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Abstract

We present an example of exploratory data analysis of climate measurements using a recently developed denoising source separation (DSS)

framework. We analyzed a combined dataset containing daily measurements of three variables: surface temperature, sea level pressure and

precipitation around the globe, for a period of 56 years. Components exhibiting slow temporal behavior were extracted using DSS with linear

denoising. The first component, most prominent in the interannual time scale, captured the well-known El Niño-Southern Oscillation (ENSO)

phenomenon and the second component was close to the derivative of the first one. The slow components extracted in a wider frequency range

were further rotated using a frequency-based separation criterion implemented by DSS with nonlinear denoising. The rotated sources give a

meaningful representation of the slow climate variability as a combination of trends, interannual oscillations, the annual cycle and slowly

changing seasonal variations. Again, components related to the ENSO phenomenon emerge very clearly among the found sources.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the main goals of statistical analysis of climate data

is to extract physically meaningful patterns of climate

variability from highly multivariate weather measurements.

The classical technique for defining such dominant patterns is

principal component analysis (PCA), or empirical orthogonal

functions (EOF) as it is called in climatology (see, e.g. von

Storch & Zwiers, 1999). However, many researchers have

pointed out that the maximum remaining variance criterion

used in PCA can lead to such problems as mixing different

physical phenomena in one extracted component (Kim & Wu,

1999; Richman, 1986). This makes PCA a useful tool for

information compression but limits its ability to isolate

individual modes of climate variation.

To overcome this problem, the rotation of the principal

components has proven useful. The different rotation criteria

reviewed by Richman (1986) are based on the general ‘simple

structure’ idea aimed at, for example, spatial or temporal

localization of the rotated components. The rotation of EOFs

can be either orthogonal or oblique, which potentially leads to

better interpretability of the extracted components.
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Independent component analysis (ICA) is a recently

developed statistical technique for component extraction,

which can also be used for rotating principal components.

The basic assumption made in ICA is the statistical

independence of the extracted components, which may lead

to a meaningful data representation in a number of applications

(see, e.g. Hyvärinen, Karhunen, & Oja, 2001, for introduction).

ICA is based on higher-order statistics and in this respect

bears some similarity to classical rotation techniques such

as the Varimax orthogonal rotation (Richman, 1986).

Several attempts to apply ICA in climate research have already

been made (Aires, Chédin, & Nadal, 2000; Lotsch, Friedl, &

Pinzón, 2003).

In this paper, we analyze weather measurements using a

novel extension of ICA called denoising source separation

(DSS) (Särelä & Valpola, 2005). DSS is a general separation

framework which does not necessarily exploit the indepen-

dence assumption but rather looks for hidden components

which have ‘interesting’ properties. The interestingness of the

properties is controlled by means of a temporal filtering or

denoising procedure.

In the first experiment, we show that the sources with the

most prominent inter-annual oscillations can be identified

using DSS with linear filtering as denoising. The leading

components are clearly related to the well-known El Niño-

Southern Oscillation (ENSO) phenomenon.

In the second experiment, we use DSS with linear denoising

as the first, preprocessing step of climate data analysis. A wider
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frequency band in the denoising filter is used to identify the

slow subspace of the climate system. The found slow

components are further rotated using an iterative DSS

procedure based on nonlinear denoising. The rotation aims to

find components with distinct power spectra.

The extracted components turn out to represent the subspace

of the slow climate phenomena as a linear combination of

trends, decadal-interannual oscillations, the annual cycle and

other phenomena with distinct spectral contents. Using this

approach, the known climate phenomena are identified as

certain subspaces of the climate system and some other

interesting phenomena hidden in the weather measurements

are found.

The contents of this paper are as follows. In Section 2, we

explain the modeling assumptions of the source separation

methods and present a short introduction to DSS. Section 3

describes the climate measurements used in the experiments.

Section 4 explains how DSS is tuned to extract components

with the most prominent interannual oscillations and present

the experimental results (which were partly reported by Ilin,

Valpola, & Oja, 2005). In Section 5, we give the description of

the frequency-based separation algorithm implemented in the

DSS framework and report the climate phenomena found with

this method. Preliminary results of this analysis were published

in a conference paper by Ilin & Valpola (2005). Finally, we

discuss the results and possible future directions in Section 6.
2. Source separation methods

2.1. Blind source separation and independent component

analysis

The basic modeling assumption of linear source separation

methods is that there are some hidden component signals or

time series si(t) (also called sources, factors or latent variables)

which are linearly combined into the multivariate measure-

ments xj(t):

xjðtÞZ
XN

iZ1

ajisiðtÞ; j Z 1;.;M: (1)

