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Szabó, B.: Influence of shear connectors on the behaviour of composite girders 
 
Keywords: steel-concrete and wood-concrete composite girders, bridge, shear connection, 
flexible connectors, finite element method, parametric study. 
 

ABSTRACT 
 
The effect of deformable and rigid connectors and influence of connection parameters on the 
behaviour of composite girders is examined. Both the elastic and plastic behaviour are 
discussed, but the former one is the main concern.  Deformable connectors cause slip in the 
joint, which results in redistribution of internal forces and changes in the deformed shape of 
the beam compared to the connection with rigid connectors. 
 
The aim of this study is to complement the analytical methods and develop numerical models 
– based on the author's experimental research - capable to provide reliable parametric studies 
of three-dimensional structural models of composite girders with deformable and rigid 
connectors. 
 
At first, the partial interaction problem, behaviour of composite girders in the case of various 
loading types, recent development and real behaviour of connections of composite girders is 
discussed in the introduction. It is followed by a detailed literature survey serving the purpose 
of this study. This survey comprises two main parts: analytical and numerical models of 
composite girders. Among the analytical models, statical and energy methods are considered. 
The author also developed a new kind of energy method based on variational calculation for 
determination of shear force distribution of shear connectors of composite girders. The new 
method is in compliance with the experimental and the latest theoretical investigations. Next, 
experimental study on steel-concrete and wood-plywood composite girders conducted by the 
author at the Budapest University of Technology and Economics and Helsinki University of 
Technology respectively, are presented as well. 
 
Experimental studies are followed by parametric studies based on analytical and finite 
element analyses in order to examine how changes in the connector stiffness affect the 
behaviour of composite girders. Based on these parametric studies, new design formulas are 
developed for design practice. The main results obtained by the author are: development of 
energy method based on the variation calculation, elaboration of a parametric study for 
determining the elastic shear force for all cross-sections and spans, use of photoelastic method 
to verify shear stresses near to the beam end, simulation of temperature effect, and 
development of a FEM model providing results that show good compliance with experimental 
results. 
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PREFACE 

 
 
In Hungary steel-concrete composite bridges have been extensively used for a long time. In 
the last two decades even a Danube bridge was constructed using steel-concrete composite 
girder, use of this structure though is popular mainly for middle-span bridges. Several 
composite bridges with such structure are being planned and constructed in Hungary. Besides 
it is always a possible engineering solution to reinforce an old steel plate girder using a 
concrete slab. In Finland very intensive activity can be experienced in the field of 
implementing wood-concrete composite girders since the early 1990’s, out of which the 
Vihantasalmi Bridge is the greatest and most attractive king post composite bridge. To meet 
the demands of engineering practice, large-scale investigations are being carried out on 
composite structures both at the Budapest University of Technology and Economics (BUTE) 
and Helsinki University of Technology (TKK). The development and introduction of 
Eurocodes also ensured enormous progress in this field.  
 
In the frame of co-operation between the Laboratory of Bridge Engineering (LBE) of TKK 
and the Department of Structural Engineering (DSE) of BUTE the present author worked at 
the LBE during the academic year of 1998/1999 conducting experimental tests on wood-
based composite girders. This study aims at supplementing these tests and the earliest 
research work of the author, providing a new method for calculation, and developing new 
design formulas for design practice, by investigating the behaviour of connectors, and the 
influence of their behaviour on the stress and strain condition of a steel-concrete and wood-
concrete composite girder.  
 
The author expresses his deep gratitude to his supervisor, Professor Aarne Jutila for the 
opportunity to prepare this study at TKK under his guidance, for his steady encouragement 
and devoted support throughout the entire research work.  
  
The author also wishes to thank Professor Bo Edlund from Chalmers University of 
Technology and Dr Matti V. Leskelä from the University of OULU for thoroughly reviewing 
the study and for their critical remarks concerning the contents and manner of presentation of 
the text. These comments were considered and are believed to have contributed to the value of 
the study. 
 
The author is indebted to Professor Miklós Iványi and the late Professor Pál Platthy from the 
Department of Structural Engineering (DSE) of BUTE for their support facilitating 
experimental tests on steel-concrete composite girders. Thanks are also offered to the staff of 
the Laboratories of LBE and DSE. In addition, many other colleagues of the author from 
TKK and BUTE and from other organizations not nominated herein merit particular thanks 
for their continuing help, interest and encouragement. 
 
Last but not least, the author would like to thank Ms. Zsuzsanna Zsilák (M.Sc.) for revising 
the English text of the manuscript at different stages of completion.  
 
Budapest-Espoo, June 2006 
 
Bertalan Szabó 
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NOTATION 
 

Aa  area of beam cross-section  
Ac  area of slab cross-section 
Aa

*   area of the top (or bottom) portion of beam cross-sectional area, defined from 
the section where ba is measured 

Ac
*   area of the top (or bottom) portion of slab cross-sectional area, defined from 

the section where bc is measured 
Ai  ideal area of composite cross-section 
Ase   area of longitudinal reinforcement in compression 
Aap   effective area of  profiled steel sheeting 
C*  rigidity parameter of composite girder [Ca·Cc /( Ca + Cc)] 
C2(a;b)  space of twice continuously differentiable functions 
Ca   axial stiffness of beam 
Cc   axial stiffness of slab 
Dabs  bending stiffness of composite girder without interaction between the parts 
Di ideal stiffness for traditional energy method 
Dc   bending (flexural) rigidity of slab  
Da  bending (flexural) rigidity of beam 
Dfull  bending stiffness of the composite girder with full interaction 
Ea  modulus of elasticity of beam 
Ec  modulus of elasticity of slab 
F  connector force  
Fa  contact force between beam and slab 
Fcf  normal force of beam or slab assuming full strength of  connection  
Femb   shear embedment force 
Fest  estimated maximum load 
Fmax   maximum force that can be transmitted by a connector 
Fpatch   splitting resistance of the concrete prism  
Fsh  shear force acting on the connector  
Fxz   split load in x-z plane  
Fxy  split load in x-y plane   
Fy  connector force calculated by the finite element model 
G  shear modulus 
Ia  moment of inertia of the beam 
Ic  moment of inertia of the slab 
Ii  ideal moment of inertia of the composite cross-section 
K  spring constant of interface layer 
L  span 
L2 (a;b)  pace of square-integrable functions 
Li  work of internal forces 
M  bending moment of composite girder 
Mmax  maximal bending moment of composite girder 
M0  resultant bending moment  
Ma, Mc  bending moment acting in the beam (sectorial force) 
Ma,pl  bending moment acting in the beam causing plastic failure 
Mapl,Rd  design plastic resistance of the steel beam 
Mc  bending moment acting in the slab (sectorial force) 
MEd  design bending moment  
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Mpl,Rd  design plastic resistance of composite section 
Msh  bending moment acting on the connector 
Mu

(r)  reduced ultimate moment  
Mu  ultimate moment 
Mz  bending moment about z axis 
N  normal force acting in the beam or slab 
N0  axial force obtained with infinitely rigid joint 
Na  normal force acting in the beam (sectorial force) 
Nc  normal force acting in the slab (sectorial force) 
Nfull    normal force due to Hawranek-Stenhardt method with respect to full shear 

connection                                                                                      
P  external force, patch loading 
R  set of real numbers 
S  statical moment 
Sa

*   statical moment of the top (or bottom) portion of beam cross-sectional area, 
defined from the section were ta is measured 

Sc
*   statical moment of the top (or bottom) portion of slab cross-sectional area, 

defined from the section were tc is measured 
T  shear force per unit length (shear flow) 
T(0)     elastic shear flow at support line    
Tfull(0)    elementary shear flow at support line    
T1     temperature at upper extreme fibre of concrete slab                                                                                 
V  shear force 
Vl  total design longitudinal shear force  
Xa   axial force in connector 
Xemb    axial embedment force  
 

ai (i=1, 2…n) coefficient of Fourier-series 
ba   width of bar connector 
bc  effective width of concrete slab or width of concrete prism in splitting analysis 
bf   distance between loading point of eccentric shear force Fsh and interface of 

steel beam and concrete slab 
c  spacing between the connectors 
ci (i=1, 2…n) constants   
d   distance between centre of gravity of slab and beam (d = da + dc) 
da  distance between centre of gravity of  beam and contact surface 
dc  distance between centre of gravity of  slab and contact surface 
dai  distance between centre of gravity of  beam and ideal centre of gravity of 

composite girder 
dci  distance between centre of gravity of  slab and ideal centre of gravity of 

composite girder 
dae  distance between centre of gravity of  beam and line of connector force 
dce  distance between centre of gravity of  slab line of connector force 
dt  length of splitting crack  
e distance from the lower edge of  composite girder 
ek   eccentricity from interface of connector force in the method of redundant 

forces  
fcb   tensile strength of concrete 
fck yield strength of concrete 
fd  lateral stress due to constant component of shear flow 
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fmax  maximum lateral stress due to strip load 
fr  lateral stress due to varying component of shear flow 
fsk  yield strength of reinforcement 
fy  yield strength of steel 
 fyp  yield strength of profiled steel sheeting 
fε    photoelastic constant of the layer 
ha  height of connector or prism used in the splitting analysis 
hc  depth of concrete slab  
h1  part of concrete slab depth 
h2  part of steel web depth 
i and j  real numbers 
kx, ky, kz spring stiffness values of connectors in the finite element model 
m  fringe order of the isochromat 
mabs  absolute material content 
mrel  relative  material content 
n  number of partial shear connectors 
n1  a limit number of partial shear connectors 
nf  number of full shear connectors 
pi(x)  member of Fourier-series  
q  intensity of uniformly distributed load 
qpl  intensity of uniformly distributed load causing plastic failure 
s(x)  slip at interface 
t  time 
ta   width of beam cross-sectional area, measured at the point where shear stress is 

determined 
tc   width of slab cross-sectional area, measured at the point where shear stress is 

determined 
ua,o, uc,u longitudinal displacement of  the beam and slab, respectively, at interface  
ua, uc  longitudinal displacement of  the beam and slab, resp., at center of gravity 
ux  displacement in x direction  
uj, uij, ujj relative displacements at connectors of composite girder 
vmax  maximal deflection of composite girder 
v   vertical displacement 
xt  length of the lateral zone 
x, y, z  directions of coordinate system   
 

[U]  stiffness matrix 

[F]  force vector 

{u}  displacement vector 
 

Γ,  Γ *  kernel (function of  potential) and modified kernel, respectively  
Φ[N(x)] potential 
Π  potential energy 
∆  a step in the finite difference method 
∆T  temperature difference between beam and slab 
 

α  constants that enable definition of the non-linear connector behaviour curve 
αstiff  composite stiffness parameter 
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αT  coefficient of thermal expansion 
β  constants that enables definition of the non-linear connector behaviour curve 
ζ     ratio T(0)/Tfull 
η = n/nf degree of shear connection 
ω  constant in the Hawranek-Steinhardt equation  
γ  constant in the Hawranek-Steinhardt equation 
γa, γc, γs, γap partial safety factors for steel beam, concrete slab, reinforcement, profiled steel 

sheeting 
κ  curvature of the deflection curve 
µ  Poisson’s ratio 
φ  rotation of beam or slab 
ϕ  angle of principal tensile stress 
 ε                      strain 
ε1, ε2               principal strains 
εa                    strain at centre of gravity of beam 
εc                     strain at centre of gravity of slab  
σ1, σ2              principal stresses 
σx  normal stress 
σx,c   average normal stress on the slab 
σmeasured measured normal stress 
ρ  density 
τxy  shear stress 
 
 
Abbreviations  

 
BUTE  Budapest University of Technology and Economics 
C.A  centroidal axis  
DSE  Department of Structural Engineering 
DOF  degree of freedom in a finite element 
LBE  Laboratory of Bridge Engineering of TKK 
TKK  Helsinki University of Technology 
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1   INTRODUCTION 
 

1.1  Background   
 
In the field of bridge engineering, composite action is commonly utilised in girder-type 
structures.   The steel-concrete combination is the most common one, but concrete-concrete 
and wood-concrete composite girders are also used. The popularity of composite structures 
derives from the simple and appropriate structural form, which allows the construction of 
lightweight but load-carrying structures in an economical way. They can easily be built in 
sequences of various construction methods. Obviously one of the most challenging parts in 
these structures are the connections between the two different materials, but also other issues 
like 

- classification of ductility and non-ductility in a more versatile manner than is done in 
Eurocode 41, 

- consideration of connection characteristics with respect to span length of the girder, 
- consideration of various densities of the connection (also definition of connection 

density) and their effect on the serviceability characteristics and 
- consideration of minimum densities of connection in ultimate limit state analysis 

 are important from scientific and practical point of view. 
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Fig. 1. A typical composite girder and notation used. 

 
A typical cross-section of a composite girder is shown in Fig. 1. The girder comprises the 
beam, the slab and the connectors. In the figure Ac is the cross-section area of the concrete 
slab, Aa is the cross-section area of the steel beam, Cc is the center of gravity of the concrete 
slab, Ci is the center of gravity of the composite girder, Ca is the center of gravity of the steel 
beam, dci is the distance between the center of gravity of the composite girder and the center 
of gravity of the concrete slab, dai is the distance between the center of gravity of the 
composite girder and the center of gravity of the steel beam, N, Mc and Ma are sectorial forces, 
and M0 is the bending moment acting on the cross-section, which is balanced by bending 
moments Mc (concrete), Ma (steel) and N·d, i.e. 
  

M0 = dNMM ac ⋅++      (1)
    

Fig. 1 also shows the coordinate system used in this study. 
 
Fig. 2 gives examples for steel-concrete and wood-concrete composite girders and their 
connections. This figure confirms as well that the use of composite girders is not at all pushed 
into the background but is, in fact, becoming more and more wide-spread and extensive. 

                                                
1 Eurocode 4 [35] shall mean EN 1994-1-1 in the following part of this study. 
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Therefore, it is practical to continue the related research work. Although, this study covers 
only the behaviour of connectors, and the influence of their behaviour on the stress and strain 
condition of a composite girder, in addition to the research on connectors, it is also necessary 
to review several other issues and tendencies concerning the investigation of the entire 
composite girder since the behaviour of the connection may affect that of the entire composite 
girder. 
 
Although, in the case of steel bridges, reinforced concrete slabs were used as compressed 
flanges of steel structures, deliberate applications of the first composite bridge structures 
occurred in the early 1900’s in France possessing the most advanced reinforced concrete 
technology of that time, i.e in the construction of the Canal du Midi near Toulouse and the 
Chamberly composite bridges, respectively. 
 
Spreading of the composite technology was significantly hindered mainly by the lack of 
experimental data and theoretical grounds including the problem of the creep of concrete. In 
the 1930’s, however, extensive experimental work related to various connection types in 
composite structures was commenced in Germany, Sweden, in the USA and other countries.  
At the same time DISHINGER’s main work on the creep of concrete was published in 1937 
[31]. This work covered the behaviour of reinforced concrete arches subjected to creep and is 
applicable to the concrete slab of the composite girder as well.  
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Steel-concrete and wood-concrete composite girders and their connections. 
 
Following World War II composite structures gained significant importance due to the 
numerous buildings and structures awaiting refurbishment, and also because of the 
considerable shortage of steel material. Major construction projects also gave a boost to the 
research in this field. NEWMARK completed his publication on tests and analyses of 
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composite beams with incomplete interaction in 1951 [85]. Among other publications like  
HOISHEN [53] and HAWRANEK-STEINHARDT [52], NEWMARK`s publication forms 
the basis of the static method used for the calculation of composite girders up to our days. 
Soon the energy method also appeared in the reference literature as the solution of this 
problem [53], [55], [94]. These methods consider connectors’ linear behaviour. 
 
Since the1950’s the number of different solutions of the creep problem has steadily increased. 
The particular phases in this process are marked by the following names and dates: 
BUSEMANN 1950 [13], SATTLER 1959 [99], FRITZ 1961 [47], ENGLAND and ILLSTON 
1965 [33], NIELSEN 1970 [84], TROST 1968-1973 [120-123], RÜSH, JUNGWIRTH and 
HILSDORF 1973 [97] and CEB-FIP Model Code Method 1978-1990 [14],[15], [16]. 
 
Further research on connections and the surrounding concrete was also carried out. As part of 
that the interface shear between concrete beam and concrete slab was studied by FENWICK 
and PAULAY in 1968 [41] and by PAULAY and LOEBER in 1974 [92]. Correspondingly, 
the behaviour of shear connectors in concrete slab was investigated thoroughly by JOHNSON 
and OEHLERS [58] and OEHLERS et al. [87], [88], [89] and [90]. In these studies dowel 
action, longitudinal shear, splitting forces, embedment forces and interaction between shear 
and axial forces were particularly tackled. These topics are reviewed in detail in Section 2.7.  
 
As in other fields of science, introducing of the finite element method (FEM) led to 
revolutionary changes in civil engineering. This new tool offered a possibility to analyse 
structures numerically instead of carrying out relatively expensive laboratory tests. Numerical 
methods, however, need calibration, and that is why laboratory tests are still needed. Due to 
this fact Chapter 5 is presented in this study strengthened by two detailed literature surveys 
(Chapters 2 and 3) and some numerical calculations of the author. 
 
Standards like Eurocode 4 were developed as well [35]. In Eurocode 4 the principle of partial 
and full shear connection2 and ductile and non-ductile connectors were introduced for 
standard composite girders. However, there were no methods recommended for shallow floor 
composite beams. To fill this gap LESKELÄ carried out research on this topic at the end of 
the 1990’s and early 2000’s [75], [76]. The author of the referred study examined the non-
ductile connections of shallow floor composite beams, developed the partial connection 
theory for these structures and studied the influence of connection characteristics with respect 
to the span length [75], [76]. For the design of steel-concrete composite structural elements of 
buildings, Eurocode 4 suggests the plastic design in the ultimate limit state and crack width 
limitation in the serviceability limit state. 
 
The linear partial interaction theory [85], [56] was also developed further. In 1999, 
differential equations governing the behaviour of simply supported composite girders with 
partial shear connection were deduced by JASIM  [56].  These equations are derived for the 
case when the distribution of connectors along the span is triangular.  
 
In 1993, a method for the time-dependent analysis of continuous steel-concrete composite 
girders with deformable shear connectors was developed by DEZI et al. [28], [29]. The 
mathematical formulation of the problem led to a coupled system of equations, of which two 
are integral-differential type equations. 
 

                                                
2 Definition of partial and full shear connections can be found in Section 2.6 on page 44. 
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At the intermediate support regions of continuous composite girders the negative bending 
moments generate tensile stresses in the concrete slab and compressive stresses in the steel 
beam. As a result, the mechanical behaviour of these girders is strongly non-linear even 
for low stress levels, due not only to the slip at the beam-slab interface, but also to 
cracking in the slab. In addition, the time-dependent behaviour of continuous steel-concrete 
composite girders causes internal force rearrangement. Due to these reasons several authors 
studied this problem using standard finite element programs and finite element programs 
developed by themselves [8], [10], [22], [28], [36], [49], [50], [57],  [72], [79], [83]. The 
tension stiffening effect of cracked concrete was also studied by some authors [36], [79].  
 
Recently DEZI, GARA and LEONI presented a variational approach to resolve the 
differential equations in an easier manner [30]. The present author also uses this approach 
in Section 2.4.  
 
1.2  Behaviour of connections of composite girders according to earlier studies 
 
Generally speaking, the majority of civil engineering structures consist of girders where the 
connection between two structural elements can be considered to be deformable instead of 
being fully rigid. For instance, in railway and highway bridges deformable connections are 
common between the main beams and cross beams and the cross beams and stringers. In spite 
of this fact, in practice the deformable connections are usually considered as rigid because of 
complications in the analysis and minor effect on the final result. 
 
