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ABSTRACT

Characteristics of digital waveguide meshes with more than
three physical dimensions are studied. Especially, the prop-
erties of a 4-D mesh are analyzed and compared to waveg-
uide structures of lower dimensionalities. The hypermesh
produces a response with a dense and irregular modal pat-
tern at high frequencies, which is beneficial in modeling the
reverberation of rooms or musical instrument bodies. In ad-
dition, it offers a high degree of decorrelation between output
points selected at different locations, which is advantageous
for multi-channel reverberation. The frequency-dependent
decay of the hypermesh response can be controlled using
boundary filters introduced recently by one of the authors.
Several hypermeshes can be effectively combined in a multi-
rate system, in which each mesh produces reverberation on a
finite frequency band. The paper presents three hypermesh
application examples: a multi-channel reverberation algo-
rithm, the modeling of the impulse response of a lecture hall,
and the simulation of the response of a clavichord soundbox.
Keywords: acoustic signal processing, architectural acous-
tics, FDTD methods, acoustic propagation, multidimensional
systems, music

1. INTRODUCTION

The hyperdimensional digital waveguide (DWG) mesh is a
4-D version of the algorithm introduced by Van Duyne and
Smith [1, 2]. There have been plenty of applications of the
DWG mesh technique, but they have been limited to maxi-
mally three dimensions. 1-D digital waveguides are mostly
used for simulating wave propagation in strings and tubes
[3, 4, 5], 2-D meshes are applied in plate or membrane sim-
ulations [6, 7, 8, 9, 10], while rooms and resonant bod-
ies of musical instruments are modeled with 3-D meshes
[11, 12, 13, 9, 14, 15, 16]. Researchers have also modeled
resonant objects and spaces with meshes having the number
of dimensions different from that of the modeled object. For
example, 2-D DWG meshes have been employed in room
acoustic modeling [17, 18]. Recently, Mullen et al. have
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shown that a 2-D waveguide is an effective tool for simulat-
ing narrow acoustic tubes, which essentially contain a 1-D
acoustic field [19].

The idea of the hyperdimensional mesh was mentioned
already in the original 2-D DWG mesh paper by Van Duyne
and Smith [1], and later suggested again, for example, by
Savioja et al. [11] and Rocchesso and Smith [20]. In this pa-
per, we investigate the properties of the 4-D mesh and possi-
bilites opened by it through practical examples. Special em-
phasis is on employing the technique on reverberation mod-
eling.

Artificial reverberation is widely used in musical perfor-
mances and recordings. In addition to its use as an effect or in
room acoustic simulation, reverberation modeling is needed
in the synthesis of musical instruments with a resonating
body, such as the soundbox or soundboard of stringed key-
board instruments.

This paper is organized as follows. Section 2 discusses
the normal modes of vibration in enclosed spaces. In Section
3, the hyperdimensional DWG mesh, or the hypermesh for
short, is discussed as an extension to the previously known
waveguide mesh methods. Section 4 describes the applica-
tion of the hypermesh in three different cases of artificial
reverberation: multi-channel reverberation, simulation of a
lecture hall’s impulse response, and simulation of the sound-
box of a musical keyboard instrument.

2. NORMAL MODES IN ENCLOSURES WITH
RIGID BOUNDARIES

Sound pressure waves reflect from boundaries, such as walls
and furniture in a room. When the time interval between
successively received reflected sounds is short, they are per-
ceived as reverberation instead of individual echoes. In any
closed space, sound is reflected along multiple closed prop-
agation paths, and thus standing waves occur. The stand-
ing waves determine the modal structure in the frequency re-
sponse of the acoustic system. At low frequencies, the modes
are sparsely spaced in frequency, but at frequencies above a
critical frequency, often called the Schroeder frequency, the
sound field is diffuse and modes are not distinguished indi-
vidually by the ear [21, 22]. If the modal density created by
an artificial reverberation algorithm is too low in this high
frequency region, tonality or a metallic timbre is perceived.



