
Helsinki University of Technology
Dissertations in Computer and Information Science

Espoo 2006 Report D18

Bayesian Inference in Nonlinear and Relational
Latent Variable Models

Tapani Raiko

Dissertation for the degree of Doctor of Science in Technology to be presented with due

permission of the Department of Computer Science and Engineering for public examina-

tion and debate in Auditorium T1 at Helsinki University of Technology (Espoo, Finland)

on the 1st of December, 2006, at 12 o’clock noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Computer and Information Science

Distribution:
Helsinki University of Technology
Laboratory of Computer and Information Science
P.O. Box 5400
FI-02015 TKK
FINLAND
Tel. +358-9-451 3272
Fax +358-9-451 3277
http://www.cis.hut.fi

Available in PDF format at http://lib.tkk.fi/Diss/2006/isbn951228510X/

c© Tapani Raiko

Printed version:
ISBN-13 978-951-22-8509-9
ISBN-10 951-22-8509-6

Electronic version:
ISBN-13 978-951-22-8510-5
ISBN-10 951-22-8510-X

ISSN 1459-7020

Otamedia Oy
Espoo 2006

Raiko, T. (2006): Bayesian Inference in Nonlinear and Relational Latent

Variable Models. Doctoral thesis, Helsinki University of Technology, Disserta-
tions in Computer and Information Science, Report D18, Espoo, Finland.

Keywords: machine learning, graphical models, probabilistic reasoning, non-
linear models, variational methods, state-space models, hidden Markov models,
inductive logic programming, first-order logic

ABSTRACT

Statistical data analysis is becoming more and more important when growing
amounts of data are collected in various fields of life. Automated learning al-
gorithms provide a way to discover relevant concepts and representations that can
be further used in analysis and decision making.

Graphical models are an important subclass of statistical machine learning that
have clear semantics and a sound theoretical foundation. A graphical model is a
graph whose nodes represent random variables and edges define the dependency
structure between them. Bayesian inference solves the probability distribution over
unknown variables given the data. Graphical models are modular, that is, complex
systems can be built by combining simple parts. Applying graphical models within
the limits used in the 1980s is straightforward, but relaxing the strict assumptions
is a challenging and an active field of research.

This thesis introduces, studies, and improves extensions of graphical models that
can be roughly divided into two categories. The first category involves nonlin-
ear models inspired by neural networks. Variational Bayesian learning is used to
counter overfitting and computational complexity. A framework where efficient
update rules are derived automatically for a model structure given by the user,
is introduced. Compared to similar existing systems, it provides new functional-
ity such as nonlinearities and variance modelling. Variational Bayesian methods
are applied to reconstructing corrupted data and to controlling a dynamic sys-
tem. A new algorithm is developed for efficient and reliable inference in nonlinear
state-space models.

The second category involves relational models. This means that observations
may have distinctive internal structure and they may be linked to each other.
A novel method called logical hidden Markov model is introduced for analysing
sequences of logical atoms, and applied to classifying protein secondary structures.
Algorithms for inference, parameter estimation, and structural learning are given.
Also, the first graphical model for analysing nonlinear dependencies in relational
data, is introduced in the thesis.

Raiko, T. (2006): Bayesiläinen päättely epälineaarisissa ja rakenteisissa

piilomuuttujamalleissa. Tohtorin väitöskirja, Teknillinen korkeakoulu, Disser-
tations in Computer and Information Science, raportti D18, Espoo, Suomi.

Avainsanat: koneoppiminen, graafiset mallit, todennäköisyyslaskentaan perus-
tuva päättely, epälineaariset mallit, variaatiomenetelmät, tila-avaruusmallit, piilo-
Markov -malli, induktiivinen logiikkaohjelmointi, ensimmäisen kertaluvun logiikka

TIIVISTELMÄ

Tilastollisen tietojenkäsittelyn merkitys on vahvassa kasvussa, sillä tietoaineistoa
kerätään yhä enemmän lukuisilla eri aloilla. Automaattisilla oppivilla menetelmil-
lä voidaan löytää merkityksellisiä käsitteitä ja esitysmuotoja, joita voidaan edelleen
käyttää analysoinnissa ja päätöksenteossa.

