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Abstract— The paper presents experimental comparison of two nonlinear mixtures called post-nonlinear mixtures:
approaches introduced for solving the nonlinear blind source
separation (BSS) problem: the Bayesian methods developed at x;(t) = fi(z a;js;(t)) i=1,...,n (2)
Helsinki University of Technology (HUT), and the BSS methods j
introduced for post-nonlinear (PNL) mixtures at Institut Nationa | . .
Polytechnique de Grenoble (INPG). The comparison is performed Where a;; are the elements of the unknown mixing matrix
on artificial test problems containing PNL mixtures. Both the A and f; are a set of scalar to scalar functions. It is usually
standard case when the number of sources is equal to the assumed that the vectas§), x(t) are of the same dimension-
number of observations and the case of overdetermined mixtures ity and the PNL distortions; are invertible. In this case,

are considered. A new interesting result of the experiments is .
that globally invertible PNL mixtures, but with non-invertible the BSS problem can be solved based upon the assumption of

component-wise nonlinearities, can be identified and sources canthe S.t"_"tiStical indepgndgnge of the sources [1]: Undericert
be separated, which shows the relevance of exploiting more conditions on the distributions of the sources (at most one

observations than sources. Gaussian source) and the mixing structufe lfas at least 2
nonzero entries on each row or column), PNL mixtures are
|. INTRODUCTION separable with the same well-known indeterminacies asen th

linear mixtures [2].

Different approaches proposed for nonlinear independentin contrast to the Bayesian HUT methods, the PNL methods
component analysis (ICA) and blind source separation ha@&INPG find the inverse of the generative model (2) using the
been recently reviewed in [1]. However, their limitationsda separating structure
domains of preferable application have been studied only a .
little, and there are hardly any comparisons of the proposed si(t) = Zbijgﬁ(xi (t),8;) i=1,....n.
methods. We have experimentally compared two approaches J
for nonlinear BSS: the Bayesian methods developed at theThe purpose of the present work is to compare how the
Neural Network Research Centre at HUT and the BSS metho alternative approaches perform in the same BSS prob-
ods introduced for the special case of post-nonlinear mestu lems. Since the Bayesian methods deal with a more general
at INPG in France. The two methods have been derived frgmnlinear mixing, we use PNL mixtures as test problems. The
rather different perspectives but they can both be appled important question that is addressed in the paper is what are
the same nonlinear ICA problems. the limitations and preferable application domains of the t

The Bayesian methods of HUT deal with a general form &Pproaches.

the nonlinear mixing model: Il. BAYESIAN AND CONSTRAINED STRUCTUREPNL

METHODS
A. Bayesian BSS methods developed at HUT

wheref is a nonlinear mapping from the source signal® The Bayesian algorithms presented in [3], [4], [5], [6]

the observed signalg. The dimensions of the vectorgt) assume a very general model in which the observations are

andx(t) are generally different, and often the dimensionalityenerated by a nonlinear mappififfom the sources as shown

of s(t) is smaller. The BSS problem is solved by finding & (1). The nonlinear mapping§ is modeled by a multilayer

compact nonlinear representation of the observation¥he perceptron (MLP) network with two layers:

sources are modeled either by the Gaussian or the mixture-

of-Gaussians model and the generative model (1) is learned f(s(t)) = D tanh(Cs(t) + ¢) +d (3)

according to the variational Bayesian principle. whereC, ¢ andD, d are the weight matrices and biases of
The PNL methods of INPG consider a specific form athe hidden and output layers respectively. Here and in the

x(t) = £(s(t)) + n(t) 1)



following, functionstanh and exp are applied component- The quality of the NFA+FastICA solution can still be
wise to the elements of their vector arguments. improved by using a mixture-of-Gaussians model for the
Implementing the Bayesian approach, all the unknown vageurces. The resulting model is called nonlinear indepande
ables@ in the model including the sources, the noise pararfactor analysis (NIFA) [4] being a nonlinear counterpart of
eters and the parameters of the MLP network are assigriedependent factor analysis [10]. We shall however use the
hierarchical priors. For example, the noise is assumed to d@mputationally more efficient NFA+FastICA approach in the

independent and Gaussian, which yields the likelihood comparison.

