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1. Introduction

Recently several methods for variational Bayesian learning of linear independent
component analysis (ICA) models and their extensions have been reported in the
literature [1-8]. The basic idea in these approaches is to approximate the true pos-
terior probability density of the unknown variables by a function which has a
restricted form. Typically some type of factorisation is assumed.

In this paper, we study how the choice of the form of posterior approximation
affects the solution which is found by variational Bayesian learning of linear ICA
models. We investigate in detail two common cases: (1) sources are approximated
to be independent a posteriori; and (2) the posterior correlations of the sources
are modelled. Note that although ICA models assume sources to be independent
a priori, the sources still typically have posterior correlations.

We show that neglecting the posterior correlations of the sources introduces a
bias in favour of principal component analysis (PCA) solution. By the PCA solu-
tion we mean the solution where the mixing vectors, columns of mixing matrix A,
are orthogonal with respect to the inverse of the estimated noise covariance X,
that is ATZ 1A is a diagonal matrix. The preliminary results of this study were
reported in [9].

* Corresponding author.
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The rest of the paper is organised as follows. In Section 2, we briefly introduce
variational Bayesian learning. Section 3 discusses the linear dynamic model whose
learning we analyse theoretically in Section 4 and experimentally in Section 5. Sec-
tion 6 extends the analysis to non-Gaussian source models and the implications of
the analysis are discussed in Section 7.

2. Variational Bayesian Learning

Variational Bayesian learning techniques are based on approximating the true pos-
terior probability density of the unknown variables of the model by a function
with a restricted form. Currently the most common technique is ensemble learning
where Kullback—Leibler divergence measures the misfit between the approximation
and the true posterior. It has been applied to ICA and its extensions as well as to
several other types of models (e.g. [10,11]).

In ensemble learning, the posterior approximation ¢(#) of the unknown vari-
ables @ is required to have a suitably factorial form

a@®)=]Ta®), @)

where 0; are the subsets of unknown variables. In ICA, at least the sources S={s(¢)|7}
are assumed independent a posteriori of the mixing matrix A and other parameters:

q(0)=q(S)q(A)q(Orest). 2

Here, 0. are, for instance, variance parameters of the observation noise and var-
ious hyperparameters. Given the observed data X—={x(¢)|t}, the misfit between the
true posterior p(f# | X) and its approximation ¢(6) is measured by Kullback-Lei-
bler divergence which yields a cost function of the form

C=D(q0) ] p@ | X)) —log p(X) > —log p(X).

The extra term — log p(X) is included to the cost function in order to avoid cal-
culation of the model constant p(X)=/ p(X, #)d6. Thus, the minimised expression
can be written in the following form:

C — <10g Q(Sv A’ 0rest) >
p(Xv Sv A7 0rest)
=(logq(S, A, Orest)) — (log p(X, S, A, Orest)),

A3)

where (-) denotes the expectation over distribution ¢(6).
The overall probability p(X,S, A, 0st) usually has a simple factorial form, for
example

pX | 0)p@1|602)...pON_1 | 0N)PON) 4)

and therefore the cost function (3) splits into a sum of simple terms
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N N—1
C=Y (logq(#:)) — (log p(X|01)) — Y _ (log p(610;41)) — (log p(O)). (5)
i=1 i=1
During learning, the factors ¢(@;) are typically updated one at a time while
keeping others fixed. For each update of the posterior approximation ¢(#;), only
the terms with the prior distribution p(6;|6;+;) and the likelihood p(6;_1]6;) are
relevant. The part of the Kullback-Leibler divergence to be minimised is then

(6)

0;
C<q(oi)>=<log 9:) >

p0;-110;)p0;160;1+1)

In ensemble learning, conjugate priors are commonly used because they make it
very easy to solve the variational minimisation problem of finding the optimal
¢(8;), which minimises (6).