Sound pressure between two rigid boundaries located at
x = 0 and x = L must fulfill the boundary condition

dp
dx

= 0. (1)

The sound pressure value at a certain modal frequency at any
point is given by a solution for (1) that can be written as

p(x) = Acos(knx), (2)

where A is an arbitrary coefficient, kn = nπ/L, and n =
0,1,2, . . . is the integer index of the current mode along di-
mension x having corresponding length L [22].

The 1-D solution can be extended to N dimensions,
where the sound pressure value at point (x1,x2, . . . ,xN) in-
side the N-dimensional rectangular space at a certain modal
frequency is

pn1n2...nN (x1,x2, . . . ,xN) = B
N

∏
i=1

cos(knixi), (3)

where B is an arbitrary coefficient. The modes appear at fre-
quencies

fn1n2...nN =
c

2π
kn1n2...nN , (4)

where c is the sound velocity. The constant kn1n2...nN is a
combination of all kni :

kn1n2...nN = π

[
N

∑
i=1

(
ni

Li

)2
]1/2

. (5)

The first axial standing wave along each dimension with
ni = 1 has a frequency whose corresponding wavelength is
equal to twice the trajectory length. Other standing waves on
the same trajectory are created at multiples of this base fre-
quency. In addition to these 1-D modes occurring between
perpendicular boundaries, multidimensional standing waves
are supported as closed propagation paths are created be-
tween multiple boundaries. For these diagonal and oblique
modes, two or more indices have values above zero, respec-
tively.

The modal frequencies are inversely proportional to the
trajectory length, so, for example in large halls the modes
start from lower frequencies than in small rooms. The modal
density also increases with frequency, as suggested by (4)
and (5). Actual rooms and halls are not perfectly rectan-
gular and have furniture and other objects affecting sound
propagation. So the trajectory lengths are not equal at all fre-
quencies. More propagation trajectories are supported, es-
pecially at high frequencies, resulting in an even denser and
inharmonic modal structure. In more complex shapes, such
as fan-shaped rooms or bodies of musical instruments, the
modal structure is too complex to be managed in closed form
expressions. Instead, numerical approximations of the wave
propagation are needed.

3. DIGITAL WAVEGUIDE MESH METHOD

The DWG mesh provides a computational model for multi-
dimensional wave propagation. It was created as an ex-
tension of 1-D digital waveguides popular in the physical
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Figure 1: A two-dimensional rectilinear DWG mesh struc-
ture. pk is the junction currently calculated and pl , where
l = 1,2,3, or 4, are its axial neighbors as in (8).

modeling-based sound synthesis applications [1, 23]. A 1-
D DWG consists of two delay lines passing signals into op-
posite directions and scattering junctions between the delay
lines. The input signal to a junction can be passed through,
partially transmitted, or reflected back.

The mesh can be constructed in various ways. The choice
can be made between two different variable types and mul-
tiple topologies. Common to all DWG mesh schemes is the
regular discretization, both in time and in space.

3.1 The digital waveguide mesh updating functions

A DWG mesh consists of bidirectional delay lines and scat-
tering junctions connecting them at regular nodal points. For
example, a 2-D DWG mesh structure is shown in Fig. 1. In
a homogeneous N-dimensional mesh each junction has 2N
neighbors, and all interconnections have equal impedances.
If the delays are located at the interconnections of the nodes,
the updating function of each junction is written as

pk(n) =
2
N ∑

l

p+
l (n), (6)

where p+
l (n) are the incoming wave variable values of each

interconnection l of the current junction at time instant n.
The outgoing values are then updated using the current junc-
tion value pk:

p−l (n) = pk(n)− p+
l (n). (7)

The outgoing values are transformed into ingoing values of
neighboring junctions when they are passed by the unit de-
lays in the interconnections during the next computational
time step. This formulation of the mesh is called the wave
variable formulation, or W mesh.