In case of steel-concrete composite highway bridges, the thickness of the reinforced concrete 
slab varies in a relatively small range and is practically independent of the span of the main 
girder. This means that in long-span bridges the larger internal forces can be balanced mainly 
by the increased dimensions of the steel girder only, while the dimensions of the reinforced 
concrete slab remain practically the same. The result of the increased dimension is that the 
center of gravity of the composite section tends to move further away from the concrete slab. 
Therefore, beyond a certain span, the allowable stress in the extreme top fibre of the slab is 
reached earlier than the allowable tensile stress in the extreme bottom fibre of the steel girder. 
As a consequence the steel beam cannot be economically utilized. The economy, however, 
can be improved by using deformable connections and by decreasing the normal force N as 
suggested by HAWRANEK and STEINHARDT [52]. Other examples are presented in the 
studies by HOISCHEN [53], HOMBERG [55], SATTLER [100] and STÜSSI [104]. 

 
In case of a rigid connection, BODE and SCHANZENBACH examined a composite girder 
with hot-rolled steel beam and connectors with uniformly distributed spacing using numerical 
analysis. They found that if the loading force is increased [11], then the connector force 
diagram (Fig. 3) - initially regular almost in the entire length of the beam except for the 
support region - becomes irregular. The significant decrease in the connector forces at the 
beam end cannot be explained by the principles of elementary strength theory either. In 
practice, connectors are never fully rigid, and there is always some slip between the slab and 
the steel section. The flexibility of the connectors allows more ductility3 and a variation in the 
distribution of longitudinal shear between slab and steel section. Behaviour of deformable 
connection under increasing load can also be seen in Fig. 3. Small reduction of the connector 
force at the beam end can be observed in this case as well. The uniformly distributed load qpl 
causing plastic failure was 56 kN/m. 
                                                
3 Definition of ductile and non-ductile connectors can be found in Section 2.6 on page 45. 
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In addition it is discovered that the maximum connector force does not occur at the first but at 
the third or fourth connector from the support. JOHNSON and MOLENSTRA [60] came to 
this conclusion as well (Fig. 4) based on theoretical considerations while ARIBERT [1] – [7], 
whose curve is also depicted in the figure, conducted experiments and numerical analysis. 
ARIBERT examined a composite girder (specimen P2 [6]) with hot-rolled steel beam and 
connectors with uniformly distributed spacing, and the degree of shear connection4 was 
approximately 70 %. 
 

 
 

 

 
Rigid connection 

Curve 1: q =30,0 kN/m = 0,54qpl , 
Curve 2: q =40,0 kN/m = 0,71qpl , 
Curve 3: q =50,0 kN/m = 0,89qpl , 
Curve 4: q =52,5 kN/m = 0,94qpl , 
Curve 5: q =55,0 kN/m = 0,98qpl . 

Deformable connection 
Curve 1: q =30,0 kN/m = 0,54qpl , 
Curve 2: q =40,0 kN/m = 0,71qpl , 
Curve 3: q =50,0 kN/m = 0,89qpl , 
Curve 4: q =52,5 kN/m = 0,94qpl , 
Curve 5: q =55,0 kN/m = 0,98qpl . 

 
Fig. 3.  Connector forces for rigid and deformable connectors [11].  

 
The author of this study investigated the problem of decreased connector forces at beam-ends 
as well both experimentally and analytically [107]. Some simply supported steel-concrete 
composite beams subjected to gravity loads and 40 oC temperature difference were examined. 
The loading consisted of two knife-edge loads located 125 mm apart from the mid-span. The 
analytical part of the study was based on the differential equation presented by 
HAWRANEK-STEINHARDT [52]. When the experimental and calculated shear flow 
distributions were compared it could be found, that the experimental shear flow at the support 
line was about the same as the calculated one. A few years later, the author analysed the same 
test beams by using the Finite Element Method [112]. The connector force distribution 
obtained by this latest study, expressed as connector shear stress τxy, is shown in Fig. 5. 
 
Since the results of these studies are inconsistent with the elementary beam theory (Fig. 3, 
Fig. 4 and Fig. 5), further studies are needed. The so-called “exact” methods can be re-
evaluated in the light of these investigations.  

                                                
4 Definition of degree of shear connection can be found in Section 2.6 on page 45. 
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Fig. 4. Comparison of longitudinal slip values. 
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Fig. 5. Connector force distribution expressed as connector shear stress τxy obtained by the 
author with a steel-concrete composite girder as function of connector distance x from the 
girder-end [112]. 
 
1.3  Aim of the study 
 
The subject of the study was chosen because of the fact that although there are many research 
works and publications that deal with the problem of partial and full shear connections5 of 

                                                
5 Definition of partial and full shear connections can be found in Section 2.6 on page 44. 
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composite girders, there are still significant items in the behaviour of such structural details 
that have not been sufficiently covered. Some of these items are as follows: 

i. the shear force distribution due to temperature difference, creep and shrinkage, 
ii. behaviour of the connectors studied by the elementary beam theory especially in the 

region beyond the support lines, 
iii. significant stresses and connector forces in cantilever parts,  
iv. partial shear connections. 

 
The aim of this study is to analyse the behaviour of deformable and rigid shear connections of 
steel-concrete and wood-based composite girders, to develop applicable analytical and 
numerical methods and to carry out experimental tests for such connections. 
 
When examining the shear force distribution in the support region due to temperature 
difference, creep and shrinkage (i), because of the several connectors, even a simply 
supported composite girder is found internally statically indeterminate. These phenomena 
have not yet been adequately clarified in case of steel-concrete composite girders, with 
respect to wood-concrete composite girders this kind of investigation just started. 
 
In the elementary beam theory the behaviour of the connectors (ii) is not described correctly 
and that is why two- or three-dimensional analysis is needed for determining the connector 
force distribution. 
 
Although unloaded, cantilever parts of a simply supported beam accumulate significant 
stresses and connector forces (iii), which is in conflict with the traditional bending theory. 
 
Eurocode 4 considers partial shear connections (iv) only, if the cross-sections belong to class 
1 or class 2 to Eurocode 3 (real redistribution of plastic moment of cross-sections). If a long-
span bridge is considered, the cross-section is of class 3 or 4 under Eurocode 3 [34]. 
Therefore, shear connections shall be calculated according to the elastic theory instead of 
considering plastic redistribution of connector forces, which is common practice in the 
building constructions. This research also aims at analysing the structure being in the elastic 
state, which still needs to be clarified. The investigations in this field by the author is also 
supported by the fact that in Finland only elastic theory can be used for the calculation of 
wood-concrete composite bridges.  
 
The scope of the study covers only simply supported steel-concrete and wood-concrete 
composite girders with elastic behaviour subjected to static gravity load and/or differential 
strain (primarily due to temperature difference). However, the overall behaviour of steel-
concrete and wood-concrete composite girders is different and that is why these structures are 
treated separately. In addition, only normal strength concrete and steel materials are 
considered, with the exception of HSFG bolts. 
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2   ANALYTICAL AND NUMERICAL METHODS RELATED TO COM-
POSITE GIRDERS  
 
2.1  General flexural theory of composite girders 
 
2.1.1  Background 
 
A general analysis of the composite girder requires a complete knowledge of the full stress-
strain properties of steel, concrete and shear connection, over the time span being considered.  
There have been theoretical studies conducted on such a basis, but the use of a computer is 
absolutely needed because of the complexity of numerical work, and also a less complicated 
method is required for practical purposes. The numerical work can be facilitated without 
much damage to accuracy by simplifying assumptions about the properties of the component 
materials. It is useful to consider first the case of "partial interaction" where deformation of 
the shear connection produces relative movement between slab and beam. In practice this 
movement may be of only low significance; consideration of this movement in the analysis 
will give the measure of its importance. 
 
If slip occurs, the bending stiffness of the composite structure is reduced, which brings the 
joint towards a deformable shear connection. With zero shear rigidity a state is reached where 
interaction between the beam and the slab is lost. As a consequence, the two parts act 
independently in bending. Partial interaction theories based on more or less simplified 
assumptions have been created. A method developed by NEWMARK [85] is presented here. 
 
For calculation purposes the bending moment acting on the composite beam can be 
considered as the resultant of sectional forces (Ma, Mc, Na, Nc) acting on the individual steel 
and concrete components (Fig. 6).  
 

 
 

Fig. 6. Static and kinematical definition of the model. 
  
The following assumptions are used: 

• Instead of discrete shear connection, an equivalent uniform continuous linearly elastic 
medium is used. 

• Initially plane sections remain plane after bending. 
• The beam and the slab have the same rotation and curvature. 
• The cross-sections of slab and beam are constant over the beam length. 
• There is no uplift between beam and slab. 
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• Both concrete and steel are isotropic elastic materials. 
 

The slip between the steel beam and concrete slab is equal to the difference of the 
displacement in the axial direction of extreme fibre in the interface of beam and slab (Fig. 6). 
So, 
 

ucoa uus ,, −=                    (2) 
  
where ua,o is the displacement in the axial direction of the extreme fibre of the beam at the 
interface and uc,u is the displacement in the axial direction of extreme fibre of the slab at the 
interface. 
 
Considering these displacements as a function of displacements of centres of gravity ua and uc, 
the slip is 
 

duududuuus caccaaucoa ⋅−−=⋅+−⋅−=−= φφφ )()(,,                                     (3) 
     
where φ is the rotation of both the beam and the slab; da is the distance between the centre of 
gravity of the beam and the contact surface; dc is the distance between the centre of gravity of 
the slab and the contact surface and da + dc = d.   
 
Deriving Equation (3) with respect to x, equation 
      

dd
dx
d

dx
du

dx
du

dx
ds

ca
ca ⋅+−=−−= κεε

φ      (4) 

            
is obtained. Here εa means the strain at the centre of gravity of the beam; εc means the strain at 
the centre of gravity of the slab and κ  = - dφ /dx means the curvature of the deflection curve. 
   
From the moment and horizontal force equilibrium equations it follows that  
      

dNMMM ca ⋅++=  (5) 
 
and 
 

ca NNN −==  (6)  
 
The internal sectorial moments and forces Ma, Na, Mc and Nc can be expressed as functions of 
the axial strains and curvature using internal equilibrium equations  
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  [ ] aaaiaiaaaa DdAdydy
A
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κκεσ −=−−−== ∫∫ )()(    (10) 

 
where Cc and Ca are the axial stiffness of beam and slab, respectively, and Dc and Da are the 
bending (flexural) stiffness of beam and slab, respectively.      
 
Substituting Equations (6), (7), (8), (9) and (10) into Equation (5) yields to expression 
 

dNDdNDDM absca ⋅+⋅−=⋅+⋅−−= κκκ   (11)  
 
where 
 

acabs DDD +=      (12) 
  
is the bending stiffness of composite girder without interaction between the parts, or, more 
generally, the bending stiffness of  two layered components with no connection. 
 
From Equations (11), (7) and (8) relationships  
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Substituting Equation (13) into the compatibility Equation (4) results in 
 

D
Md

D
d

CC
N

d
D

MNd
CC

Nd
CC

N
dx
ds

absabsca

abscaca

−







++=

=
−

+







+=+








+=

211

1111
κ

 (14) 

 Defining Dfull as the bending stiffness of the composite girder with rigid connection, and 
defining 

 

CC
CCC

ca

ca

+
=*        (15) 

    
it is simple to demonstrate that         
 

dCDD absfull
2* ⋅+=  6   (16) 

                                                
6 Introducing composite stiffness parameter [128] 2* dCstiff ⋅=α , Dfull  can be written as ).1( stiffabsfull DD α+=  
This parameter indicates the efficiency of the composite interaction in relation to the parts of the section. 
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Thus Equation (14) can be written in the form 
 

D
dM

D
D
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N

dx
ds

absabs

full ⋅
−=− *

1       (17) 

     
This is the general equation. The unknowns are s and N. 
 
The constitutive relationship of connectors between the longitudinal shear flow T, axial force 
N and slip s is 

 

)(' sf
dx
dN

NT ===       (18) 

 
where )(sf  represents a function of s. The resulting equation, obtained by combining 
Equations (17) and (18), yields to 
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2.1.2  Modelling of the linear behaviour of connectors 
        
Assuming linear relationship between the longitudinal shear and slip, i.e. 
 

sKNT ⋅== '   (20)
   
where K is the spring constant of interface layer (compare Equation (18)), and using notation 
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the general equation can be obtained from Equation (19) in terms of normal force N as 
      

D
dKMNN
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⋅⋅
−=− ω2''     (22) 

         
In terms of slip s the corresponding differential equation takes the form   
 

D
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abs
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where V = dM/dx denotes the vertical shear force at the section studied. Normal force N can 
also be formulated as a function of curvature κ: Thus from Equation (13) 
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is obtained, where dxdVq /−=  denotes the intensity of the uniformly distributed load. 
Substituting Equation (24) into Equation (22) yields to 
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from which, by simple steps, equation 
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can be obtained. Equation (26) can be solved directly for statically determinate girders in the 
knowledge of the moment function. If the problem is statically indeterminate [19], [95], 
through double derivation a more useful equation 
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is obtained. Finally, by substituting curvature κ  by the second derivative of vertical deflection 
v”,  equation  
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is obtained. 
            
In Table 1 the differential equations discussed above are summarised together with boundary 
conditions valid for a simply supported composite girder.  
 
Table 1. Different solution possibilities of a simply supported beam with symmetrical load 
with respect to the mid-span. 

 

Unknown 
quantity 

Governing equation Support 
 

Mid-span 

 
N 

 
 
 

 
N = 0 

 
N’= 0 

 
s 

 
 
 

 
s’= 0 

 
s = 0 

 
κ 

 
 
 

 
κ  = 0 

 
κ’= 0 

 
v 

 
 
 

v = 0 
v’’ = 0 

v’ = 0 
v’’’ = 0 

 
Reference [52] contains solutions for the axial force and interface shear due to uniformly 
distributed load, concentrated load, temperature difference and prestressing force on a simply 
supported beam, which originate from the well-known Hawranek-Steinhardt differential 
equation 
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where 
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These equations are valid for multi-material composite cross-sections as well and they were 
thoroughly discussed by JUTILA [62] and TOMMOLA and JUTILA [118]. 
   
When curvature κ and shear flow T(x) are known, the internal forces and bending moments 
can be calculated from Equations (6), (7), (8), (9) and (10). Consequently the internal shear 
forces Va and Vc are obtained from equation 
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The normal and shear stresses are also shown here, without detailed deduction, as 
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Here Aa

* and Ac
* are the area of the top (or bottom) portion of cross-sectional area, defined 

from the section where ta and tc are measured, ta and tc are the width of cross-sectional area, 
measured at the point where shear stress is to be determined and Sa

* and Sc
* are the statical 

moment of the top (or bottom) portion of cross-sectional area, defined from the section where 
ta and tc are measured. Subscripts a and c refer to the beam and slab, respectively. 
 
2.1.3  Modelling of the non-linear behaviour of connectors 
 
Based on laboratory tests of the behaviour of different connectors it was found out that the 
connectors in a composite steel-concrete beam show strong non-linear behaviour. When 
considering the headed-stud connectors, the constitutive law between the force transferred by 
a single connector F and the slip s, as determined by ARIBERT and AL BITAR (1989) [1] 
and JOHNSON and MOLENSTRA (1991) [60] is 
  

F = Fmax (1 – e-βs)α   (33) 
 

where Fmax is the maximum force that can be transmitted to the connector, and α and β are 
two constants that enable definition of the behaviour curve. In Ref. [60] the two following 
pairs of constants are recommended for studs with shank diameter d = 19 mm: 
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Equation (19) can be used for numerical evaluation of the displacements when the non-linear 
behaviour of connectors is taken into account. For the effective solution, a constitutive law 
(load-slip behaviour) concerning the shear connectors should be used, which gives the 
relationship between the total longitudinal shear force N’ and the slip s. In particular, the 
elementary force dN (variation of the force N within length dx) transferred on an elementary 
part dx, which is the first derivate of N with respect to the longitudinal abscissa x, relates to 
the longitudinal force F transferred by a single connector as 
 

dN/dx = N’ =F/c          (34) 
   
where c is the spacing between the connectors.  
 
When using Equation (34) it is assumed that the stiffness and strength of connectors can be 
spread along a certain length of the girder, and so local effects are neglected. 
 
The problem can be solved using the method of finite differences with the constant integration 
step equal to ∆ [19]. Thus 
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where, based on the associated load-slip relationship of the connector, 
 

)('' sNN jjj =  
 
After determination of the slip values, N’ can be obtained from the constitutive law and by 
integration of N. Finally, the curvature can be calculated using relationship 
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The deflections are determined by numerical integration.  
 
This method [19] can be applied only to simply supported girders with given loading. For 
continuous composite girders the solution is suggested in Ref. [60]. 
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2.2  Method of redundant forces  
 
The redundant force method has been discussed by some authors, e.g. [74], but here a very 
ingenious idea is presented for wood-concrete composite girders. 
 
This method [116], [118] is derived for wood beam and concrete slab but in general can be 
applied to composite girders made of two layers which are connected together by discrete, 
deformable shear connectors of linear stiffness properties and arbitrary and varying spacing 
and stiffness. No separation and friction between layers is assumed and the shear 
deformations of individual layers are neglected. 
 
The analysis procedure is based on the method of redundant shear forces at connectors. 
Therefore, slip compatibility equations for each connector cross-section are needed. For slip 
compatibility, it is necessary to formulate equations for longitudinal slip between wood and 
concrete layers due to unit connector force and vertical loading on the girder. In the following 
the idea of how the slip and compatibility equations are derived is presented. 
 
The layers of the composite girder are connected by only one connector at the left hand 
support (Fig. 7). All other connectors are supposed to be removed. When a connector force at 
the interface of the layers is applied, a contact force along the interface is needed to prevent a 
separation between layers (Fig. 7a and 7b). 
 
The contact force Fa between layers is necessary because the shear force couple alone causes 
different curvature to layers. The different curvatures cause a gap between wood and concrete 
and compatibility would not be satisfied. In other words, the contact force corrects the 
bending moments for both layers to be in proportion to their bending stiffness. If the 
connector shear force is moved in vertical direction by some amount ek, it is possible to find a 
position where the shear force couple causes exactly the same curvature to both layers and no 
contact forces are needed anymore to satisfy the compatibility. Then one of the initial 
assumptions of “No disjunction between layers” is automatically satisfied (Fig. 7c). Because 
of a new vertical position of shear force couple, the contact forces are eliminated and it is 
possible to write the slip equations in a very simple way. The shear force couple causes axial 
force and bending moment in layers. By using the conventional beam bending theory it is 
possible to calculate edge fibre strain for wood and concrete at the interface surface. The slip 
between layers at any cross-section is simply the sum of difference of interlayer slips between 
edge fibres of layers and the slip at the connector at the left hand support. 
 
For slip compatibility equation the slip caused by the external loading on the girder is needed 
(Fig. 8).  The external vertical loading causes no axial force or shear force in the left hand 
connector, which means that the slip at the left end of the girder is zero. Therefore, the slip 
between layers is only caused by the accumulating bending strain difference along the 
interface surface. Again, the slip at any cross-section due to any vertical loading is related to 
the strain difference at the edge fibres of the layers. The initial assumption of ”no disjunction 
between layers” is secured by sharing the total bending moment between the two layers in 
proportion to their bending stiffness. 
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Fig. 7. A section of composite girder, a) layers together, b) layers separated – free body 
system and  c) contact forces eliminated by repositioning the connector force F. 
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Fig. 8. A composite girder subjected to unit shear force between layers and an arbitrary 
external load q. 
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For a composite girder that is supplied with n + 1 shear connectors (including the one at the 
left hand support), the slip compatibility condition for connector j is written as 
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 where Fi; and Fj are the connector forces acting at connector i and j, respectively. 
 