The index j runs over the measurement sensors (typically

spatial locations), and discretized time t runs over the

observation period: tZ1,.,T. This can be expressed in matrix

formulation by denoting the matrix of observations by X,

where the sensor index j denotes the rows and the time index t

denotes the columns. The matrix of sources, S is defined

likewise, and the coefficients aji of the linear combinations

make up a matrix A. Using these matrices, (1) becomes

XZAS: (2)

If we denote the columns of matrix A by ai and the columns

of matrix X by x(t), then (2) can be further written as

xðtÞZ
XN

iZ1

aisiðtÞ: (3)
The mapping A is called the mixing matrix in the ICA

terminology or the loading matrix in the context of PCA. In

climate data analysis, the time series si(t) usually correspond to

the time-varying states of the climate system, and the loading

vectors ai are the spatial maps showing the typical weather

patterns corresponding to the components.

The goal of the analysis is to estimate the unknown

components si(t) and the corresponding loading vectors ai

from the observed data X. With minimum a priori assumptions

about the sources, the problem is called blind source separation

(BSS).

Independent component analysis (ICA) is a popular method

of solving the BSS problem. In ICA, the only assumption is the

statistical independence of the sources: each si(t) is regarded as

a sample from a random variable si, and these variables are

mutually independent. There are a large variety of algorithms

for solving the mixing matrix A and the sources (Cichocki &

Amari, 2002; Hyvärinen, Karhunen, et al., 2001). One of the

most popular methods is the FastICA algorithm. The

independence of the sources is measured by their mutual

information, which results in a minimum entropy criterion. In

practice the separation is achieved by rotating the observations

into directions that are as non-Gaussian as possible (Hyvärinen,

Karhunen, et al., 2001).

2.2. Denoising source separation

ICA is a powerful tool for exploratory data analysis, when

very little is known about the underlying source processes si(t).

Independence is the only assumption. Sometimes however,

such prior information exists, such as the general shape of the

time curves or their frequency contents. For example, in the

climate data we might be interested in some phenomena that

would be cyclic over a certain period, or exhibit slow changes.

It would be very useful if such prior knowledge could be

incorporated into the separation algorithm directly. Exploiting

prior knowledge about the sources may significantly help in

finding a good representation of the data, and fully blind

algorithms are not the best choice.

This kind of problem setting, with some prior knowledge

available, is called semiblind. One of the methods for solving it

is a recently introduced method called denoising source

separation (Särelä & Valpola, 2005).

DSS is a general algorithmic framework, which can identify

the model in Eq. (1) exploiting prior knowledge about its

unknowns. In DSS, the independence criterion of ICA is

replaced by the assumption that the sources should (1) be

uncorrelated and (2) maximize some desired properties (e.g.

non-Gaussianity, slowness, etc). In this respect, DSS can be

seen as an extension of ICA without the strict independence

assumption.

The first requirement is assured in DSS by using a

preprocessing step called whitening or sphering. The goal of

whitening is to make the covariance structure of the data

uniform in such a way that any linear projection of the data has

unit variance. The positive effect of such a transformation is

that any orthogonal basis in the whitened space defines



Fig. 2. The steps of the DSS algorithm in the general case of nonlinear

denoising.
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uncorrelated sources. Therefore, whitening is used as a

preprocessing step in many ICA algorithms, which allows

restricting the mixing matrix to be orthogonal afterwards.

Whitening is usually implemented by PCA. Assuming that

the measurements xj(t) have been normalized to zero mean, the

matrix of sphered data Y is calculated as

YZDK1=2VTX; (4)

where D is the diagonal matrix of eigenvalues of the data

covariance matrix, defined as (1/T)XXT. The columns of

matrix V are the corresponding eigenvectors. The dimension-

ality of the data can also be reduced at this stage by retaining

only the principal components corresponding to the largest

eigenvalues in D. It is easy to show that it now holds that

(1/T)YYTZI. Matrix Y is not unique, though; any orthogonal

rotation of its columns produces a matrix that also has unit

covariance.

The rotational ambiguity of the whitened data matrix is

fixed using the second DSS requirement, which implements the

source separation criterion. This requirement is usually

introduced in the algorithm in the form of a denoising function.

The purpose of denoising is to emphasize the desired properties

in the current source estimates, which assures gradual

maximization of these properties.
2.2.1. Linear denoising

In the simplest case, the denoising function can be

implemented by a linear temporal filter, operating on the

rows of matrix Y and giving another matrix f(Y)ZYF with F

the filtering matrix. Denoising renders the variances of the

sphered components different: the covariance matrix of f(Y)

equals (1/T)YFFTYT which is no more equal to the unit matrix.