Another formulation of the same functionality uses phys-
ically measurable variables instead of their traveling wave
decomposition, as used in (6) and (7). In the so-called Kirch-
hoff formulation, or K mesh, the delays are located at the
nodal points of the mesh, and the updating function of each
junction is written as

pk(n) = ∑l pl(n−1)
N

− pk(n−2), (8)



where pl are now the values of the neighboring junctions.
While being numerically less robust, in multi-dimensional
models this formulation requires considerably less main sys-
tem memory than an equivalent W mesh [24].

The sampling frequency is related to the dimensionality
N of the mesh by

fs =
c
√

N
∆x

, (9)

where c is the wave propagation speed in the mesh and ∆x
is the spatial sampling interval corresponding to the distance
between two neighboring junctions [13]. The practical fre-
quency bandwidth for the mesh depends on its geometric
topology [25]. For example, a triangular mesh cannot pro-
duce resonances above fs/3 and a rectilinear mesh has a
spectrum that mirrors itself at fs/4. Due to the mirroring
of resonances around half the Nyquist limit, the output of a
rectilinear mesh is usually lowpass filtered in order to retain
only the “unique” modes below f s/4. However, this filter-
ing is not required if the user is only interested in having an
output with a maximal number of modes instead of an exact
physical model of a resonating structure.

In a DWG mesh, the number of degrees of freedom of
the model is equal to the number of delay elements. So in
a homogeneous and freely resonating rectilinear K mesh the
maximum number of modes below the mirroring frequency
is equal to the number of junctions. The highest mode index
number ni is equal to the number of junctions along the cor-
responding dimension. If the phase of the reflected wave is
preserved at the boundary, ni ≥ 0. In the case of phase re-
versing reflection, the lowest modes are canceled, and only
modes with ni ≥ 1 are supported.

3.2 Hyperdimensional DWG mesh structure

The mesh dimensionality N is not restricted to the limits of
our physical world. Instead, hyperdimensional meshes are
easy to construct by adding more interconnections between
the scattering junctions [20, 13, 26].

As seen in Fig. 2, the modes are distributed equally in
a 1-D DWG structure. In rectilinear meshes with higher di-
mensionalities, the modes are densest near f s/4 and spars-
est at frequencies close to DC and fs/2. As the number
of junctions is kept constant with increasing dimensionality,
the number of junctions along each dimension is diminished.
This packs the modes closer around f s/4. At the same time,
the modal frequencies become higher because the sampling
frequency increases with dimensionality, as seen from (9).
The number of independent indices ni in (5) is equal to the
number of dimensions. Maximizing the number of dimen-
sions and choosing the Li values close together from a prime
number series minimizes the harmonicity of the mode distri-
bution, which is beneficial for simulating reverberation over
a wide frequency bandwidth [27]. The inharmonicity is fur-
ther augmented by perturbation in mode frequencies caused
by the numerical dispersion inherent in the waveguide mesh
structure [2, 8].

3.3 Boundary conditions

For realistic reverberation modeling, frequency-dependent
losses have to be implemented. In real rooms, high frequen-
cies usually decay faster than low frequencies due to absorp-
tion of energy by air and wall materials. Another important
feature is the strong modal frequencies with long decay times
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Figure 2: Frequency responses of rectilinear meshes with
420 scattering junctions, organized in four different dimen-
sionalities. The reflection coefficient of all boundaries was
R = −1. The mesh was initialized at a corner junction, and
the output was read at the same location.
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Figure 3: The boundary junction with KW-conversion and
second-order FIR filter [28].

characterizing some spaces, especially musical instrument
bodies.

In a DWG mesh, the frequency-dependent losses can be
combined and implemented with boundary filters. In this
way the inner mesh structure is kept lossless and homoge-
neous. As discussed earlier, the inner mesh was implemented
using K formulation. As boundary filters are easier to design
for traveling wave variables, a boundary junction structure
including a variable-type converter and a second-order FIR
filter was used, as depicted in Fig. 3 [28].