Tärkeä tilastollisen koneoppimisen menetelmäperhe, graafiset mallit, on selkeästi
tulkittavissa ja sillä on hyvä teoreettinen perusta. Graafinen malli koostuu
verkosta, jonka solmut kuvaavat satunnaismuuttujia ja linkit määrittelevät
niiden väliset riippuvuussuhteet. Bayesiläinen päättely ratkaisee tuntemattomien
muuttujien jakauman aineiston ehdolla. Graafiset mallit ovat modulaarisia, eli
monimutkaisia järjestelmiä voidaan rakentaa yhdistelemällä yksinkertaisia osia.
1980-luvun tiukkojen oletusten puitteissa graafisten mallien soveltaminen on
suoraviivaista, mutta näiden oletusten väljentäminen on haastava ja aktiivinen
tutkimuskohde.

Tässä väitöstyössä esitellään, tutkitaan ja parannellaan uusia graafisten mallien
laajennuksia, jotka voidaan karkeasti jakaa kahteen luokkaan. Ensimmäiseen
luokkaan kuuluvat neuroverkkojen inspiroimat epälineaariset mallit, joissa
sovelletaan bayesiläistä variaatio-oppimista ylioppimisen ja laskennallisen
vaativuuden välttämiseen. Työ esittelee kehyksen, jossa käyttäjän antaman
mallin tehokkaat päivityssäännöt ratkaistaan automaattisesti. Vastaaviin
järjestelmiin verrattuna se tarjoaa uusia toimintoja, kuten epälineaarisuuksia ja
hajonnan mallinnusta. Bayesiläisiä variaatiomenetelmiä käytetään viallisen
tietoaineiston rekonstruointiin ja dynaamisen systeemin säätöön. Uusi algoritmi
hoitaa epälineaaristen tila-avaruusmallien päättelyn tehokkaasti ja luotettavasti.

Toinen laajennusten luokka käsittelee relaatiomalleja, joissa havainnoilla voi olla
vaihteleva sisäinen rakenne ja viittauksia toisiinsa. Uusi menetelmä, looginen
piilo-Markov -malli, esitellään loogisten atomien sarjojen analysointiin ja
sitä sovelletaan proteiinien sekundäärirakenteen luokitteluun. Menetelmälle
esitetään algoritmit päättelyyn, parametrien määritykseen ja rakenteen
oppimiseen. Työssä esitellään myös ensimmäinen graafinen malli
relaatioaineistojen epälineaaristen riippuvuussuhteiden analysointiin.

Preface

This work has been carried out at the Laboratory of Computer and Informa-
tion Science in Helsinki University of Technology and at the Laboratory of Ma-
chine Learning and Natural Language Processing in University of Freiburg. Other
sources of funding were the Graduate School in Computational Methods of In-
formation Technology (ComMIT), the Finnish Centre of Excellence Programme
(2000-2005) under the project New Information Processing Principles, the Eu-
ropean Commission’s IST-funded projects BLISS (IST-1999-14190), the Euro-
pean Commission’s IST-funded Network of Excellence for Multimodal Interfaces
PASCAL (IST-2002-506778), the European Commission’s IST-funded evaluation
project APRIL (IST-2001-33053), the Finnish Cultural foundation, and the Nokia
Foundation.

I wish to thank my instructor Dr. Harri Valpola for inspiration and guidance,
especially in encouraging me to reach high. I also wish to thank my supervisor
Prof. Juha Karhunen for his dedication and support, especially for keeping my feet
on the ground. This experience has allowed me grow as a person.

I wish to express my gratitude to the co-authors of the publications of the thesis,
Dr. Kristian Kersting, Prof. Dr. Luc De Raedt, Matti Tornio, Dr. Antti Honkela,
Markus Harva, Tomas Östman, and Prof. Dr. Stefan Kramer. I also wish to thank
my other coworkers in the laboratories, including Prof. Erkki Oja, Dr. Jaakko Pel-
tonen, Dr. Alexander Ilin, and Dr. Sampsa Laine for help and interesting discus-
sions as well as my pre-examiners Prof. Jouko Lampinen and Prof. Petri Myllymäki
for useful comments.