Now PCA can identify the directions which maximize the

properties of interest. The eigenvalues obtained from PCA give

the ratio of the variances of the sources after and before

filtering which is the objective function of DSS with linear

denoising. The components are ranked according to the

prominence of the desired properties the same way as the

principal components in PCA are ranked according to

the amount of variance they explain. The separation thus

consists of three steps: whitening, linear denoising (filtering)

and PCA on the denoised data, as shown in Fig. 1.

The DSS algorithms implemented by linear denoising

optimize the same type of cost function as the maximum

noise fraction (MNF) transform proposed by Green, Berman,

Switzer, and Craig (1988). However, in DSS framework, the

computations are structured such that it is easier to generalize

the method for nonlinear denoising.
2.2.2. Nonlinear denoising

More complex separation criteria usually require nonlinear

denoising (see Särelä & Valpola, 2005; Valpola & Särelä,
Fig. 1. The steps of the DSS algorithm in case of linear denoising.
2004, for several examples). Then, DSS requires an algorithm

presented in Fig. 2. Here, whitening is followed by an iterative

procedure with three successive steps:

(1) Source estimation using the current estimate of the

demixing matrix W:

SZWY;

(2) Applying the denoising function to the source estimates:

ŜZ fðSÞ;

(3) Reestimation of the demixing matrix

WT Z orthðYŜ
T
Þ:

The iterations continue until the source estimates do not

change. In Step 3, orth(.) is an operator giving the orthogonal

projection of the matrixYŜ
T

onto the set of orthogonal matrices.

Without denoising, this procedure is equivalent to the power

method for computing the principal components of Y, because

then Steps 1 and 3 give WTZorth(YYTWT). Since Y is white,

all the eigenvalues are equal and the solution without denoising

becomes degenerate. Therefore, even slightest changes made

by denoising can determine the DSS rotation. Since the

denoising procedure emphasizes the desired properties of the

sources, DSS can find the rotation where the properties of

interest are maximized.

In case of nonlinear denoising, the DSS objective function is

usually expressed implicitly in the denoising function. There-

fore, ranking the components according to the prominence of

the desired properties is more difficult and depends on the exact

separation criterion used in the denoising procedure.

In the applications, we are interested not only in the sources

(rows of matrix S), but also in the matrix A in Eq. (2). The ith

column of A is a spatial map showing how the effect of the ith

source is distributed over the sensor array. Noting that in DSS it

holds SZWY, we obtain from Eqs. (2) and (4)

XZASZAWYZAWDK1=2VTX: (5)

Thus A should be chosen as the (pseudo)inverse of

WDK1/2VT which is

AZVD1=2WT: (6)

Since the extracted components si(t) are normalized to unit

variances, the columns of A have a meaningful scale.
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Note that the signs of the extracted components cannot

generally be determined by DSS, which is a well-known

property of the classical ICA problem. DSS with nonlinear

denoising can determine the sign if the signal is not symmetric.

More details about the DSS method, including rigorous

derivations and analysis were reported by Särelä & Valpola

(2005).
2.3. Extracting sources of climate variability
2.3.1. ICA in climate data analysis

Climate is a very complex system where different

phenomena constantly interact with each other. For example,

the annual cycle naturally affects other climate processes, the

El Niño effect has great impact on global weather but also tends

to phase-lock with the annual cycle, and so on. Therefore, the

existence of any truly independent climate phenomena is an

implausible assumption.

ICA can still be a useful tool for climate data representation

providing, for example, temporally or spatially localized

components. Several researchers have shown that ICA can

extract meaningful components from climate and weather data

(Aires et al., 2000; Basak, Sudarshan, Trivedi, & Santhanam,

2004; Lotsch et al., 2003). However, due to a great amount of

noise in climate data, naive ICA can often produce overfitted

solutions (see Hyvärinen, Särelä, & Vigário, 1999; Särelä &

Vigário, 2003, for discussion of this problem) and one would

require a very long observation period in order to find a

meaningful ICA solution.
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Fig. 3. The frequency response of the filter used in DSS with linear denoising

for finding components with the most prominent interannual oscillations. The

abscissa is linear in frequency but is labeled in terms of periods, in years.
2.3.2. Tuning DSS for climate data analysis

DSS is a much more flexible tool as one can choose the

separation criterion that gives the most meaningful or

interpretable representation of the data. In this work, we search

for physically meaningful states of the climate system which

would possess slow behavior. The slowness of the components

assures their larger long-term effect on global weather and

possibly facilitates making predictions of their future develop-

ment. By physically meaningful states, we mean such

components whose dynamics are as weakly coupled as possible.