3. ICA Model with Temporally Correlated Sources

Linear source models assume the observations to have been generated by sources
which are mapped linearly to the observations. The model is

x(1) =As(?) +n(t), (7)

where n(¢) is additive Gaussian noise (sometimes omitted). It is well known that
this model has rotational degeneracy if the sources s(#) have a static Gaussian
model (see, e.g., [12] for introduction). We can choose any invertible C and gener-
ate a new solution A’ = AC and s/(r) =C~!s(¢). The sources still remain Gaussian.

In PCA the degeneracy is removed by requiring the mixing vectors (columns of
A) to be orthogonal. In ICA, the degeneracy can be removed — up to scaling and
permutation — by assuming non-Gaussian sources or, for example, by introducing
a diagonal matrix B to model the dynamics:

s(t)=Bs(t—1)+m(z), 8)

where m(¢) is Gaussian noise. In the latter case, only second-order statistics of the
observations are needed [13-15]. The rotation is identifiable if no two elements of
the diagonal of B are equal. A set of equal elements results in rotational degener-
acy among the corresponding set of sources.

In our analysis, we use the linear dynamic model whose learning is based on
second-order statistics. The posterior distribution of the sources given a fixed mix-
ing matrix is Gaussian which makes the analysis simple. In Section 6, the analysis
is extended to non-Gaussian distributions. The overall behaviour will be the same
in more complicated cases as well.
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4. Effect of Posterior Approximation: Theory

In this section, we analyse theoretically how the choice of the posterior approx-
imation form for the sources and the mixing matrix affects the solution which
optimises the cost function (3).

First, recall that the idea of the variational approach is to approximate the very
complex posterior p(#]X) by a simpler and thus tractable parametrised distribution
q(0).

Due to its simplicity, the posterior approximation cannot represent all the differ-
ent solutions of the model. In order to represent all the degeneracies and permu-
tations, all (non linear) correlations of the variables would need to be modelled
but this would not be feasible computationally. Instead, the approximation cap-
tures a neighbourhood of one particular solution. Each term ¢(6;) captures the
correlations between the variables in the set 6; while all posterior correlations with
the variables in other sets @ ; are neglected. In ICA this means that the rotational
dependency between the mixing matrix A and the sources S is neglected. Only the
neighbourhood of one particular mixing matrix is modelled but not the fact that
rotating A could be compensated by rotating S correspondingly. Consequently, the
uncertainty in the mixing matrix and sources is underestimated. This holds true for
all the variational ICA methods cited in this paper.

4.1. TRADE-OFF BETWEEN POSTERIOR MASS AND POSTERIOR MISFIT

The topic of this paper is the effect which the form of ¢(f#) has on the solu-
tion. Ideally the solution should correspond to a model whose neighbourhood con-
tains a large portion of the posterior probability mass. In our case this is fulfilled
if: (1) the sources and the mixing matrix together explain the observations well;
and (2) the source dynamics explains the sources well. In other words, the noise
covariances of n(z) and m(¢) should be small. In addition, (3) the solution should
be robust. Requirements (1) and (2) imply a high posterior density and guaran-
tees that the solution corresponds to a wide peak in the posterior density. Together
these indicate a high probability mass in the neighbourhood of the solution.

Ensemble learning has gained popularity because it is able to find a solution
which meets these three requirements. However, the restricted form of the poster-
ior approximation ¢ (@) results in two additional requirements: (4) the posterior
approximation ¢(S) of the sources; and (5) the posterior approximation g(A) of
the mixing matrix should match the posterior around the solution. In our case the
posterior misfit of the rest of the parameters 6 is not significant in practice but
the choice of the functional form of ¢(S) in particular and g(A) to a lesser extent
affects the optimal solution.

In general, there is a trade-off between the amount of posterior mass in the
neighbourhood of the solution (requirements (1)—(3)) and the misfit between the
approximation and true local probability distribution (requirements (4) and (5)).
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Usually it is desirable that the requirements (4) and (5) affect the solution as lit-
tle as possible although sometimes it is possible to use them to select an appro-
priate solution among otherwise degenerate solutions (in [8], source separation is
achieved by means of requirement (4) and a proper choice of ¢(S)).

