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Abstract— Denoising source separation (DSS), a recently de-
veloped source separation framework, was applied to extracting
components exhibiting slow, interannual temporal behaviour
from climate data. Three datasets with daily measurements were
used: surface temperature, sea level pressure and precipitation
around the globe. For all datasets, the first extracted component
captured the well-known El Niño–Southern Oscillation phe-
nomenon and the second component was close to the derivative
of the first one. Several other components with slow dynamics
were extracted and together the components appear to capture
essential features of the slow-dynamics state of the climate
system. The first two components were identified reliably but the
following components may have remained mixed. Nonlinear DSS
could identify the physically most meaningful rotation among
them but only linear DSS was within the scope of this paper.
This paper offers a simple demonstration of exploratory data
analysis of climate data by DSS and suggests future lines of
research.

I. INTRODUCTION

El Niño–Southern Oscillation (ENSO) is a global-scale
phenomenon in the ocean and atmosphere, known as one of the
most prominent sources of interannual variability in weather
and climate around the world. Its oceanic component (El
Niño–La Niña events) can be defined as a Pacific basin-wide
increase (El Niño) or decrease (La Niña) in the sea surface
temperatures in the central and/or eastern Pacific Ocean [1].
The warm El Niño events are known to be accompanied by the
decrease in the sea level atmospheric pressure in the western
Pacific, which is the atmospheric component of ENSO called
Southern Oscillation (SO). SO can be defined as a large-scale
oscillation of the air mass between the southeastern tropical
Pacific and the Australian-Indonesian regions.

The intensity of ENSO events is traditionally quantified
using simple indices calculated from monthly averaged mea-
surements taken in special locations. Usually the analysis
is applied to so-called anomalies which refer to deviations
from average seasonal variation. For example, the intensity of
El Niño can be estimated using the sea surface temperature
(SST) anomalies averaged over the Niño 3 region (5◦N–
5◦S, 150◦–90◦W) [2], [3], and the most commonly used

SO index (SOI) is computed from monthly mean sea level
pressure anomalies measured at Tahiti (17.5◦S, 149.6◦W) and
Darwin (12.4◦S, 130.9◦E), in Australia. The spatial locations
included in the simple ENSO indices are chosen such that their
teleconnectivity properties are maximized [4] but their choice
is still somewhat arbitrary.

The global ENSO patterns are usually computed as cor-
relations of local anomalies in surface temperature, sea level
pressure or other variables with a chosen ENSO index or using
regression coefficients from the anomalies to that index [3].
The obtained spatial patterns depend on the choice of the used
ENSO indices. For example, the sea level pressure correlation
patterns naturally have peaks over Darwin and Tahiti.

Another possibility to capture ENSO events and describe
their global patterns is applying empirical orthogonal function
(EOF) analysis to pre-filtered anomaly data. EOF analysis is
the name for principal component analysis (PCA) used in the
climate literature. The first EOF maps usually represent the
ENSO patterns and the first principal component is a good
index of the major warm and cold events in the tropical Pacific.

In this paper, we search for physically meaningful states
with slow, interannual time course from climate data. Diurnal
and annual variability in solar radiation means that the climate
system has daily and annual cycles but climate events such as
ENSO whose time course is slower than the annual cycle are
in evidence that the climate system has intrinsic interannual
dynamics.

We show that the basic ENSO events (El Niño and SO)
appear as the component with most prominent interannual
variability from the global measurements of surface tempera-
ture, sea level pressure and precipitation. This is done using a
recently developed method called denoising source separation
(DSS) [5] which can be viewed as an extension of independent
component analysis (ICA) [6]. The extracted ENSO-related
component appears to be an important dimension of the
climate state-space but the method uncovers several other com-
ponents whose temporal behaviour exhibits relatively slow,
interannual evolution.
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II. MATERIALS AND METHODS

A. DSS method

DSS is a general algorithmic framework which can be used
for capturing interesting hidden phenomena from multivariate
data [5]. As in PCA, factor analysis and ICA, the underlying
data model in basic DSS method is linear. The modelling
assumption is that there are some components (also called
factors, sources or state variables depending on the context)
which are reflected in the measurements through a linear
mapping. In the context of factor analysis this mapping is
called the loading matrix and in ICA the mixing matrix.

The goal of the analysis is to identify the unknown com-
ponents and corresponding loading vectors given the data. In
our case the components should correspond to the states of the
climate system. Since we use spatial maps of daily recordings
of weather-related variables as the data, the loading vectors
are spatial “weather maps” which show the typical weather
pattern that the extracted state variables correspond to.

