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ABSTRACT

The digital waveguide (DWG) mesh is a method for simulating
wave propagation in multiple dimensions. Boundary conditions
are needed for modeling changes in wave propagation media such
as walls and furniture in a room or boundaries of a resonating
membrane of a musical instrument. The boundary conditions have
been solved for a one-dimensional DWG structure, but there is
no known exact solution for the multi-dimensional mesh. In this
work, a new boundary structure is introduced for modeling reflec-
tion coefficient values−1 ≤ r ≤ 1 in two dimensions. The new
method gives remarkably more accurate results than the earlier ap-
proximations, especially at the low absolute values ofr. At inci-
dent angles ofΘ < 60o, the absolute error of reflection coefficient
r is below0.1 at frequencies0.004 < f < 0.222 relative to the
sampling frequency and at60o ≤ Θ ≤ 80o the same result is
reached at0.005 < f < 0.114.

1. INTRODUCTION

A variety of methods has been suggested for acoustic modeling.
Choice of the preferred method depends on the size of the object,
frequency band and amount of detail to be modeled. Unlike ge-
ometrical methods such as ray tracing or image source method
widely used in room acoustics modeling, the digital waveguide
(DWG) mesh first introduced for acoustical instrument modeling
inherently includes the diffraction and interference effects into the
model [1, 2, 3, 4]. It is a promising method especially for modeling
small rooms and low frequencies, where the geometrical methods
typically fail.

The DWG structure in its one-dimensional form can be used
for modeling the acoustics of, for example, strings and pipes. It
is constructed by connecting two parallel delay lines together with
scattering junctions at every unit delay location. Changes in wave
propagation medium can be modeled using admittance coefficients
at the junctions.

Extending the DWG method to two and three dimensions
makes it possible to model the acoustics of membranes, resonating
bodies of musical instruments or rooms, for example. In multiple
dimensions, a mesh is formed by joining more delay lines together.
This is accomplished by adding more input and output ports to
each scattering junction forming the nodes of the mesh.

The mesh topology can be chosen to be one of the many reg-
ular forms. Most common are the triangular and the rectilinear
mesh. The rectilinear topology has been used in this work, as the
structure made of squares is relatively easy to handle. Numeri-
cal dispersion errors appearing in the method are solved using the
techniques introduced by Savioja and Välimäki [5]: Interpolation

is described in Section 2 and used throughout the paper, frequency
warping was utilized only in Section 4.2.

Boundary conditions are simple to implement in one-
dimensional DWG structure, as they can be obtained straight from
the delay line updating functions. In multiple dimensions the case
is more complicated. The only boundary condition that is common
for all dimensionalities is the phase inverting perfect reflection that
is obtained when the junction values at the edges of the mesh are
bound to zero. Other reflection coefficient values are traditionally
implemented by use of one-dimensional boundary conditions, ir-
respective of the model dimensionality. This approach gives good
results with high reflection coefficient values, but fails with ab-
sorbing boundaries [4, 6].

As shown by Murphy and Mullen [7], the absorbing boundary
condition with reflection coefficient valuer = 0 could be imple-
mented in multi-dimensional mesh structures by use of the Taylor
series approximation. The result was better than the one obtained
with the use of the basic 1-D solution, but as the method was still
one-dimensional, direction dependent errors remained and reflec-
tion magnitude was below -25 dB only when the incident angle
was below68o relative to the normal incidence. The first two-
dimensional solution forr = 0, namely the spatial filter-based
absorbing boundary condition, was introduced in 2005 by Kel-
loniemi et al. [8]. With use of this solution, the reflection mag-
nitude was radically diminished and was below -25 dB at angles
of incidence up to79o.

Recently, a new solution for modeling the reflection coefficient
valuesr = 0 . . . 1 in two dimensions was introduced [6]. While
this solution performs better than the basic 1-D method when low
reflection coefficient values are needed, it has evident problems at
the low frequencies and can not be used for phase inverting bound-
ary conditions as discussed in Section 3.1.