The software implementation of the Bayesian BSS algo-

x(t) ~ N(£(s(t), exp(2va)) rithms and the FastICA algorithm is available at [11] and][12

where N (11, o2) denotes a Gaussian density with meaand respectively.

varianceo2. All components of the noise parametey share B. PNL ICA methods developed at INPG

a common Gaussian prior: ) )
Assuming the PNL structure (2) of the observed signals, the

Uni ~ N (my,, exp(2v,,) ), BSS methods developed at INPG [2], [13] recover independent
sources using a separation structure which consists of two

and the hyperparameters,, , v,, have very flat Gaussian subsequent parts:

priors. : . )

The goal of the Bayesian methods is to estimate the postel) A nonlinear stage, which should cancel the nonlinear
rior pdf of all the unknown variable®. In the considered distortions f;. This part consists of nonlinear scalar
methods, this is done by variational Bayesian learning [7] _ Unctionsz; = gi(zi, 6;). , _
which amounts to fitting a simple, parametric approximation 2) A linear stage that separates the approximately linear
4(9) to the actual posterior pdf(6|X). The misfit between mixtures z obtained aﬁer the nonllnegr. stage. 'Th|s is
the approximation and the true posterior is measured by the done as usual by learning anx n demixing matrixB

Kullback-Leibler divergenceD(q(6) || p(8]X)) which yields for which the components of the output vector= Bz
a cost function of the form of the separating system. are statistically independent (or
) as independent as possible).
C= /q(e) log qX 0 de In both stages, the mutual informatiohy) between the
p(X, 6) componentsyq, ..., y, of the output vector is used as the cost

= D(q(0) || p(8]X)) —logp(X) = —logp(X).  (4) function and the independence criterion.

As follows from (4), the cost function gives a lower bound For the linear part, minimization of the mutual information

for the model evidence(X) which can be used for modell€ads to the same estimation equations as for linear mixture
selection [7]. 91(y)

— T T\~ 1L
In order for the cost function to be computable in practice, oB E{y(y)z'} - (B) ()

the maximally factorial Gaussian approximation is used where components); of the vector<(y) are the score

q(0) = qui) = HN(@: 10;,6;). functions ofy;:
' ' _ pi(u)
The update rules for the posterior me@hsand variance®; pi(u)

can be derived by differentiating (4), which yields a fixedere p,(v) is the pdf andp](u) its derivative. The practical

point iteration ford; and an approximate Newton iteration follearning rule to estimat® is the natural gradient algorithm
0; [3], [4]. The optimal posterior meang; of the unknown

parameters usually define the solution of the BSS problem. B(t+1) = I+ H)B(¢) (6)
The basic Bayesian algorithm presented in [3] is callqﬂith H :I+E{¢(y)yzp}
nonlinear factor analysis (NFA). It uses Gaussian prior for The gradient learning rule for the nonlinear stage can be

the sources: derived from the estimating equations:

o(y) _ E{alog |9k (1, )| }

P = % log p;(u)

s(t) ~ N (0, exp(2vs))

and therefore does not provide independent source sigriads. 00, 00,

nonlinear ICA problem can then be solved by exploiting the n (7)
idea somewhat similar to Gaussianization of factors in PNL ) {Z wi(yi)bikw}
mixtures [8]: The Gaussian factors found by NFA are further = 00,

rotated by FastICA [9] to obtain independent source signals : .
We will further refer to this nonlinear ICA method as th where z;. is the k-th component of the observation vector,

% is the elementk of the demixing matrixB, and g; is

+ ik 1S . - - A ’ 9r

NFA+FastiCA approach. the derivative of thek-th nonlinear functiong,. The exact
1Here we denote b — {x(t) | ¢ = 1,...,T} the set ofT’ available COMpuUtaLtion algorithm dep_ends on the specific parametric

observations. form of the nonlinear mappingy. (zx, 6x).



The equations (5), (7) for the derivativesdfy) contain the
score functiong); which are not known and must be estimated
(adaptively) from the output vectgr. In the present work, we
used the batch algorithm proposed in [13] with the Gaussian
kernel density estimator for calculating;. We will further
refer to this approach as the PNL ICA algorithm.