The charasteristic feature of DSS algorithms is that the
definition of “interesting phenomenon” comes in the form of a
denoising procedure. DSS can be linear or nonlinear depending
on whether the denoising is linear or nonlinear. In both cases
the first step of the analysis is so-called whitening or sphering.
It amounts to normalising the data such that the covariance
structure becomes uniform: unit projections of the whitened
data always produce unit-variance signals. Whitening can be
implemented by PCA. Since the principal components are
uncorrelated, the data can be whitened simply by normalising
the components to unit variance. The dimensionality of the
data can also be reduced at this stage by retaining only the
components corresponding to largest eigenvalues.

Whitening may seem counterproductive at first because
after whitening, any useful structure that PCA could use is
abolished. The benefit is that for whitened data, the loading
vectors of different components can be expected to be roughly
orthogonal and for this reason whitening is the first step
in many ICA algorithms. Unlike in PCA but similarly to
ICA, the original loading vectors are not restricted to be
orthogonal which may result in more physically meaningful
representations of the data.

In linear DSS, whitening is followed by a linear filtering step
which renders the variance for some components higher than
for others. Linear PCA can then identify these components.
The eigenvalues obtained by PCA tell the variance of the
extracted components but due to the initial whitening, the
eigenvalue corresponds to the ratio between variance after
filtering and before filtering. This is the objective function for
linear DSS algorithms. The components are ranked according
to the prominence of the desired properties the same way as
the principal components in PCA are ranked according to the
amount of variance they explain.

In the present work, we aim at finding components which
exhibit prominent variability in the interannual timescale.
Therefore, the whitened data were filtered using a band-pass
filter whose frequency response is shown in Fig. 1.
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Fig. 1. Frequency response of the filter used in DSS. The abscissa is linear
in frequency but is labeled in terms of periods, in years.

PCA, which is used as the last step of linear DSS, can
only separate components which have distinct eigenvalues.
Due to noise, finite sample size and unaccurate modelling
assumptions, separation is in practice reliable only if the
eigenvalues are clearly distinct. Due to the limited scope
of this article, we concentrate on linear DSS although it is
clear that nonlinear filtering can identify more reliably the
physically most meaningful separation. In particular, nonlinear
DSS can in many cases reliably separate components whose
“eigenvalues” are similar. The main implementational differ-
ence between linear and nonlinear DSS is that the nonlinear
filtering needs to be embedded in an iterative power-method
implementation of PCA [5].

B. Data and preprocessing method

We used globally gridded measurements of major atmo-
spheric variables over a long period of time. These data are
provided by the reanalysis project of the National Centers for
Environmental Prediction–National Center for Atmospheric
Research (NCEP/NCAR) [7]. We applied the analysis to the
same three datasets as [3]: surface temperature, sea level
pressure and precipitation data coming from the NCEP/NCAR
reanalysis project.

Although the quality of the data is worse for the beginning
of the reanalysis period and it considerably varies throughout
the globe, we used the whole period of 1948-2004. The data
are daily measurements from regularly spaced locations over
the globe with 2.5◦ × 2.5◦ resolution.

The long-term mean was removed from the data and the
effect of a denser sampling grid around the poles was taken
into account by multiplying each data point by a weight
proportional to the square root of the local area of its location.
Then, we reduced the spatial dimensionality of the data using
the PCA/EOF analysis applied to the weighed data. For each
dataset, we retained 100 principles components which explain
more than 90% of the total variance. We applied the analysis
for each dataset separately and for combined data.

The comparison indices SOI and Niño 3 SST are available
as a monthly timeseries. In order to be able to compare them
with the results obtained by DSS, we expanded them into
daily measurements and computed the projection which is
analogous to the projection vector in DSS. We also computed
the corresponding timeseries from the whitened data in order
to be able to evaluate the objective function, the ratio between
the variance after and before filtering for daily measurements.
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III. RESULTS

A. Surface temperature
The four most prominent interannual components extracted

from the surface temperature data are shown in Fig. 2. The
time course of the first component (upper curve in Fig. 2)
shows striking resemblance with the El Niño index from the
sea surface temperature in the Niño 3 region (lower curves).
Note that the upper components are extracted from climate
data consisting of daily measurements from the whole globe,
with the only constraint being the emphasis on strong interan-
nual oscillations. Also note that the values of Niño 3 SST index
are monthly averages and consequently appear smoother than
the daily averages of DSS components. Regressing the Niño 3
SST index from the whitened data reveals the corresponding
daily timeseries (bottom of Fig. 2).