The new adjustable boundary condition introduced in Section
3.2. solves both of these problems. It relies on the use of the ad-
mittance coefficients at the junctions for modeling the boundary
and the spatial filter-based absorbing boundary condition for trun-
cating the mesh. The basic 1-D adjustable boundary condition was
chosen as a reference when the new boundary condition was tested
as described in Section 4, as it is the only earlier solution known
to be stable with the full range of reflection coefficient values from
r = −1 to r = 1.

As the 2-D and 3-D mesh structures have much in common,
the boundary conditions are here implemented only for the 2-D
case and extending them to 3-D has been left for future work.
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2. INTERPOLATED 2-D DIGITAL WAVEGUIDE MESH

The digital waveguide (DWG) mesh is a computational structure
for approximating multidimensional wave propagation. The mesh
is constructed of scattering junctions positioned at the regular node
locations and interconnected with bidirectional signal lines.

The updating function has two equivalent formulations. The
digital waveguide formulation uses traveling wave variables rep-
resenting the wave decomposition of the signal propagating in the
mesh. Instead in the finite-difference time-domain formulation,
physical Kirchhoff variables are used.

Because the practice of using mesh-related concepts in the
literature is somewhat inconsistent, we want to be more specific
here. We use the term W-mesh for the wave variable formulation
with delays between junctions and K-mesh for the structure based
on the Kirchhoff variable formulation with state variables within
nodes. The two forms have been shown to be functionally equiv-
alent, but based on W- and K-variables, respectively [9]. In W-
mesh, values traveling between nodes are saved, so two memory
units are needed per each interconnection. Instead in K-mesh only
two values per node are saved [4]. Knowing the traveling wave
component values is useful for some applications, but in this paper
we apply particularly the K-mesh formulation due to its computa-
tional efficiency and reduced memory requirements.

Van Duyne and Smith derived the equations for the lossless in-
terconnection of several one-dimensional delay lines [2]. The dif-
ference equation for the scattering junctions of anN -dimensional
rectilinear K-mesh was derived in their results as

pc(n) =

P

2N
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Ylpl(n − 1)

1

2
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Yl

− pc(n − 2), (1)

whereY is the admittance of an interconnection,p represents the
signal value at a junction at time stepn, subscript c denotes the
junction to be calculated and indexl denotes its2N axial neigh-
bors. The maximum simulation frequencyf is restricted to a quar-
ter of the sampling frequencyfs of the mesh.

For minimizing the direction dependent dispersion error ap-
pearing in the rectilinear mesh topology, each junction has to be
connected also with its diagonal neighbors [5]. The resulting dif-
ference equation for the nodes of a two-dimensional interpolated
rectangular mesh is
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wherehl,k are interpolated weighting coefficients for each node.
Coefficient valueshd = 0.375930 for diagonal connections and
hc = 1.50372 for the center node connection are used in sig-
nal value interpolation between the diagonal nodes and the center
node for making the wave propagation speed apparently same as
in the axial connections weighted withha = 1.24814 [5]. With
the admittance values they form a convolution kernel

h =
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applied to the junctionpc and its immediate neighbors.
When all port admittances of a certain junction are equal, (2)

reduces to

pc(n) =
1

4

3
X

l=1

3
X

k=1

hl,kpl,k(n − 1) − pc(n − 2). (4)

3. ADJUSTABLE BOUNDARY CONDITIONS

For the simulation of real or virtual acoustic spaces, an implemen-
tation of controllable boundary conditions is needed. In an optimal
case, the reflection coefficient value of the wall or other boundary
structure would be known at multiple frequencies and angles of
incidence, and a model could be adjusted to these values. At the
current state we are lacking both the extensive measurement data
of real boundaries and a method for modeling them in a digital
waveguide mesh. As a step towards the goal, a method is derived
where the reflection coefficient can be set to a constant real valuer

for all frequencies and incident angles. As the material parameters
are often given as constants in octave bands, the simulation could
be run separately for each of them.