The boundary reflection characteristics are determined
with coefficients R1,R2, and R3. This kind of low-order filter
can model simple lowpass behavior and is effective enough
for nonexact simulation of impulse responses.

4. APPLICATION TO ARTIFICIAL
REVERBERATION

The frequency response of a reverberant structure can be
coarsely divided into two bands. At low frequencies, the
modes can be individually heard. Their frequencies and de-
cay times are psychoacoustically important, so recreating
them exactly is needed for convincingly simulating the re-
sponse. At higher frequencies, the modal frequencies are not
heard individually, and thus an exact physical model is not



needed. For natural sounding simulation of high-frequency
reverberation, the key issues are the density and the irregu-
larity of the modal structure [27].

In the first of the three examples presented here, the hy-
permesh structure is used for creating multi-channel rever-
beration. In the following two examples, it is used to generate
the high-frequency portion of the impulse responses of a lec-
ture hall and a clavichord soundbox. In both cases, the high-
frequency hypermesh response is combined with the out-
put of other resonator models providing the low-frequency
modes at physically correct frequencies. This is similar to
hybrid models which have been used for simulating bodies
of musical instruments, in which a reverberation algorithm is
combined with a resonator bank in parallel [14, 29].

Sound samples of the studied cases are available at
http://www.acoustics.hut.fi/∼vpv/publications/hypermesh/.

4.1 Case: Multi-channel reverb

The growth of multi-channel audio formats has generated
a demand for multi-channel sound effects and reverbera-
tors. These may be used for adding spaciousness to a movie
soundtrack, for example, but they are also needed in elec-
troacoustic systems designed for the control of reverberation
in multipurpose halls, or when the acoustics of a concert hall
are modified with an active system installation.

In all these cases, the spatial impression is achieved by
producing diffuse-sounding reverberation. It has been shown
that to attain a subjectively good spacious reverberant sound,
the synthetic reflections must be derived from the same orig-
inal signal and, most importantly, demonstrate mutual inco-
herence [22]. The degree of coherence can be expressed by
the correlation coefficient

S(s1,s2) =
C(s1,s2)√

C(s1,s1)C(s2,s2)
, (10)

where s1 and s2 are samples of two signals and C is the co-
variance value between the two samples.

DWG mesh algorithms have the benefit of providing mul-
tiple outputs for one input at the same computational cost.
Thus, to implement a multi-channel reverberation algorithm,
only the values of several junctions have to be recorded at
each time step, contrary to computing the impulse responses
separately for each channel.

For comparison, two 3-D meshes and a 4-D mesh were
initialized at a corner (the junction with the lowest indices in
all dimensions), and the responses were recorded for 10000
timesteps at four other corners. The meshes were set to be
lossless. The first of the 3-D meshes was chosen to have an
equal number of junctions with the 4-D mesh. The second
3-D mesh has a computational cost equal to that of the 4-
D mesh, if summations and multiplications are regarded as
equally expensive.

The resulting correlation coefficients between the re-
sponses and the probability values for testing the hypothe-
sis of no correlation are listed in Table 1. The correlation is
weaker between the two signals obtained at different points
from the 4-D mesh than from the 3-D mesh in all but one of
the example cases. The values of P denote the probability of
getting a correlation as large as the observed value by ran-
dom chance if S = 0. If the probability is small, P < 0.05,
correlation is significant. The results in Table 1 indicate that
there is no significant correlation in the case of the 4-D mesh,

Table 1: Correlation coefficients S between the received sig-
nals at two points and probability values P for the hypoth-
esis of no correlation for the received responses in two 3-D
meshes having (a) 7×11×15 and (b) 9×11×15 junctions,
and in a 4-D mesh of 3×5×7×11 junctions. S = 1 means
perfectly similar signals, values of P < 0.05 denote signif-
icant correlation. The P values greater than 0.05 are high-
lighted.