The spatial patterns corresponding to the four leading com-
ponents are shown in Fig. 3. The first DSS map contains many
features traditionally associated with El Niño: the strongest
pattern in central and eastern tropical Pacific with broader
regions along the eastern Pacific coast, a negatively correlated
”boomerang”-shaped region at 20◦−40◦ latitude in both hemi-
spheres linked in the far western equatorial Pacific, positive
values in the Indian Ocean, negative values in the North Pacific
and around New Zealand [3]. Similar features are observed
from the regression pattern in Fig. 4 calculated using the Niño
3 SST index.

However, some features are more distinctive on the DSS
map, for example, a strong teleconnection in southern Africa,
strong negative regions in the southern Atlantic and in south-
western parts of the United States. Some other features usually
associated with El Niño are much weaker, for example, the
dipole structure in the tropical Atlantic reported in [8].

The second component also appears to be related to El Niño
and roughly corresponds to the time derivative of the first
component. The third and the fourth components show distinct
oscillations with a 2–3 year period. The loadings in Fig. 3 are
relatively strong at the poles which is partly due to the fact
that overall variability in climatic conditions is strongest at the
poles.

B. Sea level pressures
The leading components with interannual variability ex-

tracted with DSS are shown at the middle columns of Figs. 2
(time course) and 3 (spatial patterns). The first component
again bears striking similarity with the well-known SO phe-
nomenon both in the time course and in the spatial pattern. The
DSS map in Fig. 3 is similar to the classical SO pattern [3]:
there is a major structure seesaw in the Tropics and subtropics,
large pressure departures in the North Pacific, a quadrapole-
like structure in the Australasia–South Pacific region with
the clear Pacific–South American pattern [9]. Note that the
negative center south to Australia is very weak and shifted
more towards New Zealand compared to the SO patterns
documented in the literature.

The classical SO structure is clearer from the regression
coefficients shown in Fig. 4. Compared to it, the DSS pattern

is characterized by the relatively weaker negative regions over
the North and South Atlantic and the more dominant patterns
in the North and South Pacific.

The three following components demonstrate oscillatory
behaviour with roughly 2–3-year period. Judging from their
time course, the components do not appear to be the same as
the ones extracted from the surface temperature data.

C. Precipitation

The leading components of interannual variability for the
precipitation data are shown in the rightmost column in Fig. 2
(time course) and Fig. 3 (spatial patterns). The first component
again resembles the structure of the ENSO phenomenon:
The dominant effects are clearly seen throughout the tropical
Pacific with maximum values in the Niño 3 region. The clear
patterns are the intertropical convergence zone (ITCZ) and
South Pacififc convergence zone (SPZC), a “boomerang”-
shaped negatively correlated area in mid-latitudal Pacific
merged over Indonesia, positive values in the Indian Ocean
and subtropical and tropical Atlantic.

Like in the classical ENSO patterns [3], the resemblance
between the maps of the first DSS components for the surface
temperature and precipitation is striking (see the first row in
Fig. 3): The warm areas mostly correspond to wet areas, which
shows the importance of local evaporation in the ENSO.

The second DSS component is very similar to the second
component extracted from the surface temperature data. The
spatial pattern has an interesting localization in the Niño 3
region with positively correlated regions over Hawaii and near
the Chilian coast. The rest of the tropical and subtropical areas
mostly have negative loadings. The following two components
again clearly demonstrate slow oscillations but they do not
appear to be the same as the ones extracted from the two
other datasets.

D. Combined data

The leading inerannual components extracted from the com-
bined data including surface temperature, sea level pressure
and precipitation are shown in Fig. 5 (time course) and Fig. 6
(spatial patterns). As before, the first extracted component is a
good ENSO index. The corresponding spatial patterns shown
in the first row of Fig. 6 are very similar to the maps from the
first row of Fig. 3.

The second extracted component bears similarity to the
second component extracted from the surface temperature and
precipitation data. The most significant difference is the sea
level pressure loadings which now have a clear pattern in the
Pacific region. Note that the time course of this component
resembles the time derivative of the ENSO index (see Fig. 5).

The strong interannual character of the third component
is mostly defined by the sea level pressure and precipitation
measurements: Their spatial patterns are similar to the third
components extracted from the separate datasets.

The fourth component is similar to the fourth component
extracted separately from the surface temperature and sea level
pressure. It is again localized near the North Pole.
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Surface temperature Sea level pressure Precipitation

Fig. 2. Most prominent components extracted from three datasets separately. Top four: The time course of the first leading components (black) and their
filtered versions found by DSS (red). The first component at the top. The non-filtered components are normalized to unit variance. Bottom two: ENSO index
(the Niño 3 SST index for surface temperature and the inverted SOI for sea level pressure and precipitation), the regressed component (black) and its filtered
version (red).

