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ABSTRACT

The digital waveguide (DWG) mesh is a method for simu-
lating wave propagation in multiple dimensions. In three-
dimensional form it can be used for modeling room acous-
tics or resonating bodies of musical instruments, for ex-
ample. Until now boundary conditions in the three-
dimensional DWG mesh have been implemented using
methods originating from the updating functions of a one-
dimensional digital waveguide. A new boundary structure,
which better takes into account the 3-D mesh topology, is
now introduced. With this new method, the reflection mag-
nitude is shown to match the desired value over a much
wider range of reflection coefficient values than with the
earlier method.

1. INTRODUCTION

For optimal results, the method for modeling sound prop-
agation has to be chosen taking into account the size of
the object, frequency bandwidth, amount of detail needed,
and many other model parameters. In room acoustics mod-
eling, geometrical methods such as ray tracing and image
source methods are often used for modeling the first reflec-
tions. The late reverberation is then modeled using statisti-
cal methods or delay networks, for example.

Unlike these methods, mesh-based algorithms such as
the digital waveguide (DWG) mesh can be used for simu-
lating the whole impulse response. Because the mesh is a
strict physical model of the acoustic space, the timing and
arrival directions of the direct and reflected signals are mod-
eled correctly. The recursive nature of the mesh structure
enables modeling of a high number of reflections without a
growing demand for memory. As the mesh algorithm inher-
ently models diffraction and interference effects, it is suit-
able for modeling sound propagation also in low frequen-
cies, where geometrical methods typically fail.
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The mesh topology can be chosen in many ways. The
interpolated rectilinear topology [1] discussed in Section 2
is used in this work. The Cartesian grid makes it relatively
easy to handle and the interpolation scheme diminishes re-
markably the direction dependent dispersion in the mesh.

Currently an exact solution for implementing bound-
aries in a multi-dimensional DWG mesh does not exist. The
1-D boundary implementations [2] can be used as discussed
in Section 3.1, but the change in dimensionality results in
large errors. Better approximations have been suggested for
the 2-D mesh [3, 4, 5, 6], but these have not been extended
to three dimensions until now.

The new adjustable boundary condition introduced in
Section 3.2 is based on the admittance boundary method
introduced previously for a two-dimensional mesh [6]. The
boundary is modeled by weighting the signal values with
admittance coefficients at the boundary location. Part of
the signal is reflected at the discontinuity while the other
part passes through. Behind the admittance boundary, the
mesh is truncated with an absorbing boundary condition.
The performance of the new method is tested in simulations
described in Section 4.

2. INTERPOLATED 3-D DIGITAL WAVEGUIDE
MESH

The digital waveguide mesh discussed in this paper
is a computational method for approximating multi-
dimensional wave propagation [7, 8, 2]. A one-dimensional
digital waveguide is constructed by connecting two parallel,
bi-directional delay lines together with scattering junctions.
It can be used for modeling the wave propagation in, for
example, strings and acoustical tubes.

This structure is extended to multiple dimensions by
joining more delay lines together. A DWG mesh is con-
structed having a scattering junction at each node location
along a regular grid, separated with bi-directional unit de-
lays from its neighboring junctions. This makes it possible
to model wave propagation in 2-D objects such as mem-
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branes and plates or 3-D structures such as bodies of musi-
cal instruments or rooms.

Sound propagation is simulated by updating signal val-
ues in the mesh at each time step. The updating functions
were first derived for the traveling wave formulation (W-
mesh), where two values of variables representing the wave
decomposition of the signal are saved at each interconnec-
tion and physical signal values at the node points are com-
puted as a weighted sum of those [8].

Later the Kirchhoff variable formulation (K-mesh) was
derived, where the physical signal values are used as such
[2]. It has been shown to be functionally equivalent with
the W-mesh [9]. In a non-interpolated rectilinear 3-D K-
mesh, the value at a node location at current time stepn is
computed as a weighted sum of the values of its six axial
neighbors at previous time stepn − 1 and its own value
at time stepn − 2. As only two values per node location
are saved, considerable memory savings are obtained when
compared to the W-mesh.

For a 3-D K-mesh junction, the updating function is
written as

pc(n) =

∑
6

l=1
Ylpl(n − 1)

1

2

∑
6

l=1
Yl

− pc(n − 2), (1)

whereY is the characteristic admittance of an interconnec-
tion, p is the signal value at a junction, subscript c denotes
the junction to be calculated and indexl denotes its axial
neighbors. The maximum simulation frequencyf is re-
stricted to a quarter of the sampling frequencyfs of the
mesh.