The speed of the algorithm can be increased by using a
relevant initialization of the parameters based on the Gaus 2
sianization ofz [14]. In the simplest approach, titeth scalar N N ° ! ?

function g, is initialized by Fig. 1. Experiment A. The distribution of the observationkeThick points
1 represent the noiseless reconstructfgs) of the datax found by the NFA
g =D o Fy, (8) algorithm.

where® is the Gaussian cumulative density function (cdf) and

1

F}. is the cdf of thek-th observationzy,. / .
The software implementation of the PNL ICA algorithm i '

1

available athttp://ww lis.inpg.fr/denos/sep_ 2 0 2 0
sour c/ | CAdeno/ . 2 !
0 // 0 1
Il. COMPARISON EXPERIMENTS -2 .
The nonlinear BSS problems are not well known and there” ° * ° '®  * %® %@ o0
are interesting phenomena to uncover even in low-dimeasion @ (b) ©

mixtures. Furthermore, the nonlinear methods are usuagy. 2. Experiment A. The sources found by the PNL ICA methodl:(a

computationally quite expensive and often suffer from thie scatter plots; (b) — the estimated time series; (c) — thellison of the

local minima problem, which usually requires several rups §oUces: Signal-to-nise ratio is 20.78 dB.

an algorithm using different initializations of the estim@a

parameters. Therefore, we used PNL mixtures of only tw, wp

independent sources in most of the presented experiments. 1

the experiments with two sources, the sources were a sind heé most common assumption of the existing linear ICA

wave and uniformly distributed white noise. methods as well as the considered PNL ICA algorithm is that
Additionally, the two BSS approaches were compared ¢fe number of observed mixturesis equal to the number

PNL mixtures of four sub-Gaussian sources which were ur@if hidden sourcesn. Therefore, we started the comparison

formly distributed white noise. experiments by applying the two compared methods to this
The test datax were generated by mixing the simulatedype of mixtures.

source signals using a randomly chosen mixing mairiand

applying component-wise nonlinear distortiofygo the linear Experiment A. The two independent sources were mixed

mixture as in (2). The data were then centered and normalizeging the following PNL mapping:

to unit variance. In the experiments with noisy mixtureg th B [tanh(yl)] [1 00 4}

PNL mixtures of the same dimensionality

observation noise with standard deviatien was added. The
. k 0.7 1.0
number of samples was 400 in all experiments.

The generated test data were processed by the two altefRate that all the post-nonlinear distortions were invéetib
tive methods. The number of hidden sources was always setl no observation noise was added to the mixtures. The
to the known valuerf, = 2 or m = 4) for both algorithms.  distribution of the observed signaisis shown in Fig. 1.

In the PNL ICA algorithm, different values of the spread The simulation results presented in Fig. 2 show that the PNL
parametero of the Gaussian kernel density estimator werkCA method of INPG performs perfectly in this problem. The
used. The adaptation steps were= 0.1 for the outputs of the scatter plot (Fig. 2a) shows how well the original sourcesewe
nonlinear stage and = 0.1 for the demixing matrixB (see reconstructed. Each point corresponds to one soyf¢e The
[13] for more details). The results with the maximum signakbscissa of a point is the original source which was used for
to-noise (SNR) ratio of the recovered sources were useckin tfenerating the data and the ordinate is the estimated source
comparison. The optimal result would be a straight line which would mean

The NFA solution was found by trying different modelthat the estimated values of the sources coincide with thee tr
structures, i.e. different number of neurons in the hiddgerl values.
of the MLP (3), and several random initializations of the In contrast, the NFA+FastICA fails to recover the original
parameterg;, 6; to be optimized. The model with the smallessources in this problem. The noiseless reconstruction ®f th
value of the cost function (4) was chosen as the NFA solutiotiata shown in Fig. 1 indicates that the best NFA model uses
The sources of the best NFA model were further rotated loply one out of two sources: One of the two sources was set
FastICA as we explained earlier. to zero by the algorithm, which yielded the one-dimensional

tanh(ys2)



SIGNAL-TO-NOISE RATIO OF FOUR SUBGAUSSIAN SOURCES RECOVERED
FROMn NOISY PNL MIXTURES.