3.1. Previous methods

The discrete boundary condition of the acoustical pressure is tradi-
tionally constructed in the digital waveguide mesh by adding spe-
cial boundary nodes outside the mesh edges and interconnecting
each of them only with one neighboring node at the edge of the
mesh. Irrespective of the model dimensionality, the boundary node
values are calculated as in one dimension:

pB(n) = (1 + r)p1(n − 1) − rpB(n − 2), (5)

where subscript B denotes the boundary node and subscript1 rep-
resents its perpendicular neighbor [4]. The two terms on the right
hand side of (5) represent the sound pressure in front of the bound-
ary one time step ago and the sound pressure reflected from the
boundary two time steps ago, respectively.

In earlier work it has been noted that in a multi-dimensional
mesh this basic solution gives good results only with high reflec-
tion coefficient values. Unwanted reflection occurs with the low
values ofr due to the change in dimensionality at the boundary
[4, 6]. The absorbing boundary condition was then improved by
extending it to a Taylor series [7]. With use of the first order so-
lution of the series, a method for adjustable boundary condition
performing better at the low reflection coefficient values was in-
troduced [6]. The boundary node value was now calculated as

pB(n) = 2p1(n − 1) − (1 − r)p2(n − 2) − rpB(n − 2). (6)

Unfortunately the suggested method did not offer a general
solution. It was restricted only for phase preserving reflections
wherer ≥ 0 and significant errors occurred at the low frequen-
cies relative to the sampling frequency. The low frequency perfor-
mance was improved by use of a second-order FIR filter, but that
led to making the simulation in even narrower frequency bands.
For these reasons demand for a better solution remained.

3.2. New method

It has been known from the beginning of the research with the dig-
ital waveguide mesh that changes in the wave propagation media
can be modeled using the admittance constants at the scattering
junctions as shown in (1) [2].

As a new boundary solution, the change in admittance is mod-
eled at nodes on a line calledthe admittance boundary. The width
of the boundary layer between the admittance boundary and the
mesh edge is marked withW in Fig. 1(a) describing the structure.
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Figure 1: The admittance boundary structure, absorbing boundary condition nodes and the test setup. For simplicity the diagonal connec-
tions have been omitted. (a) shows the new boundary structure: the shaded area represents the admittance boundary (YB) locatedW nodes
away from the absorbing boundary (AB), which is at the mesh edge marked with the solid line. Solid arrow represents the signal arriving to
the admittance boundary and dashed lines show the reflected and absorbed signal parts. (b) shows the nodes involved in (9). As indicated in
(c), the test setup consisted of the source (S) and the receiver (R) placed in line 30 nodes apart from the admittance boundary. The freefield
signal used as a reference was received at a mirror image location (R’).

At a junction on the admittance boundary, the admittance values
of the connections pointing towards the mesh edge are set to

Y =
1 − r

1 + r
, (7)

wherer is the desired reflection coefficient [10]. At the limit,
wherer = −1, Y goes to infinity. In this case a large constant
value is used instead.

The admittance value at the center node is used for interpola-
tion with the diagonal nodes. It is set to the average of the admit-
tances at the diagonal connections. For example, if the boundary
is at the direction where indexk = 3, the kernel at the admittance
boundary is

h =
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4
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2Y +2

4
hc ha

Y hd Y ha Y hd

3

5 . (8)

Equally in case of a rectilinear 2-D corner, admittance values of
two axial and three diagonal connections would be set toY and
the center node value would be weighted accordingly.

Depending on the admittance coefficient, part of the signal
gets reflected and part passed trough the admittance boundary as
indicated with dashed arrows in Fig. 1(a). The signal propagated
to the mesh edge is absorbed using the spatial filter-based absorb-
ing boundary condition [8]. The absorbing boundary node value is
calculated as

pB(n) =hBa1p1,x(n − 1)

+
hBd1

2
[p1,x−1(n − 1) + p1,x+1(n − 1)]

+ hBa2p2,x(n − 2)

+
hBd2

2
[p2,x−1(n − 2) + p2,x+1(n − 2)]

+ hBa3p3,x(n − 3), (9)

where the subscripts ofp designate the node coordinates as in-
dicated in Fig. 1(b) and the axial and diagonal filter coefficients
have valueshBa1 = 2.42087845, hBa2 = −2.33808068, hBa3 =
0.90809890, hBd1 = 0.48591057, andhBd2 = −0.47683624
[8]. As also the diagonal neighbors are used in calculation of the
valuepB, this boundary condition can not be used at the corners of
the mesh, where the boundary node values are therefore calculated
with (5) havingr = 0.

