The doctoral dissertations of the former Helsinki University of Technology (TKK) and Aalto University Schools of Technology (CHEM, ELEC, ENG, SCI) published in electronic format are available in the electronic publications archive of Aalto University - Aaltodoc.
|
|
|
Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Department of Computer Science and Engineering for public examination and debate in Auditorium T2 at Helsinki University of Technology (Espoo, Finland) on the 3rd of November, 2006, at 12 o'clock noon.
Overview in PDF format (ISBN 951-22-8425-1) [5570 KB]
Dissertation is also available in print (ISBN 951-22-8424-3)
Latent variable models are useful tools for statistical data analysis in many applications. Examples of popular models include factor analysis, state-space models and independent component analysis. These types of models can be used for solving the source separation problem in which the latent variables should have a meaningful interpretation and represent the actual sources generating data. Source separation methods is the main focus of this work.
Bayesian statistical theory provides a principled way to learn latent variable models and therefore to solve the source separation problem. The first part of this work studies variational Bayesian methods and their application to different latent variable models. The properties of variational Bayesian methods are investigated both theoretically and experimentally using linear source separation models. A new nonlinear factor analysis model which restricts the generative mapping to the practically important case of post-nonlinear mixtures is presented. The variational Bayesian approach to learning nonlinear state-space models is studied as well. This method is applied to the practical problem of detecting changes in the dynamics of complex nonlinear processes.
The main drawback of Bayesian methods is their high computational burden. This complicates their use for exploratory data analysis in which observed data regularities often suggest what kind of models could be tried. Therefore, the second part of this work proposes several faster source separation algorithms implemented in a common algorithmic framework. The proposed approaches separate the sources by analyzing their spectral contents, decoupling their dynamic models or by optimizing their prominent variance structures. These algorithms are applied to spatio-temporal datasets containing global climate measurements from a long period of time.
This thesis consists of an overview and of the following 9 publications:
Keywords: Bayesian learning, blind source separation, global climate, denoising source separation, frequency-based separation, independent component analysis, independent subspace analysis, latent variable models, nonstationarity of variance, post-nonlinear mixing, unsupervised learning, variational methods
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
© 2006 Helsinki University of Technology