Mesh Receiver 1 Receiver 2 S P
3-D (7,11,15) (7,1,1) 0.0204 0.0410
(a) (7,11,15) (1,11,1) 0.0449 0.0000

(7,11,15) (1,1,15) -0.0350 0.0005
(7,1,1) (1,11,1) -0.0333 0.0009
(7,1,1) (1,1,15) 0.0464 0.0000

(1,11,1) (1,1,15) -0.0254 0.0110
3-D (9,11,15) (9,1,1) -0.0183 0.0672
(b) (9,11,15) (1,11,1) -0.0187 0.0622

(9,11,15) (1,1,15) 0.1088 0.0000
(9,1,1) (1,11,1) 0.0936 0.0000
(9,1,1) (1,1,15) 0.0299 0.0028

(1,11,1) (1,1,15) -0.0006 0.9522
4-D (3,5,7,11) (3,1,1,1) 0.0159 0.1126

(3,5,7,11) (1,5,1,1) -0.0077 0.4416
(3,5,7,11) (1,1,7,1) -0.0019 0.8456
(3,1,1,1) (1,5,1,1) 0.0149 0.1367
(3,1,1,1) (1,1,7,1) 0.0013 0.8979
(1,5,1,1) (1,1,7,1) -0.0008 0.9328

whereas most of the 3-D mesh output pairs correlate signifi-
cantly.

4.2 Case: Lecture hall

In the second example, the hypermesh is applied to the simu-
lation of room reverberation. The impulse response of lecture
hall T3 at the Helsinki University of Technology was mea-
sured and used as a reference. The dimensions of the lecture
hall are shown in Fig. 4. The ceiling area is smaller than the
floor area, as the left-side wall and the back wall are sloping.
A soft absorbent plate is hung at 0.40 m below the ceiling,
covering the full area from the back wall to 3.0 m from the
front wall.

The room impulse response was measured 5.5 m from the
left wall and 10.0 m from the front wall at a height of 1.7 m.
The speaker used as a sound source was located 2.7 m away
from both the left and the front wall equally, at a height of
1.2 m. The five most prominent frequency modes and their
corresponding 60 dB decay times are listed in Table 2. They
were evaluated from the measured signal and then removed
from it.

A two-pole, two-zero inverse filter was designed for
mode removal after determining the frequencies and decay
times. The T60s were estimated by fitting a straight line to
the time-domain values of the response’s energy decay relief
(EDR) [30] at the frequency bin associated with a particular
mode. The slope of the line was then inverted and scaled
to obtain the T60 value. The zeros of each inverse filter are
complex conjugates whose angles are the positive and nega-
tive radian frequency of the mode to be removed and whose
radius R is matched to the T60 of the same mode by the rela-



Figure 4: Dimensions of the lecture hall T3 at the Helsinki
University of Technology.

Table 2: Analysis results for prominent modes of the lecture
hall impulse response, to be implemented with a resonator
bank.

Frequency (Hz) T60 (sec) Magnitude (dB)
75.96 0.8134 -25.90
102.52 1.3244 -30.58
122.02 1.4195 -29.31
138.08 0.9622 -31.85
148.02 1.3221 -29.02

tionship R = e
ln(0.001)

T60 fs . The two poles are identical to the zeros
except that the radius is slightly contracted by a factor very
close to 1, in order to isolate the effect of the zeros to the
target mode [31]. 0.9999 was used when neighboring modes
are very close to each other, but a factor of 0.999 was suffi-
cient in most cases. The reverberation time of the remaining
signal was evaluated on octave bands, and these T60 values
were used as the optimization goal for the 4-D meshes.