Climate phenomena with distinct time scales of their variability

(e.g. the annual cycle, El Niño-Southern Oscillation or slow

climate trends) would intuitively be such components.

First, we concentrate on seeking components which exhibit

prominent variability in the slow timescale. In Section 4, we

show how DSS can be tuned to extract such components based

on a criterion that we term clarity. This approach can be useful

for identifying the subspace of slow phenomena and sometimes

it can also find a meaningful representation within the found

subspace. However, it does not generally provide a good

separation criterion, which may lead to mixtures of different

climate phenomena still existing in any one component.

Therefore, we propose a more complex DSS-based algorithm

which tries to separate slow climate components based on their

frequency contents. The exposition of this algorithm is done in

Section 5.1.
3. Data and preprocessing method

We apply the proposed DSS tools to measurements of three

major atmospheric variables: surface temperature, sea level

pressure and precipitation. This set of variables is often used

for describing global climate phenomena such as ENSO

(Trenberth & Caron, 2000). The datasets are provided by the

reanalysis project of the National Centers for Environmental

Prediction—National Center for Atmospheric Research

(NCEP/NCAR) (Kalnay et al., 1996; NCEP data, 2004).

The data represent globally gridded measurements over a

long period of time. The spatial grid is regularly spaced over

the globe with 2.58!2.58 resolution. Although the quality of

the data is worse for the beginning of the reanalysis period and

it considerably varies throughout the globe, we used the whole

period of 1948–2004. Thus, the data is very high-dimensional:

more than 10,000 spatial locations by more than 20,000 time

instances for each of the three data sets.

The main drawback of the reanalysis data is that it is not

fully real. The measurements missing in some spatial locations

or time instances have been reestimated based on the available

data and approximation models. Yet, the data is as close to the

real measurements as possible and its regularity makes this data

particularly suitable for the source separation methods applied

in this work.

To preprocess the data, the long-term mean was removed

and the data points were weighted to diminish the effect of a

denser sampling grid around the poles: each data point was

multiplied by a weight proportional to the square root of the

corresponding area of its location. This produced the original

data matrix X. The spatial dimensionality of the data was then

reduced using the PCA/EOF analysis applied to the weighted

data. For each dataset, we retained 100 principal components.

This means that in Eq. (4), the columns of Y have dimension

100, while those of the original X are over 10,000 dimensional.

Yet the principal components explain more than 90% of the

total variance, which is due to the high spatial correlation

between nearby points on the global grid. The DSS-based

analysis was then applied to the combined data containing the

measurements of the three variables.
4. ENSO as component with most prominent interannual

oscillations

Components with prominent slow behavior can be extracted

from the data using DSS with low-pass or bandpass filtering as



Fig. 4. Four components with the most prominent interannual oscillations extracted from the combined data. Top four: The time course of the leading components

found by DSS (black) and their filtered versions (gray). The non-filtered components are normalized to unit variance. Bottom two: The Niño 3 SST index (Niño 3

SST, 2004) and its derivative bear similarities to the first and second components, respectively.

Fig. 5. Top four: The spatial patterns of the four leading interannual components extracted from the combined data. Bottom: The regression coefficients calculated

from the combined data using the Niño 3 SST index. The maps are weighted by the square root of the clarity values of the components.
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Table 1

Clarity values of DSS components and regression components obtained from

ENSO indices Niño 3 SST (2004) and SOI (2005)

Component 1 0.7484

Component 2 0.5105

Component 3 0.3376

Component 4 0.3014

Niño 3 SST 0.6853

SOI 0.5354
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denoising. This type of denoising is linear and therefore the

simple algorithm described in Section 2.2.1 is applicable here.

The extracted slow components are ranked according to their

clarity, which is defined as the ratio of the variance of the

component filtered in the desired frequency range and the

variance of the non-filtered component:

clarity Z
varfsfg

varfsg
:

That is, the first component contains the least relative amount

of other frequencies in its power spectrum. The presented

algorithm is functionally identical to MNF (Green et al., 1988)

with the noise defined as the spectral components lying outside

the desired frequency range.

In this section, we aim at finding components which exhibit

prominent variability in the interannual timescale. Therefore,

the bandpass filter whose frequency response is shown in Fig. 3

is used here.

The four most prominent interannual components extracted

from the combined data are shown in Fig. 4. The time course of

the first component (upper curve in Fig. 4) shows striking

resemblance with the El Niño index calculated from the sea

surface temperature (SST) in the Niño 3 region (lower curve).

