully justifies the approach taken in this thesis. Mathematically, the 

temperature rise of an installed cable can be modelled in terms of a summation of 

exponential terms, and these expressions can be conveniently rendered into a real-time 

form perfectly suited for perpetual on-line calculation. In such a form, the strictures of 

superposition are released - we can model a thermally unstable environment if a way 

can be found to relate the physical changes in a cable environment to changes in the 

coefficients and time constants of the governing exponentially-based equations. It has 

already been hinted that the way to do this is via two dependent variables, hwet and rx. 

 

The following chapter will show how to model a cable installation as a thermal circuit. 

This will also aid the treatment of moisture migration in Chapter 4, hitherto the bane of 

real-time cable temperature prediction. 
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3 Thermal circuits for the entire cable installation 
 

Chapter 2 has shown that the temperature response of just about every feasible cable 

installation can be mathematically approximated by summing a sufficient number of 

exponential expressions. If the step temperature response of a cable conductor can be 

obtained by either standard analytical means or numerical simulations, an exponential 

approximation can be derived by purely mathematical means and then converted to the 

real-time form, provided the thermal parameters of the cable environment remain 

unchanged.   

 

The use of exponential expressions, however, implies an analogous thermal circuit, and 

this chapter will show how an actual cable installation can be modelled with acceptable 

accuracy in terms of a thermal circuit. As a conceptual aid, we introduce the idea of 

‘equivalent cylindrical modelling’, which is simply the conversion of the semi-infinite 

cable environment with, usually, a 3-phase heat source into a single-phase heat source 

in a cylindrical environment that will cause the same temperature response. This in turn, 

will aid the subdivision of the cable environment into thermal loops. 

 

3.1 The cables 
 

The standards (IEC60287, 2001) and (IEC60853, 1989) provide comprehensive guides 

to dealing with cables in terms of a thermal circuit. This thesis will not deal with this 

aspect of cable rating, other than to observe that highly elaborate analysis methods are 

probably not warranted when dealing with modern extruded single-phase cables. For 

example, the 110 kV cable that has been the subject of much of the research in this 

thesis is quite adequately dealt with in one thermal loop, where the thermal capacitances 

of all the cable components are lumped and then divided between the conductor and the 

outside of the cable according to Van Wormer’s ‘modified equivalent π circuit’ (Van 

Wormer, 1955). 

 

One explanation why such a crude treatment of a cable works is that the final thermal 

capacitance of the cable part of the thermal circuit is not excluded to obtain a transfer 

function, because the thermal circuit extends out to include the entire environment. The 

node in the circuit that corresponds to the surface of the (hottest) cable has the outer part 

of the cable’s thermal capacitance and the inner part of the first section of the 

environment lumped to it. One advantage of this method is that we actually have a node 

that corresponds to the cable surface, which is invaluable when modelling the onset of 

moisture migration. The standard method has no explicit solution for the cable surface; 

it can either be taken as the response of a line source in a homogeneous medium at the 

distance from the centre of the cable that corresponds to the cable surface, or it can be 

taken as the conductor temperature minus the temperature rise over the cable. Neither of 

these is actually the surface temperature (although they are both so close as to make this 

last point rather pedantic...), and although the method proposed in this thesis sacrifices 

some accuracy with respect to the overall environment, the part nearest the cable, which 

is of primary significance in transient analysis, is better dealt with.  

 

There is no implied criticism of the standards intended in the foregoing; they do what 

they set out to do admirably and contain a wealth of first class research and engineering 
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to which this small contribution is greatly indebted, but, for real-time implementation 

that can deal with moisture migration, I am obliged to justify the approach taken here!  

 

When the means to model the environment have been established, the temperature 

response of the conductor and surface in a 380 kV XLPE (cross-linked polyethylene) 

cable will be computed using standard-based algorithms, the method proposed in this 

thesis, and FEM simulations. 

 

For a cable with conductor losses Wc and negligible thermal resistance but thermal 

capacitance Qc, insulation with thermal resistance Ti and thermal capacitance Qi, a lead 

alloy sheath with losses λ1⋅Wc and negligible thermal resistance but thermal capacitance 

Qs, and a polyethylene or PVC jacket with thermal resistance Tj and thermal capacitance 

Qj, node A of the thermal circuit, corresponding to the hottest conductor, will have a 

thermal capacitance: 

( ) 








+

+
++=

11
,

λ
js

iiocA

QQ
QrrpQQ  (18) 

where, in a general form expressed in terms of an inner radius ri and an outer radius ro 

(Van Wormer, 1955): 
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The first thermal resistance of the thermal circuit will be: 

( )11 λ++= jiA TTT  (20) 

If such simplistic lumping of the cable components is not appropriate, the reader is 

respectfully referred to the standards (IEC60287, 2001) and (IEC60853, 1989)! The 

sheath loss factor should be mentioned, however. This provides a convenient 

simplification to the analysis of the thermal circuit and is, again, taken straight out of 

the standards. A suitable current/temperature needs to be used to calculate the sheath 

loss coefficient λ1, and it is generally prudent to take a ‘safe’ loading that gives a 

steady-state conductor temperature of about 50 °C because the sheath loss coefficient, 

which is the proportion of sheath losses to conductor losses, will usually reduce at 

higher loads. This means the assumption that λ1 is a constant will give rise to a slight 

error on the conservative side at high loadings. If the cable sheath is highly conductive, 

however, the sheath loss factor may slightly increase with increasing load, in which case 

the factor should be based on emergency load-related temperatures. 

 

The same can be said about the armour loss factor λ2 if relevant. The final algorithm can 

include a sheath (and armour) loss correction, if desired, using an estimate of the actual 

sheath temperature at every time interval to slightly modify the steady-state 

computations. This will be treated in Chapter 4. 

 

Fig. 3.1 illustrates a thermal circuit with 1 loop for the cable and 3 loops for the 

environment. Thermal resistances are given the symbol T and have units K m / W, and 
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thermal capacitances Q have units J / (m K). These are the thermal equivalents of 

electrical resistance, measured in Ohms, and capacitance (in Farads), respectively. The 

thermal equivalent of a current source is power (dissipated as heat), with units W. These 

quantities are usually expressed per unit length for cable analysis. We are primarily 

interested in the temperature rise of some point over another (usually ambient). 

Temperature is given the symbol θ, which, in the thermal-electrical analogy, is 

equivalent to potential difference or voltage drop (V).  
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Fig. 3.1.  Thermal circuit for a cable and its thermal environment - more loops can be added for the cable 

if necessary 

 

3.2 Equivalent cylindrical modelling 
 

The development of this approach, which has its origins firmly in the standards, first 

presented to this author in Chapter 9 of (Anders, 1997), begins with directly buried 

cables, but will then cover some common cable installation practices, namely, cables in 

troughs and tubes. These installation practices are particularly relevant in Finland. 

 

3.2.1 Directly buried cables 
 

The standard way to deal with multi-cable installations is to calculate the effective 

thermal resistance of the cable environment T4 from the perspective of a single phase, 

i.e., the external thermal resistance is raised to account for the elimination of the heat 

flux from the other cables in the analysis. After all, the idea is to find the temperature 

behaviour of the hottest conductor in a cable installation by the simplest means possible. 

To that end, various authors have derived formulae for calculating T4 for the various 

installation configurations, e.g., (Goldenberg, 1969) and (Van Geertruyden, 1992)
11

. 

                                                
11

 I make the latter reference through another, (Anders, 1997), as I have not actually seen these reports 

myself. 
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Accordingly, the approach presented here is to scale the thermal resistivity of the 

environment up by a factor equal to the external resistance of a single cable in a multi-

cable environment (this is not required for a single cable, e.g. a 3-phase cable) divided 

by the external thermal resistivity a single cable would have if it were installed on its 

own.  

 

If this conversion factor is ascribed the symbol kconv, then: 

( )1ln
2

own itson  cable buried single a of resistance External

2

4

4

−+

=

=

uu

T

T
kconv

π

ρ

 

(21) 

where u is the burial depth L divided by the external radius of one cable, re. 

er

L
u =  (22) 

 

See section 9.6 of (Anders, 1997) for the derivation of the external resistance of a single 

buried cable, the denominator in (21). To aid further progress, the general approach is 

illustrated in Fig. 3.2. 
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Fig. 3.2. Single-phase cylindrical representation of a trefoil cable installation 

 

Fig. 3.2 uses the terms ρnom and δnom to represent the nominal values of thermal 

resistivity and diffusivity, which are actually arbitrary. The overall radius renv of the 

equivalent cylindrical environment should give the correct value for the external 

thermal resistance T4, and so: 









=

e

envnomconv

nom
r

rk
T ln

2
,4

π

ρ
 (23) 

Combining (21) and (23) leads to a formula for the overall radius, independent of the 

cable installation configuration and thermal resistivity: 
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Having established the overall radius, it is then a simple matter to subdivide the 

cylindrical environment into as many sections as required. Normally 3 thermal loops are 

adequate for the cable environment, but very deep cable installations may require more. 

A ‘rule of thumb’ that is sufficiently accurate is to divide the environment into sections 

with the same thermal resistance.  

 

Referring to Fig. 3.1, where there are 3 loops attributed to the environment, this gives: 
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Such a crude rule of thumb does not give the best possible fit to the true step response of 

a buried cable, but it is close enough for practical purposes and has the benefit of 

simplicity. If simulation tools or standard based transient rating algorithms are 

available, the step response could be checked and the radii of the intermediate 

environmental sections adjusted accordingly. 

 

3.2.2 Cables in troughs 
 

The concept of an equivalent radius of the envelope that covers a region with different 

thermal properties to the surrounding area was used by (Neher and McGrath, 1957), and 

fits quite neatly into our ‘equivalent cylindrical modelling’. Being of a somewhat 

obdurate nature, however, I will pursue another approach, also approximate in nature, to 

convert a rectangular region, or for that matter a region of any shape, although with 

width to height ratio of, say, between ½ and 2, into a cylindrical region consistent with 

our single-phase modelling. 

 

We will assume, when treating the cement trough, that the backfill inside the trough and 

the cement have similar properties, ρbf and δbf, and that moisture migration can occur in 

the cement. Conservative assumptions are recommended when dealing with moisture 

migration (this was not assumed when making the FEM simulations in section 2.1.3, 

because there the notion that the exponential approach is valid in highly inhomogeneous 

environments was being established)... 

 

The method consists of calculating the thermal conductance of each part of the trench 

from the centre of the cable installation, as if it were a portion of a cylindrical region. It 

is best to illustrate this with a diagram (Fig. 3.3) and some equations. 
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Fig. 3.3. Calculating the thermal resistance of a non-circular region with different thermal parameters than 

the overall environment 

 

The uppercase symbol Re, which refers to an equivalent 3-phase radius that represents 

the outer radius of the total heat source (3Wt), is calculated as follows: 
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The derivation of (27) is given in Appendix B. Note that this dimension is not the same 

and does not serve the same purpose as the equivalent diameter De used in section 3.2.3 

to approximate a radius for a convective and radiative surface. 

 

For every value of β, from 0 ≤ β < 2π, the thermal conductance (1/TBF) is incrementally 

calculated as a proportion of a cylindrical region with radius r. This means, for the 

rectangular region in Fig. 3.3, that: 
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The integrals in (28) are beyond me to analytically solve, but yield a numerical solution 

quite readily with software such as Mathcad


. 

 

An equivalent radius for the backfill region can be calculated in this 3-phase frame of 

reference,  
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and we have effectively but somewhat inefficiently arrived at something the standards, 

thanks to the work expounded in (Neher and McGrath, 1957), approximate in a simpler 

way. The derivation and improvements on the original formula, which is quoted below, 

are given in (Anders, 1997): 
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RBF in (29) should give a radius very close to rb in (30). 

 

Whichever method is used to calculate the equivalent radius of the backfill, it is 

necessary to convert this radius to be consistent with the single-phase equivalent 

cylindrical modelling. Because the single-phase losses are only 1/3 of the total losses, 

the thermal resistance of the backfill region should be 3 times higher than calculated in 

(28).  The single phase radius is then: 
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where 

BFbf TT 3=  (32) 

The overall external thermal resistance of the hottest cable then becomes: 
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The thermal circuit can then be generated as in 3.2.1, but a node should be placed at rbf 

and the remainder of the nodes should be (logarithmically) spaced evenly on either side 

of rbf to aid the modelling of the backfill region. It somewhat simplifies the analysis in 

Chapter 4 if changes in thermal parameters occur at nodes. 
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To extend the ‘rule of thumb’ in section 3.2.1, if 3 loops would be sufficient to model a 

homogeneous environment, an extra loop should be added for every inhomogeneous 

interface (referred to a single-phase cylindrical model) to counter the effect that the 

nodes will not be optimally placed due to shifting the node nearest each interface to the 

interface and spacing the other nodes logarithmically on either side.  

 

Fig. 3.4 illustrates the node placement when there is a backfill region around the cables, 

where 5 loops are allocated to the cable environment. The drawing (unlike, for example, 

Fig. 3.2) is of a realistic scale. 
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Fig. 3.4. Logarithmic distribution of nodal radii where rbf is close to where rC would be if the environment 

were homogeneous, and so rC becomes rbf. The black dot in the centre is the cable, representing the 

hottest cable in a multi-cable installation that has been converted to a single-phase cylindrical model. 
 

If wished, the cement trough could be modelled separately, computing another radius 

using (27) to (29) and (31) that corresponds to the inside of the trough. This would then 

require the addition of yet another loop to the thermal circuit. A subroutine in the final 

algorithm (see Alg. A.8 in Appendix A.2.2) uses a series of logical ‘if’ statements to 

appropriately locate the nodal positions irrespective of where the boundary between 

backfill and ‘native soil’ lies.  

 

3.2.3 Cables in tubes 
 

The air interface, and to some extent the heat transfer across the composite section of 

plastic tubes that are often of a corrugated construction to provide a good compromise 

between mechanical stiffness and light weight, is still quite challenging to model 

accurately, being a rather difficult to solve combination of radiation, convection and 

conduction.  In order to calculate the coefficients and time constants for the governing 

equations, we utilise standard-based methods for calculating a thermal resistance for the 
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air gap. This, plus an estimate of the thermal resistance of the tube wall, manifests as an 

extra loop in the thermal circuit, between the loops for the cable and the loops for the 

environment.  

 

The capacitance lumped to the external surface of the cable is simply the outermost 

capacitance of the cable part of the thermal circuit. The capacitance lumped to the 

outside of the tube is the capacitance of the tube plus the appropriate proportion of the 

first part of the environment, the latter depending on whether moisture migration is 

occurring or not. The capacitance of the air is negligible, but can be divided to each 

node if so desired. 
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Fig. 3.5.  Dimensions and variables pertaining to the cable-tube/conduit air-gap 
 

The method errs on the conservative side at high loads, in that radiation and convection 

are the main heat transfer mechanisms across the air gap - if a constant thermal 

resistance is estimated based on ‘safe’ temperatures, this resistance will in fact decrease 

at higher temperatures. This can to some extent be corrected by modifying the 
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hypothetical steady-state response in the real-time part of the algorithm; this will be 

demonstrated in section 5.3. On the other hand, the analysis assumes the cables are 

located in the centre of the tube and that the surface of the cables and the tube surface 

are isothermal. The cables are more likely to be touching the surface of the tube, 

possibly causing local moisture migration from a somewhat non-isothermal tube 

surface. Cables generally have some form of metallic sheath near the surface, however, 

and so it is expected that the critical temperatures near the conductors will be somewhat 

less affected by the uneven heat transfer nearer the surface boundaries. This analysis is 

easier to perform converting the 3 single-phase cables into a single heat source with 

losses 3Wt. The internal thermal resistances of an individual cable should be divided by 

3 to give the correct temperature rise across the cable. The thermal capacitances of the 

cable should be multiplied by 3. 

 

The various dimensions (superimposed on a FEM simulation, to illustrate the nature of 

the temperature distribution) are established in Fig 3.5. 

 

The thermal resistance outside the tube is approximately the thermal resistance of a 

cylindrical source with radius Ro and so  
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The environmental radius Renv (upper case letters are used here because these 

dimensions have a 3-phase frame of reference) is thus: 

22

oenv RLLR −+=  (34) 

The thermal circuit is shown in Fig. 3.6. 
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Fig. 3.6. A three-phase thermal circuit for cables in a directly buried plastic tube, noting that the internal 

thermal impedances of the cables must be reduced by a factor of 3 
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At this stage, we will use the formula given in (Buller and Neher, 1950), which 

embodies simplified expressions for the convective, conductive and radiative 

components. Preliminary FEM simulations indicate some error but until some tests of 

cables in composite plastic tubes are made, this will have to suffice. The idea is to make 

a steady-state computation at moderate loading to get a ‘ball-park’ figure for T4´ and use 

this (as a constant) to ascertain the time constants and coefficients of the governing 

equations (with moisture migration and moisture content dependence, if so desired). 

 

Although the standards contain simplified expressions based on (Neher and McGrath, 

1957), we can use an iterative steady-state solution to obtain a suitable value of T4´ 

according to: 
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where ∆θsw is the temperature drop between the cable surfaces and the inside of the tube 

and θm is the average temperature in the air gap. De is the equivalent diameter of all the 

cables in the tube, and for 3 cables of equal diameter is equal to 2.15⋅de, where de is the 

external diameter of one cable. Dd is the inside diameter of the composite plastic tube 

and εs is the emissivity of the cable surface. 

 

As far as the composite tube itself is concerned, the thermal resistance is the series 

connection of 3 components, the first representing the solid plastic inner ring, the 2
nd

 

consisting of a parallel combination of air and plastic, and the 3
rd

 is the outer ring. 

Again, the total resistance for the wall of the plastic tube is multiplied by 3 to account 

for the three cables with equal losses. 

 

Thus, assuming the heat transfer across the small air cavities (which have inside radius 

Rair_inner and outside radius Rair_outer) in the composite tube wall to be purely conductive: 
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(36) 

where pplast is the proportion of the air gap section of the composite tube webbed by 

plastic. ρplast and ρair are the thermal resistivities of the plastic and air, respectively. The 

formulation in (36) is pretty rough, but will err on the conservative side, as it ignores 

convective and radiative heat transfer (which is relatively small, as the temperature drop 

across the air gap is quite small). A rather bulky formula for a relatively insignificant 

thermal resistance, but it can be taken as a constant, i.e., T4´´ only needs to be calculated 

once. 
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This section can aptly be concluded with a small steady-state routine, which will 

iteratively compute the various load dependent parameters for a given current, with the 

particular interest being T4´. In the Mathcad worksheet in Alg. 3.1, T4´ is given the 

notation T4dash.
12

 The subroutine needs the various cable and tube parameters, nominal 

environmental parameters as well as the thermal resistance of the tube wall, T4´´ from 

(36), which is given the notation T4dashdash. ∆θsw in (35) is given by the iteratively 

corrected temperatures at the surface of the cable and the inside of the tube, θsurf  - θtubein 

and the average temperature θm  is given by (θsurf  + θtubein)/2. These temperatures are in 

°C. 
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Alg. 3.1. A steady-state subroutine to compute T4´, among other things, for 3 single-phase cables carrying 

a balanced load in a composite plastic tube 

 

A ‘safe’ steady-state current should of course be stipulated, in this example 308 A, so 

that T4´ corresponds with a conductor temperature of, say, 65 °C. The thermal circuit is 

then complete, noting that a correction can be made in the real-time algorithm for the 

                                                
12

 This may or may not wet the appetite of the reader for the monsters in Appendix A... Note that in the 

Mathcad worksheets, most of which are relegated to Appendix A, subscripts cannot be used in variable 

names. Variables that have subscripts in the main body of the text, therefore, will consist of the same 

symbols in regular italicized text in the worksheets. 
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temperature dependence of the air interface thermal resistance, see section 5.3. Note 

also, that the full 3-phase losses should be used in temperature computations for cables 

installed in tubes. 

 

3.2.4 Cables that defy analytical solution 

 

Numerical methods such as FEM provide the means to analyse installations that do not 

easily lend themselves to analytical solution, although it must be admitted that 

convective and radiative interfaces are still rather challenging. This glib comment is 

simply to state that if the response of a cable to a step in power can be simulated or 

measured, then curve fitting can be used to generate appropriate exponential expressions 

which can then be rendered into the real-time form for perpetual current-based 

temperature estimation. This will not deal with thermal instability, however, and in the 

spirit of this thesis, where the aim is to provide analytical methods as far as possible, the 

following comments may be of use. 

 

Presumably the cables themselves will yield to standard-based analysis. The steady-

state response to a numerical simulation will give T4, the external thermal resistance, the 

burial depth will give the equivalent radius of the environment, renv in equation (24), the 

thermal resistivity of the environment can be estimated, and, assuming that a 

homogeneous equivalent cylindrical environment will do a fair job of approximating the 

real environment, an overall diffusivity of the environment can be gained from a 

transient simulated or measured response, or an empirical formula such as that given by 

(Neher, 1964), where: 

8.0

71068.4

ρ
δ

−⋅
≈  (37) 

This pseudo-analytical approach then allows modelling of thermal instability, which 

will be detailed in Chapter 4. 

 

3.3 Mathematical representation of a thermal circuit 
 

Section 3.2 has outlined how to generate a thermal circuit for various types of cable 

installations and although it is freely admitted that the treatment is far from exhaustive, 

the general validity of this approach should now have been established. The procedures 

for deriving the transfer functions and governing equations for the step response from 

the thermal equivalent of an electrical RC circuit are well established, but in the interest 

of telling a reasonably complete story, one method, by no means the most sophisticated, 

is outlined in the following subsections. There is absolutely no claim for originality 

here.  

 

3.3.1 The transfer functions 

 

The transfer function for the rise of the hottest conductor over ambient temperature is 

simply the thermal impedance of the entire thermal circuit in the s-domain. To facilitate 

the presentation of this section the thermal impedance ‘downstream’ of the node of 

interest is given a lower-case subscript. Fig. 3.7 explains the terminology. 
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Fig. 3.7. Lumping impedances to aid derivation of transfer functions for each node of thermal circuit 
 

For the first node there is no difference between HA and Za, so: 
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(38) 

For the second node, which may be a point in the cable insulation, the cable sheath, or 

even the cable surface if only one loop is devoted to the cable, the transfer function is 

given by: 
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(39) 
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This procedure is followed to derive transfer functions for all the nodes of interest. 

Simplification of these rather ungainly expressions is aided by first obtaining the 

numerator and denominator of the transfer function that governs the response of the first 

node. The denominator for this node, which is the same for all nodes, can then be 

multiplied by the transfer functions of the other nodes to yield their respective 

numerators. It is desirable to keep everything in symbolic form, so I have used this kind 

of trickery to symbolically derive the numerators and denominator in Matlab


 prior to 

placing them in the main algorithm which is implemented in Mathcad


. The 

denominator and numerator expressions are shown for a 6-loop circuit in section A.3.1. 

Setting redundant thermal resistances to zero yields the appropriate expressions for 

thermal circuits with fewer loops. 

 

3.3.2 Time domain step response 

 

The step response for each node can be obtained by taking the inverse Laplace 

transform of 1/s times the relevant transfer function. To get the coefficients and time 

constants in the time domain in a convenient form, however, an algorithm more or less 

taken from equation (5.3) in (Anders, 1997) can be used, provided the transfer functions 

are simplified to a form with a single line numerator and denominator. The subroutines 

for this equation are presented with the full algorithm in Appendix A, Algs. A.16 to 

A.20. 

 

3.4 A quick comparison... 

 

Because of the lengthy nature of the full algorithm embodying moisture migration and 

seasonal variation of moisture content in environments that may include special backfill 

and trench arrangements or installation in composite plastic tubes, it only seems fair to 

first present a quick comparison between the standard methodology for transient 

analysis (IEC 60853, 1989) and the methodology presented in this thesis for a simple 

installation in a homogeneous environment with no modelling of moisture migration or 

moisture variation in the cable environment. This reveals a number of inherent 

advantages and, admittedly, one or two disadvantages in our method with regard to 

standard-based approaches. 

 

 

3.4.1 Analysis based on IEC 60277 and IEC60853 

 

The cables 
Because the standards use a thermal circuit for only the cables, it is necessary to 

subdivide the thermal capacitances of the cable quite carefully, because the final 

capacitance must be eliminated to obtain a transfer function 

 

Let us consider 3x380kV XLPE cables buried in trefoil, Fig 3.8. These cables are rather 

arbitrary, but serve to illustrate the treatment of a rather large cable. The burial depth is 

1.2 m and the thermal resistivity and diffusivity of the homogeneous environment are 

1.0 Km/W and 5⋅10
-7

 m
2
/s, respectively. This gives the hottest cables an external 

thermal resistivity of: 
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Fig. 3.8.  3 x 380 kV XLPE cables, with 1600 mm

2
 stranded copper conductors, buried in trefoil at a 

depth of 1.2 m. 

 

The conductor ac resistance is13: 

( ) ( )




 −−⋅+⋅= 2031026.215-101.67

ccc
R θθ  (41) 

and the sheath resistance is: 

( ) ( )




 −−⋅+⋅= 2031093.315-1092.8

css
R θθ  (42) 

The sheath reactance X is 4.74⋅10
-5

 Ω/m and the dielectric losses Wd are 2.98 W/m, 

quite significant at this voltage level. 

 

Table 3.1 shows the pertinent dimensions and thermal parameters for the cable in 

question. The first requirement is a quick steady-state analysis to establish a suitable 

value for the sheath loss coefficient. 

 

 
Table 3.1.  Dimensions and thermal parameters of hottest 380 kV XLPE cables in trefoil 

 Conductor Insulation Sheath Jacket 

Outer radius (m) rc = 0.0236 ri = 0.059 rs = 0.064 re = 0.068 

Thermal resistivity (Km/W) 0 3.5 0 3.5 

Thermal resistance (Km/W) 0 T1= 0.51 0 T3= 0.054
14

 

Specific vol. heat capacity 

(J / m
3
K) 

2.43⋅10
6
 2.4⋅10

6
 1.48⋅10

6
 2.4⋅10

6
 

Heat capacitance (J/ Km) 3.888⋅10
3
 2.205⋅10

4
 2.859⋅10

3
 3.981⋅10

3
 

 

                                                
13

 This is a linear approximation of the conductor’s ac resistance, taking into account skin and proximity 

effects 
14

 T3 includes a shielding factor of 1.6 due to the presence of the two adjacent cables in the trefoil 

installation 
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IEC60287-based steady-state analysis 

 

The following series of equations are standard-based (IEC60287, 2001) but with a little 

manipulation to suit an iterative sequence of calculations. 