The five highest octave bands with central frequencies
from 1 kHz to 16 kHz were simulated by a multirate system
consisting of two rectilinear 4-D meshes of 7× 8× 10× 13
junctions each. The boundary filters shown in Fig. 3 were
implemented at one end of the longest dimension, while
perfectly reflecting, phase inversing conditions were imple-
mented at other boundaries by fixing their values to zero.
The simulation was run for 48000 time steps for the first
mesh, and for 12000 steps for the second mesh, as its out-
put was upsampled by a factor of 4. A Nyquist filter was
used for anti-aliasing. The coefficients of the 3-tap FIR fil-
ters at one 7× 8× 10 junction boundary of each mesh were
optimized for minimizing the maximum error in T60-values
of the combined output. A Nelder-Mead optimization, pro-
vided by Matlab, was used.

At lower frequencies, the exact frequencies of each mode
are perceptually important, and thus simulating only the de-
cay times would not provide an appropriate result. Instead,
a 3-D triangular mesh, also known as a 3-D dodecahedral
or hexagonal close packed, was defined to model the low-
frequency response. The low-frequency mesh topology was
chosen by the fact that the dense triangular mesh exhibits
minimal numerical errors. The mesh dimensions were de-
signed to match the room dimensions as closely as possible

Table 3: Filter coefficients of the room impulse response sim-
ulation.

Boundary R1, R3 R2
3D hard walls 0.01958 0.84000
3D soft ceiling 0.00896 0.85918
4D mid frequencies 0.00440 0.67470
4D high frequencies 0.00200 0.91200
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Figure 5: Frequency responses of the input filters of the two
hypermeshes used in the room impulse response simulation:
above for the mid frequencies and below for the highest fre-
quencies.

with junction spacing of 0.2 m. Using (9), the sampling fre-
quency of the mesh is seen to be f s ≈ 2.9 kHz and the highest
frequency modeled is thus about 950 Hz. Linear-phase FIR
filters were designed for all boundaries of the mesh. Two
different sets of filter coefficients were optimized to match
the reverberation times of the received signal to the measure-
ment results. One filter was used for the soft ceiling, another
for other surfaces. The coefficients used are listed in Table 3.
The two hypermeshes were excited with impulse responses
of high-order filters to match their frequency responses to-
gether at crossover frequencies. The frequency responses of
the filters are shown in Fig. 5. The 3-D mesh was excited
with a unit impulse. The measured and simulated T60 values
are shown in Table 4, and the responses can be seen in Figs. 6
and 7, respectively. The resulting responses can be seen to be
a good match in terms of reverberation times, especially at
the frequencies above 1 kHz modeled specifically by the hy-
permeshes. The initial shapes of the frequency responses are
significantly different, as the equalization of the relative mag-
nitudes of the mesh outputs was set only by ear. This affects
the first 0.1 seconds of the response. The difference in the
latter part of the signals is explained by the noise present in
the measured response in Fig. 6 and absent in the simulated
response in Fig. 7. Also, the low-frequency model could
have been implemented more precisely for a better match,
but it was not the focus of this paper.



Table 4: Reverberation times of the measured and simu-
lated room impulse responses of the lecture hall T3. Center-
frequencies of the octave bands are listed.

Frequency (Hz) Measured T60 Simulated T60
125 1.4640 0.5116
250 0.7403 0.6437
500 0.6503 0.4493
1000 0.5833 0.4277
2000 0.5640 0.5146
4000 0.5221 0.5212
8000 0.4739 0.4876

16000 0.3526 0.3388

Figure 6: Measured impulse response of the lecture hall.

Figure 7: Simulated impulse response combined from the
outputs of a 3-D triangular mesh for low frequencies and two
4-D hypermeshes for the frequencies above 700 Hz.

4.3 Case: Clavichord soundbox

In our last example, the reverberant impulse response of a
clavichord soundbox was modeled using two hypermeshes
and a resonator bank. The response used as the overall sim-
ulation target was produced with an impulse hammer impact
on the soundbox while the strings of the clavichord were
carefully damped. Figure 8 shows the time-frequency rep-
resentation of the impulse response of the clavichord sound-
box. It contains many modes between about 30 Hz and 3
kHz, but no significant energy at frequencies higher than that.