The correlation coefficients between the extracted component

and the Niño 3 SST index is 0.9323. Note that the upper

components are extracted from climate data consisting of daily

measurements from the whole globe, with the only constraint

being the emphasis on strong interannual oscillations. Also

note that the values of the Niño 3 SST index are monthly

averages and consequently appear smoother than the daily

averages in the DSS components.

The spatial patterns corresponding to the four leading

components are shown1 in Fig. 5. The first surface temperature

map contains many features traditionally associated with El

Niño (Trenberth & Caron, 2000): the strongest pattern in central

and eastern tropical Pacific with broader regions along the

eastern Pacific coast, a negatively correlated ‘boomerang’-

shaped region at 20–408 latitude in both hemispheres linked in

the far western equatorial Pacific, positive values in the Indian

Ocean, and negative values in the North Pacific and around New

Zealand.

The corresponding sea level pressure map is similar to the

classical Southern Oscillation pattern (Trenberth & Caron,

2000): there is a major seesaw structure in the tropics and

subtropics, large pressure departures in the North Pacific, and a

quadrupole-like structure in the Australasia–South Pacific

region. The precipitation map also contains many features

associated with the ENSO phenomenon: the dominant effects

are clearly seen throughout the tropical Pacific with maximum

values in the Niño 3 region. The clear patterns here are the

intertropical convergence zone (ITCZ) and South Pacific

convergence zone (SPZC), a ‘boomerang’-shaped negatively

correlated area in mid-latitudal Pacific merged over Indonesia,
1 The maps are plotted using the mapping toolbox developed by Pawlowicz

(2000).
positive values in the Indian Ocean and subtropical and tropical

Atlantic.

Similar ENSO features are observed from the regression

patterns (shown at the bottom of Fig. 5) calculated using the

Niño 3 SST index. Note that there are some differences in the

extracted maps compared to the regression patterns, for

example, a stronger teleconnection pattern in southern Africa

in surface temperature and a stronger positive center in the

South Pacific in sea level pressure.

The second extracted component also appears to be related

to ENSO and roughly corresponds to the time derivative of the

first component (see Fig. 4). The corresponding precipitation

pattern has an interesting localization in the Niño 3 region and

mostly negative loadings in the rest of the tropical and

subtropical areas. The third and the fourth components show

weaker oscillations in the interannual time scale. Similar

components will be discussed in Section 5.1. Table 1 lists the

clarity values of the found components. Since this index is used

as the objective function for extracting the components, the

first component always has the largest value in all conditions.

We also applied the same analysis to the three data sets

separately (see Ilin et al., 2005) and the first extracted

component was always a good ENSO index. Somewhat

surprisingly even the component extracted from sea-level-

pressure data resembled more the Niño 3 SST index than

Southern Oscillation Index (SOI) although SOI is defined in

terms of sea level pressure.
5. Extracting slow components with distinct power spectra

5.1. Frequency-based separation of sources

The algorithm described in the previous section is useful for

extracting components which are dominant in a certain

frequency range. This requires some knowledge about the

expected power spectrum of the extracted component in order

to use a proper frequency mask in the denoising filter. In

blinder settings, however, this information does not exist and

the frequency masks such as the one presented in Fig. 3 should

be estimated automatically.

In this section, we present an algorithm which can be seen as

an extension of the previous approach. It assumes that different

extracted components are dominant in different frequencies

(hence, they have distinct power spectra) and automatically

estimates an individual frequency mask for each component.

The adaptation of the masks is practically implemented using a

competition mechanism involving the smoothed power spectra
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Fig. 6. The frequency response of the filter used in the frequency-based

separation of slow climate components. The abscissa is linear in frequency but

is labeled in terms of periods, in years.
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of the current sources estimates: A mask is increased in the

frequencies where the corresponding component prevails over

the other sources and it is decreased where the corresponding

components is dominated by other sources. The sources are

then reestimated using the adapted frequency masks.

The corresponding denoising procedure is nonlinear and

therefore the iterative procedure described in Section 2.2.2 is

used here. The exact steps of the denoising function ŜZ fðSÞ

are listed below:

(1) Compute discrete cosine transform SDCT of the sources S

and retain only the DCT coefficients important for the

source separation. In this section, the separation is done in

the low frequencies and therefore the mask from Fig. 6 is

applied to the DCT coefficients.

(2) Calculate smoothed DCT power spectra C (by, e.g. low-

pass filtering of the squares of SDCT) and normalize it in

such a way that the average (across sources) values of C

are same for different frequency bins. This is done to

increase the competition in relatively weak frequencies.