 

The steady-state sheath temperature in terms of conductor temperature θc, conductor 

current I, dielectric losses and the thermal resistance of the insulation T1 is: 

( ) ( )( ) 1

2 5.0, TWRII dccccs +−= θθθθ  (43) 

The sheath current as a function of the reactance, sheath resistance and conductor 

current is: 

( )
( )( ) 22

,
XR

X
III

ss

ss

+
=

θ
θ  (44) 

The sheath loss factor is then: 

( )
( )( )[ ] ( )( )

( )cc

csscss
c
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IRIII
I

θ

θθθθ
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2

2

1

,,,
,

⋅
=  (45) 

The steady state temperature of the hottest conductor is: 

( ) ( )( ) ( ) ( )( )( ) ( )[ ]
431

2

1

2 ,15.0, TTWIRITWRII dcccdccambcc +⋅++⋅+++= θλθθθθθ  

(46) 

Equations (43) to (46) need to be solved iteratively by whatever means are available. 

One rather disturbing feature of this fictitious cable is that the sheath loss factor 

increases with load, so a high load should be chosen to ensure the factor errs on the 

conservative side. In practice, such a cable would probably be installed in flat spaced 

configuration with cross bonding of the sheaths to eliminate sheath currents. For a 

trefoil configuration we arrive at a value of λ1 = 0.54, corresponding to a conductor 

temperature of about 90 °C and a current of 1105 A. Without moisture migration 

modelling it would be foolhardy to run a directly buried installation at this level of 

loading.  

 

IEC60853-based transient analysis 

 

To achieve a better distribution of the capacitances and to lessen the effect of 

eliminating the final capacitance in the thermal circuit of the cable, we will use the Van 

Wormer ‘T circuit’, which places additional nodes in the insulation and sheath to 

achieve a more even lumping consistent with a steady-state logarithmic temperature 

distribution in each region (Van Wormer, 1957). The formulae are as follows: 

( )
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(47) 
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and for the division of the nodal capacitances between nodes at ro and ri: 

( ) ( ) iocioioinner CrrrrrQ −−= 2, π  (48) 

where Co-i refers to the volumetric specific capacity of the region under consideration 

(either the insulation or sheath) and 

( ) ( ) ioioiioouter CrrrrrQ −−= 2, π  (49) 

Note that the thermal impedances of the circuit elements from the sheath outwards need 

to be increased by a factor of (1+λ1) to compensate for the elimination of the sheath 

losses in the analysis. 

 

This is best clarified with a diagram, resorting to Greek letters for the nodal references, 

Fig. 3.9: 

  Tαααα

Qγγγγ
WC

Tββββ

QββββQαααα

Tγγγγ

Qδδδδ

Tδδδδ

 

Fig. 3.9.  Thermal circuit of hottest 380kV cable in trefoil. This elaborate treatment is in large part 

demanded by the necessary elimination of the final capacitance in the thermal circuit, Qε  
 

 

Referring to Fig. 3.8 and (47) to (49), the thermal resistances are: 

 / WKm  255.05.0 1 === TTT βα  (50) 

and 

( )  / WKm  042.015.0 31 =+== TTT λδχ  (51) 

The thermal capacitances are: 

( ) ( ) Km / J  106.56,, 3

'' ⋅=⋅+= − ciinnercicircuitTc rrQrrpQQα  (52) 

( )( ) ( ) ( ) ( )
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 (54) 

and 
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( )( ) ( ) ( ) ( )
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 (55) 

As has been mentioned, the final capacitance Qε, representing the outer part of the 

jacket, is omitted in the analysis, but is relatively insignificant due to the optimal 

allocation of 4 loops to the cable alone. 

 

The thermal circuit must then be converted to a summed set of exponential expressions. 

A procedure for doing this will be outlined in Chapter 7 and given in code in A.3.2, but 

for now I will simply give the appropriate equation for the step response temperature 

rise of the conductor over the surface of the cable assuming that the surface is held at 

ambient temperature, i.e., the cable surface constitutes an infinitely conductive 

boundary condition
15

. 
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(56) 

Clearly the first term in (56) is trivial and the second will not have a dramatic effect on 

the response, but this is not always the case. Note also that the numerically expressed 

coefficients have the units for thermal resistance, K m / W. 

 

Cables ↔↔↔↔ Environment 
To link the temperature rise caused by the cable environment to the temperature rise 

across the cable itself, an attainment factor is necessary (Morello, 1958) to account for 

the heat stored in the cable during the early part of a transient. 

 

The attainment factor is very simply and elegantly given by the temperature rise across 

the cable at time t from the beginning of the step divided by the steady-state response if 

same losses were held indefinitely. 
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(57) 

 

The environment 
This is relatively simple, requiring an approximation of the solution for a line source in 

a semi-infinite medium, which is scaled down in the early part of a transient by the 

attainment factor. The method requires an initial steady-state condition as superposition 

                                                
15

 I make this latter point, because this elaborate treatment of the cable takes no account of the actual 

cable environment.  
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must be used. The appropriate equation, (4), has already been introduced in section 

2.1.1 and is reproduced here using the appropriate symbols. 

( )
( )




















−+










−−

+
−=

t

L
Ei

t

r
Ei

W
t

ss

esc
e

δδπ

ρλ
θ

22

1

44

1
 (58) 

The temperature response due to a step increase in losses from a steady-state initial 

condition is, in terms of (56) to (58): 

 ( ) ( ) ( ) ( )tttt ec θαθθ ⋅+∆=  (59) 

 

 

3.4.2 The equivalent cylindrical method 

 

The cables 
Throwing caution to the wind, let us model the hottest cable with only a single thermal 

loop, noting that the thermal circuit will then continue into the environment. 

 

Latin subscripts will be used. The thermal resistance of the entire cable is: 

( )
311 1 TTTA λ++=  (60) 

The thermal capacitance is allocated to the cable conductor using Van Wormer’s ‘π-

circuit’ analogy (Van Wormer, 1957), expressed as equation (19) in section 3.1: 

( )
( ) 










+

+
++=

11
,

λ
js

icecA

QQ
QrrpQQ  (61) 

The capacitance lumped to the cable surface will in part consist of the remainder of the 

cable’s thermal capacitance, ( )( ) ( ) ( )( )
11,1 λ+++− jsice QQQrrp , and the inside portion 

of the first part of the environment’s thermal capacitance. 

 

Cables ↔↔↔↔ Environment 

We have a seamless link between the cable and the environment, no attainment factor is 

required and with a node at the cable surface we have a direct solution available for the 

average surface temperature of the hottest cable. 

 

The environment 
Rather than a single solution for a line source in a semi-infinite medium, this method 

requires several thermal loops, with resistances and capacitances allocated according to 

section 3.2.1 and equation (19) respectively. The ‘equivalent cylindrical’ method makes 

easy work of this, and the subsequent derivation of coefficients and time constants is an 

extension of the standard method for dealing with the cable. This part is admittedly 

more involved than the standard treatment of the environment, but is compensated by 

the need for less thermal loops in the cable part of the thermal circuit. 

 

The overall radius for the environment, in terms of a single-phase equivalent cylindrical 

model, is, from equation (24):  
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( )22

eenv rLLr −+=  = 2.398 m  if  L = 1.2 m (62) 

 

The conversion factor formula for kconv, equation (21), should have the formula derived 

by Goldenberg (Goldenberg, 1969) for the external thermal resistance T4 of the hottest 

cable in a trefoil installation in the numerator. 

 

Thus, 
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= 2.47 for this example 
(63) 

 

If we attribute only 3 thermal loops to the environment, we divide the thermal resistance 

of the environment into three equal parts subdivided by nodal radii as given by 

equations (25) and (26). This leads to rC = 0.223 and rD = 0.731 m. Given that we are 

dealing with a homogeneous, thermally stable radius where ρs = 1.0 Km/W, this means 

TB = TC = TD = 0.467 Km / W, since T4 = 1.4 Km/W in this example (the numerator in 

(63)). 

 

For the single phase equivalent cylindrical environment in this example, the heat 

capacity in terms of thermal resistivity and diffusivity is: 

ssconv

s
k

q
δρ ⋅

=
1

 = 810 kJ / Km
3
 (64) 

The thermal capacitances lumped to the nodes of the environmental loops are calculated 

using (19), so, noting that the node on the surface of the cable should also include the 

final part of the cable’s thermal capacitance: 
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 = 68.77 kJ / K (65) 

and 

( )( ) ( ) ( ) ( )2222 ,,1 CDsCDeCseCC rrqrrprrqrrpQ −⋅+−−= ππ  = 565.9 kJ / K (66) 

and finally 

( )( ) ( ) ( ) ( )2222 ,,1 DenvsDenvCDsCDD rrqrrprrqrrpQ −⋅+−−= ππ  = 6.088 MJ / K (67) 

These thermal resistances and capacitances need to be converted to coefficients and 

time constants. Following the procedure that will be outlined in Chapter 7 leads to an 

exponential function that governs the temperature rise above ambient of the hottest 

conductor in the 380 kV trefoil installation: 
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The lumped parameter method may in some respects (medium to long term response) be 

less accurate than the use of a pure analytical solution for the environment, but the 

advantages outweigh the slight loss of accuracy: 

 

• Summed exponential expressions can be more readily transformed into a real-

time form that will converge even if erroneous initial conditions are given 

• The computation for very long transient analyses is much lighter than 

superposition methods – nothing needs to be stored except the temperatures 

computed at the last time increment 

• The method is directly suited to perpetual on-line calculation in real time 

 

These advantages are significant, but are not the main reason for adopting this approach. 

The reason I have pursued a full thermal circuit with lumped parameters that yield a 

‘summation-of-exponential-expressions’ rather than a ‘summation-of-exponential-

expressions-plus-exponential-integral-for-the-environment’ method are: 

 

• The real-time form of the exponential expressions allows redefining of the time 

constants and coefficients at every time increment (if necessary) to match a 

changing thermal environment 

• A certain number of thermal loops (preferably 4) need to be optimally allocated 

to ensure a good approximation of the thermal step response of the cable (or 

hottest cable in a multi-cable configuration). On top of this, more nodes can be 

established at boundaries between inhomogeneous regions to allow for special 

backfills, trenches, soil layers etc. There are methods to do this with the 

exponential integral approach, namely (Anders et al, 2003)
16

, but the ‘equivalent 

cylindrical’ analysis provides an alternative way to achieve a transient analysis. 

• The fact that nodal solutions are available throughout the environment (or, more 

accurately, the equivalent cylindrical model of the environment) provides the 

ideal framework for tracking the growth and reduction of the dry region around 

the cables due to moisture migration. Of particular benefit is the availability of 

an accurate estimation of the surface temperature of the hottest cable which 

triggers the onset of moisture migration 

• The availability of nodal solutions at places that can be measured, such as the 

cable sheath or surface, allows highly accurate on-line monitoring, and lays open 

the possibility for future development of real-time parameter estimation and 

rating by comparing computed temperatures with measurements. This is 

returned to in Chapter 10. 

 

This section is probably best concluded with a demonstration, using the two rating 

systems to obtain per-unit step responses, and comparing them both with a fastidious 

                                                
16

 This paper took the ‘wind out of my sails’ when it came out! 
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FEM simulation. The cables are subject to a step of 800 A. The ambient temperature is 

20 °C and the reason the temperature response starts from about 24 °C is because of the 

dielectric losses, which in 380 kV cables are significant. Fig. 3.10 shows that the short 

term temperature prediction, at least for this cable installation, is significantly more 

accurate using the exponential approach in the short term, but the IEC approach is better 

over long times. All responses eventually attain the same steady-state temperature. 

 

25

30

35

40

45

50

55

60

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Time (days)

T
e

m
p

 (
d

e
g

 C
)

Cond temp (IEC)

Cond temp (4-loop
alg)
Cond temp (FEM)

Surf temp (IEC)

Surf temp (4-loop alg)

Surf temp (FEM)

 
Fig. 3.10.  Long term temperature response of 380 kV cables in trefoil calculated by the standards, a 4-

loop exponential approximation and FEM (presumably the most accurate). The upper response is the 

hottest conductor and the lower is the average surface temperature of the hottest cable. 

 

3.5 Discussion 

 

This chapter has hopefully gone some way to explaining how and why I have chosen a 

summation of exponential expressions to model the step response of a power cable in a 

wide range of installed environments. It is by no means the only way; the standards are 

first class for steady-state analysis and transient analysis according to a predetermined 

load profile in thermally stable conditions. Numerical methods, such as FEM, are 

nowadays perhaps even more suited to handle difficult installation geometries.  

 

While direct burials and installations in backfilled regions, perhaps surrounded by 

cement troughs, have been analysed thoroughly, the tube installation has been given 

only a cursory treatment, sufficient to show how the air interface can be embedded into 

the ‘equivalent cylindrical model’ so as to yield a working real-time transient algorithm. 

In the part of the world I am living, this kind of installation is becoming very common, 

even for HV cables in some cases, and warrants a more thorough analysis, as the 

temperature rise between a cable and the surface of a composite plastic tube is 

significant – as high as 15 °C for typical MV installations
17

. 

                                                
17

 My preliminary investigations concern 3 x 20 kV XLPE cables with 240mm
2
 stranded aluminium 

conductors installed in a composite polyethylene tube with outside diameter 160 mm.  
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Some readers will no doubt be offended by my use of the term time ‘constant’ for what 

is really a variable. I am aware of this contradiction, but have chosen to use this 

terminology because of its intuitive clarity to electrical engineers. These variables, 

critical radius and moisture content dependent coefficients and time constants, are in 

fact considered to be ‘constant’ over one time period but, at each subsequent time 

increment, they may or may not assume new ‘constant’ values! 

 

The main reason for using exponential expressions to approximate the thermal response 

of cables is because of their inherent suitability for real-time application. The means to 

convert some of the most common cable installations to a thermal circuit that can then 

be converted into a sum of exponential expressions has been shown in this chapter. The 

approach is also ideally suited for use with temperature sensors at positions in an actual 

installation that correspond with the nodal radii.  

 

The chapter concluded with a short comparison between the ‘equivalent cylindrical 

method’ and an IEC standard-based analysis for a directly buried EHV installation. If 

the means are at hand to convert a thermal circuit into exponential functions (the 

transfer functions for a 6-loop thermal circuit are given in Appendix A, A.3.1!), the 

‘equivalent cylindrical method’ is marginally simpler to implement and is immediately 

convertible to a real-time form via equations (16) and (17). Some medium to long time 

accuracy is sacrificed, but the proposed method seems to do better at short times, 

presumably because of the continuation of the thermal circuit into the environment. The 

real strength of the method, however, will emerge in the following chapters. 
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4 Changes in the cable environment 
 

In principle, the way changes in the cable environment are modelled is very simple. 

Because the changes are for the most part relatively slow and because temperature 

calculation occurs every time a current measurement is available, which is quite often, 

the governing equations can be redefined at every time increment to suit the present 

reality, in terms of losses and in terms of the environmental parameters that affect heat 

dissipation from the cables. 

 

At the physical level, there are two broad categories that environmental changes can be 

grouped into. The first is seasonal change. This can also cover shorter-term changes due 

to unseasonable deviations in rainfall patterns. The second is caused by the cable itself, 

and is referred to as moisture migration. This is the tendency for the area around a cable 

to dry out when heavily loaded. We will deal with moisture migration in terms of a 

critical temperature above ambient, while acknowledging that the critical temperature is 

a convenient simplification and is very much dependent on moisture content and, to a 

lesser extent, ambient temperature.  

 

4.1 Seasonal variation in the nominal environment 
 

This topic is rather complex and is very much location dependent. Many cables where 

ampacity is of concern are installed in urban environments under sealed surfaces, 

sometimes above large constructions such as car parks and shopping malls. This means 

that what might be described as ambient moisture conditions at many cable sites have 

only the most tenuous connection with rainfall, groundwater level and so on. Other 

locations may well show a clear seasonal shift between relatively wet and relatively dry.  

 

This thesis does not analyse these matters in much depth. Our concern is to show how 

moisture information can be implemented in cable rating algorithms if it is available. 

The most fundamental way to deal with seasonal change is via moisture content. For the 

internal working of the algorithm, the saturation index is used, which is the amount of 

free (intergranular) space occupied by water. The symbol h is used to represent the 

saturation index, where h=0 corresponds to totally dry conditions and h=1 implies full 

saturation. Because thermal resistivity tends to be a parameter that cable and utility 

engineers are more comfortable with, it may be more pragmatic to use this parameter at 

the user interface. For our modelling, we will assume that the seasonal and rainfall 

dependent moisture content at low temperatures is hwet, which corresponds to saturation 

index dependent thermal resistivity and diffusivity variables ρ (hwet) and δ (hwet). When 

drying due to moisture migration occurs, h=0, with corresponding thermal resistivity 

and diffusivity, ρdry and δdry, that are constants for any particular environment.  

 

To tie these variables together, some well established equations can be used, although 

empirically derived formulae for specific standardised backfills that a utility might use 

would be even better. We will base the computation of thermal resistivity in our 

algorithms on the following formula (Donazzi et al. 1979): 

( ) ( ) ( )( )ερρρ εε 21
108.3exp hh ow −= −  (69) 



 48 

where ρw is the thermal resistivity of still water, ρo is the thermal resistivity of the 

constituent (solid) material, ε is the porosity of the sample and h is the saturation index. 

Equation (69) assumes there is only solid, air and liquid (water) in the environmental 

region under consideration, i.e., the vapour state is ignored.  

 

The formula for thermal diffusivity is taken from (IEC60287, 2001), and in terms of 

saturation degree h is: 

( )
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2.482.0

10
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where dw and d0 are the densities of water and the constituent solid material, 

respectively. 

 

If the cable environment contains different material close to the cables, such as special 

backfill, cement troughs, etc., the thermal resistivity and diffusivity of each 

environmental region must be related to the saturation index of the region closest to the 

cable. The idea is to keep the number of variables to a minimum, so that as far as 

seasonal moisture content changes are concerned, we can identify a ‘yardstick’ 

saturation index to which the thermal resistivity and diffusivity of all relevant parts of 

the cable environment can be related, Fig. 4.1. 

 
 

hbf 

ρbf(hbf) δbf(ρbf,hbf) 

hs (hbf) 

ρs(hs) δs(ρs,hs) 

backfill 

native soil 

 

Fig. 4.1.  Relating the fundamental thermal parameters for heat transfer, the thermal resistivity and 

diffusivity in the backfill and ‘native soil’ regions to the main governing parameter, the saturation index 

in the backfill region, which may be given rainfall and groundwater depth dependence, for example 
 

The linking of the various thermal parameters to moisture content, as illustrated in Fig. 

4.1, implicitly acknowledges that the saturation index of the (perhaps more porous) 

native soil may be different (probably lower) at any given time than the saturation index 

of the backfill. Furthermore, the saturation index is the key parameter dictating the 
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temperature at which moisture migration is likely to occur, which leads us to the next 

section.  

 

4.2 Moisture migration 

 

This phenomenon is troublesome when rating and operating heavily loaded cables. The 

sharp degradation of the heat-dissipating ability of the cable environment when it dries 

out due to the heat from the cable itself can lead to markedly higher than expected 

temperatures that deepen the cyclic mechanical stresses on cable accessories, namely, 

joints and terminations, and in severe cases could lead to thermal runaway and 

insulation failure. Although we have picked up a considerable amount of circumstantial 

empirical evidence pertinent to local conditions, I would again like to stress that the 

main thrust of this thesis is to provide a framework for online implementation without 

going too deeply into the underlying physical processes – that would require another 

study. The following subsection, however, provides a brief overview of what drives 

moisture migration. The simpler 2-zone approach will then be discussed as being the 

most practical model for real-time implementation. 

 

4.2.1 The physics 
 

This area involves numerous interrelationships. A very full account of the underlying 

physical phenomena and their bearing on cable rating is presented in (Brakelmann, 

1984). There have been some examples of applying the governing equations using the 

Finite Difference Method (Radhakrishna et al, 1984), in Finite Element simulations 

(Anders and Radhakrishna, 1998), and using the Finite Volume method (Freitas and 

Alvaro, 1996). The following text is more or less paraphrased from these references 

plus (Philip and De Vries, 1957), (Donazzi et al, 1979) and (Groeneveld et al, 1983). 

 

The governing equations couple heat flow with moisture movement, the latter of which 

consists of vapour and liquid components. (Philip and De Vries, 1957) made a 

breakthrough in this analysis which, with a few modifications, is still considered 

appropriate for approximating the heat dissipation around buried cables. The equations 

are valid for unsaturated (but not entirely dry) porous media: 

( ) ( )Θ∇
Θ

∇+∇∇=
∂

∂
V

DLk
t

C θ
θ

*
 (71) 

and 

( ) ( )
y

K
DD

t
ww

∂

∂
+Θ∇∇+∇∇=

∂

Θ∂ Θ
Θθθ  (72) 

where DΘw is the isothermal water diffusivity (m
2 

/ s) (
lv DD ΘΘ += , the vapour and liquid 

components, respectively), Dθw(
lv DD θθ += ) is the thermal migration coefficient (m

2 
/ K 

s), and KΘ is the hydraulic conductivity (m / s). A density term must be inferred in this 

latter term and in the second term in (72) to make the units match.
18

 To be consistent 

                                                
18

 In the original paper (Philip and De Vries, 1957), the units for density were g / cm
3
, which presumably 

meant that the density term for water could be omitted, but this is hardly the case with SI units... 
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with the rest of this thesis θ  refers to temperature. The upper case Θ refers to the 

volumetric moisture content (kg / m
3
). I apologise for the visual similarity of these 

symbols. 

vlef LDdkk θ+=*  (73) 

is the apparent thermal conductivity of the soil (W / m K), where kef is the nominal soil 

thermal conductivity, which is itself dependent on moisture content and, to a lesser 

extent, temperature. L is the latent heat of vaporisation for water (J / kg). 

  

C is the volumetric heat capacity of the soil (J / m
3 

K) and, in terms of the constituent 

components of the soil or backfill, is approximately: 

( ) ( ) aawwss chdchdcdC εε −++−= 1  (74) 

where ε is the pore fraction (proportion of space to bulk volume) in the soil and h is the 

saturation index, the proportion of free space occupied by water. The densities (kg / m
3
) 

and specific heat capacities (J / K kg) of the solid material, water and air are designated 

by ds, dw and da, and cs, cw, and ca, respectively. Equation (74) ignores the heat stored in 

the vapour phase. 

 

So, what is moisture migration? Broadly speaking, there are two moisture flow 

components that occur in a cable environment. The first is a vapour movement away 

from the heat source, which is a function of the temperature gradient and the moisture 

gradient, and the second is the return movement of liquid water, which is also a function 

of the temperature and moisture gradients. Under equilibrium conditions, the movement 

of vapour away from the cable is balanced by the capillary return of liquid water, and so 

the heat transfer is a function of the nominal thermal conductivity of the backfill, 

although the heat transfer is not purely due to heat ‘conduction’. When the thermal 

stress increases, however, the vapour transport exceeds the return liquid transport, the 

‘capillary bridges’ between adjacent soil grains break down, and the region nearest the 

heat source dries out, with the dry area extending into the cable environment until the 

thermal gradient comes down to a level that allows remigration. Equations (71) and (72) 

allow for the hysteresis effect due to the suction potential being different (for the same 

saturation degree) when the moisture is returning by correcting DΘl for hysteresis. Large 

spaces empty first during drying, but fill last during wetting, so that it takes longer to fill 

the gaps between the grains than it does to empty them. 

 

While the equivalent cylindrical modelling of the cable environment would seem suited 

to a simplified 1-dimensional application of these coupled equations via the finite 

difference method, they are applicable for unsaturated, but not completely dry, porous 

media. For cable rating, the extremely slow return of water when the environment close 

to the cable has all but completely dried out is of major concern. This effect tends to be 

dominant. In the interests of keeping to our motto of ‘robust and computationally light’ 

the foregoing is left as a description of the physical phenomena that underlie moisture 

migration. Our approach to model it will be a transient implementation of the 2-zone 

approach. The final algorithm, however, will be endowed with the ability to fine tune 

the response to be consistent with a more full analysis, either measured or simulated, 

should this be available. From this section it is evident that the key issues, for a given 

environment, are moisture content, the thermal gradient and temperature. 
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4.2.2 2-zone modelling 
 

The 2-zone method is the traditional way to incorporate moisture migration into cable 

rating. A temperature ∆θx, the critical temperature above ambient at which the cable 

environment will dry out, is stipulated, given that temperatures are the most 

straightforward entities to deal with in a thermal calculation. The method, which 

assumes instant drying out once ∆θx is exceeded, is bound to err on the conservative 

side. The problem comes when one makes the observation that a certain degree of net 

moisture movement away from the cables often occurs at quite low temperatures, but 

that to assume full and instantaneous drying out at such temperatures would be 

prohibitively conservative. For this reason the algorithms are endowed with the ability 

to slow down the speed of migration and moisture return. This latter point is most 

important as it can take a very long time, many weeks or even months if conditions are 

generally quite dry, for moisture to return once the capillary bridge between backfill 

particles has been broken. 

 

The real-time position of the critical radius rx, the distance from the centre of the cable 

to the isotherm at temperature ∆θx above ambient in our single-phase cylindrical 

analogy, is treated in the following subsection (θx = θamb + ∆θx). Note that ∆θx need not 

be a constant, and indeed in very few cable environments will be. It’s major dependence 

is on moisture content, with a lesser dependence on heat flux and ambient temperature, 

and if, for a given cable environment, these dependencies are known, ∆θx should be 

read as ∆θx(hwet,Wt). Once again, everything hinges on the nominal but 

seasonally/rainfall/ground-water-level dependent environmental variable hwet. 

Generally, such information will not be available, in which case ∆θx must be given a 

safe value, typically 30 °C, but as low as 10 °C above ambient in many locations. 

 

4.2.3 The real-time position of rx 
   

The first point to establish is the position of the critical isotherm that delineates the wet 

from dry regions that would be reached if the temperature at the nodes on either side of 

the critical isotherm were maintained indefinitely. We will refer to this radius as rx,∞. 

The inner and outer nodal radii, ri and ro, are at temperatures θi and θo, respectively, as 

shown in Fig. 4.2. 
 

k
conv

ρdry 

  δ(ρ
dry

) 

k
conv

ρ
wet

 

  δ(ρ
wet

) 

r
x
 

θ
x
 

r
i
 

θ
i
 

r
o
 

θ
o
 

 

Fig. 4.2. Radius and temperature designation used in 2-zone moisture migration monitoring 

 

In steady-state conditions, the temperature distributions in each homogeneous region 

will be logarithmic, and their relationship between adjacent regions with different 

thermal parameters is: 
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Turning (75) inside out to yield a real-time formulation for the hypothetical steady-state 

position of the critical radius rx,∞ gives, for inter-nodal regions with the same material, 

but separated into wet and dry regions:  
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where tI is the present and tI-1 is the previous time increment. 

 

As mentioned earlier, the assumption of instant drying is conservative, but more 

importantly, the assumption of instant ‘rewetting’ during cooling is potentially 

dangerous. We cope with this by using the real-time exponential formulation to enable 

the slowing down of the critical isotherm via time constants for heating and cooling. 