The hypermeshes served to generate an approximation of
the dense high-frequency modes of the soundbox. The hyper-
mesh simulation target was the soundbox impulse response
whose long-ringing modes in the low-frequency range were
removed by inverse filtering [31]. 28 biquadratic resonators
were used to isolate the prominent modes below 500 Hz.
Fewer resonators can be used in practice depending on the
desired synthesis quality.

A multirate system was created, as in Section 4.2, to im-
plement the soundbox reverberator in Fig. 9. Only two hy-
permeshes of 8×9×11×13 junctions were needed to gener-
ate sufficiently dense reverberation within the reduced band-
width. The output of one of the meshes was upsampled by a
factor of 3. The total response was filtered with a sixth-order
LPC filter, whose coefficients were obtained from the mea-
sured soundbox impulse response after extracting the most
prominent modes. Boundary filters were designed to match
the decay times which were analyzed for each one third-
octave band. The meshes were initialized with a filter output
signal having a frequency response as depicted in Fig. 10.

Figure 11 is the time-frequency representation of the hy-
permesh model of the high-frequency response of the clavi-
chord soundbox. The low-frequency modes that have been
extracted are not included in this model. It is seen by com-
paring Figs. 8 and 11 that the hypermesh model produces
a similar, but not exactly identical, response between about
100 Hz and 2 kHz. The low-frequency modes need to be im-
plemented with separate resonators to obtain a full model of
the soundbox.

The commuted synthesis [32, 33] clavichord model de-
scribed in an article by V. Välimäki et al. [34] can be en-
hanced by replacing the sampled soundbox response trig-
gered at each note with a soundbox reverberation module,
such as the one described above. In a synthesis model using
this scheme, the output of a string module would be fed into
a body/resonator module as shown in Fig. 9. A similar so-
lution has been used for sound synthesis of the harpsichord,
where reverberation from the soundboard was simulated with
a feedback delay network reverberator [35].

A reverberator model with a spatial interpretation such as
the hypermesh supports multiple input locations and allows
for subtle differences in reverberation for each note. This
would be analogous to subtle differences in the soundbox re-
sponse resulting from each string’s unique driving point on
the bridge. The contribution of a hypermesh reverberator to
a synthetic clavichord tone makes it sound more realistic and
lively than if it were only overlaid with a sampled soundbox
impulse response, which always adds the same reverberation
effect to the tone.
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Figure 9: Simplified clavichord synthesis model incorporat-
ing a reverberation module to simulate the soundbox.
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Figure 10: Frequency response of the input filter of the hy-
permeshes used in the clavichord soundbox impulse response
simulation.

5. CONCLUSIONS AND FUTURE WORK

The hyperdimensional digital waveguide mesh discussed in
this paper is a four-dimensional variation of the DWG mesh
technique. The main advantage of this structure is its abil-
ity to provide a much more dense and irregural modal struc-
ture at high frequencies compared to meshes of lower di-
mensionality. In addition, the hypermesh is able to provide
highly decorrelated output signals. These facts encourage
the utilization of the presented technique, for example in the
creation of artificial reverberation as presented in our paper.
The attenuation characteristics of the mesh can be controlled
by similar boundary conditions as used with 2-D and 3-D
meshes, thus enabling shaping of the resulting magnitude re-
sponse.

This paper has shown three different applications: a
multi-channel reverberator, simulation of a lecture hall, and
simulation of a clavichord soundbox. The quality obtained in
these simple examples encourages to study further the uses
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Figure 11: Combined response of the two hypermeshes used
in the simulation of the clavichord soundbox impulse re-
sponse. The low-frequency modes implemented with sep-
arate resonators are not included.

of hyperdimensional meshes in the field of spatial audio. All
the examples and comparisons were performed with simple
rectangular rooms. For more realistic simulations, more ir-
regularly shaped spaces should be investigated, and the com-
parison should be extended to cover other reverberation tech-
niques, such as the feedback delay networks, as well. In
the future, listening tests should be performed to assess the
sound quality.
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