Having written slip compatibility condition for all connectors j = 1 ... n, the set of equations 
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 is obtained. When written in matrix form it reads 
 

[U] * [F] = -{u} (39) 
 
The connector forces are 
 

{F} = -[U] –1 * {u} (40) 
 
The stresses of wood and concrete layers are obtained by summing the stresses caused by 
connector forces and external loading. The deflections are obtained using conventional beam 
theory. 
 
The author has checked this method by LUSAS finite element program. The present method 
was applied to a simply supported wood-concrete composite girder with 20 m span subjected 
to uniformly distributed load 8 kN/m and concentrated load 2 x 200 kN with 2 m spacing 
centrally to the mid-span (Fig. 9).  
 

 

 

 
 

Fig. 9. Elevation, cross-section and loading of the wood-concrete composite girder studied.  
 
The beam cross-section was 0,8 m x 1,2 m and that of the slab was 0,2 m x 3,0 m. The layers 
were connected by 21 deformable shear connectors (l m spacing). The connectors had equal 
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stiffness value of 100 MN/m. The elastic modulus value was 10000 MN/m2 for wood and 
30000 MN/m2 for concrete. In Fig. 10 a very good agreement can be observed between the 
two results. The difference between maximum shear forces given by the two methods are 
within one percent. The biggest difference was at the first connector, where the FEM-analysis 
gave considerably lower shear force. This is due to the fact that TOMMOLA and JUTILA 
[118] determined forces using the elementary beam theory while in the FEM-analysis the 
forces are calculated on the basis of a 3D model. 
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Fig. 10. Comparison of connector forces along the left half girder. 
 
2.3  Traditional energy method  
 
In addition to the statical methods, traditional energy method can be applied to solve the stress 
and deformation state of composite girders with elastic connectors, which are replaced by a 
continuous, elastic layer.  This latter method was developed and discussed by several authors 
[53], [55], [94]. In the following the traditional energy method for simply supported and 
continuous composite girders is presented. 
 
As well as in case of statical methods, it is also expedient to handle the sectional forces (Ma, 
Mc, Na, Nc) acting on the individual steel and concrete components separately for the purpose 
of the traditional energy method. 
  
The potential energy function is given as 
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where Π  is the potential energy, Pi and q(x) are the external forces, v is the displacement and 
Li is the work of internal forces. 
 
The first two parts of Equation (41) refer to the work of the external forces. They can be 
determined e.g. by the Ritz method [96]. The following method is focused on the calculation 
of work of the internal forces Li.  
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Using the definition of HOISCHEN [53], the change of the length of elastic layer s(x) (Fig. 
11) is 
 

KxTxs /)()( =    (42) 
 
where K is the spring constant of interface layer and T(x) is the shear force per unit length. 
Determining the longitudinal strain as the difference between the horizontal strains of the 
connected elements (Figs. 6 and 11) leads to equation 
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Fig. 11.  An elementary part of composite girder and relative displacements. 
 

Considering that 
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i.e. the equality of the rotations, and taking into account Equations (15) and (18), Equation 
(43) can be rewritten in form 
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The physical meaning of the three different parts of Equation (47) is clearly seen in Fig. 11.  
The first term represents the relative displacement between the center of gravity points of the 
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beam and the slab due to axial force N. The second term represents the same displacement 
due to bending moment. The term on the right hand side represents the relative slip at the 
interface of the two materials. Consequently, the total internal work is  
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Due to the moment-curvature relationship in flexural girders and the theory of small 
deformations 
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and 
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and by introducing ratio  
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the normal force expression  
 

)(
)(

)(
''

xg
xvDxN a−=      (52) 

 
can be obtained. Consequently 
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Thus the internal work (Equation (49)), when Equations (49), (50), (51), (52) and (53) are 
taken into account, takes the form 
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Knowing the internal work, the potential energy function (Equation (41)) can be utilised. For 
convenience deflection v(x) can be expressed as a series of functions  
 

...)()()( 2211 ++≈ xfcxfcxv     (55) 
 

where functions )(),( 21 xfxf … are to be chosen so that the boundary conditions of the 
problem are fulfilled. Coefficients c1, c2… are determined so, that the minimum of the 
potential energy is reached, i.e.  
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(Ritz-method [96]). Equations (55), (49), (50) and (52) then lead to the deflection and the 
internal forces and bending moments of the girder studied. 
 
From the general solution a single solution may be resolved for the case of a simply supported 
beam with one concentrated load at mid-span cross-section  (Fig 12). 
 

 
Fig. 12. The simply supported beam used for demonstrating application of the energy method. 
Concentrated load at mid-span cross-section. 
 
Presenting deflection v(x) and normal force N(x) approximately as a single sinus function of 
coordinate x, i.e.  
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L
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respectively, where a1 is a Fourier series coefficient, and considering Equations (47), (51), 
(57) and (58), a new formulation for ratio g(x), i.e. 
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can be obtained. As seen coefficient a1 is eliminated, because 2
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Thus the internal work (Equation (48)) in this simplified case is reduced to 
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Considering that in the present case 1sin =
L
xπ  at the mid-span, the potential function (41) is 

simplified to   
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Using condition Equation (56) the expression of constant c1 yields to 
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Then by Equations (57), (52), (49) and (50) the deflection function v(x), normal force N(x) 
and bending moments Ma(x) and Mc(x), respectively, are available. 
 
Further statically determinate structures can be solved in the same way and in each case the 
ideal stiffness Di (Equation (63)) will be the same expression. 
 
Statically indeterminate structures can be calculated in traditional way using this ideal 
stiffness Di of the composite girder. 
 
Methods containing Sections 2.1 and 2.3 assume the connectors to act as a continuous elastic 
layer, in contrast with the method of redundant forces where discrete connectors are taken into 
consideration.
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2.4  Advanced energy method based on variational calculation 
  
In this section advanced energy method developed by the present author is presented and 
discussed. This method is based on variational calculation and referred as the Author’s 
Energy Method in the following part of this study. 
 
A significant part of natural phenomena is equivalent to some extreme value problem. For 
example in physics the mechanical equilibrium is achieved when the energy of the system is 
at minimum. The total statical energy (exclusive of kinetic energy) of an elastic body is the 
sum of the deformation energy and the potential energy. Displacement field in the equilibrium 
state is of such characteristics where the total static energy is minimized (e.g. deflection of a 
beam and geometry of a membrane stretched on a frame). 
 
The functions describing the displacement (deformation) form part of the core function 
standing after the volume integral providing the global sum of the energy. In this case we 
need these functions to minimize the integral value (integral principle). In general, common 
or partial differential equations based on local equilibrium can also be developed for these 
functions. It can be practical to use a method when appropriate integral principle is sought for 
the differential equation of a particular problem. 
 
There are two possible solutions of the boundary value problem: 

• conventional solution on the basis of the differential equation (e.g. using differential 
method) 

• minimizing the energy integral (e.g. by iterative correction). 
 
Of course, the core function in the integral principle can be transformed into the differential 
equation. It is most commonly achieved using the Euler-Lagrange equation 
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from variational calculation [43], [86], [124]. 
 
The variational principles date back to the 18th century [48], [96]. Recently, however, they 
have been commonly and widely used for example for the development of the finite element 
method and the various elements applied therein. 
 
The fact that the traditional energy methods presented by HOISCHEN [53], HOMBERG [55] 
and PLATTHY [94] do not provide solution for composite girders subjected to temperature 
difference, inspired the author to develop an energy method for such structures as well.  
     
On the basis of Equation (64) the author developed the following method. 
 
THEOREM: Differential Equation (29) is the Euler-Lagrange equation of   
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which is an integral minimum problem. Here the functional Φ [N(x)] with the appropriate 
kernel function Γ [N(x)] is 
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Proof:  The first part of functional (66) after partial integration is 
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out of which expression 
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because  N  fulfills the boundary conditions  (N(0)=N(L)=0)  of a simply supported beam. 
Thus Equation (68) leads to equation 
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By derivating kernel function Γ * [N(x)] of Equation (69) with respect to N ’ leads to equation    
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By derivating kernel function Γ * [N(x)] of Equation (69) with respect to N  leads to equation 
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Substituting Equations (70) and (71) to Euler-Lagrange Equation (64) differential Equation 
(29) is obtained. So the theorem is fulfilled. 
 
In order to solve Equation (66), the normal force is approximated by Fourier series 
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where the real numbers ia are unknowns ( ai ∈ R),  pi(x)  are  twice continuously 
differentiable functions ( pi(x) ∈ C2(a;b) ),  and  pi(x)  are square-integrable functions (pi(x) ∈ 
L2(a;b))  on the actual interval of the space variable x. Here R is a set of real numbers, C2(a;b) 
is the space of twice continuously differentiable functions and  L2 (a;b) is the space of square-
integrable functions.  
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When N(x) is truncated at n, then 
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Presenting Equation (66) in another form yields to equation 
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Substituting N(x) from Equation (73) yields to equation 
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which after arranging the terms can be expressed as 
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By integrating the first member of Equation (76) partially yields to equation 
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out of which expression 
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is obtained, because the Fourier series fulfills the boundary conditions of the simply supported 
beam. 
 
Thus Equation (77) will be 
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Eliminating pi, pj, pi
’ and pj

’ by using Equation (73) and taking into account just the first three 
values of i and j (i = 1,2,3,  j = 1,2,3), Equation (79) can be expressed in form  
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The necessary condition for the local minimum of the functional Φ(a1, a2 … an) is that its 
partial derivatives are equal to zero, i.e.  
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When considering that, Equation (81) leads to n equations from which the appropriate Fourier 
coefficients (a1, a2 … an) used in the expression of normal force N(x) (Equation (73)) can be 
determined. 
 
Let us illustrate the procedure in the case when n = 3. Thus  
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Similarly condition 
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Finally condition 
 

 0
3

=
∂
∂

a
Φ  

 
yields to equation 
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Since the Fourier components sin(πx /L), sin2(πx /L), sin3(πx /L) … are orthogonal functions, 
the following members of Equation (82) are equal to zero, namely 
 

03cossinand02sinsin

,03cos3cos,02cos2cos

00

0

2

0

2

=⋅=⋅

=⋅





=⋅








∫∫

∫∫

dxx
L

x
L

xxd
L

x
L

dxx
L

x
LL

dxx
L

x
LL

LL

LL

ππππ

ππππππ

 

 
Because of that Equation (82) reduces to its final form 
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Similarly Equations (83) and (84) are transformed to 
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respectively. Generally  
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where i undergoes values 1,2,3..n.  
 
The last equation presented is applicable not only to temperature difference between the beam 
and the slab, but to all other load types as well. The resulting normal force shows good 
compliance with the results obtained by the Hawranek-Steinhardt method. The Author’s 
Energy Method can be extended to statically indeterminate structures as well. The advantage 
of this method is that calculation can be carried out using standard engineering softwares (e.g. 
MathCad) that are able to handle this kind of equations which simplifies the calculation 
process extensively. 
 
The present method was applied to a simply supported steel-concrete composite girder with 2 
m span subjected to temperature difference 40 oC, tested by the author experimentally (see 
Chapter 4, Specimens S4 and S5, Fig. 37). The detailed calculation is presented in the 
Appendix. As Fig. 13 shows, very good agreement is observed between the normal forces  
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Fig. 13. Normal force distribution due to temperature difference 40 oC along the length of 
girder studied in Chapter 4 (Fig. 37).  
 
calculated using the Hawranek-Steinhardt method and the Author’s Energy Method, but 
significant difference can be experienced in the shear forces per unit length especially near the 
support region (Fig. 14). That is why a finite element method (LUSAS software package) is 
invoked to interpret the curves as well. The results of LUSAS are in good correlation with the 
Author’s Energy Method.  
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Fig. 14.  Distribution of longitudinal shear force on a unit length due to temperature 
difference 40 oC.  The diagrams on the left half of the span shown in the girder studied in 
Chapter 4 (Fig. 37). 
 
2.5  Numerical methods  
 
Experimental investigation is essential for developing the fundamental background, which is 
used for validating all theoretical approaches. Experimental research, however, has a limited 
scope by its very nature. The parametric investigations can be carried out using numerical 
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simulation which also facilitates to determine the influence of each factor. 
 
Basically three branches of numerical methods are used, the so-called folded plate method, 
finite difference formulation, and finite element method. 
 
Important things are validation and calibration of numerical models which are capable of 
simulating the joint response in composite girders accurately enough. Using the numerical 
modelling technique it is possible to determine the significant factors that influence the joint 
response. This is needed for the development of simplified prediction procedures that would 
be used in design practice. 
 
Originally the folded plate theory was developed to analyse isotropic thin-walled prismatic 
structures (e.g. roofs and bridges) [51], [27], [67]. This theory, however, also facilitates the 
analysis of composite beams and can be used to determine the effects of a deformable 
connection between the concrete slab and the steel girder [68], [69].  
 
For the purpose of the folded plate analysis, the composite girder discussed in Ref. [68] was 
modelled using rectangular elements connected along the longitudinal joints. The concrete 
slab, flanges and web of the steel girder were idealised by regular folded plate elements. The 
concrete slab is connected to the top flange by a “special element”, which is similar to the 
orthotropic element used in the finite strip method. 

 
In the next paragraphs, investigations carried out by finite difference method are summarised. 
 
In 1999 MANFREDI et al. (1999) [79] and in 2000 FABBROCINO et al. [36] developed a 
refined model of steel-concrete composite girder subjected to negative bending. This model is 
characterized by two slips, which occur at the steel beam - concrete slab interface and at the 
reinforcement - concrete in tension interface. In this way both the deformability of the shear 
connectors and the tension stiffening effect of concrete can be analysed. The differential 
equations governing the model are solved by finite difference method. The solution of the 
problem can be obtained up to failure of the composite girder. The results obtained by this 
method were in good conformity with the experimental ones. Therefore, these program 
capabilities characterizing the interactions between steel beam and concrete slab and between 
reinforcement and concrete in tension can properly simulate the real behaviour of the beams. 
In addition, the proposed model seems to be most suitable for evaluating the rotation capacity 
of continuous composite girders at the negative bending regions when the ductility of 
reinforcing bars is considered as well. 

In 2001 the finite difference method was also used by DEZI et al. [30] to analyse the shear-
lag effect in composite beams with deformable shear connectors taking into account the 
long-term behaviour of the concrete. In this work variational approach was used to handle 
the differential equations in an easy way [30]. The author applies this approach as well in 
Section 2.4, where the unknown normal force function N(x) is approximated using a finite 
Fourier series of n terms, then the Hawranek-Steinhardt differential equation is transformed to 
n linear equations, where the unknowns are the Fourier coefficients. The Fourier term 
functions are chosen to satisfy the boundary conditions of a simply supported beam. The 
method is applied to a simply supported composite beam subjected to a 40 οC temperature 
difference between steel and concrete. 

In the next paragraphs investigations carried out by finite element method are summarised. 
 
In 1986 a composite beam finite element was developed by LESKELÄ [74]. He also analysed 
the displacement and force state of the composite girder. In the same year, ARIBERT [2] 
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developed finite elements of his own for composite girders.  
 
Other finite element method calculations were carried out by KŘÍSTEK et al. (1987) [69], 
[126]. The composite girders were modelled as a group of simple rod elements. The steel 
beam is presented by a line element, which embodies the material and geometrical properties 
of the beam. The concrete slab is supposed to be linearly elastic and also a line element in the 
centroid is used to represent the slab. The concrete slab is connected to the steel beam through 
very stiff fictitious connectors that are also modelled by rod elements having the same 
bending stiffness as the real connectors. The push-out test specimens were also modelled by 
KŘÍSTEK et al. [69] in this way.  
 
Standard finite element programs are commonly used in structural engineering to model the 
composite girders. Earlier the three-dimensional (3D) analysis led to computation difficulties 
because of limited software and hardware facilities. Therefore, two-dimensional (2D) models 
were adopted. Nowadays the computer hardware capabilities are almost unlimited for use. 
 
In 1999, JURKIEWIEZ et al. [61] implemented a new module in the CASTEM 2000 finite 
element program. This module is based on the theory of linear viscoelasticity. It applies to 
composite structures made of elastic or viscoelastic materials, such as wood, concrete, etc. A 
specific algorithm was also implemented in this program to take into account the phases 
of construction. 
 
In 2004, the behaviour of steel-concrete composite girders with different degrees of shear 
connection was investigated by NIE et al. [83]. The girder was subjected to negative bending 
moment. Firstly, an analytical model for predicting the maximum deflection of the composite 
girder at the serviceability limit state was developed considering different degrees of shear 
connection. Secondly, to verify the reliability of the analytical model and the equations, three 
composite girders were tested. Meanwhile, the general-purpose finite element software ANSYS 
was used to investigate the behaviour of the girder. The non-linear properties of the constituent 
materials, crushing of concrete, and slips at the steel beam -concrete slab and concrete slab - 
reinforcement interface were considered. In this study similar methodology as in Ref. [83] was 
used, an analytical model was developed (model for the Author’s Energy Method) and 
experimental investigations were carried out. The results were verified both analytically and by 
using a finite element model based on LUSAS software. The author also investigated the influence 
of different degrees of shear connection on the behaviour of the entire composite girder by 
changing the connector stiffness and using different types of connectors. 
 
In 2005, using ABAQUS software package, LAM and EL-LOBODY [73] developed a finite 
element model with solid elements (Fig. 15) to simulate the load-slip characteristics of 
headed shear studs in a concrete slab. The model takes into account the linear and non-
linear material properties of the concrete and shear in the studs. The finite element 
results agreed well with the results obtained from the experimental push-out tests. All 
failure modes were accurately predicted by the finite element model developed. In the 
future the application of this type of finite element models may eliminate the need for 
expensive push-out tests for determining the shear capacity of the connectors. To 
investigate the influence of shear connectors on the composite girder, the author 
contributed by presenting in this study a similar finite element model based on solid 
elements and use of a LUSAS software package. This model is presented in detail in 
Chapter 5.  
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Fig. 15.  Finite element model with solid elements (made by ABAQUS program package). 
 
In the next paragraphs investigations carried out using one or two-dimensional finite element 
methods are summarised.  
 
The use of two- and three-dimensional continuum elements for the analysis of composite 
girders requires the solution of a large number of equations. To reduce the computational 
effort, several researchers have used one-dimensional composite beam elements only. For 
studying the instantaneous, long-term and non-linear behaviour of composite girders, 
displacement-based, force-based and mixed finite elements are developed. Some studies 
indicate that the use of force-based elements, in which the elemental internal forces are the 
principal unknowns, can improve the accuracy of numerical results to a significant extent 
[81], [98]. Unlike displacement-based finite elements, the mixed formulation avoids the nodal 
force discontinuities [38], [39] and [40], in addition, the mixed approach is used to ensure more 
accurate solutions in the non-linear range [22]. 
 
In 1993, a composite beam finite element with a continuous spring model was used by 
DANIELS and CRISINEL [24] for the non-linear strength analysis of composite slabs. This 
beam element is based on the displacement approach with 10 nodal degrees of freedom 
(10DOF).  The constitutive law for concrete is able to handle the tension stiffening effect as 
well.  
 
In 1998 SALARI et al. [98] developed a composite beam finite element using the force 
method. This element consists of two line element components connected by a continuous 
interface element, which accounts for the deformations of the shear connectors. The bond 
force along the interface is approximated by a cubic interpolation function.  
 