This is done as follows: 
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This approach is justified by noting that the movement of the critical isotherm does 

follow a more or less exponential step response, and that, by means of a single or even 

several such expressions, the response can be tuned to something that more closely 

approaches reality if the heat and moisture flow phenomena of a particular cable 

environment are known. In the absence of such information, the heating time constant 

should be set very low and the cooling time constant should be set as high as several 

months. As noted in the previous section, the critical temperature rise for moisture 

migration ∆θx can itself be made a function of the saturation index if this relationship is 

known. 

 

As moisture shifts away from the cable during migration, the heat capacity of the 

environment must change. The question of how to redistribute the heat capacitance 

between nodes of the thermal circuit when moisture migration is occurring is addressed 

in the following subsection. 
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4.2.4 Subdividing the thermal capacitances during moisture migration 
 

It is assumed that the temperature distribution between nodes of the thermal circuit is 

logarithmic. While this is clearly not strictly true in the early stages of a transient, it is 

very nearly true by the time temperature rises become significant, so that the error 

incurred by such an assumption is quite small in absolute terms. This is illustrated in 

Fig. 4.3, which compares the critical radius for moisture migration scaled off a transient 

FEM simulation with the radius predicted by a logarithmic distribution. 
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Fig. 4.3. Critical radius development during heating, FEM simulated vs. logarithmic approximation 
 

Of course, the same logic should be applied during cooling, where the critical radius 

will tend to be slightly underestimated using a logarithmic temperature profile As Fig. 

4.4 shows, the error is slight and, as we use exponential expressions to slow the 

movement of the critical radius during cooling, any failing of the logarithmic 

assumption is offset. 
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Fig. 4.4. Critical radius development during cooling, FEM simulated vs. logarithmic approximation 
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Van Wormer derived equations to apportion the thermal capacitances in the cable itself 

to the various nodes in accordance with a logarithmic distribution (Van Wormer, 1955). 

Although a cable is geometrically much smaller than the inter-nodal regions in the cable 

environment, the thermal gradients are much lower in the environment. A lumped 

parameter approach to heat transfer achieves perfection in cases where the thermal 

gradient is zero - a trivial situation! This led me to follow in the footsteps of Van 

Wormer and derive an equation for the distribution of thermal capacitance in a non-

homogeneous environment subject to moisture migration, first presented in (Millar and 

Lehtonen, 2005).  

 

The following derivation is also expressed in terms of the equivalent cylindrical 

environment, as depicted in Fig. 4.1. It is simplest to express the temperature 

distributions in terms of the total cable losses Wt, although this term will eventually drop 

out.  

 

For ri ≤ r < rx the steady-state temperature distribution is: 
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For rx ≤ r < ro, 
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and 
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Analogous to p(ro,ri) in (19) for homogeneous regions, we now designate pmm to 

apportion the capacitance of a region, divided into wet and dry regions at rx, to the inner 

node. The corresponding portion of capacitance apportioned to the outer node at ro is 

then (1- pmm). 

 

Matching the heat storage on each side of the thermal section to that which is really 

stored over the whole section means that: 
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where qwet and qdry refer to the wet and dry volumetric heat capacities of the backfill or 

native soil material.  
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In terms of wet and dry thermal resistivities and diffusivities: 

( ) ( )
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1
=  (83) 

and  

drydry
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δρ

1
=  (84) 

 

Substituting (78) to (81), (83) and (84) into (82) and integrating yields the following 

equation for apportioning the thermal capacitance of an inter-nodal section divided into 

wet and dry regions at rx. 
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(85) 

 

Note that ρdry and δdry are, for a given material, constant, so there are really only two 

variables in (85), rx and hwet. The above analysis assumes that the thermal capacitance of 

the region just outside the critical isotherm does not increase as moisture is forced out of 

the dry zone.  

 

4.3 Discussion 
 

This chapter has briefly reviewed the underlying physical processes behind heat transfer 

from an underground cable, but then expounds a transient implementation of the simple 

2-zone approach to moisture migration in terms of a critical radius, corresponding to the 

critical isotherm delineating dry from wet regions. The 2-zone approach was originally 

intended for steady-state or adjustment for moisture migration of the cyclic rating 

factor, not the fully transient application we are concerned with. For that reason the 

movement of the critical radius can be slowed down, both during moisture migration 

and moisture return. It is expected that the heat capacitances lumped to each node will 

change during moisture migration, so this dependency has also been derived.  

 

Overall moisture variation is also an issue I felt needed to be covered in the algorithm as 

seasonal changes can have a very significant effect on the true ampacity of underground 

cables.  
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5 Relating changes to the thermal circuit parameters to changes in the 

coefficients and time constants 
 

The task is now to find a simple way to mathematically relate physical changes in the 

environment to the coefficients and time constants of the governing equations. There 

would be several ways to achieve this, and the adopted methods may not be the most 

computationally efficient, i.e., there is likely to be room for improvement. This part of 

the algorithm need only be performed once for each cable location of interest, however. 

 

The most simple and sure-fire way is to compute the effect of seasonal change from the 

wettest to the driest conditions for each critical radius, from the external radius of one 

cable to the greatest possible critical radius (renv is the largest possible upper limit). 

Linear interpolation can be used to obtain intermediate values for the real time 

computation. The disadvantage however, is that significant computation is required at 

each time increment. A better method is to fit polynomials to the time constants and 

coefficients obtained for the full range of hwet, and then model the dependence of the 

coefficients of these polynomials on critical radius. This then gives continuous stand-

alone polynomials for the time constants and coefficients of the governing exponential 

equations that have both hwet and rx dependence.  

 

5.1 Seasonal changes to the wet thermal parameters 
 

Fig. 5.1 shows the per unit variation of time constants with moisture content, expressed 

in terms of the saturation index h. The time constants are divided by the time constant 

corresponding to a saturation index of 0.5 for each respective loop. 
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Fig. 5.1.  Relationship between time constants (loops numbered from 0 to 5) and moisture content, where 

there is no moisture migration, i.e., rx = re 

 



 57 

To give some feel for the numbers, the time constants for each loop in this particular 

case are given in Table 5.1. These figures are related to three 110 kV cables installed in 

the middle of a 0.5x0.42 cement trench filled with special backfill, buried at 1.1 m. 

Their specifications are given in Alg. A.1 of Appendix A. 
 

Table 5.1  Time constants for each loop where h = 0.5 and rx = re 

 

Loop 0 1 2 3 4 5 

Time 
constant 1.14E+03 2.76E+03 8.79E+03 6.46E+04 3.43E+05 2.32E+06 

 

The relationship between the coefficients of the exponential equations and moisture 

content follows a similar but by no means identical pattern to that shown in Fig. 5.1. 

The point is that a 3
rd

 degree polynomial provides a very good fit for the variation of 

each time constant (for each loop) and every coefficient (for each loop and every nodal 

response) with moisture content.  

 

A 3
rd

 degree polynomial itself has 4 coefficients, and these will vary when moisture 

migration occurs. It is thus necessary to investigate the variation of the polynomials’ 

coefficients with rx, the time varying critical radius for moisture migration. 

 

5.2 2-zone moisture migration and the critical radius 

 

To provide a connection with the previous section, Fig. 5.2 shows the way the time 

constants of the 4
th

 loop vary with critical radius. 
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Fig. 5.2.  The way the time constant for the 4

th
 loop varies with the critical radius during moisture 

migration for the full range of moisture divided by the response where there is no moisture migration and 

the saturation index is 0.5 

 

Fig. 5.3 shows the relationship of the time constant for loop 4 with the critical radius for 

a saturation index of 0.5. The time constant in Fig. 5.3 is not normalised. 
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Fig. 5.3.  The continuous relationship between the time constant for the 4th loop and the critical radius 

during moisture migration when the saturation index is 0.5 
 

To change the scenery a little, Fig. 5.4 shows the continuous relationship between the 

first nodal coefficient (node ‘A’, which governs the total temperature rise of the hottest 

conductor over ambient) for each of the 6 loops in the thermal circuit and the critical 

radius when the saturation index is 0.5. 
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Fig. 5.4.  The coefficients of the exponential equations governing the step response of the conductor 

temperature rise vs. critical radius (these coefficients are not normalised). The summation of the 

coefficients is also shown, but note the different scale. 
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The thermal circuit the figures in this chapter are based on has external nodes at radii of 

0.087, 0.182, 0.417 and 0.958 m. As Figs. 5.2 to 5.4 indicate, it is necessary to make the 

functions that model the change in the coefficients of the moisture content dependent 

polynomial coefficients step-wise continuous at these radii. The radius at 0.182 m 

corresponds to rbf, which delineates the backfill from the native soil regions in the cable 

environment (from a single-phase equivalent cylindrical perspective). If the 

environment were homogeneous (prior to moisture migration) the summation of the 

coefficients would increase smoothly with the increase in critical radius. The irregular 

behaviour of the individual coefficients is due to the shifting of the lumped nodal 

capacitances as moisture migration proceeds. Although the total thermal capacity of the 

inter-nodal region that contains the critical radius decreases as the critical radius moves 

outwards, the proportion of the capacitance lumped to the inner node (pmm in equation 

(85)) decreases and then increases. 

 

Consequently, while the dependence on moisture content, either modelled as a 

dependence on saturation index, or on ‘wet’ thermal resistivity is quite amenable to 

approximation with polynomials, the rx dependence requires step-wise continuous 

functions. Once these are established for a cable in a specific installation, however, the 

real-time part of the algorithm can run independently and lightly. The fitting of 

functions to model moisture and critical radius dependence amounts to surface fitting, 

and this section concludes with 3-dimensional representations of the time constant and 

two of the nodal coefficient functions, Figs. 5.5-5.7. They are not normalised.  
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Fig. 5.5 shows the time constants of the governing exponential expressions, which are 

the same for all nodal responses.  

 

 
Fig. 5.5.  Variation of the time constants with critical radius and moisture content (saturation degree) 
 

A general observation that will prove valuable later on is that the time constants tend to 

get longer as the environment dries out (implying that the increase in thermal resistance 
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outweighs the reduction in heat capacity). Figs. 5.6 and 5.7 show the dependence of the 

first and second nodal coefficients. 

 
 
Fig. 5.6.  Variation of the coefficients governing the overall rise of the conductor temperature with critical 

radius and moisture content (saturation degree) 
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Fig. 5.7.  Variation of the coefficients governing the rise of the second node (in this case the cable 

surface) with critical radius and moisture content (saturation degree) 

It would take up too much room to illustrate the rx and h dependence of all the 

coefficients for each nodal response, but perhaps by now the idea has been established! 
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5.3 The air interface for cables installed in buried tubes 

 
To calculate the shape of the temperature responses of interest in the cable and 

surrounding environment, a constant value was ascribed to the thermal resistance 

between the cables and the plastic tube in section 3.2.3. The real-time part of the 

algorithm, however, can include a correction for temperature-dependent phenomena that 

do not appreciably affect the shape of the response. This is done by modifying the 

hypothetical steady-state response at every time increment, based on the temperatures 

from the previous time increment.  

 

A real-time version of (35) is: 
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(86) 

where θtube is the temperature of the inside surface of the composite tube. This gives a 

correction to the steady-state formula of ( ) ´

,_4

´

,4 / nomairIair TtT . On the other hand, a 

steady-state subroutine such as Alg. 3.1 can be run at every time increment, but then it 

should include temperature dependent sheath losses. Equation (86) is just to show how a 

tube installation can be dealt with in the context of the real-time algorithm presented in 

this thesis.
19

 Sheath loss temperature correction is discussed in the following section. 

 

5.4 Fine tuning for sheath and armour loss factor variation 
 

It would be unnecessarily complicated to relate coefficient and time constant variation 

to such quantities as sheath losses. While it is standard practice to assign constants, λ1 

and λ2 to the proportions of sheath and armour to conductor losses, this can lead to 

some error at extremely high loading. Usually the error is on the conservative side as 

these loss factors generally decrease with increasing load/temperature (the sheath and 

armour losses increase with loading in absolute terms, but the conductor losses increase 

with loading at a greater rate, and so the respective loss factors decrease). If this error is 

unacceptable, the steady-state terms in the real-time algorithm can be modified to reflect 

the actual sheath and armour losses based on temperatures from the last time increment. 

 

In effect, similar to the temperature dependence of the heat transfer across the cable to 

tube air gap treated in section 5.3, the ‘fine tuning’ assumes that the shape of the 

temperature response is not significantly affected by variation in these loss factors, but 

the steady-state temperature towards which the response is heading is.  

                                                
19

 i.e., I have some reservations about using this formula, which was not originally intended for composite 

plastic tubes... 
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If, for example, it is wished to make an adjustment for sheath losses but there is no node 

designated to the sheath, for a cable that thermally consists of a conductor, insulation 

with thermal resistivity ρi, a metallic sheath and a jacket with thermal resistivity ρj, the 

sheath temperature will be approximately: 
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The sheath losses can be calculated based on this temperature and the present current. 

The sheath loss factor for the present time can then calculated via a correction factor for 

the relevant nodes, or an explicit steady-state calculation at every time interval, which is 

the approach taken in the final algorithm in Appendix A.5. 

 

 

5.5 Discussion 
 

The full algorithm, which is presented in detail in Appendix A, has moisture content and 

critical radius dependent coefficients and time constants. Furthermore, while variation 

in the ratio of sheath losses to conductor losses may not affect the shape of the response 

governed by the coefficients and time constants very much, it may be advisable to 

modify the hypothetical steady-state responses toward which each nodal temperature is 

heading to account for such changes. The same can be said for ´

,4 airT , the thermal 

resistance of the air gap in a tube installation. This chapter has related how these 

dependencies can be modelled. The real-time position of the critical radius for moisture 

migration was shown in Chapter 4.  

 

Thus far, a comprehensive treatment of the temperature rise of a cable due to its own 

losses has been presented, but if there are significant swings in ambient temperature or 

appreciable temperature sources in the cable vicinity these must be taken account of. 

There are numerous publications covering this issue, but the purpose of the following 

chapter is to show how time varying external sources can, in principle, be given an 

exponential representation and rendered into a real-time form similar to that used for the 

cable of interest itself. 
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6 Ambient temperature and external heat sources 
 

6.1 Seasonal variation in ambient temperature 
 

We have a temperature probe at the typical high voltage cable burial depth used in 

southern Finland that is used as an ambient temperature reference for the heating tube 

tests. Looking at the seasonal temperature variation of this probe shows that the 

temperature at moderate depths below the surface can be approximated by a sinusoidal 

function. Another way to arrive at this result is to run a FEM simulation, varying the 

surface temperature with recorded air temperature from an ‘average’ year, hold a lower 

boundary at a depth of about 100m at the average yearly air temperature, and, using as 

realistic as possible depth related thermal parameters, see what the seasonal variation is 

at cable burial depths. This is obviously very much location dependent, but for southern 

Finland, the following empirical function is appropriate in urban environments. 
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The variable day is simply the day of the year, starting on the 1
st
 of January. The effect 

of external heat sources on the conductor temperature of interest can be coupled to the 

ambient temperature expression, hence ( )Iext tθ  in (88). Ambient temperature, then, has a 

relative meaning in this work; it refers to the conductor of interest. 

 

6.2 External heat sources 
 

Reiterating what was stated in section 2.1.5, if the time dependent losses of an external 

line source are known, the step temperature response at the conductor of interest can be 

calculated using (4) or a numerical simulation, to which a summation of exponential 

terms can then be mathematically fitted. If the exponential terms governing the response 

due to an external heat source are based on the most favourable (conductive) 

environmental conditions, the effect due to the external source will be overestimated, 

i.e., will err on the safe side if the environment deteriorates due to drying out. Because 

the effect of the external sources is likely to be at least an order of magnitude less than 

the temperature raising effect of the conductor of interest’s own losses, the error 

incurred by assuming a thermally stable environment is unlikely to be of any 

significance. 

 

The foregoing paragraph is sufficient to cover this topic in the most general way, and in 

principle can be used to model the heat flux from a hot road surface, a district heating 

pipe or any other heat source. The difficulty is in determining the heat response at the 

conductor of interest. Once that is established, fitting exponential terms and then 

rendering them into a real-time form is a trivial exercise. This section, however, will 

endeavour to extend the ‘equivalent cylindrical model’ to approximate the effect of 

external cylindrical sources on the cable of interest. The main purpose is to illustrate 

how this variable can be incorporated into the main algorithm and with this method we 

can also incorporate varying moisture content if so desired.  
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External sources are given a finite cylindrical dimension for the purposes of dividing the 

environment into a sensible series of thermal resistances
20

. 

 

Consider Fig. 6.1. 

 
 

Fig. 6.1.  Dimensions for the analysis in this section: note that the dimensions refer to the ‘conductor of 

interest’, i.e., the hottest conductor in the cable installation for which the temperature prediction is 

intended. 

 

It can be shown, e.g., (Anders, 1997), that the thermal steady-state temperature rise ∆θ 

due to a line source at distance d from the cable of interest is, in terms of the dimensions 

in Fig. 6.1,  
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(89) 

where Tcable_amb is the thermal resistance between the conductor of interest and ambient 

from the point of view of the external heat source and d´ is the distance of the cable of 

interest from the image of the line source (where an equivalent heat sink is placed to 

create the isothermal ground surface). The subscript els refers to the external line 

source. 

 

Resorting to ‘equivalent cylindrical modelling’, the external line source can be given an 

equivalent environmental radius renv_els: 
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The thermal resistance of the total environment from the point of view of the external 

heat source is, in terms of an arbitrary radius ascribed to the heat source re_els: 

                                                
20

 Note that the temperature at the centre of a pure line source is infinite... 
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In terms of re_els, the equivalent radius marking the location of the cable of interest rcable 

can be calculated: 
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There are two ways to generate the thermal circuit. We can break the thermal resistance 

of the external heat source’s environment into equal parts, distribute the capacitances 

logarithmically assuming a homogeneous medium as was done in section 3.2.1 and then 

calculate the temperature at the radius associated with the cable of interest in real time 

assuming a logarithmic temperature distribution between the nodes that are on either 

side of the cable location.  

 

The other method is to ensure that a node lies at the radius associated with the cable of 

interest and evenly distribute the other nodes on either side. Both methods are quite 

accurate if the depth of the heat source is approximately the same as the cable of 

interest. If the heat source is above the cable of interest, the temperature rise at the 

cable-of-interest’s position will be somewhat overestimated for short times, whereas the 

opposite will happen if the heat source is deeper.  

 

Since the implementation of this part of the algorithm is superposition on top of the 

temperature response of the cable of interest to its own losses, the presentation of the 

algorithm in Appendix A will not include the effect of external line sources, but all the 

details for its implementation, whether by equivalent cylindrical modelling or a pure 

solution using the exponential integral are detailed elsewhere in this thesis. Fig. 6.2 

compares the 3 methods for computing the effect of an external heat source, noting that 

for an ideal line source (actually a cylindrical source in the FEM implementation) the 

solution involving the exponential integral, an adaptation of (4), perfectly matches the 

FEM simulation, but these two methods must then be converted to an exponential 

summation by curve fitting, whereas the less accurate equivalent cylindrical modelling 

delivers the solution in the form of a summation of exponential equations ready for real-

time implementation. 
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Fig. 6.2.  The temperature raising effect of a line source of 100 W/m located 0.4 m to the right and 0.2 m 

above the location of the cable of interest. The cable depth is 1.1 m, the thermal resistivity is 0.64 Km/W 

and the diffusivity is 0.78⋅10-6 m2/s. The three methods that are compared are FEM, the analytical solution 

for a line source and the approximate solution using the adaptation of the equivalent cylindrical model for 

external sources outlined in this section. 
 

One reason for adopting the method, despite these imperfections, is that major parts of 

the main algorithm can be adopted for the computation of any number of external heat 

sources. Because this is a general presentation, neither the external heat source or the 

cable of interest have any non-homogeneous presence in the environment, but it is clear 

that the heat source, which may well be another underground cable or cables, could be 

modelled fully and incorporated into the thermal circuit associated with each line source 

and that moisture related dependencies could in principle be included.
21

 This indeed is 

the method I would suggest for dealing with flat spaced installations, where three 

single-phase cables with identical losses are buried at the same depth, but at a spacing of 

several cable diameters. 

 

6.3 Discussion 

 

It has been my wish, in addition to establishing a clear method for real-time temperature 

estimation of critical cables in thermally unstable environments, to add some of the 

‘bells and whistles’ that make the method very general in scope. This chapter has shown 

two such additions, a simple way to model seasonal variation in ambient temperature, 

which may as well be done if year-round online temperature computation is 

implemented on critical cables, and the effect of external heat sources. The real-time 

exponentially based formulation, equations (4) and (5), can be indirectly applied, based 

on curve fitting exponential functions to a step-response calculated by whatever means 

are available but, once again, we have come up with a rough but workable analytical 

                                                
21 Fitting exponential expressions to the analytical solution for the step response at the conductor of 

interest to a line representation of the external source, as was shown in section 2.1.5, might be a more 

attractive method. 
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means to generate such equations via a thermal circuit. The approach gives each 

external source its own hypothetical cylindrical environment in which the conductor of 

interest is located. At the time of writing, the external source part of the algorithm can 

accommodate overall moisture variation but the environment, as far as the external heat 

sources are concerned, is assumed to be homogeneous and thermally stable. These 

assumptions are permissible given that any event or phenomenon that increases the 

thermal resistance of the environment (such as moisture migration) will decrease the 

effect of external sources on the conductor of interest. 

 

Note the implication of the last statement. As far as the temperature rise due to the 

losses of the cables under consideration is concerned, the environment should be 

modelled conservatively, but as far as the temperature rise (of the cables of interest) due 

to external sources are concerned, the environment should be considered to be thermally 

optimal. 
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7 Putting it all together - the full algorithm for temperature prediction 
 

The flow chart in Fig. 7.1 gives an overview of the algorithm. 

 
N-loop thermal circuit (single cable representation of hottest conductor & environment):  

• Model the hottest cable according to IEC-60287/IEC-60853 with nodes, at least, 

at the hottest conductor and surface 

• Calculate renv according to (24) and intermediate nodes, keeping inter-nodal 

thermal resistances constant within each homogeneous region but with nodes at 

every interface between dissimilar environmental regions (Alg. A.8) 
 

Compute corresponding coefficients (Tm,n)i,k for each 

node m and loop n, and time constants (τn)i,k , Alg. A.21 

Generate (piecewise) continuous functions for the time constants and coefficients as 

functions of  rx and hwet, i.e. τn(hwet,rx) and Tm,n(hwet,rx), Algs. A.22 – A.30 

Seasonal environmental data stipulating θamb, 

hwet, ∆θx, τmm,heating and τmm,cooling (these do not 

have to be constants) 
θsurf, θC, θD, etc. 
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(current measurement) 
Real-time algorithm 
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Calculate thermal resistances, Alg. A.12, 

and capacitances, Alg. A.13  
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Fig. 7.1.  Overview of the complete algorithm, which consists of two parts, the first to establish the 

moisture content and moisture migration dependencies of the time constants and coefficients of the 

governing exponential equations, the second to implement the temperature prediction in real time 
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After some contemplation, I have decided to present the algorithm in the Mathcad


 

format that I used to develop it. This software was recommended for me to use when I 

re-entered engineering life a few years ago, with almost no experience in modern 

computing, as it is extremely easy to use. It has the additional benefit that, in terms of 

presentation, the subroutines are intuitively easy to follow and don’t require any special 

knowledge of a lower level computer language. The only drawback is that symbols that 

have subscripts in the text of this thesis do not in the algorithm work sheets, so, for 

example, conductor radius rc becomes rc in the algorithm. The algorithm can be found 

in Appendix A for those who are interested in the details of how the theory developed in 

the thesis can be actually manifested as a working program. Others may prefer to work 

directly from the flow chart in Fig 7.1, and the relevant parts of the text. 

 

The remainder of this chapter will briefly discuss the major parts of the algorithm but 

will first devote some attention to the cables themselves, and their losses. 

 

7.1 The cables 
 

The treatment of the cables is not the main objective of this thesis, but for illustrative 

purposes, we will run through the standard-based method for dealing with extruded 

cables following typical modern construction, i.e., with a stranded conductor surrounded 

by insulation, contained in a metallic sheath with a jacket, Fig. 7.2. 

  

rc 

ri 

rs 

re 

 
 

Fig. 7.2.  Section of a typical HV or MV extruded single-phase cable 

 

7.2 Losses 
 

The main source of heat from a cable is the conductor with I
2
R losses, noting that 

temperature dependent dc resistance must be scaled up to reflect uneven current 

distribution due to skin and proximity effects. The resistance is, of course, related to the 

conductor material, aluminium or copper, and whether the conductor is stranded, 

compressed and so on. The proximity effect is affected by the cable installation 

configuration, i.e., whether it is installed in trefoil, flat touching or spaced. 

 

The computation of ac conductor resistance is covered well in Chapter 7 of (Anders, 

1997). The algorithm requires a linear approximation of the dependence of ac conductor 

resistance on temperature, derived either from first principles following the standards 

(IEC60287, 2001), or interpolating from catalogue values of ac resistance, thus: 
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( )( ) ( )( )( )201 2020, −+= taRtR cacaccacc θθ  (93) 

Dielectric losses caused by the alternating voltage across the insulation may or may not 

be thermally significant, depending largely on the voltage level and the type of 

insulation. I have kept dielectric losses out of the transient part of the algorithm, 

assuming that their temperature raising effect will immediately attain the steady-state 

value even if the cable is initially uncharged. If the voltage level is such that the steady-

state temperature rise due to dielectric losses is less than a degree or so, this hardly 

matters, but if they cause a significant temperature rise, especially in EHV cables, an 

error on the conservative side will be incurred for the first few weeks of cable operation. 

 

The capacitance and tanδ of the insulation, phase voltage U0 and the power system 

operating frequency ω in rad/s are required to give the dielectric losses, which are:  

δω tan2

0CUWd =  (94) 

 

The final sources of losses, which can make up a high proportion of the total, are the 

circulating and eddy currents. Cable installation practice often involves bonding the 

sheaths at each end of the cable connection, to prevent high voltages from being 

induced in the sheaths. This gives rise to significant circulating currents, however, 

which can cause losses in excess of 10% of the conductor losses. In such cases, eddy 

current losses are considered insignificant, but the sheath losses must be calculated at a 

‘safe’ load, to derive a conservative sheath loss factor, λ1, which represents the ratio of 

sheath to conductor losses. Consistent with the standards, the thermal impedances from 

the sheath outwards are increased by the factor (1+λ1), which simplifies the transient 

analysis to one driving function, the conductor losses Wc(t). 

 

This brief treatment is not meant to trivialise the computation of losses. If they are 

wrongly calculated, the validity of the whole algorithm will fall down, but it is felt that 

this task is covered well in the standards. At any rate, I have nothing new to offer in this 

area! 