4.2. FACTORIAL q(S) FAVOURS ORTHOGONAL MIXING VECTORS

Majority of the applications of ensemble learning to ICA models reported in the
literature have assumed a fully factorised ¢(S):

qS)=[Jai@). ©)
it
This results in a computationally efficient learning algorithm but we will show that
it favours orthogonal mixing vectors, a characteristic of the PCA solution.
First, we note that with the static ICA model (7) under the restriction (2) the
optimal ¢(S) which minimises (3) can be shown (see, e.g., [6]) to factor into

N
aS)=[Jas. (10)
t=1
Further, the optimal ¢ (s()) can be shown [16] to be Gaussian distributions. Except
for the first g(s(1)) and last g(s(N)), each of them has the same covariance

Ssopt=ATS 1A+ 1 +B 2, 1B) !, (11)

where ¥, and X¥,, are the noise covariances of n(r) and m(z), respectively.! Note
that the optimal posterior covariance of the sources does not depend directly on
the data. This is a characteristic of linear Gaussian models.

The misfit between the factorial approximation (9) and the optimal unrestricted
¢(S) is minimised when the optimal ¢(S) agrees with (9). This is the case when
the optimal covariance matrix X op¢ is diagonal. This, in turn, happens if and only
if the columns of A are orthogonal w.r.t. the inverse noise covariance X !. Since
ensemble learning is trying to minimise the misfit, it favours orthogonal solutions
for A.

Figure 1 illustrates the trade-off between the misfit of the posterior approxima-
tion of the sources and the accuracy of the model. Let us assume that the data
were generated by a process which can be accurately modelled by (7) and (8). Fur-
ther assume that there are two sources and the mixing vectors, columns of A, are
not orthogonal. The optimal posterior covariance of the sources could then look
like the ones in the upper plot of Figure 1. In the PCA solution, the posterior
covariance would be diagonal and the assumption (9) would be valid. The cost
of inaccurate assumption would increase towards the ICA solution as shown with
dashed line on the second plot of Figure 1.

IThe full form of ¢(s(r)) for all ¢ is given in Appendix A.2.
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The form of the true posterior p(s(t) | A, x(t))
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Figure 1. Schematic illustration of the trade-offs between the ICA and PCA solutions. In the PCA solu-
tion, the posterior covariance of the sources is diagonal. This minimises the misfit between the optimal
posterior and its approximation. However, the sources are explained better in the ICA solution.

According to our assumption, the sources can be accurately modelled in the
ICA solution. If the source space is rotated by S’ = CS and this is compensated
by

B =CBC', (12)

a model with diagonal B may no longer be able to capture resulting new dynam-
ics B'. In our two-dimensional case b, = b; yields a diagonal B'=B but b, # b;
will in general result in off-diagonal terms in B’. The further b, is away from by,
the stronger these off-diagonal terms are and the worse the diagonal matrix B can
model the dynamics. This is depicted with solid lines in Figure 1.

This analysis suggests that the optimal solution is a result of a trade-off between
the ICA solution where the explanation of the sources is best and the PCA solu-
tion where the posterior approximation of the sources is most accurate. If the mix-
ing vectors are close to orthogonal and the source model is strongly in favour of
the ICA solution, the optimal solution can be expected to be close to the ICA
solution and vice versa. If the observation noise is not very high, we can expect
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that the explanation of the observations is not compromised. In other words, lin-

ear transformations of A are appropriately compensated by linear transformations
of S.

4.3. FACTORIAL ¢(A) FAVOURS ORTHOGONAL SOURCES

Rewriting (7) in the matrix form
X =AS +noise (13)

shows that the matrices A and S appear symmetrically in the model. Consequently,
the optimal posterior under the assumption ¢(A) =[]; ¢(A;.) (where A;. are the
rows of the mixing matrix) is achieved by Gaussian densities whose covariance
resembles (11):

-1

N
EAi,:»Opt:<Zs(t)sT(t)/Erz,i,i +E;1> , (14)

=1

where 2;1 is the covariance of the Gaussian prior of A; ..