Last but not least, I thank Anna Hiironen for her support and help, as well as for
encouraging me to work abroad.

Espoo, November 2006

Tapani Raiko

5

Contents

Abstract 3

Tiivistelmä 4

Preface 5

Publications of the thesis 9

List of abbreviations 10

List of symbols 11

1 Introduction 13

1.1 Background . 14
1.2 Contributions of the thesis . 17
1.3 Contents of the publications and author’s contributions 18

2 Bayesian probability theory 21

2.1 Representations of data and belief 21
2.2 The Bayes rule and the marginalisation principle 23
2.3 Structure among unknown variables 24
2.4 Decision theory . 24
2.5 Approximations . 25

2.5.1 Point estimates . 26
2.5.2 The Laplace approximation 28
2.5.3 Expectation-maximisation algorithm 29
2.5.4 Markov chain Monte Carlo methods 30
2.5.5 Variational approximations 30

3 Graphical models 32

3.1 Well-known graphical models . 32

6

3.1.1 Bayesian networks . 33
3.1.2 Markov networks . 37
3.1.3 Factor analysis and principal component analysis 38
3.1.4 Independent component analysis 40
3.1.5 Hidden Markov models . 40
3.1.6 State-space models . 42

3.2 Tasks . 43
3.2.1 Inference . 43
3.2.2 Parameter learning . 44
3.2.3 Structural learning . 44
3.2.4 Decision making . 45

4 Variational learning of nonlinear graphical models 47

4.1 Variational Bayesian methods . 47
4.1.1 Cost function . 48
4.1.2 Model selection . 49
4.1.3 Optimisation and local minima 50
4.1.4 Missing values . 51
4.1.5 Partially observed values 51

4.2 Nonlinear factor analysis . 53
4.3 Nonlinear state-space models . 54

4.3.1 State inference . 55
4.3.2 Control . 57

4.4 Bayes Blocks for nonlinear Bayesian networks 59
4.4.1 Variance modelling . 61
4.4.2 Hierarchical nonlinear factor analysis 62
4.4.3 Relational models . 64

5 Inductive logic programming 65

5.1 Logic programming . 65
5.2 Inductive logic programming . 66

5.2.1 Example on wine tasting . 67
5.2.2 From propositional to relational learning 68
5.2.3 Applications . 69

6 Statistical relational learning 71

6.1 Combination rules . 73
6.2 Logical hidden Markov models . 74

6.2.1 Reachable states . 76
6.2.2 Structural learning . 77
6.2.3 Applications . 78

6.3 Nonlinear relational Markov networks 79

7

7 Discussion 83

7.1 Future work . 84

References 87

8

Publications of the thesis

I T. Raiko, H. Valpola, M. Harva, and J. Karhunen. Building Blocks for Vari-
ational Bayesian Learning of Latent Variable Models. Report E4 in the Elec-
tronic report series of CIS, April, 2006, accepted for publication conditioned
on minor revisions to the Journal of Machine Learning Research.

II T. Raiko, H. Valpola, T. Östman, and J. Karhunen. Missing Values in Hier-
archical Nonlinear Factor Analysis. In the Proceedings of the International
Conference on Artificial Neural Networks and Neural Information Processing
(ICANN/ICONIP 2003), pp. 185–189, Istanbul, Turkey, June 26–29, 2003.

III T. Raiko. Partially Observed Values. In the Proceedings of the Interna-
tional Joint Conference on Neural Networks (IJCNN 2004), pp. 2825–2830,
Budapest, Hungary, July 25–29, 2004.

IV T. Raiko and M. Tornio. Learning Nonlinear State-Space Models for Control.
In the Proceedings of the International Joint Conference on Neural Networks
(IJCNN 2005), pp. 815–820, Montreal, Canada, July 31–August 4, 2005.

V T. Raiko, M. Tornio, A. Honkela, and J. Karhunen. State Inference in Vari-
ational Bayesian Nonlinear State-Space Models. In the Proceedings of the
6th International Conference on Independent Component Analysis and Blind
Source Separation (ICA 2006), pp. 222–229, Charleston, South Carolina, USA,
March 5–8, 2006.