 

The algorithm commences with values suited to the AHXLMK-W 800 cable made by 

Prysmian cables. This is a 110 kV cable with an 800 mm
2
 stranded aluminium 

conductor. The installation will be assumed to be trefoil, which affects the thermal 

resistance of the cable jacket, due to the shielding effect of the adjacent cables. The 

cable parameters are presented in Alg. A.1 in Appendix A. This aspect of the algorithm 

is represented in the first bulleted item in the top box of the algorithm overview in Fig. 

7.1. 

 

7.3 The cable environment 
 

The 2
nd

 bulleted item in the top box in Fig. 7.1 covers the environment and the 

generation of the ‘equivalent cylindrical model’. The rationale is to keep the thermal 

resistances of the environment the same, for optimum lumping of the distributed 

thermal capacitance, but this is compromised by placing nodes at points where there are 

significant changes in the thermal parameters of the environment, to aid the moisture 
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migration modelling. A way to transform a rectangular trough filled with backfill into a 

single-phase cylindrical frame of reference is detailed in section 3.2.2, by way of 

illustrating the real-world application potential of this method. 

 

As has been mentioned earlier, rather than using thermal resistivity, I have chosen to use 

the saturation index of the material nearest the cables (or tube enclosing the cables) as 

the variable that relates moisture content. It is intuitively clear; 0 means dry, 1 means 

saturated, and the saturation indices of other environmental regions, e.g., native soil, can 

be related to this variable if necessary and if known. Established formulae for 

calculating the thermal resistivity and diffusivity from the saturation index are given in 

section 4.1, but it was noted there that empirical formulae relevant to specific backfill 

types would be more accurate if available. 

 

7.4 Generating exponential equations with rx and hwet dependence 

 

Once functions are generated that relate the capacitances and resistances of the thermal 

circuit to the saturation index and critical radius for moisture migration, Algs. A.9 to 

A.12 in Appendix A, the main body of the preparatory part of the algorithm can run. 

This is depicted schematically in the open section below the top box in Fig. 7.1 and is 

implemented in Alg. A.13 in Appendix A. The result is a set of discreetly calculated 

time constants and coefficients for every intermediate value of the saturation index and 

critical radius, Alg. A.21. Large swathes of algorithm are then used to convert these 

discreet values into a set of piecewise continuous functions that relate the time constants 

and coefficients of the governing equations in terms of saturation degree hwet and critical 

radius rx. This set of equations, Alg. A.29, completes the preparatory part of the 

algorithm, the top (dotted) section of Fig. 7.1. This part of the algorithm is performed 

only once for each likely hottest location along a given cable connection. 

 

Depending on how elaborate one wishes to get, the effect of external sources on the 

conductor of interest can be dealt with in a similar way, but this would, in my opinion, 

constitute an overkill, as the effect of external sources is significant but secondary, and 

need not carry full dependence on moisture content.
22

 External sources were dealt with 

in section 6.2. 

 

7.5 The real-time part of the algorithm 

 

The hottest point (or points) along a given cable connection will thus have governing 

exponential equations with coefficients and time constants dependent on moisture 

content, via the saturation index of the material nearest the cables, and the critical radius 

for moisture migration. There will also be a similar set of equations for each external 

heat source, although these need not have full dependence on moisture related variables. 

The temperature rises caused by the external sources should be added to the expression 

for the seasonal ambient temperature variation (perhaps sinusoidal as suggested in 

section 6.1) or even better, a reliable ambient temperature measurement (at the cable 

burial depth but not influenced by the heat flux from the cable of interest). The main 

                                                
22 It is true, however, that I am living in a not too densely populated country, where only a few urban 

locations have a duct bank style congestion of cables. For such locations, the contribution of all 

significant heat sources and their cumulative effect on the environment must be considered. 
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equation, consisting of the temperature raising effect of the cable of concern’s own 

losses, will run in conjunction with the subroutine computing the position of the critical 

radius for moisture migration rx in terms of the nodal temperatures from the last time 

increment. It is assumed that the temperature raising effect of the external sources will 

affect, on average, all nodes of the cable-of-interest’s equivalent cylindrical model 

equally, as regards the moisture migration modelling. Naturally the driving function 

behind the loss computations must be given in real time. For the main player, the cable 

of interest, this of course is the current. 

 

The real-time of part of the algorithm is presented in Appendix A in Alg. A.31 to Alg. 

A.39, noting that external sources and ambient temperature subroutines are not 

explicitly presented. 

 

7.6 Discussion 

 

This chapter has provided a brief overview of the algorithm to make a bridge between 

the theory that has been developed or adapted in the earlier chapters and the creation of 

a working algorithm. The actual code, as implemented in Mathcad


, can be found in 

Appendix A with accompanying comments. 
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8 Results of the temperature predicting algorithm 
 

8.1 A quick note on the finite element method (FEM) 
 

The best means I have for rigorously testing the algorithms is comparing them with 

FEM simulations, which by their nature do not require the simplifying assumptions 

inherent in the algorithms, i.e., the lumped parameter, single-phase and equivalent 

cylindrical environment (which sets a finite limit on what is really a semi-infinite cable 

environment) approaches. The power of modern personal computers is now such that 

mesh elements can be very small where temperature gradients are high and the overall 

field can be made very large, so that the assumption of isothermal external boundaries is 

justified, for all practical purposes. The burial depths generally used for cables mean 

that the assumption of an isothermal ground surface condition is valid enough, and the 

sections of a cable route where that is not the case are unlikely to be the thermally 

limiting locations anyhow. This thesis does not deal with FEM methodology, which is 

well established, but I fully acknowledge that it has been and continues to be a very 

powerful supporting tool in my work. I have been using the program known as Comsol 

Multiphysics


 (previously Femlab


) in this thesis. 

 

Figs. 8.1 and 8.2 show the overall meshing and a close-up near the cables. For a purely 

conductive environment the model can be split in half down the centre-line to make use 

of symmetry. 

 

 

 

 

Fig. 8.1.  The overall meshed field used in the FEM simulations (80 x 51.1 m) 
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Fig. 8.2.  A close up on the backfilled trench showing the high mesh density near the cables 
 

 

8.2 Comparison with FEM simulations 
 

There are myriads of possible scenarios that can be run with the algorithm. (Millar and 

Lehtonen, 2006) uses an earlier version of the algorithm to draw general conclusions 

about the rating of typical HV and MV cables used in the Helsinki region. The purpose 

of this thesis, however, is to establish a methodology, and so now we will subject the 

algorithm to a number of tests, to verify the mathematical integrity of the computation 

methods alongside FEM simulations of the same scenarios. 

 

The following comparisons are performed on 110 kV cables with 800 mm
2
 stranded 

conductors buried in trefoil in a range of situations. The parameters of the cables are 

given in Appendix A in Alg. A.1. Note that by overriding the value of rbf to re the 

backfilled trench is eliminated and by setting the critical temperature rise to a 

temperature higher than the possible steady-state response of the cable eliminates 

moisture migration, thus creating a homogeneous thermally stable environment. 

 

The first comparisons, which are huge step responses from 0 A, reveal the tendency of 

the lumped parameter approach to slightly overestimate the mid-term temperature 

response (the fact that the short-term and steady-state parts of the response are almost 

perfect tends to reduce the effect of this error in real-time applications). 

 

When there is no moisture migration and the moisture level in the environment is 

moderate, the mid-term error is not so significant (less than 1.0 °C, R-squared = 0.998), 

as Fig. 8.3 shows. 
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Fig. 8.3.  3xAHXLMK800 cables in trefoil in 0.5 x 0.42 m backfilled region. Backfill and native soil 

parameters are as detailed in Alg. 2 in Chapter 7. The response corresponds to the imposition of a step of 

800 A, ambient temperature is 20 °C, the saturation index hwet is 0.5 and there is no moisture migration. 

Max error is 1.0 °C, R-squared= 0.998 
 

When moisture migration at 35 °C above ambient is introduced, the error is somewhat 

larger, but consider the complexity of what is being modelled and note that the response 

for the first 3 weeks and for the very long term is very accurate, Fig. 8.4. 
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Fig. 8.4.  3xAHXLMK800 cables in trefoil in a 0.5 x 0.42 m backfilled region. Backfill and native soil 

parameters are as detailed in Alg. 2 in Chapter 7. The response corresponds to the imposition of a step of 

800 A. The saturation index hwet is 0.5. The critical temperature rise for moisture migration, ∆θx is 35 °C  

above an ambient temperature of 20 °C. Max error is 1.8 °C, although the R-squared value is still 0.998. 
 

A simulation with a simplified daily load profile lasting a month is shown in Fig. 8.5. 

The response predicted by the algorithm compares very well with the FEM response, 
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thanks in large part to the use of sheath loss factor correction in the algorithm – without 

which the algorithm would overestimate the response at high temperatures. Ambient 

temperature is set at a constant 20 °C, moisture migration (complete drying out) occurs 

at 40 °C, hwet = 0.5 and, to match the FEM simulation, the moisture migration time 

constants are both set to 0.1 seconds, i.e., the migration and return occur 

instantaneously. This is simply to establish the mathematical accuracy of the algorithm 

in modelling pure 2-zone moisture migration in a transient setting. 
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Fig. 8.5.  Comparison of a FEM simulation with the responses predicted by the real time algorithm for the 

conductor and surface temperature of the hottest cable in a trefoil installation in a backfilled region. The 

increase in rx is also shown. The maximum error in conductor temperature estimation is 2.6 °C and R-

squared = 0.992. 
 

The foregoing serves to show that the treatment of a trefoil installation in terms of a 

single-phase cylindrical model seems to work well
23

, but begs the issue of whether the 

transient implementation of a 2-zone approach for moisture migration has any 

resemblance to reality. For this we have built a heating tube, the results from which are 

summarised in the next section. 

 
 

 

8.3 Comparison with heating tube 
 

Although the heating tube itself, see Fig. 8.6, is of quite different construction to a 

typical cable, the same logic has been employed in terms of implementing a real-time 

algorithm to predict its temperature response. The low heat capacity of the heating tube 

makes its temperature response very vulnerable to changing environmental parameters. 

It is quite challenging to capture moisture migration even though the heating tube has 

been running for more than 2 years at the time of writing. Enough evidence, however, 

                                                
23

 Flat touching installations are even more amenable to single-phase representation, and in homogeneous 

environments the theoretical accuracy is even better. 
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has now been collected to validate, at least for this specific case, our approach to 

moisture migration. 
 

750 

2500 

2500 

Backfill 

region 

400x400 

 φ φ φ φ 60 x 2 x 5m Al. tube wound 

with 1500 W teflon insulated 

heating wire (130 °°°°C) clad 

with 0.5 mm aluminium sheet 
All dimensions are in mm 

unless otherwise marked. 

Burial depth to centre-line 

of heating tube is 1.1 m. 

 

Thermal 

probe 

500 

750 

Pt100 temp. sensors 

 
 
Fig. 8.6. The installation layout of the heating tube. There is also a vertical line of sensors extending up 

from the centre of the tube in the backfilled region to the earth surface. The burial depth is 1.1 m, and the 

backfill region measures 400 mm x 400 mm. Three 8mm thermal probes are also installed for local 

testing of the regions around the heating tube. 

 

The first set of measurements shows a series of step power increases at temperatures 

that do not give rise to moisture migration. The temperature sensors were distributed 

(almost) logarithmically from the cable surface, so that the temperature difference 

between each sensor in the horizontal plane should be the same in steady-state 

conditions if the environment is homogeneous. The environment is such that if 
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conditions are saturated or near saturated, there is very little difference between the 

thermal resistivities of the backfill and native soil (although there is some difference 

between the diffusivities). Paradoxically, however, the sand backfill is much more prone 

to moisture migration than the sand/soil/rock mix that constitutes the ‘native’ soil. One 

of the prevalent assumptions used in this thesis is that the temperature distribution 

between nodes is approximately logarithmic. This has been shown using FEM 

simulations, see Figs. 4.3 and 4.4, but to put things in a practical perspective, it would 

seem honest to show that even reasonably well graded homogeneous environments do 

not behave perfectly. Fig. 8.7 compares the measured temperatures from the backfill 

part of the tube installation (the numbers are the radial distance from the centre of the 

tube in metres) with the values obtained from the algorithm. Because the nodes in the 

algorithm do not correspond exactly with the measurement points (except for the first 

node, which corresponds to the sensor attached to the tube surface), a logarithmic 

interpolation is used to estimate the temperature at each sensor. 

 

 

Fig. 8.7. Temperature response at measurement positions extending radially out from heating tube. The 

left column corresponds to measured temperatures, and the right to estimations from the algorithm.  
 

It will be noted that the only accurate prediction is at the tube surface, which is by 

design – the thermal parameters of the environment are chosen so that this is so. On the 

whole, the temperatures predicted for the outer sensors are somewhat higher than the 

measured reality. There are various reasons why this might be so. One practical issue is 

that we placed the sensors in the environment with the leads running parallel to the 

heating tube but with no additional support, so as to minimize thermal interference. 

Some movement is inevitable. The assumption that the tube environment is purely 

conductive only holds as a bulk macroscopic model. In fact the heat transfer, even at 

low temperature gradients is coupled to moisture movement, which is a combination of 

vapour and liquid transport. This process was reviewed in section 4.3.1. It may be, and 

this is purely conjecture, that the vaporisation at the tube surface causes heat dissipation 

that is disproportionately high compared to the bulk environment, and so if the 

environmental parameters are chosen to suit the tube surface response, the outer 

responses will be underestimated. It should be noted that the error in the outer responses 
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is about constant, i.e., it is the tube surface that seems to deviate a little from what is 

expected. 

 

Another observation that can be made from a series of step responses is the temperature 

dependence of thermal resistivity. In Fig. 8.7, the thermal resistivity was chosen to give 

the best overall response, which means that the response to the first steps is 

underestimated. Prior to moisture migration, which of course causes a dramatic increase 

in thermal resistivity, thermal resistivity will in fact decrease with temperature. In the 

temperature range shown in Fig. 8.7, the decrease is of the order of 10 %. 

 

Notwithstanding, the sensors give a good visual indication of the extent of moisture 

migration, as Fig. 8.8 indicates. I am probably prone to over speculation, but the slight 

dip in the rate of temperature increase prior to the increase may be due to the net 

movement of moisture past the sensor momentarily increases the transfer of heat before 

the dryness left behind impedes the heat flow. 
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Fig. 8.8.  The response to a 105 W/m power step showing the effect of moisture migration - note the 

logarithmic time scale. 
 

 

Returning to the step test shown in Fig. 8.7, the next step induced moisture migration, as 

shown in Fig. 8.9, where the ambient temperature is also shown. The test occurred in 

mid-June in southern Finland, when the ground warms up quite rapidly and revealed an 

interesting and marked phenomenon. I was probably nervous about going home on the 

evening of day 16 when moisture migration had clearly started, so I lowered the power 

to the tube, which of course caused an immediate lowering in the tube temperature, but 

within hours it started rising again, at a rate that clearly suggested that once the moisture 

migration had been triggered, it was not going to stop without a deep reduction in the 

heat flux from the tube. The phenomenon is somewhat, but not entirely modelled by 

equations (76) and (77). 
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Fig. 8.9.  The algorithm vs. measured temperature from the heating tube. Note that despite slowing down 

the moisture migration with a time constant of 2⋅106 seconds, it is still difficult to model the peak 

response if complete drying out is assumed to occur at the critical isotherm of 14 °C above ambient. A 

wet thermal resistivity of 0.75 Km/W and a dry thermal resistivity of 2.41 Km/W are used in the 

algorithm (via saturation indices of 0.9 and 0).  
 

The temperature estimation of the heating tube is improved if a lower ‘dry’ value is 

used for the thermal resistivity but this is not realistic, and would mean that during long 

periods of high temperature loading, temperatures would eventually be underestimated. 

Using the algorithm in a realistic way, assuming a critical temperature rise of 20 °C 

above ambient, no delay in moisture migration once this temperature is reached, but 

keeping the long time constant during cooling gives the response shown in Fig. 8.10. In 

this implementation of the algorithm we have used a low temperature value of 0.86 

Km/W for the ‘wet’ thermal resistivity, such as would be obtained from a probe test. 

This is implemented in the algorithm via a saturation index of 0.65.  

 

In the heating tube installation, thermal diffusivity is related to thermal resistivity via 

the following equation: 

( )
( ) 75.0

6101.1

h
h

ρ
δ

−⋅
=  (95) 

This is an empirical equation, and actually generates thermal diffusivity values that are 

physically impossible (too high), but the formula takes care of the end effects of the 

finite-length heating tube. The effect of the non-radial end losses from the tube is to 

lower the thermal resistivity very slightly but increase the thermal diffusivity 

significantly. This is a crude way of dealing with the finite length of the heating tube, 

but keeps the variables to a minimum, in keeping with the treatment of an ‘infinitely’ 

long cable installation. This is not an exact science! 

 



 83 

 

10

15

20

25

30

35

40

45

50

0 7 14 21 28 35 42 49 56 63

Time (days)

T
e

m
p

 (
d

e
g

 C
)

0

20

40

60

80

100

120

140

P
o

w
e

r 
(W

/m
),

 C
ri

t 
ra

d
 (

m
m

)

Tube temp (measured)

Tube temp (alg)

Ambient

Power (W/m)

Crit rad

 

Fig. 8.10.  The algorithm vs. measured temperature from the heating tube. The algorithm, now set with 

hwet = 0.65, which corresponds to a thermal resistivity of 0.86 Km/W, a more typical low temperature 

value for thermal resistivity. There is no time constant for moisture migration, but moisture return is 

slowed down with a time constant τmm,cooling = 10
7
 seconds, some 4 weeks! The critical temperature rise is 

20 °C above ambient. 
 

Fig. 8.10 would not be shown in a sales brochure, but it is important to show the 

practical drawbacks of 2-zone modelling of moisture migration. The load profile in Fig. 

8.10 is not realistic, but was chosen to show the decrease in thermal resistivity with 

temperature prior to the onset of moisture migration. Using the low temperature value 

for thermal resistivity is the main reason for the 40 % error at the peak – it causes the 

onset of complete drying out due to moisture migration to be modelled too early. The 

fact is also that moisture migration does not occur instantly. The 2-zone modelling is 

better fitted to steady-state application when the affected area has time to fully dry out. 

In the context of a real cable installation, the error in Fig. 8.8 would be significantly 

moderated, as the temperature rise across the cable itself is more predictable.  

 

Fig. 8.11 shows an 11 day period based on a more realistic daily load cycle (but without 

any load reduction in the weekend) during the month of April when moisture migration 

occurred. The critical temperature rise for moisture migration ∆θx was set at 38 °C 

above ambient, although moisture migration was evident from lower temperatures. With 

the benefit of hindsight we could have set ∆θx to a lower temperature and used the 

heating time constant to achieve a more perfect match with the recorded temperature. 

The idea here, however, is to show the utility of the algorithm when not too much 

information is available. For actual cable installations, however, I would suggest that 

∆θx should be somewhat lower, unless it is known that the cable environment is always 

moist.  

 

Note Fig. 8.11 comes from the same installation used above in Figs. 8.9 and 8.10 where, 

despite more moist conditions, the critical temperature for moisture migration was set at 
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20 °C above ambient. The issue here is the time scale. The heating occurs in a much 

shorter time scale in Fig. 8.11, but note that an even longer cooling time constant is used 

to slow down the return of moisture. The surrounding ‘native’ soil has proved to be 

more thermally stable than the sand backfill, and whilst moisture moves readily away 

from the heating tube in the backfill region, there seems to be sufficient hydraulic 

pressure to force it back during cooling when the heating and cooling cycles are 

relatively short and when ambient moisture levels are quite high. The longer term 

behaviour shows net removal of moisture from the cable vicinity, however, and despite 

cooling periods of several days, the next periods of heating show that the moisture does 

not return very quickly. The moisture return time constant in Figs. 8.11 and 8.12 is 2 

months and Fig 8.12 shows why this is necessary. 
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Fig. 8.11. The algorithm vs. reality, measured data from the heating tube in sand backfill  
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Fig. 8.12. The algorithm vs. reality. A longer time period utilising the ability of the algorithm to slow 

down moisture return - a very necessary feature in this test  
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For all practical purposes, the 2-zone approach coupled with a time constant to slow 

down the rewetting of the environment provides a very strong and simple to apply tool 

for real-time temperature estimation, as Figs. 8.9 to 8.12 have shown, and setting the 

critical temperature rise for complete drying out close to the onset of moisture migration 

will give conservative results. 

 

It is possible to fine-tune the algorithm, however, by slowing down the rate at which 

moisture migrates, even splitting the migration into a range of steps so that drying-out 

occurs in a range of steps. This would eliminate the short-time error evident in Fig. 

8.11. It is perhaps premature to fiddle with the time constants to achieve a perfect fit 

with the measured results when I cannot as yet quantitatively provide the link between 

the fundamental parameters governing moisture migration and the fine tuning of the 

transient 2-zone framework presented in this thesis. Nevertheless, Fig. 8.13 shows the 

level of accuracy that can be potentially achieved, where it is evident that oven dry 

conditions are not reached in such cyclic conditions, so a ‘dry’ moisture content 

corresponding to h = 0.25 is used. The inclusion of this figure is to offset the ‘bad 

advertising’ of Fig. 8.10! To stress the need for moisture migration modelling, the 

hypothetical response that would occur in thermally stable conditions is also shown in 

Fig. 8.13. 
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Fig. 8.13. The algorithm with ‘wise after the event’ tuning vs. reality. The lower line shows what the 

response would be if there were no moisture migration, emphasising the need for moisture migration 

modelling in transient algorithms... 
 

 

This perhaps suffices as far as the heating tube is concerned. It is clear that the 2-zone 

approach is not perfect but can be fine-tuned to approach perfection. The same tube 

installation is subject to a large seasonal variation, even in a country where the water 

table is quite constant, so that parameters must be set conservatively, which will mean 

that when conditions are more favourable, the algorithm will overestimate temperatures 
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when based on current only. Chapter 10 outlines the use of this algorithm in conjunction 

with temperature measurements, which greatly increases the accuracy. 

 

 

8.4 Comparison with HV cable installation 

 

A pilot project was implemented in 2001 as part of two Masters’ theses (Rautiainen, 

2001) and (Millar, 2002). Temperature sensors were put at critical locations along an 

important 110 kV cable connection, but sadly, from a research point of view, the 

loading of the connection and the favourable thermal characteristics of the environment 

(mostly a saturated subterranean service tunnel) mean that the recorded temperatures are 

trivial, and do little more than show off the accuracy of the Pt100 sensors that we 

carefully located at points that represent the average surface temperature of the cables 

concerned. Thus the heating tube in the previous section constitutes our most real-world 

research tool.  

 

The role of online monitoring, however, should not be downplayed. The temperature 

rise of cables with load transfer is quadratic, or more than quadratic, so prolonged 

emergency periods, or the nominal loads towards the end of a cable’s life can 

dramatically change the situation. Fig 8.14 shows a typical high voltage installation 

where we have implemented online monitoring.  

 

 

 

 

 Backfill Native soil 

1.1 m 

MV cables 

0.7 m 

Pt100 temp 

sensor 

 
 

Fig. 8.14.  Details of an actual 110 kV trefoil installation in a backfilled concrete trough; the sensor 

position is on the top of the lower cable on the side nearest the MV cable installation, a potential heat 

source. In this installation, the sand backfilled region extends far beyond the trough.  
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Fig. 8.15. The algorithm applied to a real 110 kV installation but note the temperatures. Moisture 

migration was not evident! 
 

The results shown in Fig. 8.15 can also be found in (Millar and Lehtonen, IEEE, 2006), 

and correspond to an environmental thermal resistivity of 0.88 Km/W. Ambient 

temperature was just under 7 °C during the 2 day period.  

 

8.5 Discussion 

 

The real power of the algorithm is to use it in real time, where, in conjunction with 

similar algorithms for transformers (Susa, 2005), uncertainty will be eliminated for 

system operators when handling emergency situations. While we do not have high 

temperature recorded data from real cable installations, the methodology has been 

validated by comparison with FEM simulations. The basic aptness of the 2-zone 

approach was then demonstrated by comparing the predicted temperature response of 

the heating tube with the measured response. 

 

The responses shown for the heating tube use the algorithm in the crudest way but also 

show the potential gains from fine-tuning the algorithm. We know the saturated and 

oven-dry thermal resistivity values for the backfill. We assume that when the 

temperature exceeds a certain temperature rise above ambient the environment will 

instantly dry and assume oven dry thermal properties but we use a very long time 

constant to slow the return of moisture down. This is the most likely way the algorithm 

would be used in practice. Potentially, if the behaviour of the backfill and native soil is 

known very accurately in terms of time constants, critical temperatures, wet and dry 

thermal resistivities and diffusivities, quite accurate results can be achieved, as indicated 

in Fig. 8.13.  

 

In this thesis, I tend to justify the focus on the environment by noting that the 

temperature rise of buried cables is dominated by the environment. The argument 
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should be reversed when considering the results from the heating tube, however, as the 

cable is still a very significant part of the thermal circuit, especially in the short term 

response, but our heating tube is not. In other words, when applied to real cable 

installations, the inaccuracy of the 2-zone approach evident in Figs. 8.9 to 8.12 will be 

somewhat moderated by the presence of the cables, which are thermally stable and more 

amenable to accurate analysis than the environment
24

. I am convinced that the 

methodology employed in this thesis is potentially powerful, but I am unfortunately not 

yet able to make full use of it. 

 

The results are rather specific in terms of cable types, but the algorithm is derived from 

first principles and then checked with measured and simulated data. This supports the 

various assumptions and simplifications in the algorithm, and gives a high degree of 

confidence in the algorithm for more widespread application. 

 

To summarise, the most telling results are from the heating tube, which graphically 

shows the temperature-raising effect of moisture migration. The lesson? Online 

algorithms for the temperature prediction of underground cables must be able to 

accommodate moisture migration! 

 

                                                
24

 I hope that some soundness is evident in this argument, and it is not simply an example of the 

disreputable and inconsistent nature of the proponent! 
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9 Taking a step back – a dramatic simplification 
 

Considerable effort has gone into distributing the capacitances correctly during moisture 

migration and assessing the effect of moisture migration and overall drying on the 

coefficients and time constants of the governing exponential equations. This may seem 

a bit over the top given the crudeness of the 2-zone approach in the first place. A brief 

perusal of Figs. 5.2 and 5.4 indicate that, with a few hiccups, the time constants 

generally increase as the environment dries out. The effect of moisture migration is less 

clear, but the cumulative effect of all this is demonstrated in Fig. 9.1, where a nominal 

response, with no moisture migration and a moist environment with hwet = 0.3, is 

compared with a drier environment (hwet = 0.8) with no moisture migration, and then a 

situation where moisture migration is occurring. It can be seen that moisture migration 

does not have a significant effect on the shape of the response, and overall drying slows 

down the per unit response. The per-unit temperatures in Fig. 9.1 are related to a 

floating steady-state value, i.e., the steady-state value corresponding to the temperature 

dependent losses and the critical radius at every time increment. 
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Fig. 9.1. The effect of drying and moisture migration on the per-unit temperature rise of the conductor 

over ambient 
 

This suggests, then, that at only a small cost of accuracy, the critical radius dependency 

of the coefficients and time constants of the governing equations can be removed. The 

effect of removing the overall moisture content dependency will be more significant, 

but will err on the conservative side if the thermal circuit is analysed for moist 

conditions. Then it is only necessary to adjust the hypothetical steady-state target 

temperature rises (according to losses, moisture migration and overall moisture content) 

at every time interval. 