Often the dimension of the data vectors is much smaller than the number of
them. This means that there are far fewer elements in A than in S and conse-
quently the posterior approximation g(A) does not play a significant role. How-
ever, if the evidence in support of the ICA solution is weak (b; ~ by) and the
posterior of the sources is allowed to have full covariance, a factorial posterior
approximation g(A;.) =[] ;4(Ai j) can change the balance in favour of the PCA

solution. This is because (14) has the term <Zf\’:1 s(t)s” (r)) which is non-diagonal
if the posterior covariance of the sources is non-diagonal. This in turn is the case
when the columns of the mixing matrix A are non-orthogonal as discussed earlier.

5. Effect of Posterior Approximation: Experiments

In this section, the trade-off between the ICA and PCA solutions is studied exper-
imentally. We use the linear dynamic model defined by (7) and (8). The model and
learning rules are summarised in Appendix A. The data set consists of 10-dimen-
sional observation vectors which were generated by a linear mapping from two
sources. The number of samples was 1000.

The element of the diagonal of the matrix B corresponding to the first source
was chosen to be b =0.8 while the other element b, was varied in the range [-0.8,
0.8]. This controls the strength of evidence in favour of the ICA solution present
in the data.

Figure 2 shows the original sources and their linear mixture in the subspace
defined by the 10 x 2 mixing matrix A. Note that the ICA directions correspond-
ing to the columns of the mixing matrix are chosen to be non-orthogonal and for
clarity they differ very much from the PCA directions plotted in the same figure.
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Figure 2. The two sources with the linear dynamic model (b} =0.8 and by =—0.8) and their noisy mix-
ture plotted in the subspace spanned by the columns of the mixing matrix. The PCA and ICA directions
are also shown on the last plot.

5.1.  FACTORIAL APPROXIMATION ¢ (8(t))

We first use the generated artificial data to test the learning procedure with the
maximally factorial posterior approximation ¢(S) defined by (9).

The model was implemented using the building blocks software [17] based on
the learning rules presented in [18]. Then it was learned using 2000 iterations of
alternate updates of the parameters of the approximate posterior ¢(@).

Figure 3 shows the results of learning for four different data sets with b1 =0.8
and by €{0.8, 0.6, —0.2, —0.8}. The solution is presented by the estimated columns
of the mixing matrix projected onto the subspace spanned by the true ICA direc-
tions. In the experiments, we tried different initialisations of A including the PCA
and ICA solutions but the simulations converged to the same solutions for all
initialisations.

Analysing the results, we see that (1) when the sources have the same dynamics
(b =0.8), the PCA solution is found; (2) when the dynamics of the sources differs
a lot (b = —0.8), the solution is very close to the ICA directions; and (3) when
the difference in dynamics is somewhere in between the two extreme cases (e.g.,
b, =0.6 or by =—0.2), the found solution lies between PCA and ICA: The more
different the source dynamics, the closer the solution is to ICA. The results show
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by =0.8 b, =0.6

Figure 3. ICA model with temporally correlated sources. The results achieved with the factorial g (s(z))
for four data sets with b, €{0.8, 0.6, —0.2, —0.8}. The solution is presented by the estimated columns of
A projected onto the subspace of the true A. The model was initialised with PCA. The dotted lines rep-
resent the solution after every 100 iterations. The final solution is circled. The intervals between the ticks
on all axes are equal, the scale is arbitrary due to the scaling indeterminacy.

that the quality of the solution found with the maximally factorial approximation
depends very much on the training data and how well they support the assumed
ICA model.

5.2. UNRESTRICTED APPROXIMATION ¢ (s(t))

We performed the same simulations with the unrestricted ¢(s(z)) which yields
Gaussian distributions with a full covariance matrix. The rest of the model param-
eters # are modelled with the maximally factorial approximation as previously. The
learning rules for the model are presented in Appendix A.2 and the sofware imple-
mentation is available on-line [19].

Figure 4 presents the solutions obtained with the full covariance of the source
posterior. The results clearly show that the performance of the learning procedure
was significantly improved as compared with the case of factorial approximation:
The ICA solution is found except for the case where by =b;. In that case, the
model converged to the PCA solution despite initialisation in the ICA solution.