VI T. Raiko. Nonlinear Relational Markov Networks with an Application to the
Game of Go. In the Proceedings of the International Conference on Artificial
Neural Networks (ICANN 2005), pp. 989–996, Warsaw, Poland, September
11–15, 2005.

VII K. Kersting, L. De Raedt, and T. Raiko. Logical Hidden Markov Models. In
the Journal of Artificial Intelligence Research, Volume 25, pp. 425–456, April,
2006.

VIII K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards Discovering
Structural Signatures of Protein Folds based on Logical Hidden Markov Mod-
els. In the Proceedings of the Pacific Symposium on Biocomputing (PSB-
2003), pp. 192–203, Kauai, Hawaii, January 3–7, 2003.

IX K. Kersting and T. Raiko. ’Say EM’ for Selecting Probabilistic Models for
Logical Sequences. In the Proceedings of the 21st Conference on Uncertainty
in Artificial Intelligence (UAI 2005), pp. 300–307, Edinburgh, Scotland, July
26–29, 2005.

9

List of abbreviations

AI Artificial intelligence
BIC Bayesian information criterion
BLP Bayesian logic program
BP Belief propagation (algorithm)
EM Expectation maximisation
FA Factor analysis
HNFA Hierarchical nonlinear factor analysis
HMM Hidden Markov model
ICA Independent component analysis
ILP Inductive logic programming
KL Kullback–Leibler (divergence)
LOHMM Logical Hidden Markov model
MAP Maximum a posteriori (estimate)
ML Maximum likelihood (estimate)
MCMC Markov chain Monte Carlo
MLP Multilayer perceptron (network)
NDFA Nonlinear dynamic factor analysis
NMN Nonlinear Markov network
NRMN Nonlinear relational Markov network
NSSM Nonlinear state-space model
pdf Probability density function
PoE Product of experts
PCA Principal component analysis
PRM Probabilistic relational model
RMN Relational Markov network
SRL Statistical relational learning
VB Variational Bayesian

10

List of symbols

∧ And
¬ Negation
A,B,C Variables, events, or actions
x, y, z Scalar variables
P (A | B) Probability of A given B
p(A | B) Probability density of A given B
X Observations (or data)
Θ Unknown variables Θ = (θ,S)
θ Model parameters θ

S Latent variables
U(A) Utility of A
H Model structure and prior belief
N (x; y, z) Gaussian distribution of x with a mean y and a variance z
∝ Proportional to (or equals after normalisation)
π Message sent away from root (belief propagation algorithm)
λ Message sent towards the root (belief propagation algorithm)
ψ Potential in a Markov network
q(Θ) Approximation of the posterior distribution p(Θ |X)
D(q ‖ p) Kullback-Leibler divergence between q and p
x(t) Observation (or data) vector for (time) index t
s(t) Source (or factor) vector for (time) index t
u(t) Auxiliary vector (either for control or variance modelling)
f Mapping from the source space to the observation space
g Mapping for modelling dynamics in the source space
A,B,C,D Matrices belonging to parameters θ

θ Mean of the parameter θ in the approximating posterior dis-
tribution q

θ̃ Variance of the parameter θ in the approximating posterior
distribution q

〈·〉 Expectation over the distribution q
X, Y, Z Logical variables
← Follows from (in logic programming)
X Observed sequence of logical atoms

11

12

Chapter 1

Introduction

Statistical machine learning aims at discovering relevant concepts and represen-
tation of data collected in various fields of life. Learned models can be used to
analyse and summarise the data, to reconstruct missing information and predict
future data, to make decisions, plan and control. There has been huge research ac-
tivity covering various tasks in various applications leading to a diverse collection
of methods.