In 1999, GATTESCO [49] presented a non-linear, displacement-based composite beam 
finite element. This element consists of two line element components connected by discrete 
spring elements. The stress-strain constitutive relationships available in the literature are 
used in the procedure. Since the shear transfer between concrete slab and steel beam 
occurs only through connectors (in the absence of bond), the composite girders can be 
studied with partial shear connections which normally means large connector pitches. The 
arc-length method [20] implemented in this procedure allows the collapse load to be 
reached in structures where the load-deflection curve shows either a perfectly plastic or a 
softening behaviour. The program, in contrast to many other similar procedures, allows 
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consideration of bonding at the steel - concrete interface. In addition, this program also 
allows investigation of the inelastic response of continuous composite girders with 
complete or partial shear connections. 
 
In 2000, AYOUB and FILIPPOU [9] developed an inelastic beam element for the non-linear 
analysis of steel-concrete composite girders with partial shear connection. This analysis 
allows both monotonic and cyclic loads. The element is developed using a two-field mixed 
formulation with independent approximation of internal forces and transverse displacements. 
The non-linear response of the composite girder is derived from a layer discretization of the 
cross-section with non-linear, uniaxial stress-strain relation of the constituent materials. The 
partial interaction between concrete slab and steel beam through shear connectors is 
accounted for by an interface element with distributed force transfer characteristics. 
 
In 2000, SEBASTIAN and McCONNEL [102] developed an advanced non-linear finite-
element program for the analysis of general steel-concrete composite structures including 
composite space trusses. Finite elements were used to represent the concrete slab and steel 
beam which allowed the ribbed composite slabs of reinforced concrete on profiled steel 
sheeting to be modelled. The concrete slab was modelled using two-dimensional elements, 
non-linear elastic isotropic material properties before cracking and non-linear orthotropic 
properties thereafter. For the steel beam a one-dimensional element was selected and initially 
elastic material properties as well as strain-hardening capabilities after yielding were applied. 
A special stub element with non-linear shear force-slip relationship was used at the concrete 
slab - steel beam interface to permit modelling of either full or partial shear connector action.  
 
In 2002, FAELLA et al. [39] developed a linear finite element which may be employed in 
several cases related to the serviceability limit state of steel-concrete composite beams. As a 
result, effects related to cracking, non-linear behaviour of shear connection and long-term 
behaviour of concrete can be calculated. The stiffness matrix was derived from Newmark’s 
“exact” differential equation. Therefore, only one finite element per member is needed. Internal 
nodes are needed only for considering varying geometrical and mechanical properties 
and when external, concentrated forces are present. A simplified method was also 
developed by the same authors [40]. This method enables to evaluate deflections of composite 
girders with non-linearly behaving shear connection. 
 
In 2004, FRAGIACOMO et al. [44] developed a finite element for studying both the 
short- and long-term structural response of steel-concrete composite beams. In short-term 
analyses, the structural problem can be solved at each load level up to the collapse. In 
long-term analyses under the service load, the rheological phenomena (creep and 
shrinkage) of concrete can be considered in a rigorous manner. The finite element consists 
of two line element components connected by a continuous interface element, which models 
the shear connectors. In the long-term analysis, concrete cracking and tension stiffening 
effect of concrete are modelled. The solution of the non-linear problem is obtained by 
using an iterative procedure called “modified secant stiffness method”. It is particularly 
effective in long-term non-linear analyses, because it does not suffer from any 
convergence problem. Using 10DOF elements the disadvantages of displacement 
formulation are avoided. 

DALL’ASTA and ZONA in 2002 [21] and 2004 [22] developed several non-linear finite 
elements applicable to composite beams. These elements consist of two line element 
components connected by a continuous interface spring element. In 2002, some 
displacement-based elements (8DOF, 10DOF and 16DOF) were presented by the same 
authors [21]. In 2004, non-linear finite elements (10DOF and 16DOF) were developed for 
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the non-linear analysis of composite girders with deformable shear connection [22]. In this 
context a new mixed beam element and two previously introduced displacement-based 
beam elements were initiated and utilized. The following constitutive laws were used:  

(i) Elastic-perfect, plastic-hardening law,  

(ii) non-linear law suggested by the CEB-FIP Model Code 1990,  

(iii) constitutive law of OLLGARD.  

The elastic-perfect, plastic-hardening constitutive law (i) was applied to the steel beam and 
reinforcing bars. The non-linear law suggested by the CEB-FIP Model Code 1990   (ii) was 
considered for concrete [16]. The constitutive law of OLLGARD (iii) was adopted for the 
shear connection [91]. The inelastic response of continuous composite girders was also 
studied. This problem is of practical interest in structural engineering. Due to high slip 
gradient, strain localizations, slab cracking in the hogging region and concrete softening in 
the sagging regions it also represents a difficult numerical test for the finite elements used in 
composite girder analysis. 
 
As it can be seen from above, many kinds of investigations were carried out based on the use 
of finite difference method and different types of finite elements were developed by several 
authors to tackle the problem of composite girders. In the future their results can be 
incorporated into the standard finite element software packages to improve the accuracy and 
efficiency of composite girder analysis. 
 
2.6  Methods based on Eurocode 4 
 
Since the present study also covers connectors with linear behaviour, the relevant 
investigations conducted for the Eurocode standards should be introduced here as well. For 
example, in Eurocode 4 [35] the slip between beam and slab is taken into consideration – 
indirectly – against the standards used before Eurocode 4. The slip is taken into consideration 
in the investigation of present author, NIE et al. [82] and WANG [125]. 
 
According to JOHNSON and MOLENSTRA [60], “for a given beam, loading and design 
method, ‘full shear connection’ is defined as the least number of connectors, such that the 
bending resistance of the beam would not be increased, if more connectors were provided” 
(Fig. 16).  
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Fig. 16.  Partial and full shear connections. 
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Eurocode 4 introduces the notion of so-called ductile connectors. Ductile connectors are those 
which have sufficient deformation capacity to justify the assumption of an ideal (elastic) 
plastic behaviour of the shear connection in the structure considered. Fig. 17 shows a 
comparison of the force-slip diagrams of ductile and non-ductile (rigid) connectors.  
 

 
a) b) 

Fig. 17.   Behaviours of a) ductile and b) non-ductile connectors according to Ref. [18]. 
 
Ductile connectors are important because Eurocode 4 allows (and also recommends) the use 
of redistribution of the plastic moment of a cross-section and connectors. In general, headed 
studs with the appropriate length and shank diameter may be considered as ductile, when the 
ratio η = n/nf is within an interval prescribed in Eurocode 4. Here η is the degree of shear 
connection. Furthermore, n means the number of connectors with partial shear applied for the 
relevant length of the composite girder and nf means the number of connectors with full shear 
calculated for the relevant length of the same composite girder. Ratio η is valid for steel I-
sections with equal or asymmetrical flanges.  
 

It has been a long tradition and still is to place the connectors so that their spacing follows the 
shear flow diagram. In such cases the elastic analysis is used. Nowadays another philosophy 
based on Eurocode 4 and the utilisation of plastic analysis is applied. As a consequence the 
connector spacing becomes more even and the total number of connectors is determined by 
the plastic normal force of the beam or slab. Plastic analysis can be applied only to cross-
sections of class 1 and class 2 to Eurocode 3 [34]. Detailed information of connector spacing 
is given in Eurocode 4 as follows: 
 
For full shear connection, on the one hand, the total design longitudinal shear force Vl to be 
resisted by uniformly distributed shear connectors between the point of maximum sagging 
bending moment and a simple end support shall be  
 

Vl = Fcf                                                                   (88) 
 

where the normal force of beam or slab 
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and Aa is the area of structural steel, Ac is the effective area of concrete, and Ase  is the area of 
any longitudinal reinforcement in compression that is included in the calculation of the 
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bending resistance, and these areas relate to the cross-section at the point of sagging bending 
moment. 
 
On the other hand, the total design longitudinal shear force Vl to be resisted by shear 
connectors spaced in accordance with Eurocode 4 between the point of maximum sagging 
bending moment and an intermediate support or a restrained end support shall be  
 

Vl = Fcf  + As  fsk / γs  +  Aap  fyp / γap                                      (90) 
 
Here As is the effective area of longitudinal slab reinforcement and Aap is the effective area of 
any profiled steel sheeting. These areas relate to the cross-section at the support. Force Fcf  is 
obtained  from Equation (89), but in case of a cantilever it is, according to Eurocode 4, taken 
as zero [35]. 
 
For the design of partial shear connections (with ductile connectors), the concept of a reduced 
ultimate moment (Mu

(r)) curve was introduced in Eurocode 4 (Fig. 18). In this procedure the 
slip along the steel-concrete interface does not need to be calculated. Since in this case the 
number of connectors is lower than the number of connectors used in full shear connection, 
the ultimate moment of the internal critical cross-section is reduced. 
 
The global relationship between the reduced ultimate moment Mu

(r) and the number of 
connectors n can be represented by a quadratic, convex curve ABC, as shown qualitatively in   
Fig. 18. This relationship can also be considered in a non-dimensional form (Mu

(r)/ Mu, η). In 
this context Mu is the ultimate moment and Ma,pl is the bending moment acting in the beam 
causing plastic failure. In Fig. 18 plastic moments were determined by the so-called “stress-
block method”. Such a curve belongs to cross-section classes 1 and 2 only. 
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Fig. 18.  Reduced ultimate moment curve according to Refs. [18] and [35]. Ductile 
connectors. 
 
The convexity of curve ABC allows an alternative simplified approach that is always on the 
safe-side. This method defines the moment resistance Mu

(r) in terms of a linear interaction 
with the degree of shear connection denoted by η, such that 
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Mu
(r) =  Ma,pl + η (Mu –Ma,pl).                                           (91) 

 
 
This “simplified method” is represented by the dashed line AC in Fig. 18. Line AC is only a 
linear interpolation between no-connection state and full connection state. Generally, a 
significant benefit may be obtained by using the stress block method in the range of η = 0,5 to 
0,7, but sometimes the greatest difference is obtained, when η is less than 0,4. 
 
In partial shear connections equation  
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can be used in practical applications. This equation is based on the “simplified method” as 
shown in Fig. 18. Here Nc is the compressive force in the concrete slab, MEd is the design 
moment, Mapl,Rd is the design plastic bending resistance of the steel beam section alone and 
Mpl,Rd  is the corresponding plastic resistance of the whole composite section, all in sagging. If 
normal force Fcf   is replaced by compressive force Nc  in Equations (88) and (90),  the total 
design longitudinal shear forces Vl can be calculated and used in partial shear connections. 
 
If in a partial shear connection the connectors are not ductile, the longitudinal shear force Vl  
can be determined from such a stress distribution, which is based on the assumption of full 
continuity at the interface between the steel beam and concrete slab. This shear force can be 
calculated at the critical cross-sections, which are defined in Eurocode 4 (Section 6.2.1.1). 
The compressive force in the concrete slab Nc and the total design longitudinal shear forces Vl 
can be calculated using the formulae of Eurocode 4 (Section 6.2.1.4) in the same way as in the 
case of partial shear connection with ductile connectors. 
 
According to recent research [75], [76] there is a clear explanation for non-ductile behaviour 
of shallow beams without mechanical connectors. In this case the so-called “zip-flyer “ effect 
of non-ductile connections is taken into account. It means that when on a force-displacement 
curve the maximum force is reached and the force begins to decrease, the connection gives 
after and the next point nearby in the concrete-steel connection begins to take the shear force. 
So it goes further as a wave and a zip-like effect is obtained. During this non-ductile 
redistribution of connection forces, the peak of the shear force diagram moves towards the 
centre of the beam while the load of the beam cannot be much increased. This effect becomes 
more obvious in short-span girders. 
 
If the analysis is based on the elastic theory, the longitudinal shear per unit length shall be 
calculated on the basis of the widely used formula T = V·S/I. Generally this applies to bridge 
girders. 
 
The merit of Eurocode 4 is that the notion of partial and full shear connection and ductile 
connectors and the method for considering such connections was introduced. In certain cases 
the uniform distribution of connectors is allowed along the critical lengths according to 
Eurocode 4 [35].  
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2.7  Behaviour of shear connectors in the concrete slab  
 
2.7.1  Background 
 
The present study deals with the behaviour of connectors and their influence on the stress and 
strain condition of a composite girder. Discussion on essential behaviour of shear connectors 
is therefore very important. 
 
Mechanical connectors impose high load concentrations in the concrete slab. This is due to 
the so-called dowel action of the connectors [58]. The phenomenon of dowel action means 
basically a shear and bending transfer mechanism, which is illustrated in Fig. 19. All 
mechanical connectors (headed stud, bolt, HSFG bolt, angle, bar, T-section, channel-
section, horseshoe, etc.)  are simply steel dowels embedded in the slab.  
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Fig. 19. Dowel action [87]. 
 
The resistance of a connector to this dowel action is referred to as the dowel strength, and this 
strength is often quoted in national standards. The dowel strength of mechanical shear 
connectors depends on the triaxial restraint of the concrete  [78] in the bearing zone shown in 
Fig. 19.  In this figure Fsh is the shear force, Msh is the moment acting on the connector, bf is 
the distance between loading point of eccentric shear force Fsh and interface of steel beam 
and concrete slab and ha is the height of connector. The dimensions of triaxial compression 
zone of concrete are dependent on the connector height. 
 
The concentrated load induced by a connector is dispersed into the concrete slab and the 
action of this dispersal can induce tensile cracking, as shown in Fig. 20. These tensile 
cracks are induced by ripping, shear and splitting actions. Tensile cracking can also be 
induced by the dowel action particularly, when the connector is also resisting separation at 
the steel-concrete interface. These cracks are referred as embedment cracks. These four 
types of tensile failure of the slab can affect both the dowel strength and ductility of the 
shear connection. In order to differentiate the analyses that deal with splitting from those that 
deal with the longitudinal shear, splitting is concerned with lateral equilibrium, whereas shear 
is concerned with longitudinal equilibrium.  
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Fig. 20. Tensile cracking induced by concentrated load [87]. 
 
The herringbone formation of shear cracks due to excessive principal tensile stress [87] may 
affect the triaxial restraint of the concrete near the compressive zone of connectors and cause 
tension in the transverse reinforcement of the concrete slab. 
  
Because of the large variety of mechanical shear connectors and because of the complexity 
of the dowel action, the strength and ductility of shear connectors are always determined 
experimentally. 
 
In further parts of this Section the focus is on the splitting, embedment forces and interaction 
between the shear and axial forces.   
 
2.7.2  Splitting 
 
The shear connection causes local and global lateral stresses in the concrete slab. The ability 
of a slab to resist the concentrated forces imposed by individual connectors, groups of 
connectors and concentrations of connectors is referred to as local splitting. When the acting 
zones of individual connectors, groups of connectors, etc. overlap with the zones of other 
connectors, groups of connectors, etc., then this interaction affects the splitting loads. This 
form of splitting is referred to as global splitting.  
 
A method is demonstrated here to predict the resistance of concrete splitting in the deck slab 
having bar connectors. The connector shear load is applied to the slab near its bottom surface  
(Fig. 21a). This load is dispersed two-dimensionally, both vertically and horizontally. Let 
us consider the horizontal direction first. In this case the concentrated load is assumed to act 
as a uniformly distributed load having width ba. This load develops lateral (x-y plane) stresses 
as shown in Fig. 21a.  In the figure c means the longitudinal spacing, when connectors are 
placed in a single line, and bc is the effective width of the concrete slab. 
 
The splitting problem in two-dimension was investigated by JOHNSON and OEHLERS [58] 
[87]. They studied first the influence of lateral stresses caused by bar connectors (or strip 
loads) placed either at the end (Figs. 22a and 22b) or at the intermediate section of the 
concrete prism. This study was based on finite element analysis. In case of an end bar-type 
connector, the length of the lateral zone was found to be xt ≅1.75bc (Fig. 22a), while in the 
case of an intermediate connector xt ≅1.4bc (Fig. 22d). The value of xt does not depend on 
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width ba, but only on bc. If value xt ≅1.75bc is used, then the ratio of lateral force versus 
strip load is calculated either from finite element analysis [58] or from original elastic  
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Fig. 21. Composite T-beam [87], [90]. 

 
method relating to the same problem [115]. The local splitting resistance of concrete is 
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In Equation (93) ba is the effective breadth of concentrated patch load (or width of bar 
connector), bc is the width of concrete prism (or slab), ha is the depth of the strip load (or bar 
connector) and fcb is the indirect tensile strength of concrete.  
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Fig. 22. Strip and patch loads on prisms according to JOHNSON and OEHLERS [58],[90]. 

 

When investigating the two-dimensional global splitting, a single line of connectors spacing 
with c is considered (Fig. 21a). The connectors apply a thrust on the concrete slab. Each 
connector induces a lateral tensile zone in front and a compressive zone behind (Fig. 22d), 
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or vice versa, depending on the thrust direction [58], [90]. In practical cases the lateral 
zones of individual connectors overlap with the zones of other connectors, which affects the 
splitting loads. This form of splitting is referred as global splitting, because lateral forces of 
all shear connectors can interact.  
 

Fig. 23 shows, in case of a simply supported girder, the constant and variable components 
of the shear flow in general and at a design point Q. At a particular point four components 
of shear force flow can be distinguished (Fig. 23c). The two components on both sides of 
the point can be taken into consideration. The lateral tensile stresses, that induce splitting 
at a particular point, depend on the magnitude, variation, direction and the stepwise 
changes of the shear flow.  

(a)  loads

(b)  shear flow

direction of thrust
on concrete slab

variable
component

constant
component

constant component

+

variable component

(c) shear flow components at point Q

+

-

+

Q

Q

 

Fig. 23. A simple example for shear flow components.  

It is necessary to define a different sign convention for the shear flow when dealing with 
splitting analyses in order to distinguish between lateral tensile and lateral compressive 
zones. The constant component of the shear flow is defined as positive when the 
connectors apply a thrust to the concrete slab that is directed towards the design point, that is 
the shear flow is directed towards the design point. The varying component of the shear 
flow is defined as positive when the shear flow acts towards the design point.  
 

In Fig. 24 lateral stresses fd and fr are presented [87], [90]. They are caused by the constant 
and variable component of shear flow, respectively. In Fig. 24 dt means the length of splitting 
crack. Here the distance of connectors c is equals to dt. The value of dt is defined to be equal 
to 2bc. On Figs. 22a and 22d the maximum length of the lateral affected zone is 1,75bc. The 
connectors act independently, because the distance of the connectors c is greater than 1,75bc. 
This means that the lateral stresses caused by the connectors do not overlap longitudinally. 
Fig. 24 shows that the positive shear flow induces lateral tensile stresses, while negative shear 
flow causes lateral compressive stresses at the design point. Formulae for the lateral stresses fd 
and fr were presented by OEHLERS [87].  
 
The lateral stresses due to constant and variable components of the shear flow were 
determined separately by OEHLERS [87] using finite element method and elementary 
beam theory. It turned out [87] that global splitting is a function of the shear flow and not the 
ultimate resistance of the single connector unlike local splitting. This means that increasing 
of the number of connectors does not prevent global splitting. Splitting will occur when the 
sum of the four components (Fig. 23) of the lateral stresses reaches the tensile strength of 
concrete. 
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The two-dimensional splitting theory was developed for pair-wise bar-type connectors (Fig. 
21b) and for headed stud connectors as well [90]. For the latter case, equivalent dimensions 
were determined [87], [88]. For composite girders with shallow haunches, equivalent prisms 
were developed for governing the two-dimensional splitting [89]. 
 

The two-dimensional splitting analysis underestimates the splitting resistance [90], which 
inspired JOHNSON and OEHLERS to develop formulae for the determination of the tree-
dimensional splitting resistance [58], [87].  
 
In 1981, JOHNSON and OEHLERS tested several concrete prisms subjected to patch loads 
[58]. They found an empirical formula  
 

xyxzpatch FFF
111

+=                    (94) 

  
for the determination of reciprocal value of splitting resistance of a concrete prism (Fig.  22c). 
Here Fxz is the splitting load in x-z plane and Fxy is the splitting load in x-y plane, acting on 
the detached and the dotted strips, respectively (Fig.  22c). Fxz and Fxy can be calculated by 
using Equation (93). Equation (94) is the so-called reciprocal relationship.  
 