Note that the similarity of the source dynamics makes the separation problem
more difficult. If the autocorrelation coefficients are just slightly different, it is pos-
sible to find the ICA directions but the rotation of the solution is much slower.

If the dynamics of the sources is equal (i.e. by = b»), the separation problem
becomes ill-posed: Any direction in the observation space has similar dynamic
properties and none of them is preferred unless some extra assumptions are made.
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Figure 4. ICA model with temporally correlated sources. The results achieved with the unrestricted
q(s(t)) for the same data sets as in Figure 3. The current estimates of the columns of A are plotted
after every 100 iterations for b, =—0.2, —0.8, every 1000 iterations for b, =0.6 and every 5000 iterations
for b, =0.8, the intervals between the ticks on all axes are equal. The rotation of the solution is much
slower in the case when the souce dynamics is just slightly different (b =0.8, by =0.6).

In the presented experiments, the rotation in this case is defined by the facto-
rial form of g(A) which yields the principal component solution as explained in
Section 4.3.

6. Non-Gaussian Source Models

In Sections 3-5, the rotational invariance was removed by introducing linear
dynamics with diagonal matrix B. A more common way to fix the rotation is to
model the sources by a non-Gaussian distribution. In this section, we extend the
analysis to the case of non-Gaussian source models. We consider two different
non-Gaussian models: a simple model for super-Gaussian sources and the most
commonly used mixture-of-Gaussians (MoG) model.

6.1. SUPER-GAUSSIAN SOURCE MODEL

If the distribution of the sources is known to be symmetric and super-Gaussian
(which corresponds to positive kurtosis), an easy way to model the source distri-
bution is using a Gaussian distribution

5 ()~ N(s; (|0, 07 (1)) (15)
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v=0.6 v=0.7

v=09 v=1

Figure 5. The noisy linear mixtures of two super-Gaussian sources for different values of the variance
parameter v. The samples are plotted in the subspace spanned by the columns of the mixing matrix.
The PCA and ICA directions are also shown on the plots.

with zero mean and variance a].z(t) changing with time (see examples of sources
generated according to this model in Figure 5). We model the changing variance
ajz(t) using a variance node, another time-dependent Gaussian variable u ;(¢) [20],
which yields the density model presented in Appendix B.1.

For this ICA model, the optimal unrestricted posterior approximation ¢ (s(t))
can be shown to be Gaussian with the covaraince of a form similar to (11):

T 51 -1\t
Sn.op=(ATS A+ 07

where X,,(¢) is the time-dependent diagonal covariance of the source prior. And
again, the expectation (s(t)sT (t)) appears in the optimal covariance for g(A; ) just
as in (14). Therefore, the same effect of the posterior approximation is expected for
this source model as well.

We studied this model experimentally on 10-dimensional mixtures of two super-
Gaussian sources generated according to the Gaussian model (15) with the chang-
ing variance

of)y=e D uj(t)~N(©, Q). (16)



194 ALEXANDER ILIN AND HARRI VALPOLA

The variance parameter v was varied over the range [0.6, 1] in order to control
the non-Gaussianity of the generated sources and, therefore, the strength of evi-
dence in support of the ICA solution present in the data (see Figure 5). The same
mixing matrix A as in Section 5 was used.

The model with the factorial approximation ¢(s(¢)) was implemented using the
building blocks software [17] based on the learning rules presented in [18]. The
results of the simulations for two different initialisations are presented in Figure 6.
The same effect clearly appears in this model as well. An interesting result of these
experiments is the existence of two local minima for mediate v: one with nearly
orthogonal mixing vectors (and close to PCA for small values of v) and the other
one close to ICA.

The model with the unrestricted g(s(z)) was implemented using Matlab [19]
based on the learning rules presented in Appendix B.2. In the experiments with
the unrestricted ¢(s(t)), the correct ICA solution was found for all the four data
sets (the results are not presented here).