Let us consider an example of intensive care unit which is a hospital bed equipped
for medical care and observation to people in a critical or unstable condition. Han-
son and Marshall (2001) note that the intensive care environment is particularly
suited to the implementation of artificial intelligence tools because of the wealth of
available data and the inherent opportunities for increased efficiency in inpatient
care. There are about 250 variables online, daily laboratory data, and relational
background data including care history, nutrition, infections, relatives, and demo-
graphic data. In principle, there are machine learning methods that could be used
to learn from previous patients and applied to new patients. In practice, it is very
difficult to take the wealth of information into account because of the diversity of
data and applicable methods. Similar situation applies in other application areas
from robotics to economical modelling.

Graphical models (Pearl, 1988; Jensen et al., 1990; Cowell et al., 1999; Neapoli-
tan, 2004; Bishop, 2006) are an important subclass of statistical machine learning
methods that have clear semantics and a sound theoretical foundation. A graph-
ical model is a graph whose nodes represent random variables and edges define
the dependency structure between them. Bayesian inference solves the probability

13

14 1. Introduction

distribution over unknown variables given the data. Many methods in machine
learning that are not originally graphical models, can be reinterpreted or trans-
formed into the framework. This allows one to combine different methods in a
principled manner, as well as to reuse ideas and software between sometimes sur-
prisingly different applications.

Latent variable models aim at explaining the observed data by supplementing it
with unknown factors or a hidden state. The idea is that even if the regularities
in the data itself are difficult to find, the dependencies between latent variables
and observations are simpler, given that a proper representation is found. Model
parameters and latent variables can be solved at the same time in the framework
of graphical models.

Basic tasks in graphical models, such as inference and learning, have been solved for
decades, but relaxing the strict assumptions such as linearity of the dependencies
or that the data comes in uniform samples, is a challenging and an active field of
research. This thesis studies and introduces several extensions to the well-known
existing graphical models.

This thesis consists of an introductory part, whose structure is shown in Figure 1.1,
and nine publications described in Section 1.3.

1.1 Background

Expert systems (see for example the book by Giarratano and Riley, 1994) were
popular in the artificial intelligence (AI) community in the 70s. They consist of
simple rules of thumb in the form of if. . . then. . . , such as if burglar or earthquake
then alarm. A specialist in the field constructs a number of rules for a narrow
problem domain, and an inference engine could apply the rules to an initial set of
facts to obtain answers. The rules form a network where the output of a rule can
be used as an input for another rule. In the simplest case, the rules are restricted
to propositional calculus and truth values are binary, that is, simple statements
are either true or false. Many methods in the field of AI and machine learning can
be seen as extensions of expert systems in different directions.

In some cases the chain of reasoning from the initial facts to answers is very
long. If there is a constant number of options at each step, the size of the solution
space grows exponentially and the problem becomes intractable. Chess is a typical
example of such a problem. Searching (and planning) (see book by Russell and
Norvig, 1995) aims at finding the optimal solution as fast as possible, and finding

1.1. Background 15

Chapter 6

nonlinear graphical models
Variational learning of

Inductive logic programming

Chapter 3

Graphical models

Bayesian probability theory

Chapter 2

Chapter 1

Introduction

Chapter 7

Discussion

Chapter 4

Chapter 5

Statistical relational learning

contribution

background

Figure 1.1: Dependency structure of the chapters of the thesis.

a reasonable solution in case the problem is simply too large. In this thesis, the
reasoning chains are small enough so that the full structure can be always explored,
but search appears in the space of solution structures, that is, on a different level
of abstraction.

Fuzzy logic (see book by Klir and Yuan, 1995) extends the truth values of ex-
pert systems into a continuum between 0 and 1, for instance an apple might be
somewhat red or a person might be somewhat asleep. Fuzzy logic is an internally
consistent body of mathematical tools but fuzzy truth values should not be inter-
preted as measures of uncertainty (Dubois and Prade, 1993). For instance, assume
that the truth value of the event A, catching the bus, is 0.5, then the truth values
of A ∧ A and A ∧ ¬A are the same in fuzzy logic. One can imagine a person
being both somewhat asleep and somewhat awake at the same time, but some-
what catching a bus does not make sense. This simple example shows that fuzzy
logic alone is not enough in an uncertain world. Section 4.1.5 discusses how fuzzy

16 1. Introduction

concepts can, in some sense, be brought into the probabilistic framework instead.