TABLE |

learning rule (6) yields
Bt+1)=R(t+1)'Q" =TI+ XH)R()'Q",
which shows that only the paR rotating the projected data

Noise variance PNL ICA NFA+FastICA QTZ is updated.
o n=4 n=38 n=38 Therefore, the initialization oB is of great importance
0 18.73 19.18 14.53 for the natural gradient algorithm for overdetermined mix-
0.01 10.47 15.42 13.27 tures. For example, using the standard initialization &][1
0.1 1.76 8.05 6.9 B(0) = [I 0] would be equivalent to using only the first

observations.
In the experiments, we used the initialization Bf using
manifold shown by the thick line in Fig. 1. The deviation@r_'r_]c'_paI co_mponen_t analys_|s .(PCA): The rows Bf were
initialized with the firstm principal vectors found from the

from that line were explained as the observation neisg. lized d optionally G ianized with (8)) ob
This result suggests that the ICA problems with the numbggrr]r:as'zih '(rzli'?al'ogt'lgga )c/)rkee(ljuss;ﬁmnze ra\c,:\g'ce( )) observa
of mixtures equal to the number of sources is difficult for thEi,l - >uch inffialization w well In practice.
A possible alternative approach for the case of ICA for

presented NFA+FastICA approach: The variational NFA algo- . . . .
. A . X -~ overdetermined PNL mixtures could be using the approxi-
rithm usually tends to find a manifold of a lower d'mens'orr'nation of the entroby of the outouts proposed by Stone
than the dimension of the observation space. This problem Py pute prop y

o . . nd Porrill [16]. This would give a gradient based update
could be overcome by requiring the observation noise to : :

. ; : rule for B based on the pseudo-inverse Bf with respect
small (e.g. by fixing the noise varianeg to small values) but

. 2 . to the covariance matrix of. However, according to our
this would significantly slow down the learning process. : . . .
. . experiments, the natural gradient algorithm with the PCA
We also applied the PNL ICA algorithm to test problems . . "~ . :
. . . . initialization seemed to outperform this approach in theesa
with four noisy PNL mixtures of four sub-Gaussian sources.

. . . . Where the exact number of mixed signals is known a priori.
The following post-nonlinear distortions were used for gren 9 P

ating the data:

fi(y) = tanh(y/4)

f2(y) = 0.3y + tanh(y)

Experiment B. The following PNL mixtures of two indepen-
dent sources were used for generating the data:

_ _ tanh(y;) 1.0 04
=10y + y* = —0.3y — tanh 9

fs(y) y+y fa(y) y —tanh(y)  (9) x = |tanh(ys) v=lo7r 10]s.
and the observation noise with different values of the noise tanh(ys) 1.1 0.6

variances? was added. The results of these experiments a(® opservation noise was added.

presented in the second column of Table I. They demonstraterne results provided by the PNL ICA algorithm and the
that the PNL ICA algorithm can be applied to noisy mixturegayesian approach for this mixture are presented in Fig. 3.
as well but its performance naturally deteriorates when thge PNL ICA algorithm works nicely and the quality of the
noise level increases. source restoration is now slightly better than in Experitrien
The NFA+FastICA approach is also able to retrieve the
riginal sources but with a smaller signal-to-noise raktiart
the PNL ICA method. This is a natural result since the NFA
In the following experiments, we consider PNL mixturesigorithm does not take into account the PNL structure of the
with the number of observationsgreater than the number ofdata, and the source estimation by NFA is not based on the
sourcesn. This case is usually referred as the overdetermingehtistical independence of the sources.
BSS (or undercomplete bases) problem and it is particularlyThe results of the experiments with overdetermined PNL
suitable for applying the Bayesian BSS methods. On theixtures ¢ = 8) of four sub-Gaussian sources are presented
contrary, the standard PNL ICA algorithm requires som the last two columns of Table |. The data were generated
adjustment. using the four post-nonlinear distortions from (9) and othe
The nonlinear stage does not need any changes but ftwer scalar functions which were same as in (9) but with the
demixing matrixB in the linear stage should now be rectopposite sign. The results show that both methods recovered
angular. However, Zhanet al. showed in [15] that the natural the original sources with SNR depending on the noise level.
algorithm for overdetermined mixtures can be simplifiedi® t The performance of the NFA+FastiICA approach is again
standard learning rule (6) which can be used for estimatirg tslightly worse compared with the PNL ICA algorithm.
rectangulamB. Note that adding more observations to noisy PNL mixtures
In the linear stage, this approach amounts to projecting timereased the SNR obtained with PNL ICA (compare the
datay onto the subspace defined by the initializatioBodnd results forn = 4 andn = 8). The results suggests that using
seeking for independent sources within this subspace.cHms more observations in noisy mixtures improves the perfoaan
be shown using the QR decompositionBf = QR where of the PNL ICA algorithm while it is not necessarily true for
Q is a rectangular matrix such th@'Q = I. Rewriting the noiseless mixtures.