As the coefficients in (9) are optimized for homogenous mesh,
the boundary layer width has to be at leastW = 4 so that the
admittance boundary is out of the reach of the boundary node up-
date equation. The boundary layer can anyway be made as wide
as one wishes and even multiple admittance boundaries can be im-
plemented one after another to model layered boundary structures.

4. COMPARISON SETUP AND RESULTS

The performances of the old and the new boundary structures
were tested with simulations. First the magnitude responses of
the boundaries were resolved at multiple frequencies and incident
angles. In the second simulation, effects of the new boundary
structure to the mode frequencies of a rectangular 2-D mesh was
tested by implementing the admittance boundary on all edges of
the mesh.

4.1. Reflection magnitude

The simulations for resolving the magnitude of the signal reflected
from the admittance boundary were executed in a 2-D mesh of
1000 × (300 + W ) junctions, whereW is the boundary layer
width shown in Fig. 1(a). A unit impulse was used as an input
signal at location (300, 30 + W ). Receivers were located at each
node on a line located at the equal distance from the boundary with
the source as shown in Fig. 1(c). The simulation was run for700
time steps. The signal component that passed directly from the
source to the receiver was subtracted from the data. The right half
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of the Hanning window function was used for windowing the last
half of the received signal to avoid the truncation error in calcula-
tion of the spectra. For resolving the achieved reflection coefficient
value, the resulting signal level was compared to the level of a sig-
nal representing the ideal perfect reflection. This reference signal
was received at a mirror image location shown in Fig. 1(c) on
the other side of the admittance boundary when the boundary was
non-reflective (Y = 1) and the mesh edges were far enough for
not causing any reflections. The absolute error of the achieved
reflection magnitude was defined by subtracting the set value ofr

from the received frequency responses. Relative error value was
calculated by dividing the absolute value withr. Maximum er-
ror values were calculated for the basic 1-D solution (5) and for
the new admittance boundary solution with boundary layer widths
W = 4 andW = 40. The results are shown for three ranges of
incident angle values, namely0o ≤ Θ < 30o, 30o ≤ Θ < 60o,
and60 ≤ Θ ≤ 80o relative to the normal incidence, having35,
69 and202 regularly spaced receiving points respectively. Receiv-
ing points at the incident angles beyond80o would require very
large mesh sizes, so those were omitted. The maximum error was
found from all received magnitude responses individually for each
frequency value. The simulation was repeated for101 values of
reflection coefficient atr = −1 . . . 1.

The results are plotted in Figures 2, 3 and 4. Contour lines are
drawn on the surface plots at absolute error value0.1 and relative
error value10%. The error plots in Fig. 2 show that at angles of
incidenceΘ < 30o the basic solution could be used when nega-
tive reflection coefficient values are needed. At the positive values
of r more important in room acoustics modeling, the error grows
remarkably with coefficient valuesr < 0.6. By contrast, the new
solution has absolute error values below0.1 with all values ofr
at relative frequencies0.004 < f < 0.222. On the next range
of incident angles30o ≤ Θ < 60o in Fig. 3, the basic solution
could be useful only with absolute values of the reflection coeffi-
cient |r| > 0.5, because below that the accurate frequency band
gets narrow. The new admittance boundary solution can still be
used on same frequency range as in the previous incident angle
range, with all values ofr.

The error at high relative frequencies grows at the high angles
of incidence, as seen in Fig. 4 where the maximum error at angles
60o ≤ Θ ≤ 80o is illustrated. Still there is a frequency band
0.005 < f < 0.114, where the new method has absolute error
value below0.1 at all values ofr, contrary to the basic method that
could be used only at the highest and lowest reflection coefficient
values at aboutr > 0.6 or r < −0.8. The minor error values of
the new method atr ≈ 0 are especially notable.