(3) Apply the competition mechanism by partially whitening

C to a degree a with a symmetric whitening matrix

MDCT ZVCD
Ka=2
C VT

CC; (7)

where VC is the orthogonal eigenvector matrix of the

covariance of C, and DC is the diagonal matrix of the

corresponding eigenvalues. Whitening is done without

removing the mean of C. This competition mechanism is

somewhat similar to the whitening-based estimation of the

source variances proposed by Valpola & Särelä (2004).

(4) Calculate denoised sources Ŝ by applying inverse DCT to

SDCT masked with the positive parts of MDCT.

At the beginning of learning, the denoising function also

orders the components according to the mean frequencies in

their power spectra. Later, the topographic idea (similarly to

Hyvärinen, Hoyer, et al., 2001) is used to relax the competition
Fig. 7. The steps undertaken to find slow components with distinct power spectra. T

stands for slow feature analysis described in Section 4 and FBS blocks correspond
in the power spectra of the neighboring sources. Note also that

since DCT is a linear orthogonal transformation, steps 1 and 4

are only required at the beginning and at the end of learning,

respectively. Performing step 4 on each iteration is useful for

tracking the time course of the source estimates during learning.

The presented algorithm essentially performs ICA in the

frequency domain. Similar frequency-based separation criteria

were used by Cichocki & Belouchrani (2001) and Gharieb &

Cichocki (2003) (see also Cichocki & Amari, 2002). For

example, the algorithm presented by Cichocki & Belouchrani

(2001) uses analogues of the frequency masks which are

restricted to a bandpass type. In practice, solutions produced by

the frequency-based ICA algorithms can be similar to results

obtained with other ICA algorithms based on temporal

structure such as SOBI (Belouchrani, Meraim, Cardoso, &

Moulines, 1997) or TDSEP (Ziehe & Müller, 1998).

5.2. Application on climate data

This section describes how we performed frequency-based

separation of climate components in a wide, slow frequency

range (see Fig. 6). First, we applied the DSS-based analysis

described in Section 4 to extract components which exhibit the

most prominent variability in the desired slow time scale. The

digital filter from Fig. 6 was used in this step as linear denoising.

This procedure is similar to the maximum autocorrelation factor

transform proposed by Switzer (1985) and linear slow feature

analysis (Wiskott & Sejnowski, 2002). Therefore, we refer to

this step as slow feature analysis (SFA) in the following.

Then, the frequency-based separation algorithm was applied

to several leading components extracted by SFA. We retained

only sixteen cleanest components at this stage as the produced

results were easily interpretable for this number of com-

ponents. This procedure roughly identified three subspaces:

trends, interannual and annual oscillations.

Based on the obtained results, we found it possible to

improve the representation within the found subspaces. We used

the clarity criterion introduced in Section 4 to order the subspace

of trends and applied the frequency-based rotation for the

subspace of interannual oscillations separately. The full

sequence of the undertaken steps is schematically shown in

Fig. 7.

5.3. Experimental results

5.3.1. Identifying the subspace of slow climate phenomena

Several cleanest components were first extracted from the

highly multidimensional data. The annual cycle appeared in the
he numbers above arrows indicate the spatial dimensionality of the data. SFA

to frequency-based separation described in Section 5.1.
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two leading components as the cleanest slow source of climate

variability (for depictions of their time courses, see Ilin &

Valpola, 2005). The following components also had interesting

slow behavior but they appeared to be mixtures of several

climate phenomena. For example, the prominent ENSO

oscillations were mixed with trends. The power spectra of

many components contained prominent slowest, decadal and

close-to-annual frequencies. Except for the two annual cycle

sources, none of the components had a clear dominant peak in its

power spectrum.
5.3.2. Frequency-based separation of slow climate phenomena

The first 16 slow components extracted at the first stage were

further rotated using frequency-based DSS described in Section

5.1. To discard high-frequency noise, the monthly averages of the

slow components were used. The time course of the rotated

sources is presented in Fig. 8 (for depictions of spatial patterns

corresponding to some of the components found after this stage,

see Ilin & Valpola, 2005). The rotated components have a clearer

interpretation compared to the original slow components. The

power spectra of the rotated components are more distinct (see the

middle column of Fig. 8). However, some of the power spectra
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Fig. 8. The time course (a) and power spectra (b) of the components obtained after th

end of learning. The abscissa in power spectra and frequency masks is linear in fre
look quite similar and we can roughly categorize the found

sources into three subspaces with different variability time scales:

trends (components 1–5), interannual oscillations (components

6–11) and components 12–16 with dominating close-to-annual

frequencies in their spectra. The subspaces are identified reliably

due to the distinct differences in the corresponding power spectra

but the components within the subspaces may remain mixed.