Replacing truth values of expert systems with probabilistic variables leads to
graphical models (Pearl, 1988; Neapolitan, 2004; Bishop, 2006). Graphical models
can perform inferences such as “even though I heard an alarm, the probability of
a burglar entering the house is fairly small because I noticed an earthquake that
can also trigger the alarm.” Most expert systems would have problems using rules
in both directions like in this case. Graphical models combine graph theory with
probability theory. Both the structure of the graph and the parameters determin-
ing the probabilities can be learned from data. Graphical models form the basis
for this work so they will be described in Chapter 3.

Sometimes facts are viewed as states and rules are viewed as actions. In some
cases things do not change much, for example searching becomes planning with
exactly the same algorithms. Graphical models generalise to influence diagrams
(Pearl, 1988). The most important concern is to keep track of what information
is available to the decision maker at the time of decision. The goal of the decision
maker is to maximise utility that it receives after the decisions. Decision theory is
reviewed in Section 2.4.

Perhaps the best known artificial neural network, the multi-layer perceptron
(MLP) network (Haykin, 1999), can be related to expert systems, too. MLP
network concentrates on a single if x then y rule where x and y are vectors of
real values. The task is to learn a nonlinear dependency based on data. An MLP
network can be constructed as a graphical model with nonlinear dependencies,
allowing for new functionality, as described in Chapter 4.

Latent variable models assume unknown source signals (also called factors, la-
tent or hidden variables, or hidden causes) to have generated the observed data
through an unknown mapping or process. The goal of learning is to identify both
the source signals and the unknown generative mapping (or process). The success
of a specific model depends on how well it captures the structure of the phenomena
underlying the observations. Various linear models have been popular (see Hyväri-
nen et al., 2001), because their mathematical treatment is fairly easy. However, in
many realistic cases the observations have been generated by a nonlinear process.
Learning of a nonlinear latent variable model is a challenging task, because it is
computationally much more demanding and flexible models require also strong
regularisation. Variational Bayesian methods, described in Section 4.1, qualify for
both computational efficiency and regularisation.

Yet another direction to extend basic expert systems is to replace propositional
calculus by first-order logic. The results are still called expert systems or logic
programmes. One of the inference engines for first-order logic is Prolog (Sterling

1.2. Contributions of the thesis 17

and Shapiro, 1994). It is also possible to learn logic programmes from relational
data. This is called inductive logic programming (Lavrac and Dzeroski, 1994; De
Raedt, 2005). First-order logic allows for handling rich internal structure such
as samples with a varying internal structure or links between samples. Logic
programming and inductive logic programming are described in Chapter 5 and
further combined with graphical models in Chapter 6.

1.2 Contributions of the thesis

Graphical models provide a good framework for machine learning and artificial
intelligence. Graphical models are going to be extended, based on approximate
Bayesian inference, into a system that can plan, infer, and interact with its environ-
ment using both discrete and continuous variables as well as structured represen-
tations. The concrete steps that have been taken in this work can be summarised
as follows:

• A novel framework where Bayesian networks may include nonlinear depen-
dencies and algorithms for variational Bayesian learning are automatically
derived.

• An extension of hidden Markov models to deal with sequences of structured
symbols rather than characters, with four relevant algorithms and an appli-
cations in the domain of bioinformatics.

• The first graphical model that can handle both nonlinear dependencies and
relations.

• An extension of a method for learning nonlinear state-space models to con-
trol.

• A novel algorithm for inference in nonlinear state-space models that is both
efficient and reliable.

• A study of methods for handling corrupted or inaccurate values in data.

• A study of some latent variable models based on their capability of recon-
structing missing values in data.

18 1. Introduction

Nonlinear relational Markov networks
with an application to the game of Go

Publication VI

models for logical sequences
’Say EM’ for selecting probabilistic

Publication IXBuilding blocks for
variational Bayesian learning of
latent variable models

Publication I

Publication III

Partially observed values nonlinear factor analysis
Missing values in hierarchical

Publication II

Learning nonlinear state−space
models for control

Publication IV
State inference in
variation Bayesian
nonlinear state−space models

Publication V

Publication VII

Logical hidden Markov models

Towards discovering structural
signatures of protein folds based on
logical hidden Markov models

Publication VIII

Figure 1.2: Publications of the thesis. Journal articles have two frames and confer-
ence papers just one. Relationships are shown as edges that are undirected since
there is no clear causality.