B. Overdetermined PNL mixtures with invertible post6
nonlinear distortions
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Fig. 4. Experiment C. (a) — The distribution of the observaio(b) — The

distribution of the hidden sources found by PNL ICA. The PXIAlalgorithm
was not able to unfold the data manifold.
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Fig. 5. Experiment C. The sources found by the NLFA+FastICAraach:
(a) — the scatter plots; (b) — the estimated time series; (ce-distribution
of the sources. Signal-to-noise ratio is 13.67 dB.
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C. Overdetermined PNL mixtures with non-invertible post-

nonlinear distortions

The standard BSS methods for PNL mixtures report

in [13], [2] usually assume the same dimensionality of the
vectorsx and s and that all post-nonlinear distortions aré

modeled by invertible functions. Under such conditiong t

PNL ICA algorithm can recover the original sources (like in

é?cf(periment A).

In this PNL problem, the NFA+FastICA approach clearly
utperforms the PNL ICA method (see the simulation results
n Fig. 5) because it does not invert the post-nonlineariiet

entire PNL mapping is invertible and the source separason parns the entire generative model.

therefore possible. However, the following experimentvehio
that overdetermined PNL mixtures can be invertible even
some of the post-nonlinearities are modeled by non-irverti
functions. The higher dimensionality of the observed nriagu
is a necessary but not sufficient condition for that.

Experiment C. The PNL mapping used for generating the

data now contains one non-invertible post-nonlinearity:

Y2 1.0 0.4
x = |tanh(ys) y= (07 1.0]|s. (20)
tanh(ys) 1.1 0.6

It is also possible to show that the entire PNL mapping
Gan be invertible even if several post-nonlinear distogiare
modeled with non-invertible functions. For example, weeds
three-dimensional PNL mixtures with two quadratic distor-
tions and the NFA+FastICA approach was able to recover the
two original sources.

IV. CONCLUSIONS

Based on the experimental results from Section Ill, we draw
the following conclusions on the applicability of the PNLAC
and Bayesian NFA+FastICA approaches to post-nonlinear ICA
problems.

1) The PNL ICA method definitely performs better in

The two sources were mixed using (10) and no observation
noise was added to the data. The distribution of the observed
signals is presented in Fig. 4. It indicates that there sxast  2)
bijection from the two-dimensional source space to the data
manifold in the three-dimensional observation space,the.

entire PNL mapping is invertible. 3)
The simulation result in Fig. 4b states that the PNL

ICA method could not cope with the non-invertible post-

nonlinearity. If the non-invertible (first) channel is taketo 4)

consideration, the algorithm cannot provide a good satutio
Note that if only the last two observations are used, the

classical PNL mixtures with the same number of sources
and observations when all PNL distortions are invertible.
The performance of both methods can be improved by
exploiting more mixtures than the number of sources
especially in the case of noisy mixtures.

The performance of both methods in overdetermined
mixtures largely depends on good initialization of the

model parameters.

The advantage of the Bayesian methods in PNL prob-
lems is that they can separate PNL mixtures with

non-invertible post-nonlinearities provided that the PNL



mapping is globally invertible. The existing PNL ICA [9]
methods cannot do this due to its constrained separation
structure. 10
The variational Bayesian methods are computationahy
more expensive and usually require several runs witht]
different initializations as they often suffer from the

problem of local minima. [12]

More generally, this preliminary study shows the relevance,
of exploiting more observations than sources, especially i
the nonlinear mixtures. In that case, globally invertiblLP
mixtures, but with non-invertible component-wise nonéine
ities, can be identified and sources can be separated, which
is a new and interesting result. Independently, similaultss
were reported by J. Lee in his PhD dissertation [17] whe[f:s]
he applied successfully a nonlinear mapping (for redudireg t
dimensions) before ICA in such a model (globally but not
locally invertible). [16]

These experimental results can be further investigatad, fo
improving understanding of the capabilities and the litiotas  [17]
of the two alternative approaches. In the present work, we
did not try to cover all aspects of the compared methods.
The important questions that can be investigated are how the
algorithms scale to higher-dimensional problems with gdar
number of sources, what is the performance of the methods
for PNL mixtures of both sub-Gaussian and super-Gaussian
sources and others.
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