The rightmost column of Fig. 8 shows the frequency masks

at the final stage of learning. The large values of the masks

indicate the frequencies in which the corresponding sources are

expected to prevail over the other sources.
5.3.3. Rotation of the subspace of trends using

the clarity criterion

The first five sources are the slowest trends found in the

data. Their power spectra look very similar, which means that

their good separation is not guaranteed by the frequency-based

criterion. One would naturally require a much longer

observation period in order to distinguish differences in the

frequency contents of the slowest climate phenomena. Some

other criteria such as the spatial localization of the components

might help separate the trends. However, we do not attempt to
1 1/2 10 3 2 1 1/2

(b) (c)

e frequency-based rotation of slow components. (c) The frequency masks at the

quency but is labeled in terms of periods, in years.
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achieve good separation of the trends in this work. We rather

structure this subspace using the clarity criterion explained in

Section 4 with the frequency mask shown in Fig. 6.

The time course of the structured (rotated) slowest

components together with their power spectra is shown in

Fig. 9. The spatial patterns corresponding to these

components are shown in Fig. 10. The first component

with the constantly increasing time course is most prominent

among these sources. This component may be related to

global warming as the corresponding surface temperature

map has mostly positive values all over the globe. The

highest temperature loadings of this component are mainly
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Fig. 9. The time course (a) and power spectra (b) of the components rotated within t

index (Niño 3 SST, 2004), SOI—Southern Oscillation index (SOI, 2005), dEN—diff

index (AO, 2005), mEN—the Niño 3 SST index modulated by annual oscillations.

periods, in years.
concentrated around the North and South Poles and the sea

level pressure map has a clear localization around the South

Pole. The precipitation loadings are mostly located in the

tropical regions with negative values over the oceans and

North Africa and with prominent positive values in the

Australian–Indonesian region, near the Peruvian coast and in

South Africa. The other extracted trends also contain

interesting patterns both in the time course and in the spatial

patterns. They may be related to climate phenomena

oscillating in the multidecadal time scale such as, for

example, the Atlantic multidecadal oscillation (Enfield,

Mestas-Nuñez, & Trimble, 2001).
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The abscissa in power spectra is linear in frequency but is labeled in terms of



Fig. 10. The spatial patterns of the five slowest components 1–5 after the clarity-based rotation. The maps are weighted by the square root of the clarity values of the

corresponding components.
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5.3.4. Frequency-based rotation of the subspace

of interannual oscillations

The following six components 6–11 exhibit prominent

oscillatory behavior in the interannual time scale. Though

their power spectra look quite distinct, we apply the frequency-

based rotation to this subspace separately in order to improve the

separation. This approach can be justified by inspecting the

frequency masks shown in Fig. 8. The masks corresponding to

the slowest and close-to-annual frequencies were naturally large

for components 1–5, 12–16 and close to zero for components

6–11. Taking into account these frequencies can be useful for

finding a better representation within components 6–11.

The time course of the rotated components 6–11 is shown in

Fig. 9 and the corresponding spatial patterns are presented in

Fig. 11. The most prominent sources here are components 7 and

8, which are obviously related to the ENSO oscillations both in

the time course and spatial localization. These components are

very similar to the first two components with the most prominent

interannual oscillations presented in Section 4 (see Figs. 4 and 5
for comparison). Component 8 is similar to the ENSO index and

component 7 bears resemblance with the differential ENSO

index (see the bottom of Fig. 9 for their time course). The

correlation coefficient of component 8 is 0.90 for the Niño 3 SST

index and K0.67 for SOI. The correlation coefficient between

component 7 and the differential El Niño is 0.40.

Components 6 and 11 resemble the third and fourth

components presented in Section 4. Component 6 may be

related to slowly changing aspects of the ENSO phenomenon

as its loadings are mostly localized in the ENSO regions.

Component 11 has quite distinct spatial patterns with

a prominent temperature dipole in the Northern Hemisphere

and a dominating sea level pressure dipole somewhat

resembling the North Atlantic Oscillation or Arctic Oscillation

patterns. This component may be related to slowly changing

aspects of these phenomena. The correlation coefficient to the

Arctic Oscillation index shown at the bottom of Fig. 9 is 0.42.

The dominant pattern of component 9 is two precipitation

centers over the Sahel area in Africa and over the Chaco plain



Fig. 11. The spatial patterns of the interannually oscillating components 6–11 after the frequency-based rotation within the subspace. The maps are weighted by the

square root of the clarity values of the corresponding components.
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in South America. This component shows prominent decadal

variability but it is difficult to judge whether it corresponds to a

meaningful climate phenomenon.