 

9.1 Comparisons 
 

The reader will note that the algorithm in Chapter 7 turns the meticulously computed rx 

and hwet dependent coefficients into a per-unit form and then uses a separate steady-state 

computation of the temperature rise for each node to drive the real-time part of the 

algorithm. This enables quick elimination of these dependencies, and the scenario 
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depicted in Fig 8.4 is now run without rx and hwet dependence in the coefficients and 

time constants, Fig. 9.2. 
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Fig. 9.2.  Algorithm simplification: The same scenario as in Fig. 8.4 but with the critical radius 

dependence removed from the time constant and coefficients of the governing equations (note the steady-

state target still has rx dependence) 
 

Paradoxically, although the overall error is greater (R-squared = 0.997) the maximum 

error has actually reduced slightly to 1.6 °C. The response between 2 and 7 weeks has 

slightly dipped below the FEM reference, however. 

 

A further simplification is to remove the hwet dependence from the time constants and 

per unit coefficients (I add the ‘per-unit’ to stress that the steady-state target keeps the 

dependence). This means computing nominal coefficients and time constants for moist 

conditions (as noted earlier, the per-unit response is slowed down as the environment 

dries out). This in effect means that the shape of the response remains unaffected by 

changes in the environmental parameters. Fig. 9.3 shows the response where the 

nominal coefficients and time constants are based on a value of hwet = 0.3 but the actual 

pre-moisture migration saturation index is 0.5. 
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Fig. 9.3. Algorithm simplification: the error is slightly increased, but brought to the ‘safe’ side by basing 

the response on constant per-unit coefficients and time constants based on moist conditions 
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If we take a more extreme case, however, this time with no moisture migration but with 

the coefficients and time constants based on h=0.5, but running the algorithm for hwet=0, 

substantial error becomes evident. Fig. 9.4 also shows the response predicted by the full 

algorithm (with variable time constants and coefficients), which is much more accurate. 
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Fig. 9.4. The limits of simplification: when the difference in moisture content between the value that is 

used to predetermine the shape of the response and the value that is then used when running the algorithm 

is significant, substantial error is encountered. Here the coefficients and time constants and per-unit 

coefficients were set up with h=0.5, but the algorithm is run for totally dry conditions. Leaving the 

adjustment for moisture content to the steady-state target temperatures is not sufficient in such cases. 

 

9.2 Discussion 
 

It would seem that simplifications of the algorithm are warranted, given that they vastly 

reduce the complexity of the analysis. The basic reason behind the fact that assuming a 

constant per-unit shape for the incremental response in each time interval does not lead 

to much error is that the time constants of the thermal circuit are the product of a 

thermal resistance and a thermal capacitance, but moisture migration causes the former 

to increase and the latter to decrease. The net removal of moisture from the environment 

has a more significant effect, however, as the short to mid-term response is over-

compensated by increasing the steady-state target temperature rises that each part of the 

transient computation tends towards. 

 

Given the inherent crudeness of 2-zone modelling, the slight increase in error due to 

removing the shape dependence on critical radius is unlikely to have any practical 

bearing, as Fig. 9.2 indicates, but unless the overall moisture level of the environment is 

seasonally stable, it would be wise to keep the moisture dependence in the shape 

functions. This is still a substantial simplification, however, as the dependence of the 

coefficients and time constants of the governing equations on saturation index is much 

smoother, and one 3
rd

 order polynomial should be sufficient for each coefficient and 

time constant. 
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10 A very fine approach to temperature monitoring leading towards 

environmental prediction and real-time rating 
 

This chapter contains a schematic vision of how the basic algorithm can be developed 

when temperature measurements from the cable surface are available, but at the time of 

writing has not been applied. More concretely, however, we will first have a look at 

temperature monitoring, and how the work contained in this thesis gives us a highly 

accurate but very simple way of predicting conductor temperature from current and 

sheath or surface temperature measurements. 

 

10.1 Prediction of conductor temperature from current and surface temperature 

measurements 
 

If sheath or surface measurements are available, the algorithm can be used to predict the 

conductor temperature with a much higher degree of certainty than if only current 

measurements are available. This has been covered in earlier publications, (Millar, 

2002), (Millar and Lehtonen, 2002), and (Millar and Lehtonen, 2003), but the modelling 

of the full environment enables even greater accuracy. The fortunate phenomenon is 

that if the thermal circuit of the entire installation is based on favourable thermal 

conditions (a moist environment without moisture migration) and the environment 

deteriorates, the exponential functions modelling the rise of the conductor over the cable 

surface temperature will err on the safe side.  

 

10.1.1 A single thermal loop 
 

The first algorithm we produced for this real time computation (Millar and Lehtonen, 

2002) considered the cable in isolation, in effect assuming a perfectly conductive 

environment, and further reduced the circuit to a single thermal loop by finding the time 

constant that gives the correct per-unit step response at the time interval used for 

measurements and on-line computations. 

 

A full transient analysis of the temperature rise of a cable’s conductor over its surface 

made according to the standards (IEC60853, 1989) yields a summed series of 

exponential terms (this was sketched out in section 3.4.1): 
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If the time interval between measurements is ∆t, a constant kτ can defined, where, if 
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Since this involves rather a lot of work for a crude (but highly practical!) method, this 

approach can be further simplified by summing the thermal capacitances Ccable,tot and 

the thermal resistances Tcable,tot in a cable and calculating a time constant as 
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1/(p(re,rc)Ccable,totTcable,tot) using (19) for p(re,rc). This yields the following expression for 

kτ. 
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The real-time expression for the rise of the conductor over the cable surface then takes 

the form: 
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where, for the general case of a cable with sheath and armouring and n conductors each 

producing losses of Wc, if the time interval ∆t is not longer than a few minutes, 
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T1 is the thermal resistance between the conductor and sheath, T2 between the sheath 

and armour and T3 is the thermal resistance of the jacket. In the cables considered in this 

thesis T2 and λ2, the ratio of armour to conductor losses, are equal to zero. 

 

The problem with this method is that it ignores the environment, but this is of little 

practical consequence as the thermal inertia, if one may use such a loose term, of the 

environment will slow down the response between the conductor and surface, and so the 

algorithm will err on the conservative side. The error is quite significant, in terms of 

percentage error between the true and estimated temperature differences during a 

transient between the conductor and surface, but as this is only a small part of the total 

temperature rise of the conductor over ambient, the error is rarely more than 2 or 3 °C. 

In this sense, the simplistic analysis based only on the cable itself gives a universal 

algorithm that, as far as the rise of the conductor over the surface or sheath is concerned, 

is not dependent on the environment. Any real environment will cause the algorithm to 

overestimate the conductor temperature. 

 

If a full transient analysis of the 110 kV XLPE cables detailed in Appendix A is 

conducted according to the IEC standards and the time interval between measurements 

is 10 minutes, i.e., ∆t = 600 s, then according to (97) kτ,(97) = 0.284 and according to (98) 

kτ,(98) = 0.208 

 

Figure 10.1 shows the inherent inaccuracy of such an approach for the cables buried in a 

typical environment where the thermal resistivity is 1.0 Km/W and the burial depth is 

1.1 m – nearly 3 °C or 30%... 
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Fig. 10.1. The temperature rise of the conductor over the cable surface. The reference is based on a FEM 

simulation, which gives the surface temperature the real-time algorithms are based on. The numbers 94 

and 95 refer to the equations in the text. 
 

Fig. 10.2 puts this error in context, by showing the overall temperature rise of the cable 

in question – the 3 °C is now only about 8% of the maximum temperature rise, but the 

error disappears at very long times... 
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Fig. 10.2. The temperature rise of the conductor over the ambient temperature, showing how the long-

term error is relatively small. 
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Academically, the approach outlined in this section is, to say the least, weak, but is 

guaranteed to err on the conservative side. Using (98) to calculate kτ,(98) is extremely 

simple, and with minimal effort, the user has a valuable tool to predict conductor 

temperatures from surface or sheath measurements. This algorithm is likely to be of 

great service for utilities that want to maximise cable usage based on carefully selected 

surface temperature monitoring or distributed fibre-optic temperature sensing. Just 

adding a constant temperature rise to the measured temperatures is unwise, because in 

emergency situations, conductor temperatures can exceed surface temperatures by more 

than 30 °C. Using such a temperature rise during normal operation would be overly 

conservative, but using a lower temperature would be highly unwise during 

emergencies, which is just when accurate temperatures are required. The simple 

transient algorithm in this section takes care of this conundrum. 

 

10.1.2 Consideration of the environment 

 

The algorithm detailed in Chapter 7 can be used to compute the temperature rise of all 

the nodes over ambient for rx = re and, for example, h = 0.3. The coefficients for the 

surface rise can be subtracted from the conductor coefficients to yield the appropriate 

coefficients for the rise of the conductor over the surface
25

. This is a highly accurate 

method for conductor temperature estimation, but relies on the temperature sensors 

being placed at a point on the cable surface that represents the average surface 

temperature of the hottest cable. Sensors should also be placed on the side of the cable 

closest to any obvious external heat sources. These practical issues have been covered in 

(Millar and Lehtonen, 2003). 

 

For the 110 kV XLPE cables detailed in Appendix A, the following expression is 

obtained, where the numerically expressed coefficients have the units K m / W and the 

time constants are expressed in seconds. 
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 (101) 

 

Fig. 10.3 compares the algorithm with a FEM simulation. The error is now down to 1° 

C. It can be further reduced by allocating more than 1 loop to the cable itself, but this 

level of accuracy should be more than sufficient for most practical applications. 

 

 

                                                
25 ...or the conductor-sheath temperature rise, but it is unlikely that many cables will have online sheath 

monitoring. Fibre optic monitoring of sheath temperatures can be used to identify hot-spots, where 

permanent surface temperature monitoring can then be implemented. 
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Fig. 10.3.  The full algorithm implemented for computing the conductor temperature rise over the average 

surface temperature of the hottest cable assuming close to optimal environmental conditions, so that the 

algorithm will tend to err on the conservative side if the environment dries out. Note that only a single 

term was used to model the cable itself, so the result is surprisingly accurate (<1 °C error). 
 

10.1.3 Implementing the conductor-surface temperature algorithms with a typical 

subtransmission load profile 
 

The rather fortunate problem with comparing the temperature rise across the cable as 

predicted by the algorithms with FEM simulations is that the theoretical accuracy of the 

algorithms is so high that very little error is visible. Nevertheless, Fig 10.4 shows the 

conductor and surface temperatures computed in FEM and with the full algorithm for 

the trefoil HV cable installation used to illustrate the algorithm in Appendix A. Moisture 

migration occurs at 20 °C above an ambient temperature of 20 °C and there is instant 

moisture return when the temperature returns to this temperature. Fig. 10.4 also shows 

the temperature difference between the conductor and surface computed using three 

methods: FEM, the full algorithm and the single thermal loop model using equations 

(98) to (100). This latter method, the most simple, takes the surface temperature (which 

in this application would normally be a measured temperature) from the full algorithm, 

but uses its own conductor temperature from the previous time increment to estimate the 

losses. The errors are surprising, as it turns out here that the surface temperature 

prediction is more accurate (<0.65 °C) than the conductor temperature prediction, 

indicating the error accrued by only allocating a single-loop to the cable in the thermal 

circuit for the full algorithm. The maximum errors in Fig. 10.4 are 2.1 °C for the full 

algorithm (conductor over ambient temperature rise), 1.6 °C for the full algorithm 

(conductor over surface temperature) and 2.1°C for the crude algorithm (conductor over 

surface temperature). 
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Fig. 10.4.  Comparison of the algorithm with a FEM simulation for an HV cable connection subject to a 

realistic load profile at twice its normal loading for a 4½ day period - the simulation starts from a steady-

state load of 400 A 

 

In order to make a comparison with a 2-zone FEM simulation, it can be seen that the 

critical radius instantly returns in the cooling part of the cycles in Fig. 10.4. To show up 

the error in the single-loop algorithm based on equations (98) to (100), the full and 

crude algorithms are compared in Fig. 10.5, noting that a time constant for the return 

movement of the critical isotherm is now implemented in the full algorithm.  

 
Fig. 10.5.  Comparison of the 2 methods for online computation of the temperature rise of the conductor 

over the cable surface temperature - a ludicrous initial condition is given for the single-loop algorithm, 

showing its fast convergence. The maximum error between the two methods is 2.0 °C. 
 

In order to illustrate another important feature of these online algorithms, an erroneous 

steady-state initial condition was given to the crude algorithm, and it can be seen that it 

converges to its (approximate!) true value in a few hours. It takes longer for the full 
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algorithm to converge when used to compute the conductor temperature rise over 

ambient if wildly inaccurate initial conditions are used, but it eventually gets there! 

 

Please do not be misled by the seeming accuracy of the full algorithm in Fig 10.4. This 

is a mathematical comparison between the algorithm and a FEM simulation based on 

the same parameters. When the cable environment differs, as it inevitably will
26

, from 

the assumed parameters, the full algorithm that estimates conductor temperature from 

current measurements will err. This was illustrated with the heating tube results in 

section 8.3. On the other hand, the full algorithm applied to the temperature rise of the 

conductor over surface and the cruder version using only a single loop and ignoring the 

environment entirely, will not be significantly affected by a changing environment, i.e. 

Fig. 10.5 shows what can be expected in reality, whereas the overall temperature rises 

shown in Fig. 10.4 are a theoretical optimum.   

 

10.2 Using surface temperature measurements for environmental prediction 

 

The rationale to make use of surface temperature measurements for more than just the 

present-time computation of the conductor temperature of the cable where the 

monitoring is installed, is that prediction of environmental variables gives the data 

needed for future forecasting – the likely future response of the cable for a given load 

scenario. If there are other cables of similar type in similar environments but without 

surface temperature measurements, the data could, with due caution, be used to provide 

real-time update of the key parameters for their temperature prediction. 

 

The environmental parameters are the ambient temperature θamb, the overall moisture 

content in terms of the saturation index of the region nearest the cables hwet, the critical 

radius for moisture migration rx, which gives the critical temperature rise above ambient 

for moisture migration ∆θx. Parameter prediction involves running parallel scenarios 

that can explain deviation of the measured temperature from the temperature computed 

by the current-based algorithm. Future rating scenarios are based on the worst forecast 

case, but as further measurements come in, scenarios that deviate from the new 

measurements are dropped. The scenarios are based on an optimised combination of 

parameter changes that explain the measurements. This entails retaining rather a lot of 

historical data, which the basic algorithm does not require, but just what the time frames 

need to be, has yet to be worked out.  

 

10.3 Real-time rating 
 

As it stands, the full algorithm is readily applicable for real-time rating based on current 

measurements. Prior to giving the likely future temperature response for an increase in 

loading, the typical load profile for the connection should be scaled to match the 

measured currents in real time. The algorithm can then compute the future response for 

a further per unit increase in loading – for example a 1 p.u. increase if a parallel cable 

connection goes out of service for some reason. While the real-time algorithm does not 

require a load profile, a scaled profile should be used for forecasting, because the 

response is very much affected by the time of day and week the emergency occurs. The 

                                                
26

 Even if we are considering a realistic environment with moisture migration and seasonal modelling... 
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other facility that would be potentially very helpful for operators is that a rating 

subroutine could be triggered at any time, to see the allowable load increase vs. time 

that would not cause a stipulated maximum conductor temperature to be exceeded. This 

would require iterative use of the basic algorithm that is presented in this thesis. An 

overview of the full use of the algorithm is provided in Fig. 10.6. 
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 Fig. 10.6.  The full algorithm (the real-time part of Fig. 7.1) in the context of real-time forecasting and 

real-time rating 
 

Once again, the most powerful and secure use of the forecasting and rating 

developments of the algorithm would be in conjunction with surface temperature 

measurements, to adjust the environmental parameters appropriately as they vary with 

season and loading. 

 

10.4 Discussion 
 

To counter the speculative reasoning presented in latter part of this chapter, the concrete 

and very practical application of the algorithm to compute conductor temperature from 

surface or sheath temperature has been outlined. In fact, using the full algorithm to 

model this temperature rise potentially gives very high accuracy. 

 

There is considerable interest at present in real-time rating. The main body of the 

algorithm presented in Chapter 7 is ideally suited for predicting the consequences of 

emergency scenarios, in terms of how much load can be sustained for how long. For the 

highest certainty, however, the algorithm would need to work in conjunction with 

temperature measurements, and with the addition of some features can be used to update 

the key environmental parameters, thus giving firmer ground for predictive rating. Some 

care will be needed in the implementation of this feature, given that so many 

environmental uncertainties are modelled in the algorithm. A deviation from the 

predicted temperature could have many reasons, and quite an amount of historical data 

would need to be stored to ascertain the true cause. This is fertile ground for future 
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work, and our heating tube offers a good test case for such developments. Unfinished 

business! 

 

Whether the algorithm is implemented based on current measurements and a 

conservative estimation of the installed environmental parameters or is implemented in 

conjunction with temperature measurements at the cable surface or sheath, the question 

must arise as to what are the safe operating limits for cables, given that we are likely to 

reach them if algorithms such as the one outlined in this thesis are applied in real time. 

 

This invites a comment on temperatures. The temperatures that should be used for rating 

are not that clear cut, even for modern insulation materials. The usual nominal 

maximum, a value that can be regularly reached without unduly compromising the life 

of the insulation is 90 °C for XLPE. Temperatures are often kept lower than this, 

however, to lessen the risk of moisture migration. The algorithms detailed in this thesis 

and work by other authors, e.g., (Anders et al, 2003), tend to lower the risk of going into 

moisture migration territory, but there still remains some difference in opinion as to 

what constitutes a safe emergency temperature – an allowable temperature that might 

occur for, say, a few hours a year in extreme circumstances. While temperatures in 

excess of 120 °C have been discussed, experts in the cable manufacturing field tend to 

say that 105 °C is more sensible, the argument being that while the insulation itself may 

cope with higher temperatures from time to time, the thermo-mechanical stresses 

imposed on cable accessories, namely the joints and perhaps terminations, are more 

likely to be the limiting factor. 

 

I would argue 105 °C is sensible from another point of view. We cannot, in typical 

cable installations, be absolutely sure that we have correctly identified the hottest spots 

along a cable route, but we should be fairly safe in assuming that a careful survey and 

analysis will identify the average installation conditions. Thermo-mechanical stresses 

are cumulative, which tends to cushion the effect of hot spots. As long as the margin of 

error in the thermal resistance of the environment is less than about 15% (or an 

equivalent amount of external heat source), an ‘average’ emergency temperature of 105 

°C (above an ambient of 20 °C) should not cause the hottest parts of the cable to exceed 

120 °C. Utilities should have a reasonable idea of their cable environments, and if they 

don’t, therein lies a good practical research topic for their local technical university or 

polytechnic! 
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11 Conclusions 
 

This work has been rather ambitious in trying to resolve, or find a new way of resolving, 

some of the notoriously difficult phenomena encountered in cable temperature 

prediction. Although this thesis is more of a framework than an exhaustive treatment of 

the moisture-related issues in the cable environment, the result is a workable algorithm 

that can be implemented conservatively with no more information than present-day 

steady-state ratings are based on. If, on the other hand, utility engineers have a good 

knowledge of their backfill and native soil thermal parameters, the algorithm can be fine 

tuned to achieve a very high predictive capability for temperature estimation. 

 

It has been somewhat surprising to me that the ‘equivalent cylindrical modelling’ seems 

to work so effectively and that, while leaning heavily on established techniques, it 

provides a simple way to turn a cable installation into a thermal circuit, the thermal 

response of which is readily dealt with by a summation of exponential expressions. The 

real time form allows for redefining the coefficients and time constants of these 

governing equations at every time interval, and so the foundation is laid for an online 

temperature prediction algorithm that can deal with thermal instability in the form of 

variable overall moisture content and moisture migration due to the heat flux from the 

cables of concern. 

 

Assuming a logarithmic temperature distribution between the nodes of the thermal 

circuit to locate the critical isotherm that delineates dry from wet conditions enables a 

real-time implementation of the standard 2-zone approach to moisture migration. At the 

risk of overusing the idea of exponential-based movement towards a hypothetical 

steady-state position, the algorithm can slow down moisture migration or, more 

importantly, the return of moisture to the cable vicinity if there is enough knowledge of 

the cable environment to utilise this feature. 

 

Seasonal, rainfall and groundwater related changes to the overall moisture content of the 

cable environment are factors that should not be overlooked, given that the shift of 

maximum loading to the summer months in many urban locations means that the damp 

and cool conditions cables were originally rated for may no longer be appropriate. For 

this reason the algorithm has a dependence on the saturation index of the material 

nearest the cable (backfill). The saturation index of regions further from the cable can 

be related to this value, which can have any dependence relevant to the particular 

installation conditions.  

 

It is also suggested that an online algorithm should have a floating ambient temperature 

reference if there are appreciable seasonal swings in temperature, coupled with the 

temperature raising effects of external sources. Two methods for calculating this effect 

have been presented. The first is simply an exponential representation of the standard 

method based on the exponential integral using curve-fitting techniques. The other is a 

not entirely accurate original contribution, where each external source is given its own 

cylindrical environment, in which the cable of interest is appropriately placed. This 

potentially allows the modelling of moisture dependencies, has the benefit of a full 

analytical derivation, i.e., no curve fitting, and yields the familiar summation of 

exponential terms suitable for conversion to a real-time form, as has been detailed in 
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this thesis for the main response of a cable due to its own losses. It is observed that if 

the effects of such sources are calculated for favourable environmental conditions, their 

effect will be less if the cable environment dries out for any reason. Ambient 

temperature swings can be approximated with a sinusoidal expression similar to the one 

given in section 6.1. 

 

The means to embed the largely air interface between cables and installation tubes into 

the algorithm are given, but it would be premature to show the implementation of this 

aspect. Variables such as the thermal resistivity and the changing relation of sheath to 

conductor losses can be accommodated in the algorithm, assuming that they do not 

significantly alter the shape of the step response. This is done by altering the 

hypothetical steady-state target at each time interval based on the predicted 

temperatures from the last time increment, provided a credible temperature based 

dependence can be established for the effective thermal resistivity of the convective, 

radiative and conductive air gap between cables and installation tubes or duct banks.  

 

The reason tube installations have been included, albeit in a somewhat incomplete form, 

is that the use of preinstalled tubes for MV and even HV cable installations is now 

becoming commonplace and warrants attention. While they aid installation and 

replacement, the installation of cables in plastic tubes substantially reduces their 

ampacity. 

 

In Chapter 9 some drastic simplifications have been suggested, which seem to have a 

negligible effect on the temperature prediction. In essence, the bulk of this thesis has 

analysed the effect of moisture migration and overall moisture change on the shape of 

the step response, but removing these dependencies and including them only in the 

hypothetical steady-state target temperatures works quite well enough for practical 

implementations of this work if the environment does not experience much seasonal 

variation. If it does, the effect of the seasonally varying, or rainfall and groundwater 

depth dependent ‘wet’ parameter on the time constants and coefficients should be kept, 

but that leaves only one dependent variable rather than two, which vastly simplifies the 

algorithm (the stepwise continuous dependence on critical radius is what consumes so 

much space in Appendix A!). 

 

This leaves space for some suggestions with regard to further research, after all, this 

work leaves wide areas open for further development. I had to stop somewhere, and I 

hope that the body of work contained in this thesis is both a sufficiently credible 

framework for a more sophisticated implementation than I have achieved but also a 

practical finished product for ‘good-enough’ application. Further development will 

doubtless depend on whether the use of a thermal circuit to model an entire cable 

installation gains ground, excusing the pun, as it clearly departs from the standards as 

far as the environment (‘ground’) is concerned. 

 

This gives a window into the life of a researcher. Research is always ongoing; every 

discovery unearths new fields of enquiry. This thesis endeavours to find a balance 

between a solid enough piece of ready work and a firm indication of where more work 

can be done. I have had to set a ‘deadline’ for submitting the thesis, to show that I can 
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compromise and draw the line somewhere, but I hope the firm foundation laid, ready as 

it is for implementation, allows me the luxury of leaving a few loose-ends. 

 

These loose-ends are: 

 

• Quantification of the relationships between moisture content, ambient 

temperature, critical temperature for moisture migration, and the time constants 

for moisture migration during heating and moisture return during cooling for 

typical cable backfill materials. This could form part of an endeavour to come up 

with a suitable backfill material using local materials (this latter comment for 

Finnish conditions). 

 

• The analysis of MV cables in composite plastic tubes. Simulations should be 

backed up with measurements. The expectation that the time response of this 

part of the thermal circuit is only due to the thermal capacitances of the cable 

and the tube and external environment should be checked. Temperature 

dependent relationships, at least in the steady state, should be derived for a range 

of cable sizes in a range of tube sizes checking the likelihood that cables mostly 

rest on the bottom of such tubes, the temperature of the tube is likely to be 

uneven, possibly giving rise to local moisture migration from some parts of the 

tube surface. 

 

• Adding a forecasting subroutine that can be called on at any time to provide 

maximum load vs. time capability for managing emergencies. This could be run 

on top of a typical load curve that is scaled in real time to match recorded 

currents, to make allowance for the normal change in load a cable will be subject 

to at different times of the day and week. 

 

• Utilise the algorithm to provide environmental parameter estimation, to provide 

better predictive capacity when temperature measurements are available 

 

As far as the algorithm presented in the thesis is concerned, the basic logic and layout 

seem sound and a simplified approach has been demonstrated, reinforcing the claim that 

the methodology is robust and computationally light to implement. There are already 

various programs commercially available that offer many of the features covered in this 

thesis (and many more that are not covered), so it remains to see whether this work 

remains a general scientific contribution or will evolve into a package suitable for 

utilities to implement.  

 

Given that this work has diverged from standard-based approaches (which is rather 

ungrateful, given the huge amount it owes the standards!) and that standard-based 

approaches are most likely to meet with favour by the utilities and industry, it might be 

wise to see if any of the fresh elements in this work can be adapted to such methods, but 

it must be confessed that the thermal circuit approach was chosen because in it’s real-

time form it can cope with the moisture migration modelling ‘I’ came up with. 

 

Since this conclusion intimates that much has been left undone, it would now seem wise 

to conclude the conclusion with a summary of what has been achieved. And so, 
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entertaining the idea that the use of bullets should be restricted to lists like the 

following, the following contributions to the efficient but secure use of one of the most 

major assets of the urban electricity utility have been made in this thesis: 

 

• The appropriateness of a summation of exponential expressions to model the 

temperature response of just about every conceivable modern cable installation 

has been established in principle. 