 
In 1989, using Equation (93) OEHLERS deduced a new formula  
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for the determination of splitting resistance of the concrete slab [87]. Here the first term is the 
splitting strength of Prism 1 in Fig. 21a (Equation (93)). Correspondingly, the second term 
represents the splitting strength of Prism 2 in the same figure. Equation (95) is the so-called 
additive relationship. 
 
Unlike additive relationship, generally the reciprocal relationship gives larger strength values. 
 

When the loaded concrete slab cracks in a point, but the transverse reinforcement prevents 
further crashing, is called post-splitting phenomenon. It is also discussed here. Splitting has 
been found to occur in composite T-girders subjected to monotonic loads [26], [17], in 
composite T-girders subjected to longitudinally moving loads [58], in composite L-girders [59], 
in composite haunched girders [114], in composite stub girder construction [71] and in 
composite hybrid beams with horizontal connectors [119]. 
 

The lateral stresses induced by the constant component of shear flow (Fig. 24a) are shown in 
Fig. 24b. If the slab is without reinforcement, the tensile stress zone around the maximum 
tensile stress fd moves with the crack tip. Therefore, the split propagates along the studs, parallel 
to the direction of thrust. Even though there was sufficient transverse reinforcement in the 
splitting zone, the splitting can occur. The transverse reinforcement resists not only the lateral 
tensile forces but also enables transferring of shear forces after splitting. As a consequence the 
variable component of shear flow may be assumed to be spread over the cracked zone and to 
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produce lateral tensile stresses (Fig. 24b). These stresses are of the same magnitude as those 
which initiate splitting. However, in this zone the tensile stress at the crack tip drops rapidly 
from fd to fr when the crack propagates. It means that lateral stress fr does not cause cracking, 
because it is smaller than the maximum tensile strength fd. In other words, the transverse 
reinforcement does not prevent splitting [58], but does limit the propagation of the split, 
when only stationary loads are acting [87]. In Fig. 24 dt means the length of the splitting 
crack, fd is the lateral stress due to constant component of the shear flow, or maximum 
tensile strength, and fr is the lateral stress due to variable component of shear flow.  
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Fig. 24. Propagation of splitting crack according to OEHLERS [87]. a) Shear flow. 
b) Lateral stress distribution. 

 
 
2.7.3  Embedment forces 
 
In the analysis of composite girders discussed in Section 2.1.1, the assumption was made that 
the curvature of the concrete slab is always the same as the curvature of the steel beam. This 
assumption is justified, if no separation takes place in the steel - concrete interface. Therefore, 
the shear connection of a composite girder has to be constructed so that it resists both tensile 
and compressive forces normal to the interface surface. Mechanical shear connectors have 
such a shape that they efficiently resist axial tensile forces. These forces are not distributed 
along a line, but act more or less as concentrated “point” loads and are therefore likely to 
cause cracking at connectors. However, in general, the externally applied gravity loads cause 
compressive axial force in the interface of a T-shape composite girder [90], which does not 
cause cracking. 
 
As presented by OEHLERS and BRADFORD [90], the global axial interface force 
distribution is analogous to the global lateral stress distribution induced by splitting forces 
described in Section 2.7.2. It was also shown, that the global lateral stress distribution curve 
envelopes the distribution curve of local stresses caused by the connectors (Figs. 22a and 
22d). Hence, the global axial force distribution curve envelopes the local axial force 
distribution curves due to the vertical dispersal of the concentrated load from each connector. 
Local variations in the axial force distribution are also caused by web opening in the steel 
beam as well as local and lateral torsional buckling in the steel beam elements etc. The 
embedment forces of headed stud connectors are studied by McMACKIN et al., OLLGARD 
et al., and SLUTTER et al. [80], [91], [103]. 
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Local embedment failure due to axial tensile load can be caused either by the cone surface 
failure or the shank neck failure of the stud. Using the surface area of the conical failure 
plane as the major parameter, McMACKIN et al. [80] developed formulae for determining 
the axial embedment force Xemb.  
 
Apart from axial embedment failure, shear embedment failure can also occur [90]. In this 
case the shear force acting on a stud connector can produce a typical shear failure cone [90]. 
The corresponding shear embedment force Femb for different headed studs was determined 
by JOHNSON and OEHLERS [58] by using finite element analysis and by SLUTTER and 
DISCROLL [103] by using laboratory tests. 

 
2.7.4  Interaction between shear and axial forces 
 
The tensile loads acting on a composite girder can weaken the shear connection of a girder. 
Therefore, the interaction effect of an axial force Xa and a shear force Fsh, that both can cause 
failure of a connector, is needed. Values for Xemb and  Femb  forces can be obtained from pull 
and push-out tests. 
  
The elliptical interaction curve, which originates from the laboratory tests of McMACKIN et 
al. [80], can be expressed in form   
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This formula gives quite conservative results. Therefore, a more sophisticated formula was 
developed by OEHLERS et al. [90] by using finite element method. The validity of this 
formula was confirmed by laboratory tests. Notwithstanding the latter investigations, these 
types of design formulae need improvement. 
 
As a conclusion of the discussion on the behaviour of shear connectors in the concrete slab it 
can be stated the following: 

• Results of splitting analysis should be considered in standards. 
• Interaction formulae between shear and axial forces of shear connectors need to be 

developed further. 
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3   COMPOSITE GIRDERS SUBJECTED TO DIFFERENTIAL STRAIN 
 
3.1  Stresses caused by differential strain 
 
In Chapter 2 analytical and numerical methods are summarised. Additionally, a new kind of 
method, the Author’s Energy Method is introduced and used in the next chapters when 
evaluating the test results. In this chapter the problematic of differential strain acting on a 
composite girder is discussed. This is very important because the author’s tests in Chapters 4 
and 5 are mainly focused on this phenomenon (especially on the temperature difference).  
 
Among stresses acting on a composite girder, stresses caused by differential strain 
(temperature difference, creep and shrinkage of slab) are of great importance. Concrete 
shrinkage and temperature difference between beam and slab lead to a restrained differential 
contraction or expansion between them. In reality, the temperature distribution may vary 
continuously through the depth and the length of the beam and the slab. In case of a simply 
supported beam, however, it is generally accepted to assume for calculations that the beam 
and the slab have constant but different temperatures. The value of temperature difference to 
be adopted is generally a constant (by most of the standards it is ± 10 oC between concrete 
slab and steel beam). In case of continuous beam varying temperature function is considered 
(Fig. 25 as an example). The temperature difference effect is mostly observed and taken into 
account in bridges and similar structures.  
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Fig. 25. Temperature distribution for composite bridges by British Standard BS 5400 (Steel, 
Concrete and Composite Bridges. Part 5. Code of Practice for Design of Composite Bridges). 
 
Shrinkage strains occur over a period of months so that stresses resulting from them will be 
modified by creep. 
 
In case of a simply supported beam the initial assumption is that the slab is disconnected from 
the beam and may expand or contract without restraint. The strain resulting from shrinkage or 
temperature difference is ε which is to be considered as positive in extension. To maintain the 
initial length of the slab a force N shall be imposed at the center of gravity of the slab (N = -ε 
⋅ Cc). It means that now the slab is reconnected to the beam. Force N is balanced by an equal 
opposite force N acting at the slab centroid (or by an equivalent force N relocated to the 
composite centroid and a couple M = - N ⋅  dci. Using this elementary approach the moment 
due to differential strain is constant along the span. As a function of moment M and normal 
force N the normal stresses can be calculated. This simplified calculation method is generally 
accepted in practice. 
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Calculation of shear stresses particularly in the interface of beam and slab are also important. 
Shear stresses cannot be directly calculated on the basis of the previous simplified calculation 
method. Using the most conservative approach the shear caused by concrete shrinkage and 
temperature difference are confined to the ends of the composite girder. In case of an 
absolutely rigid shear connection theoretically an infinitely large interface shear appears at the 
girder ends. In reality, even with very rigid shear connectors, this phenomenon cannot be 
developed because of the plastic behaviour of the composite girder.  
 

Calculation of shear flow due to differential strain as function of shear connector stiffness can 
be carried out using the differential equation of NEWMARK [85] or HAWRANEK-
STEINHARDT [52]. Some standards are based on the ”exact” [52] solution but also simplify 
the distribution of shear along the girder by replacing the exponential curve of shear flow by a 
straight line. Other standards adopt triangular or rectangular shear diagram whose length is a 
function of the effective width or span. Some codes prescribe shear connector stiffness values. 
 

In statically determinate structures the shrinkage of concrete does not alter the vertical shear 
and the effect of shrinkage is represented as additional deflection. In statically indeterminate 
girder shrinkage leads to redistribution of vertical shear which results in the rise of total shear 
force at intermediate supports and in the fall of total shear force at the end supports. 
Accordingly, bond failures are first expected in the hogging moment regions. 
 

Creep of concrete is a complex phenomenon. It can be modelled by a linear or non-linear 
viscoelastic material model. The non-linear viscoelastic structure is influenced by the effect of 
age of concrete at loading, the effect of load duration and the deferred action of response in 
unloading. The principle of superposition is valid for both cases. The creep phenomenon is 
also dependant on a lot of conditions. 
 

Methods encountered in the literature are:  
Effective Modulus Method (FABER 1927) [37]. 
Rate of Creep Method (DISCHINGER 1937) [31], [32]. 
Creep Fibre Method (BUSENANN 1950) [13]. 
Approximate and Exact Method due to SATTLER (1959) [99]. 
Effective Modulus Method for Composite Girders (FRITZ 1961) [47]. 
Rate of Flow Method (ENGLAND and ILLSTON 1965) [33]. 
Improved Dischinger Method (NIELSEN 1970, TROST 1968-1973, RÜSCH, 
JUNGWIRTH and HILSDORF 1973) [84], [120]-[123], [97]. 
CEB-FIP Model Code Method (1978, 1990) [14], [15], [16]. 
  

The so-called Rate of Creep Method is used and developed further by many researchers. This 
method does not take into count the effect of age of concrete in loading and deferred action of 
response in unloading. The Improved Dischinger Method corrected the last problem. The 
CEB-FIP Model Code Method, which is the basis of Eurocode 2, eliminates all disadvantages 
of the Dischinger Method and introduces an additional term for initial creep as well. 

3.2  Temperature influence on simply supported composite bridges 
 
One of the main goals of the experimental investigations carried out by the present author is 
to study composite girders subjected to temperature difference. This is the reason to discuss 
this topic here. 
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Although the thermal expansion coefficient is approximately identical for steel and concrete, 
temperature influence may cause considerable internal stresses in composite bridges due to 
the significant difference in heat conduction (steel has a heat conductivity approximately 50 
times as big as than that of concrete). This phenomenon is especially important when air 
temperature changes abruptly or the steel girder is exposed to intensive sunshine.  
 

Measurements of temperature differences between the particular elements of composite 
bridges were already conducted by a rather large number of researchers even in the 1950’s. 
One of the earliest and most elaborate measurement series was carried out in the Strength 
Analysis Laboratory of the Karlsruhe University [64]. During the measurement process 
temperature was recorded at certain locations of the steel beam and the concrete slab, at 
different times and under various weather conditions (rain, sunshine, etc.). The characteristic 
results of this work are shown in Fig. 26. It turned out that the ratio of shaded areas to areas 
exposed to sunshine also had a significant influence on the vertical temperature distribution in 
the examined girder. The greatest temperature difference between concrete and steel members 
was approximately 15 °C.  
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Fig. 26.  Experimental research of Karlsruhe University on composite girders investigating 
the influence of temperature difference.  
 
Similar results were obtained by other researchers as well. In the summer of 1978 and in the 
winter of 1979 temperature measurements were carried out on the Ostrova-Kolbova bridge in 
the Czech Republic [101]. The cross-section of this composite girder bridge and the location 
of measuring points can be seen in Fig. 27. The measured temperature distributions at mid-span 
 

 

 

Fig. 27. Cross-section of the Ostrava-Koblova composite bridge and location of the 
measuring points. Measures in millimetres. 
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cross-section are shown in Figs. 28 and 29. The greatest temperature difference between 
concrete and steel members was approximately 7 °C.   
 
Temperature measurements were also conducted on the Praha-Brandys composite bridge in 
the same country in the summer of 1981 [101]. Figs. 30 and 31 present the location of the 
measuring points and the measured temperature distributions at mid-span cross-section in this  
 

DAY 28.7.1978 29.7.1978 
HOUR 8:00 15:00 21:00 3:00 7:00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 28. Temperature distribution across the mid-span cross-section of the Ostrava-Koblova 
composite bridge in  summer 1978. The measures are in millimetres and temperatures in 
Celsius. 
 

DAY 6.1.1979 7.1.1979 
HOUR 15:00 16:00 21:00 2:00 6:00 10:00 13:00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 29. Temperature distribution across the mid-span cross-section of the Ostrava-Koblova 
composite bridge in winter 1979. The measures are in millimetres and temperatures in 
Celsius. 
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case. Fig. 32 summarizes the temperature distribution in an envelope curve as function of 
time. From Figs. 30, 31 and 32 it can be concluded that the temperature difference between 
the extreme fibres of concrete and steel was approximately 10 °C. 
 
DAY 11.7.1981 
HOUR 1:00 6:00 12:00 17:00 20:00 24:00 
OUTER TEMP. oC 20,0 15,5 28,0 31,5 27,5 22,0 
INNER TEMP.   oC    20,0 18,0 25,5 27,5 26,0 23,0 

 

 

 

 

 

 

 

 

 

 
 
Fig. 30. Temperature distribution across the mid-span cross-section of the Praha-Brandys 
composite bridge in summer 1981. The measures are in millimetres and temperatures in 
Celsius. 
 

DAY 11.8.1981 
HOUR 1:00 7:00 10:00 14:00 18:00 23:00 
OUTER TEMP. oC 20,0 15,0 20,5 28,5 30,0 20,5 
INNER TEMP.   oC     21,0 15,0 20,2 26,5 29,5 22,5 

 

 

 

 

 

 

 

 

 

 
 
Fig. 31. Temperature distribution across the mid-span cross-section of the Praha-Brandys 
composite bridge in summer 1981. The measures are in millimetres and temperatures in 
Celsius. 
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Fig. 32. Typical maximal and minimal temperature distribution in March 1981 on the Praha-
Brandys composite bridge in the Czech Republic. 
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4 EXPERIMENTAL INVESTIGATIONS OF STEEL-CONCRETE 
COMPOSITE GIRDERS 
 
4.1  Antecedents of the present author’s investigations on steel-concrete composite 
girders 
  
Research work on the vibro-creep phenomenon (i.e. long-term deformation caused by vehicle 
load) of steel-concrete composite structures was carried out in 1977 at the Department of 
Structural Engineering (formerly Department of Steel and Reinforced Concrete Structures) of 
Budapest University of Technology and Economics (formerly Technical University of 
Budapest). Five beam-type steel-concrete composite girder specimens with span 1500 mm 
were tested (Table 2). The girders and test arrangement are shown in Fig. 33.   
 
Table 2. Dimensions and ultimate loads of the steel-concrete composite girders tested by 
DAO [25]. 

 

Slab dimensions 
[mm] 

Speci-
men 

 

Span 
L 

[mm] 

Steel beam 

Width Height 

Angle 
connector 

Connector 
spacing  
[mm] 

Static 
ultimate 

load [kN] 

P1 Welded I beam 300 80 L 40x40x4 100 - 
P2-1 250 85 L 40x40x4 125 296 
P2-2 250 85 L 40x40x4 125 312 
P3-1 250 80 L 40x40x4 125 245 
P3-2 

 
 

1500 
 

 
Hot-rolled 
I 160 beam 

250 80 L 40x40x4 125 250 
 
The material of the employed steel belonged to steel grade 37 (ultimate tensile strength 370 
N/mm2) and the grade of concrete was C20. Pretests were conducted with the first specimen 
to check the proper connector type and the longitudinal spacing of the connectors. First the 
specimens were subjected to repeated loading and then loaded statically up to failure. Finally 
– using these experimental results [25] – a method for considering the vibro-creep 
phenomenon of composite structures was developed. 
 
4.2  Experiments conducted by the author 

 
The author carried out similar tests as described in Section 4.1 because of two reasons (Fig. 
33). Firstly, in civil engineering generally limited number of test results are available for 
experiments opposed to other fields of engineering, especially to mechanical and aviation 
engineering, and secondly, in this way comparison of the results of DAO [25] and the author 
was possible.  
 
The main purpose of the tests carried out by the author was to investigate steel-concrete 
composite girders subjected to temperature difference. These girders were investigated for 
various types of connectors. 
 
The testing procedure and the test arrangements of the experimental investigations conducted 
by the present author in the early 1990’s are summarized below. Later on they were evaluated 
by numerical methods based on finite element models that were calibrated so that they fit to 
the test results. So a more comprehensive overview of the whole problem field was obtained. 
As a consequence, a uniform system was created to introduce the conducted experiments. 
Altogether two series of tests were carried out. In the first test series three specimens, 
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Specimens S1, S2 and S3, were tested. The second test series consisted of two specimens, 
Specimens S4 and S5. Details on these tests and specimens are given bellow.  
 

 
Fig. 33. Main dimensions and load arrangements of the investigated steel-concrete composite 
girders. Measures in millimetres. 
 
For the first test series (Table 3, Fig. 34, Fig. 35 and Fig. 36) three composite girders with 
1500 mm span consisting of I 160 steel beams and 250 mm wide and 80 mm deep reinforced 
concrete slabs were manufactured. Angle connectors of size L 40x60x6 mm3 at a longitudinal 
spacing of 125 mm were used in the first and third specimens. In the second specimen flat 
steel 40x6 mm2 connectors were employed.  
  
Table 3. Investigations on steel-concrete girders conducted by the present author. 
 

Test 
se-
ries 

 

Speci
-men 
num-
ber 

Ref. 
num- 
ber. 
Year 

Span 
L 

[mm] 

Steel 
beam  
type 

Connector 
Type 

Con- 
nector 
spacing 
[mm] 

Gravi-
ty 

loading 

Tem-
pera- 
ture 

loading 

Static 
ultima-
te load  
[kN] 

S1 
 

1500 Hot- 
rolled 

Angle 
L 40x60x5 mm3 

125 256 

S2 
 

[105], 
[106] 
1990 1500 Hot- 

rolled 
Steel plate 

40x60x6 mm3 
125 264 

 
 
 

1 
 S3 

 
[105], 
[106] 
1991 

1500 Hot- 
rolled 

Angle  
L 40x60x5 mm3 

and HSFG 
bolt M16-8.8 

125 

 
Direct 

(heating 
the steel 
beam) 209 

S4 
 

2000 Welded HSFG bolt 
M16-8.8 

130 Not 
mea-
sured 

 
2 

S5 
 

[93], 
[107] 
1992 

2000 Welded HSFG bolt 
M16-8.8 

130 

 
 
 

Two 
patch 
loads 

Indirect 
(pre-

stressing 
the steel 
beam) 

187 
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The grade of steel was S 235 (according to the present Eurocode 3 [34]). In the third 
composite girder the angle connectors were not welded on the upper flange of the I 160 beam, 
but fixed to it by means of M16-10.9 high-strength friction grip bolts (with pretension force of 
100 kN), nuts and special washers, so that the hardening process of concrete slab could occur 
freely. Thus the free shrinkage of the concrete slab caused no stresses in the steel beam.  
 