In the non-interpolated mesh, wave propagation is lim-
ited to axial directions. Dispersion error is caused by non-
uniform distances from neighboring nodes to the center
node. To minimize this error, the center node value and the
values of its 20 diagonal neighbors at time stepn − 1 are
used to interpolate the signal values at unit delay distances
from the center node [1]. Combining these to (1) results in

pc(n) =

∑
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∑
3

l=1
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m=1
Yk,l,mhk,l,mpk,l,m(n − 1)

1
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− pc(n − 2), (2)

wherehk,l,m are the interpolation coefficients for each node
value and indexesk, l andm run through all neighboring
nodes in x, y and z directions, respectively, as well as the
center node. In homogeneous media the admittances of all
interconnections are equal, so (2) reduces to

pc(n) =
2

26

3∑

k=1

3∑

l=1

3∑

m=1

hk,l,mpk,l,m(n − 1) − pc(n − 2).

(3)
For determining the interpolation coefficient values, lin-

ear interpolation based on the distances from the center

node to its neighboring nodes is used. The weighting coeffi-
cients areha = 2

√
2− 1

2
for the 6 axial neighbors,h2d = 3

4

for the 12 2-D diagonal neighbors andh3d = 1

8
for the 8

3-D diagonal neighbors furthest away from the center node
[10]. The weighting coefficient value of the center node de-
pends on the admittance coefficient values of the diagonal
connections, resulting in

hc = (
3

2
−
√

2)
12∑

Y2d +
1

8

8∑
Y3d, (4)

whereY2d andY3d are the admittances of each of the 2-D
and 3-D diagonal connections, respectively.

3. BOUNDARY CONDITIONS

A method for determining the reflection coefficient at a dis-
continuity of wave propagation media is needed for model-
ing spaces with structures such as walls, air ducts or furni-
ture. Methods for controllable termination of the mesh are
of special interest as computational effort is saved by trun-
cating the mesh to match the size of the simulation space.

A new method is introduced for this use, where the re-
flection coefficient at the boundary can be set to a constant
real valuer for each interconnection between the boundary
and its neighboring nodes.

3.1. Previous method: 1-D boundary

The boundary condition in a DWG mesh is constructed by
adding special boundary nodes outside the mesh edges to
provide the desired reflection characteristics. Originally the
boundary nodes have been connected to only one neighbor-
ing node at the edge of the mesh. Irrespective of the model
dimensionality or complexity of the topology, their values
have been computed by the one-dimensional rule

pB(n) = (1 + r)p1(n − 1) − rpB(n − 2), (5)

where subscript B denotes the boundary node and subscript
1 represents its perpendicular neighbor [2]. The two terms
on the right hand side of (5) represent the signal value at the
mesh edge one time step ago and the signal value reflected
from the boundary node two time steps ago, respectively.

It has been noted that in a multi-dimensional mesh this
1-D boundary structure gives good results only with high
absolute values of the reflection coefficient [5]. Results with
r values close to zero are poor due to the reflection caused
by the change in mesh topology at the boundary.

The performance at low reflection coefficient values was
improved later by more complex boundary node updating
functions [3, 4]. Unfortunately these have been optimized
only for the 2-D mesh and cause unstability in the interpo-
lated 3-D mesh. Until now the best known method for termi-
nating a 3-D mesh has been the one-dimensional boundary
condition defined by (5).
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Figure 1: A portion of the simulated mesh: The signal
reflected from the admittance boundary (YB) or the 1-D
boundary (1DB) was received at 1273 nodes indicated with
dots. For the admittance boundary simulation, the mesh was
truncated with an absorbing boundary (AB).

3.2. New method: Admittance boundary

As discussed in Section 2, changes in the wave propagation
media can be modeled using the characteristic admittance
constants in the calculation of a junction value. Earlier this
method was utilized only in the interior of a mesh. As part
of the signal gets passed through the admittance discontinu-
ity, this method alone does not truncate the mesh. On the
other hand, absorbing boundaries have been implemented
for modeling openings at the mesh edges. No reflections are
wanted when waves propagate out of the simulation space.