 

• The use of such a summation of exponential terms in a real-time formulation has 

been justified in terms of inherent conversion (stability in a perpetual calculation 

process) and in terms of the ability to accommodate the vicissitudes of a 

thermally unstable and therefore non-linear environment. 

 

• The means are given to generate such a summation of exponential terms by way 

of a thermal ladder circuit which in turn is based on an ‘equivalent cylindrical’ 

representation of the cables in their installed environment, noting that not only 

regular homogeneous environments have been covered, but also environments 

with special backfill regions and tube installations (albeit crudely). 

 

• The location of the hypothetical steady-state position of the critical isotherm 

delineating dry from wet regions in the equivalent cylindrical environment forms 

the basis of a transient implementation of standard-based 2-zone moisture 

migration using the nodal temperatures at each time increment 

 

• The means to control the movement of this critical radius are implemented via 

exponential functions with time constants for cooling and heating. This is an 

important feature - especially in terms of slowing down the return of moisture 

after extended periods of moisture migration 

 

• The freedom from the strictures of superposition inherent in the real-time 

formulation of the main exponential formulation in the algorithm means that the 

coefficients and time constants can be changed at each time increment (if 

necessary) to reflect thermal changes in the cable environment. The way to 

model these changes in terms of 2 dependent variables, the critical radius rx for 

moisture migration and the nominal wet moisture content of the environment 

(via the saturation index of the material nearest the cables) is dealt with in 

painstaking detail. 

 

• The observation is later made (and demonstrated) that the dependence on rx can 

be left to the hypothetical steady-state part of the (transient) algorithm with very 

little loss in accuracy, which greatly simplifies the algorithm. 

 

• Fine tuning of such parameters as sheath-loss coefficients in real-time is 

incorporated 

 

• Previous work enabling conductor temperature prediction from current and cable 

surface or sheath measurements has been developed in two directions:  
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i) to further simplify the derivation of a ‘universal, not so accurate but 

highly practical’ online algorithm irrespective of the cable environment 

ii) to achieve a high degree of accuracy using a complete but optimistic 

assessment of the cable in its installed environment 

 

 

 

 

 

 

If meaning can be found in such things as the ampacity of underground cables, then 

there must be plenty of meaning that can be imbued in life without reinforcing the 

ludicrous divides our species has made with itself! 
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Appendix A The main algorithm implemented in Mathcad 
 

A.1 Cable parameters 
 

The units for distance are metres, thermal capacitances J / K m, losses W/m, and 

resistance and reactance are in Ohms. 

 

Tj 0.077:=

The dielectric losses: Wd 0.266:=

The ac resistance coefficients for the conductors R20ac 4.02 10
5−

⋅:= a20ac 3.47 10
3−

⋅:=

Hence, the ac resistance is Rc θc( ) R20ac 1 a20ac θc 20−( )⋅+ ⋅:=

And the conductor losses are Wc I θc,( ) I
2

Rc θc( )⋅:=

The sheath resistance is Rs θs( ) 4.1 10
4−

⋅ 1 0.004 θs 20−( )⋅+ ⋅:=

Reactance of the cable X 5.02610
5−

⋅:=

The sheath losses are Ws I θs,( ) I X⋅( )
2

Rs θs( )( )2
X

2
+

Rs θs( )⋅:=

A (conservative) sheath loss factor λ1 0.12:=

Cable parameters: External radius re 0.0415:= Sheath radius rs 0.0373:=

Conductor radius rc 0.0167:= Burial depth L 1.1:=

Insulation radius ri 0.035:=

The thermal capacitances of the various cables parts: Qcond 1940:= Qi 7134:= Qs 772:= Qj 2495:=

The thermal resistances of the cable parts Ti 0.412:=

 
Alg. A.1.  Cable parameters 
 

 

 

A.2 The cable environment 
 

This commences with establishing the thermal parameters of all parts of the 

environment, which may be subdivided into, for example, a backfill or air region, a 

cement trench or composite conduit and a ‘native soil’ region. There are of course many 

other installation possibilities, but to keep the thesis within some bounds, we will 

illustrate an installation in backfill, which will be assumed to extend to the outside 

dimension of the cement trough that contains it. 

 

A.2.1 Environmental parameters 
 

The porosity ε, thermal resistivity of water ρw, thermal resistivity of the constituent 

material ρo, densities of water dl and the dry density of the backfill do are established 

for the backfill (bf) and native soil (s) regions and are then used in (69) and (70) to 

make h dependent functions for the thermal resistivities and diffusivities in each region. 

Note that a correction constant bf_scorr is used to tie the saturation index of the native 

soil to that of the backfill. Presumably this constant (assuming it is close enough to a 
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constant) should be greater than 1, i.e., as moisture levels increase, the saturation index 

of a less porous backfill will increase more quickly than in the surrounding native soil. 

This relationship has yet to be established, but is left open for further development. 

 

δs 1( ) 4.461 10
7−

×=δbf 1( ) 7.531 10
7−

×=

ρs 1( ) 0.746=ρbf 1( ) 0.564=

δbf 0( ) 6.403 10
7−

×=δbfdry δbf 0( ):=
δs 0( ) 2.95 10

7−
×=δsdry δs 0( ):=

ρs 0( ) 2.404=ρsdry ρs 0( ):=ρbf 0( ) 0.952=ρbfdry ρbf 0( ):=

δs h( )
10

3−

ρs h( ) dos⋅ 0.82 4.2 εs⋅
h

bf_scorr
dls⋅

dos
⋅+









⋅

:=δbf h( )
10

3−

ρbf h( ) dobf⋅ 0.82 4.2 εbf⋅
h dlbf⋅

dobf
⋅+





⋅

:=

ρs h( ) ρw
εs

ρos
1 εs−( )

⋅ e
3.08 1 h

bf_scorr
−( )2

⋅ εs⋅




⋅:=ρbf h( ) ρw

εbf
ρobf

1 εbf−( )
⋅ e

3.08 1 h−( )
2

⋅ εbf⋅ ⋅:=

bf_scorr 1:=dos 1720:=dls 1000:=ρos 0.45:=εs 0.38:=

u
L

re
:=dobf 2000:=dlbf 1000:=ρobf 0.45:=ρw 1.7:=εbf 0.17:=

 
Alg. A.2.  Environmental parameters based on saturation indices 
 

A.2.2 Conversion to an equivalent single-phase cylindrical model 
 

In order to convert multi-phase reality to a single-phase equivalent, a factor, kconv, is 

needed... 

Arbitrary values ---> Trefoil 1:= Flat_touching 2:=

If configuration is trefoil, write     Trefoil
If configuration is flat touching, write   Flat_touching

----> config Trefoil:=

kconv 3
ln 2 u⋅( ) 0.63−

ln u u
2

1−+( )
⋅ config Trefoilif

2 π⋅ 0.475 ln 2 u⋅( )⋅ 0.346−( )⋅

ln u u
2

1−+( )
config Flat_touchingif

:=

kconv 2.524=

If results from a steady-state FEM 

simulation are available, override kconv 

with a 'better' value
kconv :=

 
Alg. A.3.  Thermal resistivity conversion factor for single-phase monitoring 
 

The outer radius of the equivalent cylindrical model should now be calculated (24).  

 

The equivalent single-phase equivalent 

radius of the entire cable environment renv re u u
2

1−+( )⋅:= renv 2.199=
 

Alg. A.4.  Overall radius of equivalent cylindrical model 
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For dealing with installations in a backfill region, it is necessary to calculate the 

equivalent outer radius of 3 cables (with similar losses) (27). 

 

The equivalent radius of 3 phases carrying 

equal losses in reasonably close proximity

(note upper case "Re")
Re

2 L⋅
L L

2
re

2
−+

re









kconv

3

⋅

1
L L

2
re

2
−+

re









2 kconv⋅

3

+

:= Re 0.07=

 
Alg. A.5.  The 'thermally equivalent' radius of 3 single-phase cables with equal losses in a conductive 

environment 
 

In order to calculate the thermal resistance of the backfill region, its horizontal and 

vertical dimensions are required, the thermal resistance and equivalent radius needs to 

be calculated from a three-phase perspective, and then converted to a single-phase 

frame of reference... 

 

Horizontal x vertical dimensions (abf x bbf)

of the backfill. A nominal thermal resistivity 

is stipulated to facilitate the calculations 

but will not affect the geometry

abf 0.5:= bbf 0.42:= ρnom 1:=

TBF
1

8 π⋅
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




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







⋅

:=

The thermal resistivity of the backfill region 

from a 3-phase perspective

 
Alg. A.6.  Thermal resistivity of backfill region from a 3-phase perspective 
 

The thermal resistance of the backfill region 

from a single-phase perspective
Tbf 3 TBF⋅:=

Tbf 0.613=

Equivalent radius of the backfill region

from a 3-phase perspective RBF Re e

2 π⋅ TBF⋅

ρnom
⋅:= RBF 0.251=

Equivalent radius of the backfill region

from a single-phase perspective rbf re e

2 π⋅ Tbf⋅

kconv ρnom⋅
⋅:= rbf 0.182=  

Alg. A.7.  Equivalent single-phase radius of backfill region 
 

Now, as promised in section 3.2.2, comes a series of logical ‘if’ statements to optimally 

locate the nodal radii for the thermal circuit around the equivalent radius of the backfill 

region, rbf. If there is no backfill, rbf can be set to re. 
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Alg. A.8.  Establishing the nodal radii of the equivalent cylindrical environment 
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A.2.3 The capacitances and resistances of the thermal circuit 
 

Equations (19) and (85) are set up as functions to determine the division of thermal 

capacitances in homogeneous regions and regions subdivided into dry and wet by the 

critical radius for moisture migration... 

 
If the region under consideration is 

homogeneous (either entirely "wet" or entirely 

dry), the proportional constant for subdividing 

thermal capacitances according to 

logarithmic temperature distribution is:

P ro ri,( )
1
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


⋅

1
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2

ri
2

1−

−:=

If the critical radius for moisture migration lies within the region under consideration, then:
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Alg. A.9.  Computation of the nodal thermal capacitances in homogeneous and non-homogeneous regions 
 

Indexing for the loops of the thermal circuit... 

 

The maximum number of thermal loops is 6, but 

note, the indexing of arrays starts from 0: N 5:= n 0 N..:=

 
Alg. A.10.  Indexing the thermal loops 
 

Now functions for the thermal resistances of the cable environment (in terms of an 

equivalent single-phase cylindrical model) are given. Values for h=0.5 are shown just to 

provide a reference. 

 
The external thermal resistance can be 

calculated in terms of " renv". If the 

environment is homogeneously wet then:
T4wet h( )

kconv ρbf h( )⋅

2 π⋅







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If moisture migration is occurring then: T4 rx h,( )
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T4 re 0.5,( ) 1.393=  
Alg. A.11.  The external thermal resistance in nominal (wet) conditions and when moisture migration is 

occurring 
 

The thermal resistance of intermediate sections of the environment requires a slightly 

more elaborate function, to allow for where the critical radius for moisture migration 

lies, and where the boundary between backfill and native soil lies... 
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T renv re, re, 0.5,( ) 1.393=  
Alg. A.12.  General routine for calculation of environmental thermal resistances (between radii ri and ro) 

 

Similarly, we need a general subroutine to appropriately lump the thermal capacitances 

to each node. This is rather detailed, as it must embody (19) or (85), depending on 

whether the inter-nodal region contains the critical radius for moisture migration or not. 

The thermal properties also depend on whether the region comprises backfill or native 

soil.  

 

The subroutine assumes there is only 1 loop allocated to the cables and that the cables 

each consist of only a conductor, insulation, a sheath, and a jacket. Fig. A.1 may help in 

understanding the following subroutine (Alg. A.13). 
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ri rn rx ro 

dry 

(h = 0) 

wet 

(h = hwet) 

backfill or 

native soil 
(backfill or) native soil 

 
Fig. A.1.  In aid of the mental juggling act to make a general subroutine to correctly apportion nodal 

capacitances allowing for moisture migration and type of soil (backfill or native)... 
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Alg. A.13.  General routine to appropriately lump the correct thermal capacitance to each environmental 

node assuming only 1 thermal loop is used for the cable itself 
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Suitable ranges and intermediate values for the dependent variables, saturation index 

and critical radius, should be established. In terms of the saturation index: 

Completely dry and saturated indices to 

control the dry and wet thermal parameters hmin 0:= hmax 1:=

For the discrete calculation, set the resolution of 

the saturation index
hres 0.1:=

imax
hmax hmin−

hres
:=

imax 10=

i 0 round imax 0,( )..:=

h
i

hmin i hres⋅+:=
 

Alg. A.14.  Indices for the range of saturation indices that will be discreetly computed to establish the 

overall moisture content dependency of the governing coefficients and time constants 
 

For the critical radius rx, an upper limit can be set, as suggested in (Millar and Lehtonen, 

2005), but it doesn’t add much computation to calculate the dependence from the 

external radius of the cable re to the outer radius of the equivalent cylindrical 

environment, renv, which is what is done in the next section of the algorithm: 

 
The same again for the critical radius, noting that 

we get the best approximation from polynomials if 

we break the functions at the nodal radii. 

incr_no is the number of increments between 

each nodal radius that the transfer functions will be 

solved for.

incr_no 10:=

jmax incr_no N⋅:= k 0 jmax..:=

rx
k

re k
rC re−( )

incr_no
⋅+





k incr_no≤if

rC k incr_no−( )
rD rC−( )

incr_no
⋅+





incr_no k< 2 incr_no⋅≤if

rD k 2 incr_no⋅−( )
rE rD−( )

incr_no
⋅+





2 incr_no⋅ k< 3 incr_no⋅≤if

rE k 3 incr_no⋅−( )
rF rE−( )

incr_no
⋅+





3 incr_no⋅ k< 4 incr_no⋅≤if

rF k 4 incr_no⋅−( )
renv rF−( )

incr_no
⋅+





k 4 incr_no⋅>if

:=

 
Alg. A.15.  Indices for the range of critical radii that will be discreetly computed to establish the moisture 

migration dependency of the governing coefficients and time constants 
 

A.3 Using the thermal circuit to establish the rx and h dependence of the time 

constants and coefficients of the governing exponential equations 

 

This implementation of the algorithm focuses more on the environment, which has been 

allocated 5 loops, than the cables, which are modelled with only 1 thermal loop. In that 

sense, in order to allow a relatively clear and uncluttered presentation, the algorithm is 

not the most general and requires manual manipulation to adapt it for larger cables that 

would require 2 or even 3 loops to adequately model their thermal behaviour. This 

appendix sets out to illustrate the major contributions of this thesis. 

 

A.3.1 The transfer functions 

 

Rather than deriving them in a subroutine for each iteration in the algorithm, we will 

symbolically define each coefficient for each term in the denominator and nominators of 
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the transfer functions in the form of functions of the thermal resistances and 

capacitances of the thermal circuit, so that each iteration only requires a simple addition. 

 

The coefficients of the dominator in ascending order, i.e., starting with the constant 

term, then the t term, t
2
 term and so on, are defined in the form of vector b in the 

following section of the algorithm... 

The vector containing the denominator coefficients of the transfer functions (same for all nodes):

b TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )

1

QB TB⋅ QB TC⋅+ QC TD⋅+ QA TB⋅+ QD TD⋅+ QA TF⋅+ QA TC⋅+ QA TE⋅+ QF TF⋅+ QC TF⋅+ QB TE⋅+
QD TE⋅ QE TF⋅+ QA TA⋅+ QE TE⋅+ QA TD⋅+ QC TC⋅+ QD TF⋅+ QC TE⋅+ QB TF⋅+ QB TD⋅++

...





QB TB⋅ QD⋅ TD⋅ QB TD⋅ QF⋅ TF⋅+ QB TD⋅ QE⋅ TF⋅+ QB TD⋅ QE⋅ TE⋅+ QB TB⋅ QC⋅ TE⋅+
QB TB⋅ QD⋅ TE⋅ QA TA⋅ QF⋅ TF⋅+ QB TB⋅ QD⋅ TF⋅+ QB TB⋅ QE⋅ TF⋅+ QA TC⋅ QE⋅ TF⋅++

...

QA TD⋅ QE⋅ TE⋅ QB TC⋅ QE⋅ TE⋅+ QB TC⋅ QF⋅ TF⋅+ QB TB⋅ QC⋅ TC⋅+ QB TC⋅ QD⋅ TF⋅++
...

QB TC⋅ QE⋅ TF⋅ QB TB⋅ QF⋅ TF⋅+ QA TB⋅ QF⋅ TF⋅+ QC TD⋅ QE⋅ TF⋅+ QB TC⋅ QD⋅ TD⋅++
...

QB TC⋅ QD⋅ TE⋅ QC TE⋅ QF⋅ TF⋅+ QC TD⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TF⋅+ QC TD⋅ QE⋅ TE⋅++
...

QC TC⋅ QF⋅ TF⋅ QC TC⋅ QE⋅ TF⋅+ QC TC⋅ QE⋅ TE⋅+ QC TC⋅ QD⋅ TF⋅+ QC TC⋅ QD⋅ TE⋅++
...

QA TA⋅ QD⋅ TD⋅ QC TC⋅ QD⋅ TD⋅+ QD TE⋅ QF⋅ TF⋅+ QD TD⋅ QF⋅ TF⋅+ QB TE⋅ QF⋅ TF⋅++
...

QD TD⋅ QE⋅ TF⋅ QD TD⋅ QE⋅ TE⋅+ QA TA⋅ QC⋅ TE⋅+ QA TB⋅ QC⋅ TF⋅+ QA TC⋅ QF⋅ TF⋅++
...

QB TB⋅ QC⋅ TD⋅ QA TA⋅ QB⋅ TB⋅+ QA TA⋅ QB⋅ TC⋅+ QA TC⋅ QD⋅ TF⋅+ QA TC⋅ QE⋅ TE⋅++
...

QA TA⋅ QE⋅ TF⋅ QA TA⋅ QD⋅ TF⋅+ QA TA⋅ QE⋅ TE⋅+ QA TB⋅ QD⋅ TF⋅+ QA TA⋅ QC⋅ TC⋅++
...

QA TA⋅ QD⋅ TE⋅ QA TA⋅ QC⋅ TD⋅+ QA TA⋅ QC⋅ TF⋅+ QA TA⋅ QB⋅ TD⋅+ QA TA⋅ QB⋅ TE⋅++
...

QA TC⋅ QD⋅ TD⋅ QA TC⋅ QD⋅ TE⋅+ QA TE⋅ QF⋅ TF⋅+ QA TD⋅ QF⋅ TF⋅+ QA TD⋅ QE⋅ TF⋅++
...

QA TB⋅ QE⋅ TF⋅ QA TB⋅ QD⋅ TD⋅+ QA TB⋅ QC⋅ TD⋅+ QA TB⋅ QC⋅ TE⋅+ QA TB⋅ QE⋅ TE⋅++
...

QA TB⋅ QD⋅ TE⋅ QB TB⋅ QE⋅ TE⋅+ QA TB⋅ QC⋅ TC⋅+ QB TB⋅ QC⋅ TF⋅+ QE TE⋅ QF⋅ TF⋅++
...





























QB TB⋅ QD⋅ TD⋅ QF⋅ TF⋅ QB TB⋅ QD⋅ TE⋅ QF⋅ TF⋅+ QB TB⋅ QD⋅ TD⋅ QE⋅ TE⋅+ QB TB⋅ QC⋅ TC⋅ QF⋅ TF⋅+
QB TB⋅ QC⋅ TD⋅ QE⋅ TE⋅ QB TB⋅ QC⋅ TC⋅ QD⋅ TD⋅+ QB TB⋅ QD⋅ TD⋅ QE⋅ TF⋅+ QB TB⋅ QC⋅ TC⋅ QE⋅ TE⋅++

...

QB TB⋅ QC⋅ TC⋅ QE⋅ TF⋅ QA TC⋅ QD⋅ TD⋅ QF⋅ TF⋅+ QA TA⋅ QD⋅ TD⋅ QF⋅ TF⋅+ QA TA⋅ QC⋅ TC⋅ QD⋅ TD⋅++
...

QA TA⋅ QC⋅ TD⋅ QE⋅ TE⋅ QA TA⋅ QC⋅ TC⋅ QF⋅ TF⋅+ QA TA⋅ QC⋅ TC⋅ QE⋅ TF⋅+ QA TA⋅ QC⋅ TC⋅ QE⋅ TE⋅++
...

QA TA⋅ QC⋅ TC⋅ QD⋅ TF⋅ QA TA⋅ QC⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QC⋅ TD⋅ QF⋅ TF⋅+ QA TC⋅ QD⋅ TD⋅ QE⋅ TF⋅++
...

QA TA⋅ QC⋅ TD⋅ QE⋅ TF⋅ QA TC⋅ QD⋅ TD⋅ QE⋅ TE⋅+ QA TA⋅ QD⋅ TD⋅ QE⋅ TF⋅+ QD TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QC TC⋅ QD⋅ TD⋅ QF⋅ TF⋅ QC TC⋅ QD⋅ TD⋅ QE⋅ TF⋅+ QC TC⋅ QD⋅ TD⋅ QE⋅ TE⋅+ QA TA⋅ QD⋅ TD⋅ QE⋅ TE⋅++
...

QA TA⋅ QC⋅ TC⋅ QD⋅ TE⋅ QC TC⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QC TC⋅ QD⋅ TE⋅ QF⋅ TF⋅+ QC TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QB TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ QB TC⋅ QD⋅ TE⋅ QF⋅ TF⋅+ QB TC⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QB TB⋅ QC⋅ TD⋅ QE⋅ TF⋅++
...

QB TB⋅ QC⋅ TD⋅ QF⋅ TF⋅ QB TB⋅ QC⋅ TC⋅ QD⋅ TF⋅+ QB TC⋅ QD⋅ TD⋅ QF⋅ TF⋅+ QB TB⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QB TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QB TC⋅ QD⋅ TD⋅ QE⋅ TF⋅+ QB TB⋅ QC⋅ TE⋅ QF⋅ TF⋅+ QB TB⋅ QC⋅ TC⋅ QD⋅ TE⋅++
...

QA TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QA TA⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TC⋅ QE⋅ TE⋅+ QA TB⋅ QD⋅ TE⋅ QF⋅ TF⋅++
...

QA TB⋅ QD⋅ TD⋅ QE⋅ TE⋅ QA TA⋅ QD⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TD⋅ QE⋅ TF⋅+ QA TA⋅ QB⋅ TB⋅ QF⋅ TF⋅++
...

QA TA⋅ QB⋅ TB⋅ QD⋅ TF⋅ QA TA⋅ QB⋅ TB⋅ QE⋅ TF⋅+ QA TA⋅ QB⋅ TB⋅ QD⋅ TD⋅+ QA TA⋅ QB⋅ TD⋅ QF⋅ TF⋅++
...

QA TA⋅ QB⋅ TD⋅ QE⋅ TE⋅ QA TA⋅ QB⋅ TC⋅ QE⋅ TF⋅+ QA TA⋅ QB⋅ TC⋅ QD⋅ TD⋅+ QA TA⋅ QB⋅ TC⋅ QD⋅ TE⋅++
...

QA TA⋅ QB⋅ TC⋅ QD⋅ TF⋅ QA TA⋅ QB⋅ TB⋅ QC⋅ TE⋅+ QA TA⋅ QB⋅ TB⋅ QC⋅ TF⋅+ QA TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QA TC⋅ QD⋅ TE⋅ QF⋅ TF⋅ QA TC⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TB⋅ QC⋅ TD⋅+ QA TA⋅ QB⋅ TB⋅ QE⋅ TE⋅++
...

QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QA TA⋅ QB⋅ TE⋅ QF⋅ TF⋅+ QA TB⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TB⋅ QD⋅ TD⋅ QF⋅ TF⋅++
...

QA TB⋅ QD⋅ TD⋅ QE⋅ TF⋅ QA TA⋅ QB⋅ TC⋅ QF⋅ TF⋅+ QA TB⋅ QC⋅ TD⋅ QE⋅ TF⋅+ QA TB⋅ QC⋅ TD⋅ QF⋅ TF⋅++
...

QA TB⋅ QC⋅ TE⋅ QF⋅ TF⋅ QA TB⋅ QC⋅ TC⋅ QD⋅ TE⋅+ QA TB⋅ QC⋅ TC⋅ QD⋅ TF⋅+ QA TA⋅ QB⋅ TB⋅ QD⋅ TE⋅++
...

QA TB⋅ QC⋅ TC⋅ QE⋅ TE⋅ QA TB⋅ QC⋅ TC⋅ QE⋅ TF⋅+ QA TB⋅ QC⋅ TC⋅ QF⋅ TF⋅+ QA TB⋅ QC⋅ TD⋅ QE⋅ TE⋅++
...











































QA TA⋅ QC⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅ QA TA⋅ QB⋅ TB⋅ QD⋅ TD⋅ QE⋅ TE⋅+ QA TA⋅ QB⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+
QA TA⋅ QB⋅ TB⋅ QD⋅ TD⋅ QE⋅ TF⋅ QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QE⋅ TE⋅+ QA TA⋅ QB⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅++

...

QA TA⋅ QB⋅ TB⋅ QC⋅ TD⋅ QF⋅ TF⋅ QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TE⋅+ QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QF⋅ TF⋅++
...

QA TA⋅ QB⋅ TB⋅ QC⋅ TD⋅ QE⋅ TE⋅ QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QE⋅ TF⋅+ QA TB⋅ QC⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅++
...

QA TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅ QA TB⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅++
...

QA TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QA TB⋅ QC⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TB⋅ QC⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QA TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ QA TA⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅++
...

QA TA⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅ QA TA⋅ QC⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QC⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅++
...

QA TA⋅ QC⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅ QC TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QB TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅++
...

QB TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅ QB TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅+ QB TB⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QB TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ QB TB⋅ QC⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QB TB⋅ QC⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QB TB⋅ QC⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅ QA TA⋅ QB⋅ TB⋅ QC⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TF⋅++
...

QA TA⋅ QB⋅ TB⋅ QE⋅ TE⋅ QF⋅ TF⋅ QA TA⋅ QB⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅+ QA TA⋅ QB⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅++
...

QA TA⋅ QB⋅ TB⋅ QC⋅ TD⋅ QE⋅ TF⋅ QA TA⋅ QB⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QA TA⋅ QB⋅ TB⋅ QD⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TB⋅ QD⋅ TD⋅ QF⋅ TF⋅++
...





























QA TA⋅ QB⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ QA TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅+
QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅+ QA TA⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++

...

QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅ QA TA⋅ QB⋅ TB⋅ QC⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

QA TA⋅ QB⋅ TB⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ QB TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...