In the second test series (Table 3, Fig. 37) two 2200 mm long composite girder specimens 
were fabricated in order to investigate the influence of temperature difference by a simulation 
process. In this series the steel beams were made of welded members with steel grade S235. 
The slab of the girders was a precast concrete element of size 250 x 80 mm2. In the both 
specimens the connectors were 80 mm long full threaded HSFG M16 bolts with grade 8.8 at a 
spacing of 130 mm. These bolts had dual role. On the one hand they functioned as headed 
shear-connector studs, on the other hand they ensured the composite behaviour of the 
specimen connecting the concrete slab to the prestressed steel beam. The 50 mm headed part 
of the bolt (Fig. 37) served as a shear connector (Fig. 33), while the top nut, the steel plate 
element of size 80x100x6 mm3, the top flange of the welded steel beam and the bottom nut 
composed the friction grip connection part. Both the steel plate and the top flange of the beam 
were sand-blasted elements. The bolt hole diameters in the top flange were 19 mm. This way 
a slight relative displacement (approximately 1,0-1,5 mm) between the concrete slab and steel 
beam, necessary for prestressing the latter member, was provided. 
 
The composition of concrete used for the first and second test series is shown in Table 4.  
 
Table 4. Composition of concrete used in the first and second test series girders. 
 

Material content Material 
 

ρ 
[kg/m3] mrel 

[%] 
mabs 

[kg/m3] 
350 Portland cement 3100 10,8 335 

0,1-5 mm 42,8 1122 
4 – 8 mm 14,3 374 

Sand-gravel  

8 – 16 mm 

 
2620 

14,3 374 
Water 1000 17,5 175 
Air 0 0,3 - 
Total - 100 2380 
 
The strength of concrete was determined from test data obtained from six 150 mm cube tests 
and six cylinder tests (150 mm diameter, 300 mm height). All test samples were made at the 
same time and under the same conditions as the test specimens. Out of the above mentioned 
test data the grade of concrete was C25. For the purpose of numerical analysis the initial 
modulus of elasticity was also measured (Table 5).  
 
Table 5. Initial modulae of elasticity of concrete used in the first and second test series 
girders. 
 

Series No. Ec 
[N/mm2] 

 

1 31920  
2 29550  

 



 64

At each connector 6 mm stirrups were used. For a simplified formwork assembly every 
composite girder was placed on the floor in upside-down position during the concrete casting 
process. The dimensions, loading arrangements, measuring points and instrumentation of the 
test girders are shown in Fig. 34, Fig. 35, and Fig. 36, respectively. 
 
Parallel to the composite girder manufacturing, push-out specimens (Fig. 38) for checking the 
load bearing capacity of the individual connectors were fabricated using materials of the same 
grade as in the test specimens.  
 
The program of the first test series was divided into four stages. In the first stage of the first 
test series, one day after starting concrete casting, deformations – caused by concrete 
shrinkage – were measured using a mechanical Pfender Strain gauge instrument. The size of 
the Pfender balls was 1/16 inch and their base distance was 100 mm.  
 
In the second stage of the experiment (first test series), Specimen S1 was tested under long-
term effective concentrated load of 20 kN applied at mid-span, when the concrete age was 
between 14 and 28 days.  
 
In the third stage of the experimental program of the first test series – which formed the main 
portion of first test series – the three composite girders were subjected to temperature 
difference, then later on a combination of temperature difference and long-term effective load. 
In this program the heating of the specimen was provided by four plate heaters of 600 Watts 
each, which were fixed on the lower flange of the beam. In this process it took approximately 
one hour to raise the temperature of the lower flange of the steel beam to the appropriate level 
to obtain uniform temperature throughout the composite girder and to reach the planned 
temperature difference at the beam-slab interface during cooling-down.   
 
In the fourth stage of the experimental program of the first test series, the three specimens 
were statically loaded to failure. The statical load was provided by LUCAS hydraulic jack of 
500 kN capacity, acting at the mid-span. The load was distributed into two patch loads by 
thick steel plates of 250 mm spacing. 
 
The following parameters were measured in the framework of the first test series: 

• Temperature by 25 nickel-to-chrome-nickel thermocouple in case of Specimens S1 
and S2 and by touching sensor-tipped thermometer type GANZ 1 PT-385.  

• Slip values between reinforced concrete slab and steel beam by inductive transducers 
of measuring length of 10 mm (control measurements were simultaneously taken by 
Pfender instrument).  

• Elongation at mid-span and deflection of the beam. Japanese (KYOWA) strain gauges 
and inductive transducers having measuring length of 50 mm were used.  

• Load was supplied by a 500 kN (LUCAS) hydraulic jack. 
 
In case of Specimen S3 the tightening force of the high-strength M16-10.9 bolts was applied 
by a calibrated torque wrench. The specified value of pretension force was 100 kN. Readings 
of measurement data were electronically taken and recorded by DATCON data-logging 
system governed by a computer. The system developed at Budapest University of Technology 
and Economics [63] consisted of 300 data logging channels and graphic mode. For example, 
in case of Specimen S3 only, 25 logging channels were required, out of which 17 pieces for 
strain gauges, 7 pieces for monitoring slip and deflection, and the rest for monitoring pressure 
in the hydraulic jack. 
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Fig. 34. The dimensions, measuring points and instrumentation of Specimen S1. Measures in 
millimetres. 
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Fig. 35. The dimensions, measuring points and instrumentation of Specimen S2. Measures in 
millimetres. 
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Fig. 36. The dimensions, measuring points and instrumentation of Specimen S3. Measures in 
millimetres. 
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Fig. 37.  The dimensions, measuring points and instrumentation of Specimens S4 and S5. 
Measures in millimetres. 
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Fig. 38. Push-out tests of 
Specimens S1 and S2, 
respectively. Measures in 
millimetres. 

The program of the second test series was divided into two stages (Table 3, Fig. 37). In the 
first stage Specimens S4 and S5 were subjected to simulated temperature difference, when the 
composite girders were in upside-down position, i.e. the concrete slab was at the bottom and 
the steel member at the top so that the connectors (bolts) could be easily and correctly 
tightened. The axial prestressing of the steel beam (simulating temperature difference) was 
carried out using a hydraulic jack. Tensile forces 287 kN and 278 kN were applied to the steel 
beams of Specimens S4 and S5, respectively, causing longitudinal normal stresses of 106 
N/mm2 and 102 N/mm2 in the steel beams of respective girders. Prestressing was ensured by 
bolt-tightening (the specified value of pretension force was 100 kN) and then removal of the 
hydraulic jack. Using strain-gauges the normal stress distribution on the whole cross-section 
(concrete and steel) was measured only at the mid-span of the composite girder, in other 
cross-sections only the top flange stresses of the steel beam were checked. Nevertheless, in 
the support region the stress-state was evaluated by photoelastic stress analysis. During this 
test the surface of the web was covered by a 120 mm x 400 mm photoelastic layer, which was 
bonded on reflecting paint. A video camera recorded, double-refracted and analysed the lights 
for assessing the principal normal and shear stresses along the web part (Figs. 39 and 40). 
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Fig. 39.  Test arrangement of the second experimental series. 
 
In the second stage of the second test series, after simulation of temperature difference, the 
beams were also examined in their normal position (concrete plate at the top) by applying two 
concentrated forces symmetrically to the mid-span and with a  spacing of 250 mm. 
 

 
Fig. 40.  Photoelastic layer in the support region. Specimen S5. 

 
 



 71

During the second stage of the second test series, in addition to the increase of the applied 
load the following parameters were measured:  

• Slip between reinforced concrete slab and steel beam using inductive transducers and 
measuring length of 10 mm. 

• Strains at mid-span using Japanese (KYOWA) strain-gauges. 
• Deflections of the composite girder using inductive transducers with a measuring 

length of 50 mm. 
• Tightening force of the high-strength M16-8.8 bolts applied by a calibrated torque 

wrench (the specified value of pretension force was 80 kN). 
• Stresses by photoelastic stress analysis in the support region. 

 
The failure of Specimen S4 can be seen in Fig. 41. 
 

 

 

 
Fig. 41. Failure of  Specimen S4. 
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5   VERIFICATION OF THE EXPERIMENTAL RESULTS PRESENTED 
IN SECTION 4.2 
 
5.1  Finite element models used in the verification  
 
For verification of the test results described in Chapter 4 two kinds of finite element models, 
Model 1 (for each specimen) and Model 2 (only for Specimens S4 and S5) are built up. The 
analysis is carried out using LUSAS software program package developed for civil 
engineering purposes [42], [108], [109] and [110]. Every model is based on three-dimensional 
idealisation of the specimens tested. Linear material properties are used so that the behaviour 
of the structure can be followed and the measured test results compared. 
 
In Model 1, the steel beam and concrete slab are modelled with three-dimensional solid 
continua (HX8M element) and the connectors by so-called joint (JNT4) elements. These 
elements contain three linear springs, which model the shear behaviour of the connectors and 
the restrained uplift between the slab and the beam. Using joint elements the connector 
stiffness values can be changed providing a possibility to carry out a parametric study. The 
model and the mesh are shown in Fig. 42.  
 

Side elevation 

 
Cross-section 

 
 

Fig. 42. Three-dimensional finite element model (Model 1) with solid continua and spring 
(joint) elements. Letters Z  symbolise the joint elements.  
 
In Model 2, the steel beam, concrete slab and connectors are modelled with three-dimensional 
solid continua elements. To avoid a large number of nodes only half of the composite cross-
section is modelled along the entire span. This is possible, because the displacements 
perpendicular to the symmetry surface of the beam are restrained. The mesh is built up using 
three-dimensional solid continua with HX8M and PN6 LUSAS type elements with 8 and 6 
nodes, respectively. These solid continua have 3 degrees of freedom at each node (u, v, w). 
The model and the mesh are shown in Fig. 43. The modelled structure of the reinforced 
concrete slab is subjected to 40 oC temperature loading. Additionally, two patch loads are 
applied at the top of the composite girder symmetrically to the mid-span (Fig. 33). This 
modelling method facilitates to examine the entire structure and the connector type D (Fig. 
33). The whole model comprised of 34537 nodes and 7796 elements, respectively. 



 73

 
Side elevation 

 
Cross-section 

 
 
 

 

 
Steel beam and connectors 

Fig. 43.  Three-dimensional model (Model 2) with three-dimensional elements. 
 
5.2  Results obtained by experimental methods and comparison with other results 
 
5.2.1  Longitudinal slip at connectors due to shrinkage as function of time 

 
Fig. 44 shows a comparison of longitudinal slip values at connectors due to shrinkage as 
function of time in case of Specimen S1. The origin of the co-ordinate system is at the first 
connector in the vicinity of the support.  From these results it can be concluded that on the 
first and second day the majority of deformations due to shrinkage are completed. The 
envelope curves of experimental results contain two waves, the maximum slip is 0,018 mm.   
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Fig. 44.  Comparison of longitudinal slip values at connectors due to shrinkage as function of 
time (Specimen S1) according to the experiments. The origin of the co-ordinate system is at 
the first connector.  



 74

 
5.2.2  Longitudinal slip at connectors due to long-term loading as function of time 
 
Fig. 45 shows a distribution of longitudinal slip values at connectors due to long-term loading 
as function of time in case of Specimen S1. The applied load was 20 kN at mid-span acting 
from day 14 of concrete age (this is day 0 on push-out specimens (Fig. 38)) to day 28. The 
results are demonstrated only for one half of the girder. The origin of the co-ordinate system 
is at the first connector in the vicinity of the support. The maximum slip is 0,024 mm.  
 
The results of the comprehensive processes can be seen in Fig. 45. When the long-term load is 
applied, the creep and shrinkage of concrete commences, the concrete starts to strengthen and 
the bond stresses to develop. However, as a consequence of long-term loading, significant slip 
values can occur when the bond between beam and slab is interrupted and at the same time 
friction is developed at the interface. 
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Fig. 45. Distribution of longitudinal slip (Specimen S1) as function of connector distance x 
from the first connector (support section) – to mid-span cross-section of the girder. The 
curves are valid for applied external long-term load of 20 kN acting at mid-span.  
 
5.2.3  Longitudinal slip at connectors due to two-patch loads  
 
The purpose of this section is to determine the connector stiffness values only for Model 1 
applied to Specimens S1, S2 and S3 using test results and FEM analysis. It can be done 
indirectly so that the connector stiffness values in the LUSAS Joint model are varied so far 
that the best fitting between the calculated and measured slip values are reached.  
 
Fig. 46 shows the distribution of longitudinal slip values at the connectors of Specimen S3 
due to two patch loads (Fig. 36). The data are obtained from the tests. The origin of the co-
ordinate system is at the first connector in the vicinity of the support. Longitudinal slip values 
at each connector due to various loads for Specimen S3 are shown. The curves are determined 
for applied external loads of 49,6, 59,8, 73,4, 96,6, 112,6, 128,6, 139,6, 159,6, 165,4, 175,2, 
196,4, 198,8, 202,8, 205,2 and 206 kN, respectively. Here small slip reduction can be seen at 
the first connector. These results are similar to those presented by BODE and 
SCHANZENBACH [11] (Fig. 3). 
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Fig. 46.  Distribution of longitudinal slip (test results of Specimen S3) as function of 
connector distance x from the first connector (support section) – to mid-span cross-section of 
the girder. The curves are valid for various applied external loads (2P). 
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Fig. 47. Measured and calculated slip at different connectors in Specimens S1, S2 and S3, 
spring stiffness ky = 250, 300, 400, 500 MN/m. Distances x measured from the support (first 
connector). 
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Fig. 47 demonstrates that the slip values due to concentrated load of 100 kN are equivalent to 
a stiffness range of ky = 250–500 MN/m as calculated in the LUSAS analysis. Here the 
dashed lines represent the test results obtained, when different connector types, i.e. A, B, and 
C (Fig. 33), were used.  
 
5.2.4  Longitudinal connector forces due to temperature difference  
 
The purpose of this section is to determine the connector stiffness values only for Model 2 
applied to Specimens S4 and S5. Connector stiffness values are determined from the test 
results, in order to calculate the shear flow at the interface of slab and beam. As a function of 
shear force per unit length the internal forces and stresses can be calculated using the 
numerical and analytical models of the composite girder. 
 
For test series 2, where temperature difference of 40 oC is simulated by prestressing the steel 
beam, the connector forces can be determined indirectly. This process is outlined below. 
Stresses measured in the slab of Specimen S4 can be found in Table 5. Similar relationship 
can be observed for Specimen S5 as well. In Fig. 48 normal forces N(x) due to test and due to 
the Hawranek-Steinhardt method are depicted. 
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Fig. 48.  Axial (normal) forces Nc in the slab due to temperature difference 40 oC and 
according to the calculation based on the Hawranek-Steinhardt method (Specimen S4). 
 
In order to calculate the spring constant value, a measured datum is needed. A point of the 
experimental curve shown on Fig. 48 (depicted using data in Table 5) is selected so that the 
resulting curve determined by the Hawranek-Steinhardt method would provide the best 
approximation of the experimental curve. In this point the axial force in the concrete slab at 
x = 195 mm from the support is Nc = -36 kN. This way the value of 2600 N/mm2 for spring 
constant of elastic layer could be calculated. Using this value and the notation used 
previously, the elastic parameter ω2 gets the value 0,0023 m-2. 
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Using Hawranek-Steinhardt and the Author’s Energy methods the normal force N(x) and 
shear force per unit length T(x) can be calculated as function of the spring stiffness. 
 
According to Hawranek-Steinhardt method 
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where N0 is the axial force obtained with infinitely rigid joint. In this experiment (Specimen 
S4) the normal force N0 is 57,61 kN for prestressing force is 287 kN. 
 
Table 5.  Normal force Nc on the slab due to temperature difference 40 oC. Arrangement of 
strain gauges can be seen in Fig. 37. σx,c is the average normal stress in the slab. 
 

x 
[m] 

Number of strain 
gauge 

σmeasured 
[N/mm2] 

σx,c 
[N/mm2] 

Nc 
[kN] 

26 -1,54 
31 -1,98 
40 +0,48 

 
0 

45 +0,41 

[(0,48+0,41)/2+ 
(-1,54-1,98)/2]/2= 

-0,658 
 

σx,c ⋅Ac = 
-0,658⋅2⋅104⋅10-3= 

-13,15 
 

27 -2,34 
32 -4,22 
39 +1,33 

 
0,13 

44 +0,71 

 
-1,130 

 

 
-22,60 

 

28 -4,08 
33 -6,20 
38 +0,74 

 
0,26 

43 +0,12 

 
-2,355 

 

 
-47,10 

 

29 -5,54 
34 -5,80 
37 +0,68 

0,39 

42 +0,47 

 
-2,547 

 

 
-50,95 

 

30 -4,84 
35 - 
36 +0,24 

0,52 

41 +0,54 

 
-2,232 

 

 
-44,65 

 

10 -5,38 
48 -5,50 
46 +0,47 

1,0 

47 - 

 
-2,485 

 

 
-49,7 

 

 



 78

With the help of the shear force per unit length shown in Fig.49 the connector forces can be 
determined by multiplying the shear flow by the connector spacing. Thus the connector forces 
can be indirectly calculated. (In the experiment uniform spacing was used for the connectors.) 
 
In order to verify the distribution of the shear force per unit length, calculations are carried out 
using the Author’s Energy Method, as well as the LUSAS Joint and LUSAS Solid FEM 
models presented in Section 5.1. Using the LUSAS Joint model both stresses and forces can 
be calculated. The LUSAS Solid model ensures calculation of stresses but not forces. 
Therefore, in order to be able to compare the distribution of shear flow (results calculated 
using the Hawranek-Steinhardt and the Author’s Energy Method in Fig.49) with the shear 
stresses calculated using LUSAS Solid model (Fig. 50), the LUSAS Joint model needs to be 
invoked. In both LUSAS Solid and LUSAS Joint model, shear stresses τxy were calculated 
along the girder in the steel beam fibre being infinitely close to the connector.  
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Fig. 49.  Shear forces per unit length T(x) due to a simulated temperature difference of 40 oC 
from test and based on the Hawranek-Steinhardt and the Author’s Energy methods along the 
half girder (Specimen S4). 
 
The primary conclusion drawn from Figs. 49 and 50 is that the closest results are provided by 
the Author’s Energy Method and the LUSAS Joint model (connector stiffness ky value is 103 
MN/m). The Hawranek-Steinhardt method provides the highest value at the end of the girder, 
while the stress calculated using the LUSAS Solid model is approximately half of this value. 
This shows that modelling the temperature difference phenomenon of composite girder by 
using so-called joint element or elastic layer leads to results that are on the safe side. In 
comparison with the Hawranek-Steinhardt method, which provides rather high values at the 
supports, the use of the Author’s Energy Method is recommended.  
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Fig. 50.  Comparison of shear stresses τxy(x)  at the connectors due to temperature difference 
of 40 oC (Specimen S4). The dashed line results are obtained by using LUSAS Joint model 
and the solid line results by using LUSAS Solid model. 
 
5.2.5  Normal stresses  
 

The purpose of this section is to present the measured normal stresses σx due to temperature 
difference of 40 oC and two patch loads (Fig. 33). These stresses are then compared to the 
calculated values, which originate from a finite element analysis and the Author’s Energy 
Method and other methods. In the calculations spring stiffness values presented in Sections 
5.2.3 and 5.2.4 are used. 
 
Fig. 51 shows normal stresses σx at mid-span due to temperature difference as function of the 
vertical distances e from the lower edge of the beam. These stresses are obtained from 
numerical analyses and the tests conducted by the author. It can be seen that both the results 
obtained by LUSAS and the Author’s Energy Method are in conformity with the experimental 
ones.  
 
Fig. 52 shows the distribution of normal stresses σx at mid-span when Specimen S1 is 
subjected to 100 kN concentrated load. Fig. 53 shows the corresponding stresses in Specimen 
S5 when it is loaded with 64 kN and temperature difference of 40 oC. The results obtained by 
LUSAS and the Author’s Energy Method are in conformity with the experimental ones. 
 