6.2. MIXTURE-OF-GAUSSIANS MODEL FOR SOURCES

We now study the same effect of the posterior approximation for the MoG source
model which is most commonly used in variational Bayesian ICA [1-6]

The optimal unrestricted posterior g(s(z)) for this model would be a mixture
of Gaussians, typically with a large number of mixture components: Whereas the
prior mixture p(s(z)) can be expressed as a product of simple mixtures p(s;(t))
with K; components each, modelling posterior correlations means that each and
every multivariate Gaussian has to be modelled separately in the posterior. There-
fore, the optimal source posterior is

Gopt (8(1))= ZCI(X(I) =M)q(s(DIA (1) =1),
x

=Y g =MN (SO)|is)a- Zsa) - (17)
A

where A is a vector whose components A; €{l,..., K;} define the Gaussians cho-

sen for sources s;. There are []; K; choices for A and therefore the source pos-

Km

i and

. . . . K|
terior is a mixture of []; K; Gaussians. The sum }_, means } ;|-
the covariance matrices of the mixture components are as follows:

Tsa=ATSTA+x,07" (18)

Here, X,, ) is the diagonal covariance of the conditional source prior p(s(?)|A(t) =
A). Note that the mixture covariances X are same for all s(z).

As follows from (18), using the factorial approximation g(s(¢)|A(t) = A) =
I 7a(sj@OIA)=1) yields the same orthogonalising effect for the mixing matrix A
as in the models already considered in this article.
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v=0.6 v=0.7

T T T T T T T T

(b) Initialisation in ICA

Figure 6. ICA with the super-Gaussian source model and the factorial g(s(¢)). The track of the columns
of A during learning for four data sets with v €{0.6,0.7, 0.9, 1.0}. The current estimates of the columns
of A are plotted after every 5000 iterations for the PCA initialisation and every 10000 iterations for the
ICA initialisation. The final solution is circled. The intervals between the ticks on all axes are equal.
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The approach proposed in [3] uses a simpler (and therefore coarser) approxima-
tion of the cost function (4). The MoG prior p(s;(t)) for every source sample is
approximated by only one Gaussian whose parameters are calculated using a set of
coefficients 1, jx; (see the description of this model in Appendix C). This yields a
Gaussian posterior ¢(s(z)) whose optimal full covariance is

-1

Ts—1 : K -2
ES(t),01ot=<A ¥, A+ diag ijj:l)ht’ﬁkjo—j,kj > (19)
where 01.2 K is the variance of the k; mixture component in the prior for s;. The

covariance X opt 1S again similar to (11), and becomes diagonal if and only if
A has orthogonal columns w.r.t. the inverse noise covariance X, !. And, of course,
the same optimal g (A;.) like in (14) appears in the MoG models as well.

In the experiments with the MoG model for the sources, we used 10-dimensional
mixtures of two super-Gaussian sources generated according to (15) and (16) with
the parameter v varying over the range [0.6, 1.2].

The simpler models with the Gaussian ¢(s(¢)) and covariance (19) were imple-
mented in Matlab [19] according to the learning rules presented in Appendix C.2.
The fully factorial MoG posterior (17) was implemented using the building blocks
presented in [18] and the MoG block presented in [21]. The number of mixture
components for each of the two sources was set to three in all experiments.

Figure 7 shows the simulation results achieved with the factorial Gaussian
q(s(1)): The same orthogonalising effect is clearly demonstrated experimentally.
Note that these results are very similar to the ones presented in Section 6.1 for
the super-Gaussian source model (see Figure 6 for comparison). Qualitatively same
results were obtained with the factorial MoG ¢(s(¢)) as well.

The experiments also showed that modelling the posterior correlations in g (s(t))
helps remove the orthogonalising effect: In the case of the Gaussian ¢(s(r)) with
the full covariance matrix (19) the correct ICA solution was found for all the four
data sets.