1.3 Contents of the publications and author’s con-

tributions

The titles of the nine publications of this thesis and their relationships are shown
in Figure 1.2.

Publication I introduces a framework for creating graphical models from simple
building blocks. It is based on variational Bayesian learning, and unlike other
such frameworks, it can model nonlinearities and nonstationary variance. Once
the user defines the model structure, the algorithms for learning and inference are
automatically derived. The present author developed a part of the framework,
carried out a small part in the implementation, made two of the three experiments
and wrote a large part of the paper.

Well-founded handling of missing values is one of the advantages of Bayesian mod-
elling. Publication II studies the reconstruction of missing values in nonlinear fac-
tor analysis. The present author made the implementation, ran the experiments,
and wrote most of the paper under the guidance of Dr. Harri Valpola.

Values in the data are often either observed, or missing, but some cases fall in
between: Sometimes it is known that a measurement is inaccurate, or perhaps
there is only a lower bound. Publication III studies handling and reconstruction

1.3. Contents of the publications and author’s contributions 19

of such partially observed values in the variational Bayesian framework. It also
brings up a situation where the cost function of the variational Bayesian learning
can diverge to negative infinity. It can be solved using partially observed values
or by adding virtual noise in the data.

Publication IV applies a state-of-the-art method from machine learning to the
problem of nonlinear model-predictive control. Three different control schemes
are studied, one is based directly on the learned neural network, the second one
is the traditional nonlinear model-predictive control, and the third one is based
on Bayesian inference. The present author designed the novel control scheme and
wrote a large part of the paper.

The control application brought up a setting to which none of the tested inference
algorithms for nonlinear state-space models suited well. Publication V introduces
a novel algorithm that both converges reliably and is still fast. The present author
designed the algorithm and wrote a large part of the paper.

The last four publications involve relations. Publication VI gives the first extension
of graphical models to both nonlinear and relational direction at the same time.
The relations in the data define a structure for a graphical model where unknown
variables can then be inferred using variational Bayesian methods. The novel
method is applied to the analysis of the board game Go.

Hidden Markov models (HMMs) are very popular for analysing sequential data.
Logical hidden Markov models (LOHMMs) extend traditional hidden Markov mod-
els to deal with sequences of structured symbols in the form of logical atoms, rather
than characters. Publication VII formally introduces LOHMMs and presents effi-
cient solutions to the three central inference problems for LOHMMs: evaluation,
most likely hidden state sequence and parameter estimation. The idea came from
Prof. Luc De Raedt whereas Dr. Kristian Kersting and the present author jointly
formalised and implemented the LOHMMs. The present author’s contribution in
experimentation and writing were minor.

In Publication VIII, LOHMMs are applied to the domain of bioinformatics. The
task was to extract structural signatures of folds for classes of proteins according
to the classification scheme SCOP. The results indicate that LOHMMs possess
several advantages over other methods. The present author took part in the design,
implementation, experimentation, and writing.

The increase of descriptive power of LOHMMs over HMMs comes at the expense
of a more complex model selection problem, since different abstraction levels need
to be explored. Publication IX presents a novel algorithm for choosing the model
structure. The effectiveness of the algorithm is confirmed both theoretically and

20 1. Introduction

by experimentation with real-world unix command sequence data. The work was
done jointly by Dr. K. Kersting and the present author.

Chapter 2

Bayesian probability theory

Bayesian probability theory (Jaynes, 2003; MacKay, 2003; Pearl, 1988) defines
probabilities to be subjective. Probabilities measure the credibility of an event so
they can depend on the subjects prior knowledge, and they are updated based on
observations. Say, you toss a coin and cover it with your hand without looking.
The probabilities of heads or tails are even. When you peek under your hand, only
the information available for you changes. For other people, the chances are still
even.