Fig. 54 shows the calculated (LUSAS Solid and the Author’s Energy Method) and measured 
normal stresses σx in the lower fibre of the upper steel flange due to combination of simulated 
temperature difference and concentrated load of 100 kN in case of Specimen S5. The 
measured results are in accordance with the calculated stresses. 
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Fig. 51.  Comparison of normal stresses σx at mid-span at different heights e due to 
temperature difference 40 oC (Specimen S4).  
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Fig. 52. Comparison of normal stresses σx at mid-span at different heights e due to 100 kN 
concentrated load  (Specimen S1). 
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Fig. 53.  Comparison of normal stresses σx at mid-span at different heights e  due to 
combination of temperature difference 40 oC  and concentrated load 64 kN (Specimen S5).  
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Fig. 54. Comparison of normal stresses σx at the lower fibre level of the upper steel flange 
due to combination of temperature difference 40 oC and concentrated load 100 kN along the 
length of Specimen S5. 
 
5.2.6  Deflections 
 
The purpose of this section is to show the influence of connector types presented in Fig. 33 on 
the mid-span deflection. 
 
Fig. 55 shows the relationship between the vertical deflection and the calculated bending 
moment at mid-span of 8 different specimens (Tables 2 and 3). Table 6 summarises the main 
data in connection with Fig. 55. This demonstration method allows the comparison of 
specimens with different spans, but almost the same bending stiffness. It can be noticed that 
the ultimate moment M is almost the same for all specimens excluding Specimen S3. Unlike 
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Series Specimens S, the scattering of measured results of the Series P beams is quite small. 
This is because of practically similar dimensions (Table 2) and same type of connectors. Out 
of Series Specimens S, Specimens S1 (connector type A), S2 (connector type B) and S5 
(connector type D) have almost the same ultimate moment, while Specimen S3 (connector 
type C) provides a lower value because of the high slipping capability of the connection.   
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Fig. 55. Comparison of deflections due to concentrated load at mid-span containing data of 
DAO [25] (Series P2 and P3) and Specimens S1, S2, S3 and S5. 
 
Fig. 56 comprises results of the experiments of DAO [25] as well as the results obtained by 
the author and values calculated by the elementary strength theory and LUSAS results. It can 
be seen that beams of Series P are generally more rigid than the composite girders of Series 
Specimens S. The results of the Elementary Theory and LUSAS Solid model are in the rigid 
zone. 
 
Table 6. Comparison of the mid-span deflections of the specimens described in Chapter 4.  
 

Conductor 
of the test 

Specimen Span 
[m] 

Mmax 
[kNm] 

vmax 
[mm] 

P2-1 1,5 87,5 3,5 
P2-2 1,5 87,5 2,0 
P3-1 1,5 76,5 6,8 

 
PLATTHY  

& 
DAO P3-2 1,5 78,1 3,2 

Specimen S1 1,5 80,0 14,9 
Specimen S2 1,5 82,5 8,2 
Specimen S3 1,5 65,8 18,1 

 
SZABÓ 

Specimen S5 2,0 81,1 19,9 
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Fig. 56.  Comparison of deflections at mid-span due to concentrated load.   
 
Fig. 57 shows the temperature difference versus vertical deflection relationship in the first test 
series (Specimens S1, S2 and S3) containing loading and unloading phase. In case of 
Specimen S4 and S5 the temperature difference was only simulated by prestressing and that is 
why the heating process could not be investigated. The experimental results are fairly 
different because of different connector stiffness values. 
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Fig. 57.  Comparison of deflections at mid-span due to temperature difference. Specimens S1, 
S2 and S3. 
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5.3  Evaluation of results obtained by photoelastic method 
 
5.3.1  Evaluation process 
 

The purpose of this section is to present the measured shear stresses τxy in the steel beam web 
at the support region due to temperature difference of 40 oC and compare those with the 
calculated values which originate from the finite element analysis and the Author’s Energy 
Method. The influence of connectors on the principal stress distribution is shown here as well. 
The photoelastic analysis is an alternative method to determine the normal and shear stresses. 
 
Since only few results are available on the stress condition of the beam end due to 
temperature difference, this method, although not quite accurate, is also discussed below [12] 
[107] [127]. 
 
During the measurement process a video recording was made of the test series 2 and slides 
were copied relating to certain states of the composite girders. The evaluation was carried out 
in the following load cases: 

• State after prestressing (Specimens S4 and S5, Fig. 58). 
• 2P = 92, 6 kN static load (Specimen S5). 
 

Residual stresses caused by temperature effects were simulated by prestressing the steel beam 
with an axial force of 290 kN that is equivalent to 40 °C temperature difference. (More 
precisely the tensile forces 287 kN and 278 kN were applied to the steel beams of Specimens 
S4 and S5, respectively). 
 
For the purpose of photoelastic analysis a kind of glasses and various plastics are applied, 
which become double refracted materials only when subjected to loading. The extent of 
double refraction is proportional to the difference of principal stresses (HOLISTER [54]). A 
double refracted layer subjected to light (electromagnetic vibration) produces phase-
difference in the light-components. This phenomenon can be recognised by the polariser and 
analyser, which are the main elements of the reflection polariscope (Figs. 39 and 40). The 
polariser comprises special filter, which can transmit only one component of light-waves, i.e. 
the component vibrating in a particular plane. The plain polarised light occurring after the 
polariser is split into two ortogonally polarised components. These components propagate 
though the photoelastic layer at different velocities, while the frequency of the vibration 
remains costant.  The second polariser is called analyser. When examining a lighted area of 
photo-elastic layer through a polariser and an analyser, two different patterns can be seen 
namely isocromatic and isoclinatic patterns. In front of the double refracted layer isocromatic 
and isoclinatic curves can be obtained from different rotated positions of the polariser and the 
analyser.  In all points of the isochromats the phase-difference of the two light-components is 
zero or has the fractional value (Table 7) of the wavelength and at the same time the extent of 
principal stress difference is constant within a particular curve in all points of the isochromats. 
The principal stress directions in the points of isoclines are parallel with the polarisation 
planes and the principal stress direction is the same within each curve. 
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Fig. 58. Isocromatic fringe pattern after prestressing of Specimen S4. The specimen is in 
upside position. 
 
5.3.2  The calibration process 
 
The fringe order of isochromats can be determined by compensation process using white light 
source. This means that the compensation bar (Fig. 59) made of the same material as the 
photaelastic layer has to be examined by using reflective polariscope, then the analyser has to 
be rotated to such an extent that the original colored isochromat is replaced by a black 
isocromat in the examined point. The fringe order of the isochromat crossing this particular 
point can be determined from the angle of rotation.  
 

  
 

Fig. 59.  Calibration process. 
 
 
Based on this method the colours and the fractional isocromatic fringe orders belonging to the 
particular colours are shown in Table 7 (crossed polarisers). 
 
Table 7. Colours and the fractional isocromatic fringe orders.   
 

 Colours  Number  
 Black 0,00 
 White 0,15 
 Light yellow 0,25 
 Yellow 0,50 
 Yellow-purple 0,75 
 Purple 1,00 
 

Concrete 
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5.3.3   Evaluation of test results and comparison of experimental and numerical data 
 
If    
 

ε1-ε2 = fε ·m  (99) 
 
where ε1  and ε2  are the principal strains,  fε  is the photoelastic constant of the layer 
(established by calibration: 1090⋅10-6) and m is the  fringe order of the isochromat and   
 

)(
1 2121 εε

µ
σσ −

+
=− aE  (100) 

 
where σ1 and σ2 are the principal stresses and Ea and µ are the modulus of elasticity and 
Poisson’s ratio of the web material, respectively, then the difference of principal stresses is 
 

mf
Ea ⋅
+

=− εµ
σσ

121  (101) 

 

The shear stress τxy  as function of this difference is 
 

τxy = ϕ
σσ

2sin
2

21 −
   (102) 

 
where ϕ is the angle of principal tensile stress σ1. 
 
The trajectory network can be developed by drawing short straight lines parallel with the 
principal stress directions in the points of isoclines as tangents of trajectory lines. 
 
Isocromatic and isoclinatic patterns of the web of Specimen S4 in the prestressing state can be 
seen in Fig. 60. On the basis of Equations (101) and (102) and the isocromatic and isoclinatic 
patterns the test results can be assessed. As an example, the verification of a measured shear 
stress value is demonstrated here. This value, which is the maximum one (τxy,max), is 
developed in the web of the steel beam at 65 mm distance from the support line (Fig. 61).  
The measured values used for verification are shown as framed numbers in Fig. 60. Using 
these values the maximum shear stress τxy,max  can be calculated as follows:   
 

τxy,max = 206 N/mm16,8)92sin(3,0101090
)3,01(2

2100002sin
)1(2

=⋅⋅⋅⋅
+

=⋅
+

−ϕ
µ ε mfEa  

 
The results obtained by LUSAS Solid model and the Author’s Energy Method are in 
conformity with the photoelasic experimental ones (Figs. 61 and 62). It can be seen that the 
results from the Author’s Energy Method fit the experimental curve better than those obtained 
by the Finite Element method, in which not continuous elastic layer, but discrete connectors 
are used.  
 
 



 87

 
Isocromatic fringe pattern   m 

 SUPPORT

1
65 mm

1

1

1  - 1

0
0,1

0,2

0,3

0,5

0

0,1

0,2

0,3

0,5

0,05

0,55

0,50,5

0,3
0,3

0,2

0,2
0,1

0,1
0

0

 
Isoclinatic fringe pattern    ϕ 

 

35

18

10

0

1  - 1

45

9

25

12

35

18

10

0

45
35

18

10

0

45

35

18

10

0

1

1

SUPPORT

65 mm

 
 

Fig. 60.  Isocromatic and isoclinatic fringe patterns of the web of Specimen S4 in the 
prestressing state.  
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Fig. 61. Prestressing state of  Specimen S4. Shear stresses τxy in the beam web 65 mm apart  
from the support line.  
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Fig. 62. Prestressing state of Specimen S4. Shear stresses τxy in the beam web 195 mm apart  
from the support line.  

 
As it is demonstrated by this simple example, the photoelastic method is an excellent 
additional tool to examine structural details for which the elementary beam theory cannot be 
applied. The photoelastic measurement provides a global overview and facilitates finding of 
deficiencies and stress peaks in the structure [66]. 

Concrete slab 
 
 
 
 
Steel beam 
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6 PARAMETRIC STUDIES OF STEEL-CONCRETE COMPOSITE 
GIRDERS  
 
6.1  Background  
 
In Chapter 5 some parametric studies are already carried out by using LUSAS finite element 
program to determine connector spring stiffness values for Model 1 (Fig. 42). These studies 
allow the author to suggest his energy method for the determination of shear flow at interface 
due to temperature difference. Notwithstanding the earlier parametric studies, the present 
chapter contains additional numerical and analytical studies in order to find out the influence 
of varying shear connector stiffnesses on the longitudinal normal stresses σx and shear flow 
T(x). Based on the analytical parametric studies new equations are deduced to take into 
consideration the elastic behaviour of shear connectors.   

 
6.2  Parametric studies concerning longitudinal normal stresses 
 
In Fig. 63 the curve obtained from LUSAS Joint model results (connector spring stiffness 
value ky = 1000 MN/m) shows good compliance with the results originated from LUSAS 
Solid model at mid-span. This agreement between the two sets of results is used as a 
calibration method for the connection stiffness in case of Specimen S5 (Table 3, Fig. 37). The 
reason is that to carry out a comparison between the results of the so-called “exact” methods 
and the present study is difficult, as the dimensions of the spring constants have different units 
(in the first case it is MN/m2, while now it is MN/m). 
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Fig. 63. Comparison of normal stresses σx at extreme fibre of lower flange of the steel beam 
due to 40 oC temperature difference of Specimen S5 (values from LUSAS Joint and LUSAS 
Solid model). 

 
Fig. 64 shows normal stresses σx at mid-span at different heights e of Specimen S1 (Table 3, 
Fig. 34) due to 100 kN concentrated load. These values are obtained by LUSAS FEM analysis 
using variable connector stiffness values. On the tension side of the steel beam and in the 
concrete slab the calculated values are practically independent of the connector stiffness, but 
in the compression flange these values are fairly different. These differences represent a 
problem analogous to the effect of long-term loading, which is explained bellow. To handle 
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the creep effect, in practice generally the well-known Effective Modulus Method (FRITZ 
[47]) is used. The LUSAS program package is capable to model the creep phenomenon of 
concrete using constitutive laws and directly the CEB-FIP creep model [16] but for beam 
elements only. Since in this study solid elements are used, the latter model cannot be applied. 
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Fig. 64. Comparison of normal stresses σx at mid-span at different heights e of Specimen S1 
due to 100 kN concentrated load. The results are obtained by FEM analysis using different 
connector stiffness values (ky = 100…108 MN/m). 

 
Fig. 65 shows normal stresses σx at mid-span and different heights e of Specimen S1 (Fig. 
34), when 100 kN concentrated load is applied and creep is considered (short-term (t = 0) 
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Fig. 65.  Comparison of normal stresses σx at mid-span at different heights e of Specimen S1 
due to 100 kN concentrated load and creep. The results are obtained by FEM analysis 
applying short-term (t = 0) and long-term effects (t = ∞).  
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and long-term effect (t = ∞)). The normal stresses σx in the compression flange are fairly 
different, which is similar to the results shown in Fig. 64.  
 
6.3  Parametric studies concerning shear flow in the support regions  
 
For the basis of the parametric study concerning shear flow, two types of girders are chosen, 
Specimen S4 (Chapter 4, Section 4.2) and a sample girder with 6 m span. The sample 
composite girder consists of a beam with an IPE 750 profile and a concrete slab of 1200 x 200 
mm2. Both girders are subjected to uniformly distributed load. The aim of this parametric 
study is to estimate the effect of the elastic behaviour of connectors in the support region. 
 
In the support region (Figs. 66 and 67) the shear flow obtained by the Hawranek-Steinhardt 
method and the Author’s Energy Method are fairly different. Because of that, two 
independent methods are invoked, the LUSAS FEM and the method of redundant forces [74]. 
The straight lines in the figures represent the results obtained by elementary beam theory. The 
maximum values obtained by LUSAS are in good correlation with those obtained by using the 
Author’s Energy Method, while the results of the Redundant Force method are close to those 
obtained by the Hawranek–Steinhardt method. Since there are discrepancies especially in the 
support region due to the different approximation functions used for calculations in the 
studied and discussed methods, the well-accepted Hawranek–Steinhardt method is considered 
as the basis of the parametric study in this section.  
  

0

2

4

6

8

10

12

0 0,2 0,4 0,6 0,8 1
x [m]

T 
[N

/m
m

]

ELEMENTARY
THEORY
HAWRANEK-
STEINHARDT
ENERGY METHOD

LUSAS 1E9 MN/m

LUSAS 1E5 MN/m

FORCE METHOD

 

Fig. 66.  Comparison of shear flows obtained by using different methods in the case of 
Specimens S4 and S5 when subjected to 2 kN/m uniformly distributed load. 
 
The normal force due to uniformly distributed load can be obtained directly from differential 
Equation (22) that yields to equation 
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Fig. 67.  Comparison of shear flow obtained by different methods in case of a composite 
girder with 6 m span subjected to 1 N/mm uniformly distributed load. 
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Introducing expression 
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Equation (104) can be transformed to 
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Finally, by considering Equations (18) and (106), the total longitudinal shear force per unit 
length  
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is obtained. At the support 
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Introducing expression  
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Equation (107) can be transformed to  
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Entities Nfull (Equation (105)) and Tfull (Equation (109)) express how big the extreme axial 
force N (at mid-span) and the extreme shear flow T (at the support), respectively, in case of 
the simply supported and uniformly loaded single-span composite girder are, when the 
connectors have no flexibility. When they are known, all other cases having any connector 
flexibility can be covered by using Equations (106) and (110).  
 
By virtue of Equations (108) and (109) the ratio  
 

)sinh(
1)cosh(21)0(

LL
L

T
T

full ωω
ω

ς
⋅

−
−==                                                                                          (111) 

 
can be introduced and a parametric study can be carried out to estimate the difference between 
the behaviour of elastic and rigid connections at support line of a simply supported and 
uniformly loaded composite girder. The result is graphically shown in Fig. 68. 
 
A similar calculation process can be carried out for other load cases as well. In case of a 
single point load in the middle, it leads to expression 
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Also this result is shown in graphical form in Fig. 68. 
 
The examined cases cover all practical spring constants K of usual headed-stud connections as 
well [68], [70] (K = 0,5 ⋅ 102 to 3 ⋅ 10-3 mm2/N).  
 

If the K value is estimated, then ω·L can be calculated for a given cross-section and a given 
span L. Using the curves presented in Fig.68 ratio ζ  can easily be determined. If the shear 
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flow is calculated using elementary beam theory, then based on the determined ζ  value the 
elastic shear force per unit length at support line can be calculated. 
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7  EXPERIMENTAL AND NUMERICAL ANALYSES OF WOOD-
BASED COMPOSITE GIRDERS 
 
7.1  Introduction 
 
In Chapter 2 calculation methods for multi-material composite cross-sections are discussed, 
which are valid for wood-concrete composite girders as well. Tests, numerical analyses and 
parametric studies on steel-concrete composite girders are presented in Chapters 4, 5 and 6 
considering the behaviour of connectors and their influence on the stress and strain condition 
of a composite girder. The aim of the present chapter is the same. Since wood is an 
orthotropic material, it can be taken into consideration in a finite element model. 
 
Wood-concrete composite structure concept was for the first time applied to bridges already 
in the 1930’s. In the 1960’s, some remarkable wood-concrete composite bridges were built, 
like the Keystone Wye bridge in the USA [65]. In comparison with conventional wood 
bridges, the composite bridges, built recently for instance in Finland, seem to be the most 
economical ones. Besides that the concrete deck gives good protection against weather and 
abrasion caused by traffic. So wood-concrete composite structures seem to be a potential 
alternative for bridge superstructure.  
 
So far the development of connections of wood-concrete composite girders was carried out 
only by few researchers. The solutions, which meet the requirements of effectivity, durability 
and easy and cheap manufacturing, still remain unsolved, but several investigations have been 
carried out for instance in the frame of the Nordic Timber Bridge Projects [77], [116], [117]. 
These projects covered wood-concrete composite bridges, tests on shear connectors of wood-
concrete composite bridges, design of wooden arch bridges and arch bridges for road traffic, 
rules concerning the design of Nordic timber bridges, construction costs of timber and wood-
concrete composite bridges in comparison with concrete, prestressed precast concrete and 
steel bridges in Finland, measurements and follow-up tests of timber and wood-concrete 
composite bridges, arch bridges for pedestrian traffic, life cycle assessment of timber bridges, 
analysing methods of a composite girder containing wood, monitoring of timber bridges, 
fatigue of timber bridges and fatigue of joints in timber structures, and chemical wood 
protection. These projects report about 50 completed new bridges in the Nordic countries.  
 
Long-term behaviour of wood-concrete girders is also investigated. In references [45] and 
[46] all phenomena affecting the long-term behaviour of timber, concrete and connectors, 
such as creep, mechanosorptive creep, shrinkage/swelling and temperature variations, are 
fully considered. These influences should be considered and addressed in the standards as 
well in case of wood-concrete girders. 

 
From calculation point of view, due to the large number of connectors, even a simply 
supported composite girder is internally statically indeterminate. Additionally, the regions 
beyond the support lines are of special interest, because they, according to the beam theory, 
do not contribute to the connector forces, although the situation in reality is different. These 
facts gave reason to the present section and tests carried out by the author and other 
researchers.  
 