7. Discussion

As we have seen, the form of the posterior approximation can strongly affect the
result found by ensemble learning. We based the analysis on linear models with
either temporally correlated or non-Gaussian sources for the sake of simplicity.
The situation is slightly more complicated with nonlinear mixtures because then
the optimal posterior form is not Gaussian and even if it is restricted to be Gauss-
ian, the posterior covariance of the sources depends on the data and is not the
same for all ¢(s(z)).
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v=0.6 v=0.7
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(b) Initialisation in ICA

Figure 7. ICA with the MoG source model and the factorial g(s(¢)). The track of the columns of A
during learning for four data sets with v €{0.6,0.7, 1.0, 1.2}. The current estimates of the columns of A
are plotted after every 2000 iterations for the PCA initialisation and every 1000 iterations for the ICA
initialisation. The final solution is circled. The intervals between the ticks on all axes are equal.
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However, the overall results of the analysis apply to nonlinear cases as well. In
nonlinear mixtures, the situation can be approximated by a time-dependent A(t) if
the nonlinear mixture is smooth. Moreover, nonlinear models which are based on
multi-layer linear feed-forward mappings with element-wise nonlinearities have sim-
ilar properties as linear models since the first linear mapping from sources to non-
linear nodes can compensate linear transformations of the source space.

To conclude, we do not claim that fully factorised posterior approximations are
not useful. After all, we have applied them successfully ourselves. However, one
has to be careful. If the mixing matrix cannot be made more orthogonal e.g. by
pre-whitening, it is possible to end up close to the PCA solution even though the
model should be able to judge the ICA solution to be better. Improving the pos-
terior approximation will help in those situations (see, e.g., [22]) but the price to
pay is increased computational cost.
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Appendix A. ICA with Temporally Correlated Sources
A.l. THE DENSITY MODEL

The simple ICA model considered in Section 5:

(X, 0)=p(X[S, A, Orest) p(S|0rest) p(A) p (O rest)

Here, we use the following notation: m is the number of sources; n is the number
of observations; N is the number of samples in the data set; «;, 8;, y, o are some
constants; diag(v) denotes a diagonal matrix with the elements of vector v on its
main diagonal; and the exponential function e~V is applied component-wise to the
elements of its vector argument v.

The prior model of the sources and the likelihood:

N
PSI0res) =N (D0, Zyn)) [ [N @) Bs(t = 1), Zyn),

=2

N
PXIS, A, Ores) = [ [N (x(DAs(1), Z0),

=1

where X, =diag(o), X, =diag(e™"), X, =diag(e "*).
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The prior for the (hyper)parameters A, 6 es:

p(A)=ﬁﬁN(aij|o,a;1),

i=1j=1

p® =T (50.5,").

j=1

n
POlmy,, vo) =] [N (ve.ilmo,, e7"),

i=l1

m
p(Vs |mvx’ vvs) = HN (vs,j |mvs , e_vv") s

j=1
My, Uy, s My, Uy, ~N (0, p).

A.2. THE LEARNING RULES

The parameters of g(vy), g(vs), g(my,), q(vy,), g(my,), q(vy,) and factorial g(s;) are
updated using the rules presented in [18]. The only difference is calculating the var-
iance f; of the function f; =A; s when updating g (v, ;):

fi= ) B )+ (5).
j=1

where X is the posterior covariance of s.
The following recursive learning rules for s; =s(¢), A,B are obtained as a result
of using conjugate priors.

1. Update rules for unrestricted ¢(s;)
q(St)ZN(St|St, s,)
-1
Es,=<AT2;1A+2,,;‘+BTz,;13> ,

5 =3, <AT2;1x, +3-1Bs,_ +BTE;11§,+1>,

with the following exceptions: when 7 =1, the term 43!+ is replaced by +E,,_111 +
and the term with s,_; is omitted; and when ¢ = N, the terms B? ... are omitted.
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2. Update rules for g(A)

g =[]]]N@jlai;. .

i=1j=1

N
aij =aij (") Y {xu (50j) = Y _(aix){s.kst.j)

k#j
3. Update rules for g(B)

aB)=[[N®;lb,b)),

Jj=1

Appendix B. ICA with Super-Gaussian Source Model

B.1. THE DENSITY MODEL

The ICA model with super-Gaussian sources (see Section 6.1) has the same den-
sity model as in Appendix A.l except for the prior for the sources S:

N
PSIOrest) = [N ()]0, =, (1)),
t=1
where %, (1) =diag(e *®).
The prior for the hyperparameters corresponding to the source model:

N
pu@)L Im,, v,) =] [N ()|m,, diage™*)),

t=1

m
Py [m,, vm) = [ [N jlmm, . e="m),
j=1

m

P(Vu|mvu’ Uvu) = HN(Uu,j |mv,,a e ),
j=1

Mmy, s VUmy My, Vy, NN(Oa V)
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B.2. THE LEARNING RULES

The parameters of g(my,), q(vy,), (W), g(my), g(Vu), g(Mm,), q(Vm, ), q(my,), g(vy,)
and factorial ¢(s;) are updated using the rules presented in [18]. The update rules
for the parameters v,, A are the same as in Appendix A. The update rules for
unrestricted ¢(s;) are obtained as a result of using conjugate prior:

q(s)) =N (s;]s;, s, )
2, =(ATs A+ 2,07 h) 7
§[ - ES[ <AT En_lxt> .

Appendix C. ICA with MoG Source Model
C.1. THE DENSITY MODEL

The ICA model with the MoG source prior (see Section 6.2) has the same density
model as in Appendix A.l except for the prior for the sources S:

N m K;

P(S|Orest) = 1—[ H an*kN(St*j |mj’ke_”j»k).

t=1 j=1k=1

~

The prior for the hyperparameters corresponding to the source model:

K; .. K; K;
p(mji} 2, le)= Dirichlet({z; }, 2, Hejud ly)s

K
K; o
p({mj,k}k=11|mm,j, vm,j)zl_[N(mj‘Hmm,jye vm.jy,
k=1
K
K; o
pUujitlylmy j, vy )= HN(Uj,kWu,j, e i),
k=1

p(mm,j|mmm7 Umm) :N(mm,j|mmms eivmm)7
p(vm,j |mvm» vvm) ZN(Um,j |mvm ,e tum ),
p(mv,j|mmv» Um,)) ZN(mv,j|mmvs eivmv)»

P(Uv,j|mvva va) :,/\/'(vv,j|mvve_vvv), j=L....m

My s Vmy, s Muy s Vo> My s Umy, s My, s Vo, NN(O’ V)

A set of coefficients A, ;; simplifying the cost function is used like in [3,6]:

K

—logp (s, jlBrest) < Y Ar.jk log
k=1

7 kN (s1,j|m j e ik)
A, jk
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C.2. THE LEARNING RULES

The update rules for the parameters vy, m,_, vy, A are the same as in Appendix A.

The parameters of q(mp, ;). g(Um,j), q(my ), gy, j), gMm,), qUm,,), qimy,),
qy,)s qmp,), q(m,), q(my,), q(vy,) are updated using the rules presented in
[18]. The rest of the update rules are as follows:

1. The update rule for A; j is
A ocexp{(log 7w x +1og N (s, jlm j ge V))}

with the normalisation conditions

K
Z )\,[’j’k = 1
k=1

2. The parameters of g(m; ), g(vj k) are updated similarily to the rules presented
in [18] with the exception that the gradients from s; ; are weighed by the coeffi-
cients A; j k.

3. The update rule for q({nj,k}f‘:i 1) is obtained as a result of using conjugate prior:

N K
K; .. K;
q({mj il 2,) = Dirichlet { {mj ), 2| {Cj»k +Zkt‘j,k}
=1 k=1

4. The update rules for g(s;) with full covariance:

q(s;) =N (s, 2s,)

-1

_ . K; .
s, = <AT =, TA + diag ijle At jk; eIk > ,

- Tw—1 K; Vjk:
5 =13, <A 2%+ ijjzl Arjhge "im; g, >

The update rules for g(s;) with diagonal covariance:
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q(s) = nN(St,j|§r,j7 51,705

j=1

K; n
~_1 . .
Stj = E )\t,j,k<ev'/’k>+ E (evx"Ma,'j)v
k=1 i=1

K; n

J
S =50 [ D A€ mya) + Y (e ) ai)xei — Y (aix) 5]
k=1 i=1 k#j
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