Errata

Publication I

- In section III in page 2 the code matrix defining the contribution of the previous symbol to the desired symbol should be:

$$
\mathbf{C}_{k, n}^{b}=\left[\begin{array}{cc}
\mathbf{0}_{S F \times L} & \\
(S F+1) \text { th row of } & \mathbf{C}_{k, n-1} \\
\vdots & \\
(S F+L-1) \text { th row of } & \mathbf{C}_{k, n-1}
\end{array}\right]
$$

- The following sentence should be: Correspondingly, the following symbol contribution is obtained with code matrix $\mathbf{C}_{k, n}^{f}$ which is comprised of ($L-1$) first rows from the code matrix \mathbf{C}_{n+1} followed by $S F$ rows of zeros.

Publication II

- In section 2 in page 566 the code matrix defining the contribution of the previous symbol to the desired symbol should be:

$$
\mathcal{C}_{n}^{b}=\left[\begin{array}{cc}
\mathbf{0}_{M * S F \times P * L * M} & \\
(M * S F+1) \text { th row of } & \mathcal{C}_{n-1} \\
\vdots & \\
M *(S F+L-1) \text { th row of } & \mathcal{C}_{n-1}
\end{array}\right] .
$$

- The following sentences should be: Correspondingly, the following symbol contribution is obtained with code matrix \mathcal{C}_{n}^{f} which is comprised of $M *(L-1)$ first rows from the code matrix \mathcal{C}_{n+1} followed by $M * S F$ rows of zeros. The size of code matrices \mathcal{C}_{n}, \mathcal{C}_{n}^{b} and \mathcal{C}_{n}^{f} are $M *(S F+L-1) \times M * L * P$.

Publication III

- The sentence after equation (5) in page 165 should be: Correspondingly, the following symbol contribution is obtained with code matrix $\mathcal{C}_{p, n}^{f}$ which is comprised of $M * S F$ of zeros followed by $M *(L-1)$ first rows from the code matrix \mathcal{C}_{n+1}.

Publication IV

- After equation (9) in page 1294 in the middle of a the paragraph a reference to equation (??) should be (9).

Publication VI

- In Table I equalization equation should be placed prior to the symbol loop (for $n=1, \ldots, N$) as : $\hat{\mathbf{z}}=\mathbf{f}_{q} \star \mathbf{y}_{q}$. And following explanation below the table 'where \star is convolution'.
- In Table I a summation sign is missing in the interference cancellation stage $\mathbf{y}_{q+1}(n)=\mathbf{y}_{q}(n)-\sum_{p} \mathcal{C}^{(p)} A_{q}^{(p)} \hat{\mathbf{h}}_{q} \hat{s}_{q}^{(p)}(n)$
- In Table II the summation sign is missing again in the interference cancellation stage. It should be: $\mathbf{y}_{q}(n)=\mathbf{y}(n)-\sum_{j \neq q} \sum_{p} \mathcal{C}^{(p)} A_{j}^{(p)} \hat{\mathbf{h}}_{j} \hat{s}_{j}^{(p)}(n)$
- In Table II equalization equation shod be prior to the symbol loop (for $n=1, \ldots, N$) as : $\hat{\mathbf{z}}=\mathbf{f}_{q} \star \mathbf{y}_{q}$. And following explanation below the table 'where \star is convolution'.