QA TA⋅ QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅( )







































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


















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



















































:=

 
Alg. A.16.  The coefficients of the denominator of the transfer function (same for all nodes) 
 

and, with due apologies for the tedious presentation, the coefficients of the numerators, 

which differ for each nodal response, are similarly defined: 



 120 

aA TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )

TA TB+ TC+ TD+ TE+ TF+( )

TC QF⋅ TF⋅ TB QD⋅ TE⋅+ TB QC⋅ TC⋅+ TB QC⋅ TF⋅+ TB QC⋅ TE⋅+ TB QE⋅ TE⋅+ TB QD⋅ TF⋅+ TB QE⋅ TF⋅+
TB QD⋅ TD⋅ TB QC⋅ TD⋅+ TE QF⋅ TF⋅+ TD QF⋅ TF⋅+ TD QE⋅ TF⋅+ TD QE⋅ TE⋅+ TC QE⋅ TF⋅+ TB QF⋅ TF⋅++

...

TC QD⋅ TD⋅ TC QD⋅ TE⋅+ TA QF⋅ TF⋅+ TA QC⋅ TF⋅+ TA QB⋅ TD⋅+ TA QB⋅ TE⋅+ TA QB⋅ TF⋅+ TA QC⋅ TC⋅++
...

TA QD⋅ TE⋅ TA QC⋅ TD⋅+ TA QD⋅ TD⋅+ TA QE⋅ TF⋅+ TA QD⋅ TF⋅+ TA QE⋅ TE⋅+ TA QC⋅ TE⋅+ TA QB⋅ TB⋅++
...

TA QB⋅ TC⋅ TC QD⋅ TF⋅+ TC QE⋅ TE⋅++
...













TA QD⋅ TE⋅ QF⋅ TF⋅ TA QC⋅ TD⋅ QE⋅ TF⋅+ TC QD⋅ TD⋅ QE⋅ TF⋅+ TA QC⋅ TE⋅ QF⋅ TF⋅+ TA QC⋅ TD⋅ QF⋅ TF⋅+ TA QC⋅ TC⋅ QE⋅ TE⋅+
TA QC⋅ TC⋅ QD⋅ TF⋅ TA QC⋅ TC⋅ QD⋅ TE⋅+ TA QC⋅ TD⋅ QE⋅ TE⋅+ TA QC⋅ TC⋅ QF⋅ TF⋅+ TA QC⋅ TC⋅ QE⋅ TF⋅+ TA QD⋅ TD⋅ QF⋅ TF⋅++

...

TA QC⋅ TC⋅ QD⋅ TD⋅ TA QD⋅ TD⋅ QE⋅ TE⋅+ TA QB⋅ TB⋅ QC⋅ TD⋅+ TA QB⋅ TE⋅ QF⋅ TF⋅+ TC QD⋅ TD⋅ QF⋅ TF⋅+ TC QD⋅ TE⋅ QF⋅ TF⋅++
...

TC QE⋅ TE⋅ QF⋅ TF⋅ TD QE⋅ TE⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QC⋅ TF⋅+ TB QD⋅ TD⋅ QF⋅ TF⋅+ TB QD⋅ TE⋅ QF⋅ TF⋅+ TB QD⋅ TD⋅ QE⋅ TE⋅++
...

TB QD⋅ TD⋅ QE⋅ TF⋅ TA QE⋅ TE⋅ QF⋅ TF⋅+ TA QB⋅ TC⋅ QE⋅ TE⋅+ TA QB⋅ TC⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QD⋅ TE⋅+ TB QC⋅ TC⋅ QE⋅ TE⋅++
...

TB QC⋅ TC⋅ QE⋅ TF⋅ TB QC⋅ TC⋅ QF⋅ TF⋅+ TB QC⋅ TD⋅ QE⋅ TE⋅+ TB QC⋅ TC⋅ QD⋅ TD⋅+ TB QC⋅ TD⋅ QE⋅ TF⋅+ TB QC⋅ TD⋅ QF⋅ TF⋅++
...

TB QC⋅ TE⋅ QF⋅ TF⋅ TB QC⋅ TC⋅ QD⋅ TE⋅+ TB QC⋅ TC⋅ QD⋅ TF⋅+ TB QE⋅ TE⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QC⋅ TC⋅+ TA QB⋅ TB⋅ QE⋅ TE⋅++
...

TA QB⋅ TB⋅ QC⋅ TE⋅ TA QB⋅ TD⋅ QE⋅ TE⋅+ TA QB⋅ TC⋅ QD⋅ TD⋅+ TA QB⋅ TC⋅ QD⋅ TE⋅+ TA QB⋅ TC⋅ QD⋅ TF⋅+ TA QB⋅ TC⋅ QE⋅ TF⋅++
...

TA QB⋅ TB⋅ QF⋅ TF⋅ TA QB⋅ TB⋅ QD⋅ TF⋅+ TA QB⋅ TB⋅ QE⋅ TF⋅+ TA QB⋅ TB⋅ QD⋅ TD⋅+ TA QB⋅ TD⋅ QF⋅ TF⋅+ TA QB⋅ TD⋅ QE⋅ TF⋅++
...

TC QD⋅ TD⋅ QE⋅ TE⋅ TA QD⋅ TD⋅ QE⋅ TF⋅++
...























TA QB⋅ TB⋅ QC⋅ TD⋅ QE⋅ TE⋅ TA QB⋅ TB⋅ QC⋅ TC⋅ QE⋅ TF⋅+ TA QB⋅ TB⋅ QC⋅ TC⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TE⋅+
TB QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ TA QB⋅ TB⋅ QC⋅ TE⋅ QF⋅ TF⋅+ TB QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅+ TB QC⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅++

...

TB QC⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅ TB QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅+ TC QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ TB QC⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

TB QC⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅ TA QC⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅+ TA QC⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅+ TA QC⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅++
...

TA QC⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ TA QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅+ TA QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅+ TA QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

TA QB⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅ TA QB⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QE⋅ TE⋅ QF⋅ TF⋅+ TA QB⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅++
...

TA QB⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅ TA QB⋅ TB⋅ QC⋅ TD⋅ QE⋅ TF⋅+ TA QB⋅ TB⋅ QC⋅ TD⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TF⋅++
...

TA QB⋅ TB⋅ QD⋅ TD⋅ QE⋅ TE⋅ TA QB⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QC⋅ TC⋅ QE⋅ TE⋅+ TA QB⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅++
...

TA QB⋅ TB⋅ QD⋅ TD⋅ QE⋅ TF⋅ TA QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅+ TA QB⋅ TB⋅ QD⋅ TD⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QD⋅ TE⋅ QF⋅ TF⋅++
...





















TA QB⋅ TB⋅ QC⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅ TA QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ TA QB⋅ TB⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+
TA QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅ TA QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅+ TA QB⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++

...

TB QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ TA QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅+ TA QB⋅ TB⋅ QC⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅++
...

TA QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅+
...











TA QB⋅ TB⋅ QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅( )

































































:=

 
Alg. A.17.  Coefficients for the numerator of the transfer function governing the response of the first node 

(conductor) in the thermal circuit 
 

aB TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )

TB TC+ TD+ TE+ TF+( )

TB QC⋅ TC⋅ TB QC⋅ TE⋅+ TB QC⋅ TF⋅+ TB QD⋅ TF⋅+ TB QC⋅ TD⋅+ TB QD⋅ TE⋅+ TE QF⋅ TF⋅+ TB QE⋅ TE⋅+ TB QD⋅ TD⋅+ TC QD⋅ TF⋅+
TC QE⋅ TF⋅ TC QF⋅ TF⋅+ TB QE⋅ TF⋅+ TC QD⋅ TE⋅+ TC QE⋅ TE⋅+ TB QF⋅ TF⋅+ TC QD⋅ TD⋅+ TD QE⋅ TF⋅+ TD QF⋅ TF⋅+ TD QE⋅ TE⋅++

...





TC QD⋅ TD⋅ QE⋅ TE⋅ TD QE⋅ TE⋅ QF⋅ TF⋅+ TC QD⋅ TD⋅ QE⋅ TF⋅+ TC QE⋅ TE⋅ QF⋅ TF⋅+ TC QD⋅ TD⋅ QF⋅ TF⋅+ TC QD⋅ TE⋅ QF⋅ TF⋅+
TB QC⋅ TE⋅ QF⋅ TF⋅ TB QC⋅ TC⋅ QF⋅ TF⋅+ TB QC⋅ TD⋅ QE⋅ TF⋅+ TB QC⋅ TD⋅ QE⋅ TE⋅+ TB QC⋅ TC⋅ QE⋅ TF⋅+ TB QC⋅ TC⋅ QE⋅ TE⋅++

...

TB QC⋅ TC⋅ QD⋅ TF⋅ TB QC⋅ TC⋅ QD⋅ TE⋅+ TB QC⋅ TD⋅ QF⋅ TF⋅+ TB QD⋅ TD⋅ QF⋅ TF⋅+ TB QD⋅ TD⋅ QE⋅ TF⋅+ TB QE⋅ TE⋅ QF⋅ TF⋅++
...

TB QD⋅ TE⋅ QF⋅ TF⋅ TB QD⋅ TD⋅ QE⋅ TE⋅+ TB QC⋅ TC⋅ QD⋅ TD⋅++
...











TC QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ TB QC⋅ TC⋅ QD⋅ TD⋅ QF⋅ TF⋅+ TB QC⋅ TC⋅ QE⋅ TE⋅ QF⋅ TF⋅+ TB QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅+
TB QC⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅ TB QC⋅ TC⋅ QD⋅ TE⋅ QF⋅ TF⋅+ TB QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅+ TB QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TF⋅++

...





TB QC⋅ TC⋅ QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅( )

























:=

 
Alg. A.18.  Coefficients for the numerator of the transfer function governing the response of the second 

node in the thermal circuit 
 

aC TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )

TC TD+ TE+ TF+( )

TD QE⋅ TE⋅ TE QF⋅ TF⋅+ TD QE⋅ TF⋅+ TD QF⋅ TF⋅+ TC QD⋅ TF⋅+ TC QE⋅ TE⋅+ TC QE⋅ TF⋅+ TC QF⋅ TF⋅+ TC QD⋅ TD⋅+ TC QD⋅ TE⋅+( )

TC QD⋅ TD⋅ QE⋅ TE⋅ TD QE⋅ TE⋅ QF⋅ TF⋅+ TC QD⋅ TD⋅ QE⋅ TF⋅+ TC QE⋅ TE⋅ QF⋅ TF⋅+ TC QD⋅ TD⋅ QF⋅ TF⋅+ TC QD⋅ TE⋅ QF⋅ TF⋅+( )

TC QD⋅ TD⋅ QE⋅ TE⋅ QF⋅ TF⋅( )











:=

 
Alg. A.19.  Coefficients for the numerator of the transfer function governing the response of the third 

node in the thermal circuit 
 

aD TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )

TD TE+ TF+( )

TD QE⋅ TE⋅ TE QF⋅ TF⋅+ TD QE⋅ TF⋅+ TD QF⋅ TF⋅+( )

TD QE⋅ TE⋅ QF⋅ TF⋅( )











:=

aE TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )
TE TF+( )

TE QF⋅ TF⋅( )









:=

aF TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( ) TF:=
 

Alg. 7.20.  Coefficients for the numerator of the transfer function governing the response of the fourth, 

fifth and sixth nodes in the thermal circuit 
 

A.3.2 Discrete computation of time constants and coefficients for a full range of rx 

and h 
 

For a 6-loop thermal circuit: 
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Sol
i k,

TA Ti Tj 1 λ1+( )⋅+←

QA Qcond P re rc,( ) Qi
Qs Qj+

1 λ1+( )
+





⋅+←

TB 1 λ1+( ) T rC re, rx
k

, h
i

,( )⋅←

QB Q rc re, rC, rx
k

, h
i

,( )←

TC 1 λ1+( ) T rD rC, rx
k

, h
i

,( )⋅←

QC Q re rC, rD, rx
k

, h
i

,( )←

TD 1 λ1+( ) T rE rD, rx
k

, h
i

,( )⋅←

QD Q rC rD, rE, rx
k

, h
i

,( )←

TE 1 λ1+( ) T rF rE, rx
k

, h
i

,( )⋅←

QE Q rD rE, rF, rx
k

, h
i

,( )←

TF 1 λ1+( ) T renv rF, rx
k

, h
i

,( )⋅←

QF Q rE rF, renv, rx
k

, h
i

,( )←

b b TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )←

PP polyroots b( )←

a
0

aA TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )←

a
1

aB TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )←

a
2

aC TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )←

a
3

aD TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )←

a
4

aE TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )←

a
5

aF TA TB, TC, TD, TE, TF, QA, QB, QC, QD, QE, QF,( )←

Z
l

polyroots a
l( )←

l 0 N 1−..∈for

Coeff
0 n,

a
0( )

5
−

b
N 1+

0

N 1−

kk

Z
0( )

kk
PP

n
−



∏

=

PP
n

0

N

kk

PP
kk

PP
n

−( )( ) kk n≠if

1 otherwise









∏
=

⋅

⋅←

Coeff
1 n,

a
1( )

4

b
N 1+

0

N 2−

kk

Z
1( )

kk
PP

n
−



∏

=

PP
n

0

N

kk

PP
kk

PP
n

−( )( ) kk n≠if

1 otherwise









∏
=

⋅

⋅←

Coeff
2 n,

a
2( )

3
−

b
N 1+

0

N 3−

kk

Z
2( )

kk
PP

n
−



∏

=

PP
n

0

N

kk

PP
kk

PP
n

−( )( ) kk n≠if

1 otherwise









∏
=

⋅

⋅←

Coeff
3 n,

a
3( )

2

b
N 1+

0

N 4−

kk

Z
3( )

kk
PP

n
−



∏

=

PP
n

0

N

kk

PP
kk

PP
n

−( )( ) kk n≠if

1 otherwise









∏
=

⋅

⋅←

Coeff
4 n,

a
4( )

1
−

b
N 1+

Z
4

PP
n

−

PP
n

0

N

kk

PP
kk

PP
n

−( )( ) kk n≠if

1 otherwise









∏
=

⋅

⋅←

n 0 N..∈for

:=

This subroutine allocates only 1 loop to the cable, so TA 

comprises the thermal resistance of the insulation and jacket 

and QA comprises the thermal capacitance of the conductor 

and a proportion P(re,rc) of the lumped capacitances of all the 

rest of the cable components.

There are a total of 6 loops in this version of the algorithm

The Mathcad function polyroots computes the roots of the 

denominator and numerators of the transfer functions for all 

the nodal step responses (the denominator is the same for all 

nodes)

The routines to the left are an adaption of equation (5.3) in 

(Anders, 1997) as mentioned in section 3.3.2 of this thesis. 

They calculate the coefficients of the exponential functions 

that govern the step response in the time domain.

 
Alg.A.21a.  Discreet computation of the coefficients and time constants of the governing exponential 

expressions for a full range of critical radii and saturation indices 
 

This subroutine continues on the next page... 
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0kk
1 otherwise =

Coeff
5 n,

1

b
N 1+

TF PP
n

−

PP
n

0

N

kk

PP
kk

PP
n

−( )( ) kk n≠if

1 otherwise









∏
=

⋅

⋅←

τn
1−

PP
n

←

TA

QA

τ0

Coeff
0 0,

Coeff
1 0,

Coeff
2 0,

Coeff
3 0,

Coeff
4 0,

Coeff
5 0,

TB

QB

τ1

Coeff
0 1,

Coeff
1 1,

Coeff
2 1,

Coeff
3 1,

Coeff
4 1,

Coeff
5 1,

TC

QC

τ2

Coeff
0 2,

Coeff
1 2,

Coeff
2 2,

Coeff
3 2,

Coeff
4 2,

Coeff
5 2,

TD

QD

τ3

Coeff
0 3,

Coeff
1 3,

Coeff
2 3,

Coeff
3 3,

Coeff
4 3,

Coeff
5 3,

TE

QE

τ4

Coeff
0 4,

Coeff
1 4,

Coeff
2 4,

Coeff
3 4,

Coeff
4 4,

Coeff
5 4,

TF

QF

τ5

Coeff
0 5,

Coeff
1 5,

Coeff
2 5,

Coeff
3 5,

Coeff
4 5,

Coeff
5 5,

































return

The time constants are taken from the roots of the transfer 

function, PP

The output of this subroutine consists of the 
thermal resistances and capactances for each 
loop of the thermal circuit along with the main 
objective, the coefficients and time constants of 
the governing exponential equations. All this, for 
each value of saturation index h i, over the full 
range of possible dry radii, rxk  

 
Alg. A.21b.  Continuation of the discreet computation of the coefficients and time constants of the 

governing exponential expressions 
 

The solution matrix, Soli,k, gives the thermal resistances and capacitances of each 

section, plus the time constants and coefficients of the resulting exponential functions 

for each value of saturation index, hi at each value of rxk. Functions that accurately 

relate the time constants and coefficients as continuous functions of rx and h must now 

be derived. 

 

Extraction of the time constants as arrays with rows representing incremental steps in 

saturation index h (dry conditions, where h = 0 are constant) and columns representing 

incremental steps in critical radius from the layered solution matrix Soli,k is necessary to 

make the Mathcad polynomial regression function work. 

 

 

C3
i k,

Sol
i k,( )

5 3,
:= C4

i k,
Sol

i k,( )
5 4,

:= C5
i k,

Sol
i k,( )

5 5,
:=

D0
i k,

Sol
i k,( )

6 0,
:= D1

i k,
Sol

i k,( )
6 1,

:= D2
i k,

Sol
i k,( )

6 2,
:= D3

i k,
Sol

i k,( )
6 3,

:= D4
i k,

Sol
i k,( )

6 4,
:= D5

i k,
Sol

i k,( )
6 5,

:=

E0
i k,

Sol
i k,( )

7 0,
:= E1

i k,
Sol

i k,( )
7 1,

:= E2
i k,

Sol
i k,( )

7 2,
:= E3

i k,
Sol

i k,( )
7 3,

:= E4
i k,

Sol
i k,( )

7 4,
:= E5

i k,
Sol

i k,( )
7 5,

:=

F0
i k,

Sol
i k,( )

8 0,
:= F1

i k,
Sol

i k,( )
8 1,

:= F2
i k,

Sol
i k,( )

8 2,
:= F3

i k,
Sol

i k,( )
8 3,

:= F4
i k,

Sol
i k,( )

8 4,
:= F5

i k,
Sol

i k,( )
8 5,

:=

τ0i k, Sol
i k,( )

2 0,
:= τ1i k, Sol

i k,( )
2 1,

:= τ2i k, Sol
i k,( )

2 2,
:= τ3i k, Sol

i k,( )
2 3,

:= τ4i k, Sol
i k,( )

2 4,
:= τ5i k, Sol

i k,( )
2 5,

:=

A3
i k,

Sol
i k,( )

3 3,
:= A4

i k,
Sol

i k,( )
3 4,

:= A5
i k,

Sol
i k,( )

3 5,
:=

A0
i k,

Sol
i k,( )

3 0,
:= A1

i k,
Sol

i k,( )
3 1,

:= A2
i k,

Sol
i k,( )

3 2,
:=

B0
i k,

Sol
i k,( )

4 0,
:= B1

i k,
Sol

i k,( )
4 1,

:= B2
i k,

Sol
i k,( )

4 2,
:= B3

i k,
Sol

i k,( )
4 3,

:= B4
i k,

Sol
i k,( )

4 4,
:= B5

i k,
Sol

i k,( )
4 5,

:=

C0
i k,

Sol
i k,( )

5 0,
:= C1

i k,
Sol

i k,( )
5 1,

:= C2
i k,

Sol
i k,( )

5 2,
:=

 
Alg. A.22.  Extraction of the time constants and coefficients from the nested solution matrix 
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A.4 Generating continuous functions 
 

The regression subroutines, that determine the coefficients of polynomials that best fit 

the incremental data obtained in Soli,k, are rather cumbersome. The function 

regress(X,Y,k) generates a vector containing a kth order polynomial that best fits the Y to 

the X data. submatrix extracts the coefficients of the polynomial. 

 

A.4.1 h dependence for each incremental value of rx 
 

First, we find a 3
rd

 order polynomial to determine the dependence of the time constants 

and coefficients on moisture content (in terms of the saturation index, h) for each 

incremental value of the critical radius, the vector rxk. Only 2 of the 6 (corresponding to 

a 6-loop thermal circuit) subroutines are shown below. 
horder 3:= The routines below continue off the page to the right, up to (for 6 loops) sol_h5

k
... 

sol_h0
k

zτ regress h τ0
m〈 〉

, horder,( )←

τcoeffs submatrix zτ 3, length zτ( ) 1−, 0, 0,( )←

zA regress h A0
m〈 〉

, horder,( )←

Acoeffs submatrix zA 3, length zA( ) 1−, 0, 0,( )←

zB regress h B0
m〈 〉

, horder,( )←

Bcoeffs submatrix zB 3, length zB( ) 1−, 0, 0,( )←

zC regress h C0
m〈 〉

, horder,( )←

Ccoeffs submatrix zC 3, length zC( ) 1−, 0, 0,( )←

zD regress h D0
m〈 〉

, horder,( )←

Dcoeffs submatrix zD 3, length zD( ) 1−, 0, 0,( )←

zE regress h E0
m〈 〉

, horder,( )←

Ecoeffs submatrix zE 3, length zE( ) 1−, 0, 0,( )←

zF regress h F0
m〈 〉

, horder,( )←

Fcoeffs submatrix zF 3, length zF( ) 1−, 0, 0,( )←

m k∈for

τcoeffs Acoeffs Bcoeffs Ccoeffs Dcoeffs Ecoeffs Fcoeffs( )return

:= sol_h1
k

zτ regress h τ1
m〈 〉

, horder,( )←

τcoeffs submatrix zτ 3, length zτ( ) 1−, 0, 0,( )←

zA regress h A1
m〈 〉

, horder,( )←

Acoeffs submatrix zA 3, length zA( ) 1−, 0, 0,( )←

zB regress h B1
m〈 〉

, horder,( )←

Bcoeffs submatrix zB 3, length zB( ) 1−, 0, 0,( )←

zC regress h C1
m〈 〉

, horder,( )←

Ccoeffs submatrix zC 3, length zC( ) 1−, 0, 0,( )←

zD regress h D1
m〈 〉

, horder,( )←

Dcoeffs submatrix zD 3, length zD( ) 1−, 0, 0,( )←

zE regress h E1
m〈 〉

, horder,( )←

Ecoeffs submatrix zE 3, length zE( ) 1−, 0, 0,( )←

zF regress h F1
m〈 〉

, horder,( )←

Fcoeffs submatrix zF 3, length zF( ) 1−, 0, 0,( )←

m k∈for

τcoeffs Acoeffs Bcoeffs Ccoeffs Dcoeffs Ecoeffs Fcoeffs( )return

:=

 
Alg. A.23.  Generation of a 3

rd
 degree polynomial giving the saturation index dependence of all the 

coefficients and time constants for each discreet value of the critical radius 
 

So, sol_h0 to sol_h5, are nested vectors (one for each loop of the thermal circuit) with 

elements that correspond to each incremental value of the critical radius. Each element 

contains the coefficients of the horderth polynomial that determines the h dependence 

for each time constant and nodal coefficient. 

 

A.4.2 Polynomials for the rx dependence of the polynomial coefficients that model 

the h dependence 
 

A set of continuous functions that relate the change in these coefficients with critical 

radius must now be generated, note that the best fit is obtained if these functions are 

made step-wise continuous at each nodal radius. The order of each polynomial is limited 

to a maximum of 5 to prevent oscillation. 

 

Limiting the polynomial order for rx 

dependence to less than the 

calculated points...

rxorder jmax jmax 5≤if

5 otherwise

:=

kkk 0 rxorder..:=  
Alg.A.24. Order of the polynomials that will give the rx dependence 
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The following suffixes are set to subdivide the critical radius between the nodes, as the 

final functions will be stepwise continuous to the sharp change in direction as rx passes 

the nodal radii (see Figs. 5.3 to 5.5). 

 

kC

kD c←

break rx
c

rC≥if

c k∈for

c

:= kD

kD c←

break rx
c

rD≥if

c k∈for

c

:= kE

kE c←

break rx
c

rE≥if

c k∈for

c

:= kF

kF c←

break rx
c

rF≥if

c k∈for

c

:=

ii 0 horder..:=

E_F 0 kF kE−..:= F_env 0 kenv kF−..:=
e_C 0 kC..:= C_D 0 kD kC−..:= D_E 0 kE kD−..:=

rxe_C
e_C

rx
e_C

:= rxC_D
C_D

rx
kC C_D+

:= rxD_E
D_E

rx
kD D_E+

:= rxE_F
E_F

rx
kE E_F+

:= rxF_env
F_env

rx
kF F_env+

:=
 

Alg. A.25. Creating inter-nodal ranges for the critical-radius dependence 
 

And now some manipulations are required to get the data in a form that Mathcad’s 

regress function can cope with. The following is done for all loops (only the first 3 are 

shown) and for all environmental inter-nodal regions (only region re to rC is shown, 

designated by the subscript e_C. 

YFrxe_C2
e_C ii,

sol_h2
e_C( )

0 6,




ii 0,

:=YFrxe_C1
e_C ii,

sol_h1
e_C( )

0 6,




ii 0,

:=YFrxe_C0
e_C ii,

sol_h0
e_C( )

0 6,




ii 0,

:=

YErxe_C2
e_C ii,

sol_h2
e_C( )

0 5,




ii 0,

:=YErxe_C1
e_C ii,

sol_h1
e_C( )

0 5,




ii 0,

:=YErxe_C0
e_C ii,

sol_h0
e_C( )

0 5,




ii 0,

:=

YDrxe_C2
e_C ii,

sol_h2
e_C( )

0 4,




ii 0,

:=YDrxe_C1
e_C ii,

sol_h1
e_C( )

0 4,




ii 0,

:=YDrxe_C0
e_C ii,

sol_h0
e_C( )

0 4,




ii 0,

:=

YCrxe_C2
e_C ii,

sol_h2
e_C( )

0 3,




ii 0,

:=YCrxe_C1
e_C ii,

sol_h1
e_C( )

0 3,




ii 0,

:=YCrxe_C0
e_C ii,

sol_h0
e_C( )

0 3,




ii 0,

:=

YBrxe_C2
e_C ii,

sol_h2
e_C( )

0 2,




ii 0,

:=YBrxe_C1
e_C ii,

sol_h1
e_C( )

0 2,




ii 0,

:=YBrxe_C0
e_C ii,

sol_h0
e_C( )

0 2,




ii 0,

:=

YArxe_C2
e_C ii,

sol_h2
e_C( )

0 1,




ii 0,

:=YArxe_C1
e_C ii,

sol_h1
e_C( )

0 1,




ii 0,

:=YArxe_C0
e_C ii,

sol_h0
e_C( )

0 1,




ii 0,

:=

Yτrxe_C2 e_C ii, sol_h2
e_C( )

0 0,




ii 0,

:=Yτrxe_C1e_C ii, sol_h1
e_C( )

0 0,




ii 0,

:=Yτrxe_C0 e_C ii, sol_h0
e_C( )

0 0,




 ii 0,

:=

 
Alg. A.26. Grouping the polynomial coefficients that give the h dependence in each inter-nodal region 
 

Then the regress and submatrix functions are used again to provide polynomial 

coefficients that govern the rx dependence of the h-dependent polynomial coefficients!  