The small reflections occurring from the absorbing boundary
cause the comb filter effect seen as stripes in the frequency re-
sponses of the lowermost images in Figures 2, 3 and 4, where
W = 40. Increasing the boundary layer width is seen beneficial
only at the very smallest absolute values of the reflection coeffi-
cient, where insignificantly smaller relative error values are ob-
tained.

4.2. Mode frequencies

Besides the reflection magnitude, the delay caused at the bound-
ary is an important factor in simulations, as it affects the mode
frequencies of the model. For testing the effect the admittance
boundary has to the mode frequencies, a 2-D mesh with18 × 18
junctions was built including the boundary layers of4 nodes on

Figure 2: Maximum absolute and relative error of the received
reflection coefficient in the original adjustable boundary condi-
tion (5) (top) and in the new adjustable boundary condition with
W = 4 (middle) andW = 40 (bottom) at incident angles
0o ≤ Θ < 30o. Contour lines are drawn at absolute error value
0.1 and relative error value10%.
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Figure 3: Maximum error of the received reflection coefficient in
the original adjustable boundary condition (5) (top) and in the new
adjustable boundary condition withW = 4 (middle) andW = 40
(bottom) at incident angles30o ≤ Θ < 60o. Contour lines are
drawn as in Fig. 2.

Figure 4: Maximum error of the received reflection coefficient in
the original adjustable boundary condition (5) (top) and in the new
adjustable boundary condition withW = 4 (middle) andW = 40
(bottom) at incident angles60 ≤ Θ ≤ 80o. Contour lines are
drawn as in Fig. 2.
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Figure 5: The mode structure of a 2-D mesh with reflection co-
efficient valuesr = 1 (top), r = 0.95 (middle) andr = −0.95
(bottom) plotted with solid line. The dotted lines show the theo-
retical mode locations and the dashed line in the lowermost image
is for the ideal solution ofr = −1.

each edge. Spatial filter-based absorbing boundaries and admit-
tance boundaries were set on all edges of the mesh. Input and
output points were located to the corners inside the boundaries at
(6, 6) and(12, 12). Unit impulse was used as test signal. The sim-
ulation was run for214 time steps. For reference, theoretical mode
locations were calculated [10]. Also the result with reflection co-
efficient value set exactly tor = −1 was computed by binding the
admittance boundary junctions to zero. After computing the mag-
nitude spectra, frequency warping [5] was used for minimizing the
frequency dependent dispersion error.

The magnitude responses received with reflection coefficient
valuesr = 1, r = 0.95 andr = −0.95 are plotted in Fig. 5.
The mode frequencies match fairly well with the theoretical val-
ues. The error of the mode locations grows with the frequency but
is equal for all values ofr. Some modes are missing because the
input and output points were located one node location away from
the mesh edges. This was done because for the ideal solution for
r = −1 the boundary junctions were bound to zero. The ideal re-
sponse is drawn with dashed line in the lowermost plot. It should
be noted that its mode frequencies match perfectly with those of
the admittance boundary. Therefore it can be stated, that the differ-
ences in mode frequencies compared to the theoretical values are
not due the new boundary condition, but are caused by the mesh
structure.

5. CONCLUSIONS

A new adjustable boundary condition for the digital waveguide
mesh was introduced for modeling the changes in wave propa-
gation media. The boundary structure consists of the admittance

boundary, behind which a spatial filter-based absorbing boundary
is constructed for truncating the mesh. The method was tested in
a two-dimensional K-mesh. Significantly better results were ob-
tained than with the basic one-dimensional boundary condition. It
was noted that the results were not significantly improved by ex-
tending the boundary layer width between the admittance bound-
ary and the edge of the mesh. As a continuation of the research, the
method will be extended to three dimensions. Also the possibility
to implement frequency dependent boundary conditions using lay-
ered admittance boundary structures will be investigated.
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