Similarly as earlier proposed for a 2-D mesh [6], a
new improved boundary structure is obtained by combining
these two methods – an admittance change for the reflective
boundary and an absorbing boundary behind it to truncate
the mesh.

In the updating function of the admittance boundary
junctions, the values of the neighboring junctions in the di-
rection of the mesh edge are multiplied with the admittance
value

Y =
1 − r

1 + r
, (6)

wherer is the desired reflection coefficient [11]. At the
limit, wherer = −1, Y goes to infinity. In this case a large
constant value is used instead. The center node weight is de-
fined accordingly by (4). No extra delays are implemented
at the admittance boundary, so no error is introduced to the
signal phase or to the mesh size.

The signal propagated through the admittance boundary
is absorbed at the mesh edge using the absorbing boundary
condition derived from (5) withr = 0,

pB(n) = p1(n − 1). (7)

For stability, at least one node layer has to be left between
the admittance boundary and absorbing boundary so that the

admittance change location is out of the reach of the absorb-
ing boundary update function (7).

This new boundary structure also allows direction de-
pendence to be implemented, by defining individual con-
stants for each interconnection. Since material parame-
ters are often given as constants in octave bands, simula-
tions could be run separately for each of them for modeling
frequency-dependent responses. Some error is expected to
arise due to the signal reflected back from the non-optimal
absorbing boundary. Still, at positive values ofr the er-
ror is expected to be minor, since the input to the admit-
tance boundary junctions from the direction of the absorb-
ing boundary is weighted with small values ofY .

4. COMPARISON SETUP AND RESULTS

The two methods were compared by simulations using an
interpolated 3-D mesh of45×75×110 junctions. The sim-
ulation was repeated for101 reflection coefficient values, at
r = −1 . . . 1. Each simulation was run for 100 time steps.

The mesh was initialized at the point(7, 35, 35), 5 nodes
away from the admittance boundary, with a unit impulse fil-
tered with transfer function1− z2 as earlier shown optimal
[9]. The test signal at incident angles0o...80o was received
at 1273 points located at the same distance from the tested
boundary as indicated in Fig. 1. Receiving points at inci-
dent angles significantly over80o would require large mesh
sizes, so those were omitted. Due to the symmetry of the
mesh topology, node values only within1/8 of the full cir-
cle were needed to resolve the reflection magnitude to all
rotation directions.

The level of the signal radiated directly from the source
to the receivers was subtracted from the data. The last half
of the received signal was windowed with the right half of
the Hanning function to avoid truncation error in calculation
of the spectra. For resolving the achieved reflection coeffi-
cient value, the resulting signal level was compared to the
level of a signal representing ideal and lossless reflection.
This reference signal was obtained at a mirror image loca-
tion on the other side of the admittance boundary when the
boundary was set to be non-reflective (Y = 1) and the mesh
was made large enough to avoid reflections from the edges.

The maximum error at incident angles from0o to 80o

plotted in Fig. 2 was found for each frequency value from
all the computed magnitude responses. The absolute error
of the achieved reflection magnitude was calculated by sub-
tracting the set value ofr from the frequency responses. The
relative error was calculated by dividing the absolute error
value byr.

The new method is seen to outperform the old method.
The difference is most significant with the positive values
of r, where the absolute error value is less than0.1 within
the frequency band0.01 < f < 0.18 at r > 0.3 with the
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Figure 2:Maximum absolute and relative error of the reflec-
tion coefficient value in the original adjustable boundary
condition (top) and in the new boundary condition (bottom)
at incident angles0o ≤ θ < 80o. Contour lines are drawn
at absolute error value0.1 and relative error value10%.

new method. The old method performs equally well only
at 0.5 < r < 0.95. With negative values ofr, the er-
ror remains below0.1 at frequencies0.01 < f < 0.23 at
r < −0.6 with the new method but atr < −0.7 with the
old method. At lower absolute values ofr, the accuracy is
acceptable over a narrower frequency band, but still the new
method gives significantly better results when compared to
the old method.

5. CONCLUSIONS

A new boundary structure has been introduced for the in-
terpolated 3-D DWG mesh. It was shown in simulation
results that with the new method the reflection coefficient
can be realized much more accurately than with a previ-
ous method. The structure also offers the possibility to de-
fine direction-dependent reflection coefficients. The perfor-
mance of this method would benefit further from a better ab-
sorbing boundary, which will be pursued in future research.
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