7.2  Tests with wood-plywood composite girders 
 
In 1999, an experimental study on wood-plywood composite structures subjected to gravity 
loads was carried out by the author to find out the real connector force distribution of 
composite girders [112], [113]. Two similar specimens of length 2070 mm were tested; only 
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the spacing of the connectors was different being 100 mm in one case and 140 mm in the 
other. The geometry and measuring system of the T-shape girders are shown in Fig. 69 and 
Fig. 70.  
 
The flanges of the beams tested consisted of 210 mm wide and 20 mm thick plywood plates 
and the webs of 68 mm wide and 176 mm high pine planks. Because the study was 
concentrated on the regions beyond the support lines, 335 mm long cantilevers were used thus 
giving a span of 1400 mm. The loading comprised two knife-edge forces originated by a 
hydraulic jack. The forces were located symmetrically with respect to the mid-span and had a 
spacing of 200 mm. 
 

 

 

Fig. 69. Measurements, connector spacing, loading arrangements and location of inductive 
transducers and strain gauges in the two specimens tested. All measures in millimetres. 
 
 

 
 

 

Fig. 70. Specimen 2. Photo: L. Salokangas. 
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Each connector comprised the following six elements (Fig. 71); one 9,42 mm diameter screw 
(total length 76 mm, head high 7 mm, cylindrical length 25 mm, threaded length 48 mm) with 
a 17,13 mm diameter head, one circular hollow washer with 12 mm diameter, another washer 
with 37 mm diameter, a 14 mm long and 32 mm thick rubber cylinder having a centric hole of 
12 mm in diameter and, finally, two plywood washers. This arrangement made only 
longitudinal relative displacement between the flange and web possible. 

 

 
 

Fig. 71.  Connector elements used in the tests described. Photo: L. Salokangas. 
 
The experimental tests were carried out according to ISO Standard 68691. During the tests, 
the applied load, deflection of the girder and the slip between the wooden beam and plywood 
plate were measured. For both specimens, the value of 30 kN was chosen as the estimated 
total ultimate load. The loading sequence was the following (Fig. 72): 
 

• Load increase from 0 to 12 kN in two minutes (speed 6 kN/min). 
• Constant load 12 kN for 30 seconds. 
• Unloading from 12 kN to 3 kN in 90 seconds (speed 6 kN/min). 
• Constant load 3 kN for 30 seconds. 
• Load increase from 3 kN up to failure (speed 0,5...2,0 mm/min measured from 

deflection).  
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Fig. 72. Applied test load P related to the estimated maximum load Fest as function of time t. 
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In both cases, the failure took place at the mid-section of the girder because of bending 
stresses in the wooden part. Before that, the joint to plywood was destroyed by shear at the 
beam-ends. The failure loads were 37,65 kN and 64,038 kN, respectively. The failure pattern 
of Specimen 2 can be seen in Fig. 73. 
 

 
 

Fig. 73. Failure pattern of Specimen 2. Photo: L. Salokangas. 
 
7.3  Numerical analysis 
 
7.3.1  Overall analysis 
 
The experimental tests were followed by numerical analyses. The main goal of this 
investigation was to carry out a parametric study – based on the tests – varying connector 
stiffness. Both specimens were modelled with a three-dimensional idealisation of the 
structures and three-dimensional elements.  
 

 
Fig. 74.  The mesh used for Specimen 2 in the FEM analysis, elevation and cross-section. 
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LUSAS finite element software was applied. The mesh was developed by means of the 
graphical pre- and post-processing system of LUSAS. The 3-dimensional solid continua 
HX8M with 8 points for the wood web and plywood slab and appropriate joint elements JNT4 
for the connectors, respectively, were used. The finite element mesh of the model of 
Specimen 2 (Model 2*) is shown in Fig. 74. Global coordinate system presented in Fig. 69 
was created for the solid elements and a local one for the joints. The number of elements and 
nodes in Specimen 1 was 2778 and 4675, respectively. The corresponding figures in 
Specimen 2 were 3541 and 5712, respectively.  
 
The material properties obtained from the experimental part of the study are presented in 
Table 8. The connector elements, i.e. the JNT4 joint elements, included three linear springs 
whose stiffnesses are denoted by kx, ky and kz. Stiffnesses kx and kz were given approximately 
infinite values. Spring stiffness ky was varied, thus giving an opportunity to incorporate slip 
and redistribution of connector forces in the analysis. By this means, a tool also is obtained to 
adjust such values in the FEM analysis so that the experimentally measured connector forces 
could be analytically followed.  
 
For comparison, the experimentally and analytically obtained slip values, respectively, are 
presented in Fig. 75. 
 
Table 8. Material properties for wood and plywood used in the FEM analysis. 
 

Ex Ey  Ez  Gxy  Gyz  Symbol 
[N/mm2] 

µxy µyz µxz 

Wood 11000 370 370 690 690 690 0,16 0,16 
Plywood 15200 507 507 550 550 550 0,2 0,2 
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Fig. 75. Comparison of the experimental (full line) and analytical (dashed line) slip values of 
Specimen 2 with 30 kN total load and spring stiffness ky = 0,5 MN/m at various distances x 
from the beam end. 
 

7.3.2  Parametric study 
  
Because of good agreement between the experimental and analytical values, the FEM analysis 
can be considered reliable to describe the phenomenon under discussion more generally. That 
is why a parametric study is carried out to see, how the connector forces depend on the 
horizontal spring stiffness ky, i.e. the connector flexibility. Again, Specimen 2 is used as the 
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base structure with the experimental test-loading set-up. The result is shown in Fig. 76. It can 
be seen, that for deformable connectors, i.e. with small ky-values, the connector force 
distribution is relatively even and differs from that obtained by the traditional bending theory 
based on stiff connectors. It is also seen, that the stiffer the connectors are, the more the 
location of the maximum connector force deviates from the beam end, which is another 
contradiction. This result, however, is in accordance with the result obtained by BODE and 
SCHANZENBACH [11] discussed in the introduction. 
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Fig. 76. Distribution of connector force F as function of spring stiffness ky according to the 
parametric study with Specimen 2. The curves from 1 to 6 are valid for ky equal to 1015, 100, 
10, 1, 0,7 and 0,5 MN/m, respectively. The applied load is 30 kN. 
 

Distribution of the longitudinal stress σx along the beam and through the depth was also 
recorded. The result is shown in Figs. 77 and 78. The distribution of the normal stress σx at 
the bottom extreme fibre of Specimen 2 according to the parametric study as function of 
spring stiffness ky is shown in Fig. 77. From this figure it can be concluded that significant 
stress peaks occur in the support regions violating the traditional bending theory. 
Additionally, due to rigid connection normal stresses are decreased in the mid-span cross-
section by approximately 25 %. 
 

Fig. 78 presents the vertical distribution of the normal stress σx at different cross-sections near 
the support region. At the interface of wood and plywood in every examined cross-section an 
abrupt change of horizontal stresses can be experienced. At cross-sections with x equalling to 
433 and 533 mm the curves tend to follow linear stress distribution. 
 

Fig. 79 shows normal stresses σx at mid-span due to 30 kN concentrated load as function of 
the vertical distances e from the lower edge of the beam. These stresses are obtained from 
numerical analyses and the tests conducted by the author. It can be seen that the results 
obtained both by LUSAS and the Author’s Energy Method are in good conformity with the 
experimental ones. In the author’s method, isotropic material properties are considered in 
contrast with the finite element method, where orthotropic material properties are taken into 
account. The good agreement between numerical results justifies to suggest that in practice 
isotropic material properties are not needed to be considered when analysing wood-based 
composite girders. 
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Fig. 77. Distribution of the axial stress σx at the bottom layer as function of spring stiffness ky 
according to the parametric study with Specimen 2. The curves at the midsection listed from 
bottom represent ky-values equal to 1015, 10, 1 and 0,4 MN/m, respectively. The applied load 
is 30 kN. 
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Fig. 78.  Vertical distribution of the axial stress σx near the support region with ky=10 MN/m 
(Specimen 2). The curves from 1 to 4 are valid for x equal to 133, 333, 433 and 533 mm, 
respectively, when the global coordinate system shown in Fig. 69 is used. The applied load is 
30 kN. 
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Fig. 79. Comparison of normal stresses σx obtained by using different methods at mid-span 
at different heights e of Specimen 2 due to 30 kN concentrated load. 
 
7.4  Conclusions 
 
From the experimental and numerical analyses, the following can be concluded: 

• The state of stresses and deformations of the examined composite girders subjected to 
gravity loads can be determined precisely with the applied numerical models. 

• The cantilever parts accumulate significant stresses and connector forces although not 
loaded violating the traditional bending theory. 

• The connector carrying the maximum load is not the first but the second or third one 
measured from the support line towards the span. This result, although violating the 
traditional bending theory as well, is in accordance with the results obtained with other 
types of composite girders. 
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8   CONCLUSIONS AND RECOMMENDATIONS 
 
The present study deals with the behaviour of connectors and their influence on the stress and 
strain condition of a composite girder. It is known, that the behaviour of the connectors may 
affect the entire composite girder. Therefore it was also necessary to review several other 
issues and tendencies concerning the investigation of the entire composite girder.  
 
8.1  Analytical and numerical methods related to composite girders 
 
Among analytical models, statical and energy methods, based on the beam theory, are 
considered. The so-called exact statical and energy methods assume that the connectors form 
an elastic layer in contrast to the redundant force method where discrete connectors are taken 
into consideration. Several investigations have shown that the Hawranek-Steinhardt method is 
quite conservative when calculating the shear force per unit length in the support region. The 
fact, that the traditional energy method does not provide a solution for composite girders 
subjected to temperature difference, inspired the author to develop a new kind of energy 
method based on variational calculation for determining the shear force distribution of 
connectors in composite girders. The new method is in compliance with the experimental and 
the latest theoretical investigations and can be processed using the latest engineering 
programs, e.g. MathCad or MathLab software applications. 
 
The present study also summarizes the investigations carried out for composite girders using 
numerical methods. In this context the author has developed several FEM models for more 
precise numerical analysis of composite girders using three-dimensional i.e. shell-beam, solid 
and solid-spring models. Here the shear connectors were represented by beam elements, solid 
elements and springs. The models developed proved to be an effective tool when verifying the 
experimental results.  
 
8.2  Experimental results on steel-concrete composite girders 
 
The study presents several experimental tests with steel-concrete composite girders conducted 
by the author. Special emphasis was laid on the behaviour of shear connectors and their 
influence on the simply supported composite girders subjected to temperature difference 
between the steel beam and concrete slab. The temperature difference was provided directly 
by heating the steel beam or indirectly by prestressing it using external hydraulic jacks 
simulating the phenomenon. In the first case (direct way) the slip between steel and concrete 
was measured. Based on these measurements the spring stiffness values of the connectors 
could be determined using a solid-spring FEM model. Based on the various spring stiffness 
values the stress-deformation state of test girders could be checked (e.g. longitudinal normal 
stresses σx) and predicted. In the second case (indirect way) the normal force of the concrete 
slab was calculated from test measurements obtained by using strain gauges. Using implicit 
way the spring stiffness values were selected so that the resulting normal force diagram 
determined by the Hawranek-Steinhardt method would provide the best approximation of the 
experimental curve. In function of spring stiffness the internal forces can be calculated. These 
(indirect) tests were verified by FEM as well, using solid and solid-spring models.  However, 
the solid model contains only stress values. But the solid spring model provides a link to the 
LUSAS Solid model and to Hawranek-Steinhardt method and the Author’s Energy Method as 
well. For practical calculations of shear flow due to temperature difference, the Author’s 
Energy Method is recommended because these results proved to be in close proximity to the 
numerical values.  
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When comparing mid-span longitudinal normal stress σx and mid-span deflection values, 
every calculation method (including FEM as well) shows good accordance with the 
experimental test data. Concerning the other parts of a simply supported beam, the solid FEM 
model produces most reliable results compared to test results. 
 
The section of the study presenting experimental tests on steel-concrete composite girders was 
terminated by a photoelastic measurement where the support region stresses were examined. 
When comparing shear stresses due to temperature difference discovered during the 
experiments, the test results are in good accordance with the calculated Author’s Energy 
Method, except for those obtained by the LUSAS Solid FEM. 
 

8.3  Parametric studies on composite girders with isotropic material 
 
The present investigation includes parametric studies that extend the experimental results. In 
addition, they also provide a good tool to estimate the elastic shear flow at the support line of 
simply supported composite girders subjected to uniformly distributed load. The formula 
covers all the practical deformability characteristics K values of common headed stud 
connections for each span and cross-section variations of composite girders with isotropic 
material. The process used can be applied to other load cases as well.  
 

8.4  Experimental tests and numerical analysis of wood-based composite girders 
 
The study also presents experimental and FEM analysis results related to shear flow 
distribution between deformable connectors in a wood-based composite girder. Special 
emphasis is laid on those connectors that are located behind the end bearing line. The effect of 
these connectors is normally neglected in practical design. The modelling of the composite 
girders studied is based on an orthotropic material law.  
 
From the experimental and numerical analyses it can be concluded that the state of stresses 
and deformations of the examined composite girders subjected to gravity loads can be 
determined precisely with the applied numerical models. In addition, cantilever parts 
accumulate significant stresses and connector forces although unloaded, violating the 
traditional bending theory. Furthermore, the connector carrying the maximum load is not the 
first but the second or third one measured from the support line towards the span. This result, 
although violating the traditional bending theory as well, is in accordance with result obtained 
with other types of composite girders. 
 
   
8.5  New contributions of the present study and suggestions for further research 
 
The major contributions of the present study are summarised as follows: 

• A new kind of energy method based on variational calculation for determining the 
shear force distribution between the connectors in a composite girder is presented. 
This method, that proves to be in good compliance with the experimental and the 
latest theoretical investigations, provides a tool to cover temperature difference and 
gravity loading problems, too. 

• Experimental tests with steel-concrete composite girders are carried out to study 
mainly the shear connector behaviour and its influence along the entire girder due to 
gravity loadings and temperature difference. In these tests a photoelastic method is 
also used to verify shear stresses near the beam end. 

• Appropriate numerical models (FEM) for steel-concrete composite girders are 
developed to verify and extend the experimental results using parametric study. 



 105

• Parametric studies are carried out based on analytical and finite element analyses. As a 
result, new design formulas are developed for design practice in order to determine 
elastic shear flow at the support line. These formulas cover all the practical 
deformability characteristics values of common headed stud connections for each span 
and cross-section variations of composite girders with isotropic material.  

• Experimental tests, FEM analysis and parametric studies with wood-based composite 
girders are carried out. The test specimens were modelled using an orthotropic 
material law. The state of stresses and deformations of the examined composite 
girders subjected to gravity loads could be precisely determined with the applied 
numerical models. The connector carrying the maximum load proved to be not the 
first but the second or third one measured from the support line towards the span. 

• At the end of the new contributions it can be declared that the aims of the study 
(Section 1.4) have been reached.  

 
Suggestions for further research: 

• Unlike beam-to-column connections in Eurocode 3 and composite joints in frames for 
buildings in Eurocode 4 where rigid, semi-rigid and pinned connections are defined, 
for connections of steel-concrete composite girders in Eurocode 4 there is no 
definition of deformable connections. Limitations of “deformability” are not stated 
either. This problem should be addressed in further studies. 

• Interaction formulae between shear and axial forces of shear connectors need to be 
developed further. 

• Further research on the effect of shrinkage and creep in wood-concrete composite 
girders is needed. 

• Long-term behaviour (creep, mechanosorptive creep, shrinkage/swelling) and 
temperature variations of wood-concrete girders are suggested to be addressed and 
considered in the standards. 

• The principle of partial and full shear connection should be applied to wood-concrete 
composite girders in the same way as it is applied to steel-concrete composite 
structures. 
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APPENDIX 
 
Calculation of a simply supported beam subjected to 40 oC temperature difference using 
the Author’s Energy Method 
 
The Author’s Energy Method is here applied to a simply supported steel-concrete composite 
girder with 2 m span (Fig. 37, Specimen S4) subjected to 40 oC temperature difference. The 
beam is a 140 mm high welded plate girder with 100 mm x 10 mm flanges and 120 mm x 6 
mm web. The slab cross-section was 250 mm x 80 mm. The layers were connected by 16 
pieces “D” type connectors (Fig. 33). The connectors had equal spacing of 130 mm. The 
elastic modulus value was 205000 MN/m2 for steel and 29550 MN/m2 for concrete. The 
coefficient of thermal expansion αT for steel is 0,000012 1/oC. The geometrical properties of 
the composite girder (Specimen S4) and constants for calculation are summarised in Table A1 
and Table A2. 
 
Table A1. Geometrical properties of  Specimen S4. 
 

Distance  
[m] 

Area of cross-section 
[m2] 

Moment of inertia 
[m4] 

dai dci d Aa Ac Ai Ia Ic Ii 
0,057 0,053 0,110 2,72⋅10-3 20,0⋅10-3 5,603⋅10-3 9,36⋅10-6 10,67⋅10-6 27,83⋅10-6 

  
Table A2. Constants for calculation. 
 

Spring stiffness 
value 

Constants of HAWRANEK-
STEINHARDT equation 

  

K [N/mm2] ω2 [m-2] γ [m-3]   
2600 2,314⋅10-3 128,02   

 
The moment due to temperature difference ∆T = 40 oC (the steel beam has positive strain) can 
be calculated using the following formula (page 46 of Ref. [70]):  
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In order to obtain the normal force N(x) Equation (87) can be used to determine Fourier 
coefficients ai, where i  = 1, 2, …12. (In practice is usual to take into consideration up to 12 
Fourier members.) The calculation can be carried out by using MathCad software, for 
instance. Some steps of the process are shown below.  
 
Determining of a1 
n 1:=  
a1 1:=  

 
 

 



 117

Given  

 
a1 Find a1( ):=  

= 66,148 
 
Determining of a2 
n 2:=  
a2 1:=  
Given 

 
a2 Find a2( ):=  
a2 0=  
 
Determining of a3  
n 3:=  
a3 1:=  
Given 

 
a3 Find a3( ):=  
 

= 8,27
 

 
. 
. 
 
Determining of  a12  a12 1:=  
n 12:=  
Given 

 
a12 Find a12( ):=  
a12 0=  
 

a1

a 3
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The Fourier coefficients ai and the vector of Fourier components (formulation and values)  
p(x)i are summarised in Table A3. 
 
Table A3. Fourier coefficients ai and components p(x)i. 
 

a1 66,148 p(x)1 0  
a2 0 p(x)2 0  
a3 8,27 p(x)3 0  
a4 0 p(x)4 0  
a5 2,206 p(x)5 0  
a6 0 p(x)6 0  
a7 0,859 p(x)7 0  
a8 0 p(x)8 0  
a9 0,416 p(x)9 1,102⋅10-15  
a10 0 p(x)10 -1,225⋅10-15  
a11 0,231 p(x)11 4,900⋅10-15  
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p(x)i 
 

p(x)12 -1,470⋅10-15  
 
The normal force N(x) from MathCad equation (see also Equation (76))

 N x( )

0

11

i

ai 0, p x( )i 0,⋅( )∑
=

:=  

can be obtained. Derivation of normal force N(x) provides the shear flow T(x) (in N/mm unit) 
  

 
 

T x( )
x

0

11

i

ai 0, p x( )i 0,⋅( )∑
=

d
d

:=  

   

 
From the non-uniform curve of shear force per unit length T(x) it can be concluded that for 
the precise calculation of shear flow more terms of the Fourier series need to be considered. 
 
Programming a cycle for the Fourier coefficients ai 
 
a

avalue 1−
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the normal force N(x) and shear flow T(x) can be obtained from MathCad equations  
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when a reasonable number of cycles (e.g. n = 400) are used. The perfect diagrams N(x) and 
T(x)  shown below can then be demonstrated. 
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