Surface temperature Sea level pressure Precipitation

Fig. 3. The spatial patterns (loading vectors) of the four leading interannual components extracted from three datasets separately. The first component at the
top. The loading vectors are normalised such that the signal of interest (timeseries after filtering) was normalised to unit variance. The maps thus tell how
strongly the slowly evolving state variable is expressed in the measurement data.
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Surface temperature Sea level pressure Precipitation

Fig. 4. The regression coefficients from the Niño 3 SST index (surface tempreature) and the inverted SOI (sea level pressure and precipitation).
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Fig. 5. Most prominent components extracted from the combined data. Top
four: The time course of the first leading components (black) and their filtered
versions found by DSS (red). The non-filtered components are normalized to
unit varaince. Bottom: The derivative of the topmost filtered component bares
similarity to the second component.

TABLE I
CORRELATIONS OF THE FIRST COMPONENT AND ENSO INDICES

Surface Sea level Precipitation Combined
temperature pressure data

Niño 3 SST 0.9765 0.9502 0.9513 0.9323
SOI 0.9417 0.9264 0.8300 0.8024

Table I lists the correlation coefficients between the first
extracted component and SOI and Niño 3 SST index. Some-
what surprisingly even the component extracted from sea-
level-pressure data resembles more Niño 3 SST index than
SOI although SOI is defined in terms of sea level pressure.
Moreover, for combined data the correlation is weaker than for
surface temperature. Table II lists the variance of the filtered
components divided by the variance of the non-filtered ones.
This is the index which is used as the objective function
for extracting the components. The first extracted component
therefore always has the largest value in all conditions.

IV. DISCUSSION

The same first or first two components are found in all
three datasets which is strong evidence in support of phys-
ical meaningfulness. In linear DSS, each component can be
characterised by their eigenvalue and only components whose
eigenvalues are clearly different can be reliably separated.
This is analogous to PCA where components with equal
eigenvalues form subspaces with rotational indeterminacy. The
eigenvalues of the components extracted from the combined

TABLE II
VALUES OF THE OBJECTIVE FUNCTION

Surface Sea level Precipitation Combined
temperature pressure data

Comp. 1 0.6156 0.2782 0.6182 0.7484
Comp. 2 0.2031 0.1275 0.4005 0.5105
Comp. 3 0.1691 0.1068 0.2126 0.3376
Comp. 4 0.1604 0.0963 0.1874 0.3014
Comp. 5 0.1185 0.0772 0.1343 0.2993

Niño 3 SST 0.5906 0.2561 0.5792 0.6853
SOI 0.5547 0.2434 0.4634 0.5354

data in Table II further support the finding that the first two
components can be reliably identified while the following
three components form a subspace within which the physically
most meaningful rotation may not have been identified. The
values in Table II are good predictors of the similarity of the
components in different conditions. It should also be noted that
even if the best rotation of the components is not found, the
subspace clearly captures physically meaningful state variables
of the climate system. This is clearly evident in the prominent
temporal structure present in all the extracted components.

Nonlinear filtering can separate processes which have sim-
ilar eigenvalues. Moreover, as the signals of interest are state
variables which have a predictable time course, an important
future line of research will be to model nonlinear dynamics of
the state variables and extend the denoising to be nonlinear. In
the global climate system, everything depends on everything
else, but a sensible criterion for separation is that the states
should have as little couplings as possible (cf. this physical
independence with statistical independence criterion in ICA).
A similar separation criterion was used in [10].

Nonlinear effects should also be taken into account when
analysing the results because they are known to exist between
the state variables. The most prominent phenomenon in cli-
mate system is the seasonal variation and it is known that
ENSO has different effects depending on the time of the year,
that is the combined effect of ENSO and annual oscillation
has a nonlinear component. Similar nonlinear effects can be
expected to be present among all state variables but they are
not revealed by static loading matrices.

In this paper we demonstrated the first time how DSS can
be applied to exploratory data analysis of climate data. We
showed that it is possible to identify patterns which reflect
physically meaningful dynamics, which can be useful for both
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Surface temperature Sea level pressure Precipitation

Fig. 6. The spatial patterns of the four leading interannual components extracted from the combined data.

prediction of future data and as the first, exploratory stage of
interpreting the data. A data-driven approach cannot identify
the underlying physical mechanisms of the found phenomenon
but it can identify targets for future studies. For instance, with
a low-pass filter, DSS extracts a very clear trend from the data.
This may or may not be related to, say, global warming and
more research is required to assess this, but DSS can certainly
provide a good starting point for future research.
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