 

The subroutines for only the first two loops are shown below. 
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sole_C0
ii

zτ regress rxe_C Yτrxe_C0
m〈 〉

, rxorder,( )←

τcoeffs submatrix zτ 3, length zτ( ) 1−, 0, 0,( )←

zA regress rxe_C YArxe_C0
m〈 〉

, rxorder,( )←

Acoeffs submatrix zA 3, length zA( ) 1−, 0, 0,( )←

zB regress rxe_C YBrxe_C0
m〈 〉

, rxorder,( )←

Bcoeffs submatrix zB 3, length zB( ) 1−, 0, 0,( )←

zC regress rxe_C YCrxe_C0
m〈 〉

, rxorder,( )←

Ccoeffs submatrix zC 3, length zC( ) 1−, 0, 0,( )←

zD regress rxe_C YDrxe_C0
m〈 〉

, rxorder,( )←

Dcoeffs submatrix zD 3, length zD( ) 1−, 0, 0,( )←

zE regress rxe_C YErxe_C0
m〈 〉

, rxorder,( )←

Ecoeffs submatrix zE 3, length zE( ) 1−, 0, 0,( )←

zF regress rxe_C YFrxe_C0
m〈 〉

, rxorder,( )←

Fcoeffs submatrix zF 3, length zF( ) 1−, 0, 0,( )←

m ii∈for

τcoeffs Acoeffs Bcoeffs Ccoeffs Dcoeffs Ecoeffs Fcoeffs( )return

:= sole_C1
ii

zτ regress rxe_C Yτrxe_C1
m〈 〉

, rxorder,( )←

τcoeffs submatrix zτ 3, length zτ( ) 1−, 0, 0,( )←

zA regress rxe_C YArxe_C1
m〈 〉

, rxorder,( )←

Acoeffs submatrix zA 3, length zA( ) 1−, 0, 0,( )←

zB regress rxe_C YBrxe_C1
m〈 〉

, rxorder,( )←

Bcoeffs submatrix zB 3, length zB( ) 1−, 0, 0,( )←

zC regress rxe_C YCrxe_C1
m〈 〉

, rxorder,( )←

Ccoeffs submatrix zC 3, length zC( ) 1−, 0, 0,( )←

zD regress rxe_C YDrxe_C1
m〈 〉

, rxorder,( )←

Dcoeffs submatrix zD 3, length zD( ) 1−, 0, 0,( )←

zE regress rxe_C YErxe_C1
m〈 〉

, rxorder,( )←

Ecoeffs submatrix zE 3, length zE( ) 1−, 0, 0,( )←

zF regress rxe_C YFrxe_C1
m〈 〉

, rxorder,( )←

Fcoeffs submatrix zF 3, length zF( ) 1−, 0, 0,( )←

m ii∈for

τcoeffs Acoeffs Bcoeffs Ccoeffs Dcoeffs Ecoeffs Fcoeffs( )return

:=

 
Alg. A.27. Establishing the rx dependence of the h-dependent polynomial coefficients in each inter-nodal 

range 
 

The sets of coefficients are then separated and regrouped to provide the rx-dependent 

polynomial coefficients for each h-dependent polynomial coefficient for the time 

constant and each node for each loop of the thermal circuit. 

 

bτe_Ckkk ii, sole_C0
ii( )

0 0,




kkk

sole_C1
ii( )

0 0,




kkk

sole_C2
ii( )

0 0,




kkk

sole_C3
ii( )

0 0,




kkk

sole_C4
ii( )

0 0,




kkk

sole_C5
ii( )

0 0,




kkk







:=

bAe_C
kkk ii,

sole_C0
ii( )

0 1,




kkk

sole_C1
ii( )

0 1,




kkk

sole_C2
ii( )

0 1,




kkk

sole_C3
ii( )

0 1,




kkk

sole_C4
ii( )

0 1,




kkk

sole_C5
ii( )

0 1,




kkk







:=

bBe_C
kkk ii,

sole_C0
ii( )

0 2,




kkk

sole_C1
ii( )

0 2,




kkk

sole_C2
ii( )

0 2,




kkk

sole_C3
ii( )

0 2,




kkk

sole_C4
ii( )

0 2,




kkk

sole_C5
ii( )

0 2,




kkk







:=

bCe_C
kkk ii,

sole_C0
ii( )

0 3,




kkk

sole_C1
ii( )

0 3,




kkk

sole_C2
ii( )

0 3,




kkk

sole_C3
ii( )

0 3,




kkk

sole_C4
ii( )

0 3,




kkk

sole_C5
ii( )

0 3,




kkk







:=

bDe_C
kkk ii,

sole_C0
ii( )

0 4,




kkk

sole_C1
ii( )

0 4,




kkk

sole_C2
ii( )

0 4,




kkk

sole_C3
ii( )

0 4,




kkk

sole_C4
ii( )

0 4,




kkk

sole_C5
ii( )

0 4,




kkk







:=

bEe_C
kkk ii,

sole_C0
ii( )

0 5,




kkk

sole_C1
ii( )

0 5,




kkk

sole_C2
ii( )

0 5,




kkk

sole_C3
ii( )

0 5,




kkk

sole_C4
ii( )

0 5,




kkk

sole_C5
ii( )

0 5,




kkk







:=

bFe_C
kkk ii,

sole_C0
ii( )

0 6,




kkk

sole_C1
ii( )

0 6,




kkk

sole_C2
ii( )

0 6,




kkk

sole_C3
ii( )

0 6,




kkk

sole_C4
ii( )

0 6,




kkk

sole_C5
ii( )

0 6,




kkk







:=

 
Alg. A.28. Separating the rx coefficients in terms of nodal responses and collecting them in terms of loop 

number (this is done for each inter-nodal region) 
 

The last three boxes from the algorithm, Alg. A.26 to Alg. A.28, are then performed for 

the other inter-nodal regions, with subscripts C_D, D_E, E_F and F_env. 

 

A.4.3 Full time constant and coefficient functions with h and rx dependence 
 

The solutions from Alg. A.28 are then gathered together to turn the time constants and 

coefficients of the governing exponential equations (17) into h and rx dependent 

functions. 

 

Again, only the time constant for the first 2 loops and the corresponding coefficients for 

the first nodal response (conductor over ambient) are shown below in Alg. A.29. 
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A0 h rx,( )

0

horder

m 0

rxorder

o

bAe_C
o m,( )

0 0,
rx

o
⋅∑

=











h
m

⋅∑
=











rx rC≤if

0

horder

m 0

rxorder

o

bAC_D
o m,( )

0 0,
rx

o
⋅∑

=











h
m

⋅∑
=











rC rx< rD≤if

0

horder

m 0

rxorder

o

bAD_E
o m,( )

0 0,
rx

o
⋅∑

=











h
m

⋅∑
=











rD rx< rE≤if

0

horder

m 0

rxorder

o

bAE_F
o m,( )

0 0,
rx

o
⋅∑

=











h
m

⋅∑
=











rE rx< rF≤if

0

horder

m 0

rxorder

o

bAF_env
o m,( )

0 0,
rx

o
⋅∑

=











h
m

⋅∑
=











otherwise

:=
τ0 h rx,( )

0

horder

m 0

rxorder

o

bτe_Co m,( )
0 0,

rx
o

⋅∑
=











h
m

⋅∑
=











rx rC≤if

0

horder

m 0

rxorder

o

bτC_Do m,( )
0 0,

rx
o

⋅∑
=











h
m

⋅∑
=











rC rx< rD≤if

0

horder

m 0

rxorder

o

bτD_Eo m,( )
0 0,

rx
o

⋅∑
=











h
m

⋅∑
=











rD rx< rE≤if

0

horder

m 0

rxorder

o

bτE_F o m,( )
0 0,

rx
o

⋅∑
=











h
m

⋅∑
=











rE rx< rF≤if

0

horder

m 0

rxorder

o

bτF_env o m,( )
0 0,

rx
o

⋅∑
=











h
m

⋅∑
=











otherwise

:=

A1 h rx,( )

0

horder

m 0

rxorder

o

bAe_C
o m,( )

0 1,
rx

o
⋅∑

=











h
m

⋅∑
=











rx rC≤if

0

horder

m 0

rxorder

o

bAC_D
o m,( )

0 1,
rx

o
⋅∑

=











h
m

⋅∑
=











rC rx< rD≤if

0

horder

m 0

rxorder

o

bAD_E
o m,( )

0 1,
rx

o
⋅∑

=











h
m

⋅∑
=











rD rx< rE≤if

0

horder

m 0

rxorder

o

bAE_F
o m,( )

0 1,
rx

o
⋅∑

=











h
m

⋅∑
=











rE rx< rF≤if

0

horder

m 0

rxorder

o

bAF_env
o m,( )

0 1,
rx

o
⋅∑

=











h
m

⋅∑
=











otherwise

:=
τ1 h rx,( )

0

horder

m 0

rxorder

o

bτe_Co m,( )
0 1,

rx
o

⋅∑
=










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m

⋅∑
=











rx rC≤if

0

horder

m 0

rxorder

o

bτC_Do m,( )
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o

⋅∑
=
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
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
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
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=
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
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otherwise

:=

 
Alg. A.29. Stepwise continuous functions for all the time constants and coefficients of the governing 

exponential equations - with overall moisture content dependence in terms of a saturation index h and 

moisture migration dependence in terms of the critical radius rx. 
 

These, in turn, are gathered together to form function vectors for the all the time 

constants and nodal coefficients: 

 

τ h rx,( )

τ0 h rx,( )

τ1 h rx,( )

τ2 h rx,( )

τ3 h rx,( )

τ4 h rx,( )

τ5 h rx,( )



















:= A h rx,( )

A0 h rx,( )

A1 h rx,( )

A2 h rx,( )

A3 h rx,( )

A4 h rx,( )

A5 h rx,( )



















:= B h rx,( )

B0 h rx,( )

B1 h rx,( )

B2 h rx,( )

B3 h rx,( )

B4 h rx,( )

B5 h rx,( )



















:= C h rx,( )

C0 h rx,( )

C1 h rx,( )

C2 h rx,( )

C3 h rx,( )

C4 h rx,( )

C5 h rx,( )



















:=

D h rx,( )

D0 h rx,( )

D1 h rx,( )

D2 h rx,( )

D3 h rx,( )

D4 h rx,( )

D5 h rx,( )



















:= E h rx,( )

E0 h rx,( )

E1 h rx,( )

E2 h rx,( )

E3 h rx,( )

E4 h rx,( )

E5 h rx,( )



















:= F h rx,( )

F0 h rx,( )

F1 h rx,( )

F2 h rx,( )

F3 h rx,( )

F4 h rx,( )

F5 h rx,( )



















:=

 
Alg. A.30. Grouping the functions for each time constant and nodal response 
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This completes the preparatory analysis part of the algorithm and needs only to be 

performed once for each cable installation, in practice, the worst expected installation 

condition along a given cable route. The algorithm thus far, consisting of Algs. 7.2 – 

7.30, takes about 20 seconds for a computer with a 1000 MHz processor. The result is 

the complete thermal analysis of a cable installation in an inhomogeneous environment 

in terms of governing exponential equations that, in real-time form, model the two most 

troublesome non-linear phenomena encountered in cable temperature prediction, 

moisture migration and overall moisture variation. 

 

The remainder of the algorithm, which runs in real-time and is computationally much 

lighter, will now be presented. 

 

A.5 The real-time part of the algorithm 

 

The saturation index of the cable backfill needs to stipulated, or made a seasonal, 

groundwater depth or rainfall dependent function. The critical temperature rise above 

ambient for moisture migration should be set, but in reality is likely to be a function 

strongly dependent on the saturation index and slightly dependent on ambient 

temperature and heat flux. Ambient temperature can also be given a conservative 

seasonal dependence, see section 6.  

 distribution.
The nominal (wet) thermal resistivity and temperature 

above ambient for moisture migration: hwet 0.5:= ∆θx 20:=

θambient 20:= ρs hwet( ) 0.999= ρbf hwet( ) 0.643=  
Alg. A.31. Setting the prevailing (pre-moisture migration or 'wet') moisture conditions of the cable 

environment 
 

A steady-state function must be defined to locate rx assuming a steady-state temperature 

distribution. 
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:=

A steady-state 

algorithm to 

establish where the 

critical radius is 

tending to for given 

nodal temperatures 

and critical 

temperature:

 
Alg. A.32. Locating the position the critical isotherm would tend to if the present nodal temperatures were 

held indefinitely 
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Although not necessary, it will speed convergence if the algorithm is given a steady-

state initial condition that approximates the previous load history of the cable. 

 

To establish suitable initial conditions for the 

algorithm (so it converges more quickly), a 

hypothetical steady-state equivalent current should 

be stipulated, to generated suitable steady-state 

temperatures:

Iss 0:=

 
Alg. A.34. A suitable current to establish a temperature profile that approximates the loading prior to 

starting the algorithm – this speeds convergence 
 

This algorithm works in real-time and does not need any advance knowledge of the 

current but to test the algorithm alongside FEM simulations we must stipulate a load 

profile, in this case in the form of currents at 10 minute intervals, lasting 30 days. 

 

A suitable load profile should be then established...

Time vector... Current vector...

t
0

0

1

2

0

600

1200

:= I
0

0

1

2

700

700

700

:=

rows t( ) 4.321 10
3

×= u 0 rows t( ) 1−..:= v 1 rows t( ) 2−..:= θambu θambient:= θxu θambu ∆θx+:=
 

Alg. A.35. In the case of assessing the temperature response to a predetermined load profile for rating 

purposes, or for testing the algorithm (as is done in this thesis!), a suitable load profile should be 

established 
 

The initial conditions are now evaluated from the steady-state current supplied earlier, 

in this case 0 A, so the initial temperature rise is due to the dielectric losses. In fact, the 

routine for the transient implementation of the algorithm (intended for real-time use) in 

Alg. 7.37 also sets up these initial conditions, but I have left Alg. 7.36 as a separate 

routine for quick steady-state evaluation. 
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θAss θsheathss θBss θCss θDss θEss θFss rcrit0 λoneinit( ) θAss θamb0←

θBss θamb0←

θCss θamb0←

θDss θamb0←

θEss θamb0←

θFss θamb0←

rcrit0 re←

λone λ1←

rcrit0 re T4wet hwet( ) Wc Iss θAss,( ) 1 λone+( )⋅ Wd+ ⋅ ∆θx≤if

rx θAss θBss, θCss, θDss, θEss, θFss, θx0, θamb0,( )( ) otherwise

←

θAss θamb0 Wd 0.5 Ti⋅ Tj T4 rcrit0 hwet,( )+( )+[ ]⋅+

Wc Iss θAss,( ) Ti Tj T4 rcrit0 hwet,( )( )+[ ] 1 λone+( )⋅+ ⋅+

...





←

θsheathss θAss 0.5 Wd⋅ Wc Iss θAss,( )+( ) Ti⋅−←

θBss θAss Wd 0.5 Ti⋅ Tj+( )⋅ Wc Iss θAss,( ) Ti 1 λone+( ) Tj⋅+ ⋅+ −←

θCss θamb0 Wd 1 λone+( ) Wc Iss θAss,( )⋅+  T renv rC, rcrit0, hwet,( )⋅+←

θDss θamb0 Wd 1 λone+( ) Wc Iss θAss,( )⋅+  T renv rD, rcrit0, hwet,( )⋅+←

θEss θamb0 Wd 1 λone+( ) Wc Iss θAss,( )⋅+  T renv rE, rcrit0, hwet,( )⋅+←

θFss θamb0 Wd 1 λone+( ) Wc Iss θAss,( )⋅+  T renv rF, rcrit0, hwet,( )⋅+←

λone
Ws Iss θsheathss,( )

Wc Iss θAss,( )
←

θamb0 Wd 0.5 Ti⋅ Tj T4 rcrit0 hwet,( )+( )+[ ]⋅+

Wc Iss θAss,( ) Ti Tj T4 rcrit0 hwet,( )( )+[ ] 1 λone+( )⋅+ ⋅+

...





θAss− 0.0001≥





while

θAss θsheathss θBss θCss θDss θEss θFss rcrit0 λone( )

:=

θAss θsheathss θBss θCss θDss θEss θFss rcrit0 λoneinit( ) 20.446 20.391 20.37 20.323 20.275 20.183 20.092 0.042 0( )=  
Alg. A.36. Establishing suitable initial conditions to speed convergence once the algorithm is running in 

real time 
 

In order to make the final transient algorithm a little cleaner, a few more functions can 

be pre-defined. Alg. A.37 involves a rather unnecessary step, in that it turns the 

coefficients into per-unit expressions and then multiplies each part by the steady-state 

rise. This serves two purposes. Firstly, any overall error in the sum of the coefficients 

will be eliminated (if the polynomial approximations are inaccurate – they shouldn’t 

be!), and secondly, in section 9, where the algorithm was radically simplified, 

eliminating the hwet and rx dependency in the time constant and per-unit coefficient 

expressions is facilitated by the rather clumsy presentation below, because the shape-

affecting per-unit coefficient ratios (let’s call them the ‘shape’ functions) are kept 

separate from the steady-state targets. The temperature raising effect of dielectric losses 

is conservatively assumed to instantaneously achieve steady-state values and is thus 

considered separately (θAdiel(rcrit,h), etc.). They can be given a full transient treated if 

so desired, but that would ideally require a node in the middle of the cable insulation. 
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predefine some functions here

∆θAss n h, rcrit, I, θc, θs,( )
A h rcrit,( )

n

0

N

m

A h rcrit,( )
m∑

=

Wc I θc,( ) Ti⋅ Wc I θc,( ) Ws I θs,( )+( ) Tj T4 rcrit h,( )+( )⋅+ ⋅:=

θAdiel rcrit h,( ) Wd 0.5 Ti⋅ Tj+ T4 rcrit h,( )+( )⋅:=

∆θBss n h, rcrit, I, θc, θs,( )
B h rcrit,( )

n

0

N

m

B h rcrit,( )
m∑

=

Wc I θc,( ) Ws I θs,( )+( ) T4 rcrit h,( )( )⋅ ⋅:=

θBdiel rcrit h,( ) Wd Tj T4 rcrit h,( )+( )⋅:=

∆θCss n h, rcrit, I, θc, θs,( )
C h rcrit,( )

n

0

N

m

C h rcrit,( )
m∑

=

Wc I θc,( ) Ws I θs,( )+( ) T renv rC, rcrit0, h,( )( )⋅ ⋅:=

θCdiel rcrit h,( ) Wd T renv rC, rcrit0, h,( )( )⋅:=

∆θDss n h, rcrit, I, θc, θs,( )
D h rcrit,( )

n

0

N

m

D h rcrit,( )
m∑

=

Wc I θc,( ) Ws I θs,( )+( ) T renv rD, rcrit0, h,( )( )⋅ ⋅:=

θDdiel rcrit h,( ) Wd T renv rD, rcrit0, h,( )( )⋅:=

∆θEss n h, rcrit, I, θc, θs,( )
E h rcrit,( )

n

0

N

m

E h rcrit,( )
m∑

=

Wc I θc,( ) Ws I θs,( )+( ) T renv rE, rcrit0, h,( )( )⋅ ⋅:=

θEdiel rcrit h,( ) Wd T renv rE, rcrit0, h,( )( )⋅:=

∆θFss n h, rcrit, I, θc, θs,( )
F h rcrit,( )

n

0

N

m

F h rcrit,( )
m∑

=

Wc I θc,( ) Ws I θs,( )+( ) T renv rF, rcrit0, h,( )( )⋅ ⋅:=

θFdiel rcrit h,( ) Wd T renv rF, rcrit0, h,( )( )⋅:=  
Alg. A.37. Predefined functions for Alg. A.39 
 

One or two more preparative parameters are necessary. The time constant for 

controlling the movement of the critical radius during cooling, τmm,cooling, should be set 

very high in most cases, for example, 10
7
 seconds, but in the this thesis we have mainly 

compared the algorithm with FEM simulations that assume instant migration and 

moisture return, so we set the time constant accordingly. This would be extremely 

unwise in a typical (real) cable installation. 

 

The time constants for moisture migration: τmmheating 0.01:= τmmcooling 0.01:=

Initial conditions for the algorithm: Temp
0

θAss θBss θCss θDss θEss θFss( ):=
 

Alg. A.38. Time constants to slow down the movement of the critical radius for moisture migration 

during heating and cooling 

 

All the preparation is now complete for the real-time part of the algorithm, for three 

single- phase cables buried in a backfilled trench surrounded by native soil, allowing for 

moisture migration in a prescribed (but fully adjustable) overall moisture content 

setting. 
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∆θAn 0, ∆θAss n hwet, rcrit
0

, Iss, θAss, θsheathss,( )←

∆θBn 0, ∆θBss n hwet, rcrit
0

, Iss, θAss, θsheathss,( )←

∆θCn 0, ∆θCss n hwet, rcrit
0

, Iss, θAss, θsheathss,( )←

∆θDn 0, ∆θDss n hwet, rcrit
0

, Iss, θAss, θsheathss,( )←

∆θEn 0, ∆θEss n hwet, rcrit
0

, Iss, θAss, θsheathss,( )←

∆θFn 0, ∆θFss n hwet, rcrit
0

, Iss, θAss, θsheathss,( )←

n 0 N..∈for

∆θAn v, ∆θAn v 1−,
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
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
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−

−
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
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−
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∆θEn v, ∆θEn v 1−, ∆θEss n hwet, rcrit
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n 0 N..∈for

θAv θAdiel rcrit
v

hwet,( ) θambv+

0

N

n

∆θAn v,∑
=

+←

θBv θBdiel rcrit
v

hwet,( ) θambv+

0

N

n

∆θBn v,∑
=

+←

θCv θCdiel rcrit
v

hwet,( ) θambv+

0

N

n

∆θCn v,∑
=

+←

θDv θDdiel rcrit
v

hwet,( ) θambv+

0

N

n

∆θDn v,∑
=

+←

θEv θEdiel rcrit
v

hwet,( ) θambv+

0

N

n

∆θEn v,∑
=

+←

θFv θFdiel rcrit
v

hwet,( ) θambv+

0

N

n

∆θFn v,∑
=

+←

θAv θBv θCv θDv θEv θFv rcrit
v( )return

:=

 
Alg. A.39. The real-time part of the algorithm, designed to work online as a perpetual temperature 

indicator, but here giving the transient temperature response according to a predetermined load profile 
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And that’s it! Naturally the main application of this algorithm is to run in real-time, so 

the nodal temperatures and critical radius from the previous time step are used in each 

following calculation. Because the guiding principle is a hypothetical steady-state goal 

based on present conditions, the algorithm will not become unstable, even if the various 

assumptions and approximations may mean some error in the way the temperature 

moves towards the ever changing steady-state target. Robust, and computationally light 

– once the dependencies of the coefficients and time constants of the governing 

exponential expressions have been set up. 
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Appendix B  Miscellaneous derivations 
 

Proof of convergence 
 

The claim has been made in this work that the online algorithm can be set in motion 

without the need for highly accurate initial conditions. 

 

Equations (16) and (17) are derived in section 2.2.1 and are repeated here: 
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Equation (103) will converge towards the correct temperature rise if the error in 

subsequent iterations decreases, following an initial error ε in the first estimate.  

 

Let iterations based on the correct initial value for θm,n(t0) be θm,n(tI)corr, and iterations 

based on an incorrect initial value, Θm,n(t0)error = (1+ε)θm,n(t0), be Θm,n(tI)error. To make 

things a bit more manageable, let the time between measurements be ∆t and the 

exponential term for each node and loop be kτ_m,n(hwet,rx). The hypothetical steady-state 

temperatures that are driving the equation can be referred to as θm,n(∞). 
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With error, ε: 
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so 
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and 
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From (104) and (106), the error after the 1
st
 iteration is: 
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and from (105) and (107) the error after the second iteration is: 
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(109) 

For an initial error to disappear, the error in subsequent iterations, (109)-(108), must 

decrease, i.e., 
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which it must! 

 

 

The equivalent 3-phase radius of a multi cable heat source 
 

This radius is calculated by equating the thermal resistance of a hypothetical heat source 

with radius Re to 1/3 (in the case of 3 phases with identical losses) of the single-phase 

external thermal resistance used in our modelling.  

 

i.e.,  
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 (110) 

We defined a conversion factor kconv in Chapter 3 that relates the effective thermal 

resistance of a single cable in its installed environment, T4, to the thermal resistance the 

cable would have on its own. 

 

Rewriting (21) 
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Combining (110) and (21) to eliminate T4 yields (27): 
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Appendix C Miscellaneous philosophy 
 

A note on the use of the first person  
 

I don’t use ‘I’ in some self-important sense but rather to stress the vulnerability and 

partiality of the author of this work. There seem to be two strands of thought regarding 

scientific writing. From the linguistic side it is felt that scientific authors should give up 

the ‘false modesty’
27

 of the passive and put themselves in the equation, but from the 

scientific community, it feels rather self-flaunting to put our own ego into the published 

work. Quite frankly, I have never felt myself to be fully part of any community, perhaps 

preferring to stand a little on the side. Thus the conventions of any particular 

community do not particularly bother me insofar as my ignorance does not cross the 

threshold of excessive offence, but I do wish to dwell briefly on the nature of the first 

person, to clarify my lack of clarity in this regard. 

 

There are doubtless some readers of this work who adhere to a creationist belief system, 

i.e., that some primal power has created everything or takes a guiding hand in the 

unfolding of life. If ‘in the beginning’ there was God, it is difficult to see where ‘I’ am 

in such a world view other than as some kind of instrument.  

 

I’m not sure if there is an official atheist explanation of life, but if we are the product of 

a random evolutionary process, a survival of the fittest (and if we can’t turn ourselves 

inside out, it would seem that the traits that have lead to our brief period of seeming 

dominance will lead to our undoing), our existence is due to some blind combination of 

causative processing, and I don’t see where ‘I’ am, other than a highly evolved 

combination of conditioned reflexes. 

 

If your view tends to pantheism, then I doubt whether being ‘of God’ gives our 

existence much sense of I-ness, other than as some kind of distinguishable organ or 

appendage ‘of God’.  

 

I tend to think, although hypocritically fail to practise, the notion that ‘I’ and by 

extension ‘we’ constitute an individual or collective apparency that is a handy (not to 

mention miraculous) convenience, just as countries are a legislative convenience that 

shouldn’t be taken too seriously – but should nevertheless be regarded with a great 

sense of awe... 

 

 

 

 

 

 

 

 

 

                                                
27

 I trust this sentiment accords with the advice given in Day (1989), which refers to the use of the passive 

as ‘false modesty’ on the part of scientific authors. 
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