Component 10 is related to the interactions of ENSO with

the annual cycle. The characteristic spikes happening during El

Niño episodes are indicators of this connection. The frequency

of these spindles corresponds to the frequency of the ENSO

signal modulated by the annual oscillations. It is well known

that ENSO has different effects depending on the time of the

year (Trenberth & Caron, 2000). This can be modeled by

a varying mixing matrix AZA(t) whose columns ai change

throughout the year. The first-order approximation yields

aiðtÞZ ai;1 Cai;2ssðtÞCai;3scðtÞ;
where ai,1 are loading vectors of the constant effect, ss(t) and

sc(t) are the sine and cosine components of the annual

oscillations and ai,2, ai,3 are the loading vectors of the

seasonally changing effects. This is equivalent to having

extra components in the model (see Eq. (3))

aiðtÞsiðtÞZ ai;1siðtÞCai;2si;2ðtÞCai;3si;3ðtÞ;

where si,2(t)Zss(t)si(t) and si,3(t)Zsc(t)si(t) are the annual

oscillations modulated (multiplied) by the climate source si(t).

The last row of Fig. 9 shows the El Niño index modulated by

the annual frequency. The phase of the modulating signal was

chosen so as to maximize the correlation coefficient to

component 10 (its value is 0.49). Note the distinctive spikes

during El Niño episodes. Note also that modulating a signal by a
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sinusoid shifts the power spectrum of the signal by the frequency

of the sinusoid. This yields a power spectrum such as the one

shown in the last row of Fig. 9b. The frequency mask

corresponding to component 10 has a very similar structure

(not shown here).
5.3.5. The subspace of seasonal variations

The last set of extracted sources are components 12–16 with

prominent close-to-annual frequencies in their power spectra.

The corresponding spatial patterns are shown in Fig. 12. The

dominating components here are the annual oscillations

(components 15 and 16). The rest of the sources resemble the

annual oscillations modulated (multiplied) by very slow

components. Note the characteristic frequency masks corre-

sponding to these components shown in Fig. 8c. Thus, this set

of components may be related to some phenomena slowly

changing the annual cycle.

Since the power spectra of these components are quite

similar, good separation may not have been achieved here.
Fig. 12. The spatial patterns of components 12–14 with prominent close-to-annual os

with the frequency-based separation. The maps are weighted by the square root of
Some other criteria may be better for finding a more

meaningful representation within this subspace.
6. Discussion and future directions

In this paper, we showed how the DSS framework can be

tuned to incorporate different separation criteria which proved

useful for exploratory analysis of climate data. We used a

clarity criterion to extract components with the most prominent

interannual oscillations and a frequency-based separation

criterion to identify slow varying climate phenomena with

distinct variability time scales. The presented algorithms can

be used for both finding a physically meaningful representation

of the data and for an easier interpretation of the complex

climate variability. The resulting components could also be

useful for making long-term weather forecasts or for detecting

artifacts produced during the data acquisition.

Several extracted components were clearly related to the El

Niño-Southern Oscillation phenomenon: components
cillations (above) and the two annual cycle components 15 and 16 (below) found

the clarity values of the corresponding components.
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resembling the ENSO index, its derivative and modulated

ENSO were found. These results suggest that ENSO is a

multidimensional process, which cannot be fully described by a

single index. The most meaningful combination of these

components may not even exist. In this paper, we showed that

the clarity criterion give the component closest to the index

used to characterize ENSO in contemporary climatology.

Note that the proposed methods may sometimes identify

reliably only the subspaces of components having similar

properties exploited for separation. Then, the found rotation

within the subspaces may not be most meaningful. Some other

separation criteria could be helpful for improving the results. For

example, one could try to separate components based on their

distinct spatial localizations (e.g. El Niño is known to happen in

the tropical Pacific) or distinct time structure (different climate

phenomena may be active at different time instances). Such

separation criteria could be used separately or in a combination.

Moreover, as the signals of interest are state variables,

which have a predictable time course, an important future line

of research will be to model nonlinear dynamics of the state

variables. In the global climate system, everything depends on

everything else, and a sensible criterion for separation is that

the states should have as little dynamic couplings as possible

(cf. this physical independence with statistical independence

criterion in ICA). A similar separation criterion was used by

Valpola & Karhunen (2002).

Nonlinear effects should also be taken into account because

they are known to exist between the state variables. For

example, some climate phenomena may affect the fast

variations of the weather conditions in certain spatial locations.

Also, the most prominent phenomenon in the climate system is

the annual cycle and it is quite plausible to assume that climate

phenomena may have different effects depending on the time of

the year. Then, the combined effect has a nonlinear component

as we shown in Section 5.3.4 for ENSO. Similar nonlinear

effects can be expected to be present among all state variables

and they could be revealed by dynamic loading matrices.
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