Bayesian probability theory gives a well-founded methodology for handling uncer-
tainty. Given a model that describes the mutual dependencies of random variables,
Bayesian probability theory can then be used to infer all the unknown variables.
This chapter gives an introduction to the theory and to practicalities of Bayesian
treatment of uncertainty from the machine-learning point of view.

2.1 Representations of data and belief

This thesis deals with three types of representational elements: discrete values,
continuous values, and relations. This applies to both internal beliefs of the sys-
tem and observations (or data). Other types of data should be possible to convert
to them in a more or less sensible manner. Anderberg (1973) discusses the repre-
sentations in detail, excluding relations.

For categorical variables, only a finite number of values is possible. For instance,

21

22 2. Bayesian probability theory

the blood type of a person is one of four possibilities. A coin toss has two possi-
bilities. The alphabet has 26 letters. Text is often processed by giving a discrete
label to each known word.

The measured sound pressure in a room is an example of a continuous value or
a real number. Most physical measurements come as continuous values, such as
measuring the time, weight, length, or temperature. Also the sensory systems
in living organisms and robots produce continuous values. Digital cameras and
scanners convert images into data where the image is divided into small square
pixels that have a constant colour. The colours are described by three numbers,
the red, green, and blue intensities. Sound waves can be represented as a sequence
of air pressure values, like in CDs. Note that even though values are always
represented with limited accuracy in computers, in theory they are handled as real
numbers.

Discrete numerical variables, such as the number of children, can be processed
as categorical data by making a finite number of categories such as 0,1,2,3,4,5+.
The other option is to reinterpret the ordinal value as a continuous value. This is
often done by people, too. We have no difficulties in understanding a statement
such as “Finnish women give birth to 1.7 children on average”. Section IV B
of Publication III studies and solves a problem originating from a conversion of
discrete to continuous values.

The third type of representation, relations, is rather different from the other two.
Relations are used to relate objects to one another. Codd (1970) wrote a significant
paper about general relational databases. The basic idea is that access to the data
is unaffected by the internal representation. This becomes important when more
and more different types of data are integrated together into a common databank.
Relational databases have become a standard. The universal model for data is
basically a set of tables where different columns are different attributes that can
be of varying type, and rows are objects. Values in the table may include identifiers
that point to other rows of the same or another table. For example, a molecule
can be represented as two tables, where the first one lists all atoms with their
identifiers and attributes, and the second table lists all bonds, with identifiers of
the involved atoms and the attributes of the bond. Similar representation applies
to web pages, where instead of bonds, the second table lists links.

As the biological senses never produce identifiers directly, they have to be created
by the mind. For example when a predator tries to catch its pray by wearing it
down, it is important for the chaser to stick to the same target even if it cannot
be recognised from the herd. Also, to know the structure of a molecule, one
has to know which atoms are connected with bonds even if the atoms as such

2.2. The Bayes rule and the marginalisation principle 23

are indistinguishable. Both cases can be solved by giving an implicit or explicit
identifier for the prey or atom. Pointers are the identifiers used in computer code
to refer to different parts of the memory, and thus to different objects.

In Bayesian analysis, the belief or uncertainty about variables is represented with
probabilities. The probability of an event A given prior knowledge B is written
as P (A | B). Similar notation can be used when A is a discrete variable: P (A |
B) denotes the probability distribution of A given B. Continuous probability
distribution can be represented with a probability density function (pdf) p(·). The
actual probability is an integral over the pdf. It is also called probability mass,
using an analogy from physics. For example the probability of an event A < 0

given B can be computed as P (A < 0 | B) =
∫ 0

−∞
p(A|B)dA.

The rest of the chapter is written for continuous values, but rewriting the integrals
as sums produces the corresponding formulas for discrete values. The treatment
of relations is left to Chapters 5 and 6.

2.2 The Bayes rule and the marginalisation prin-

ciple

The Bayes rule was formulated by reverend Thomas Bayes in the 18th century
(Bayes, 1958). It can be derived from very basic axioms (Cox, 1946). The Bayes
rule tells how to update ones beliefs when receiving new information. In the
following, H stands for the assumed model, X stands for observation (or data),
and Θ stands for unknown variables. p(Θ | H) is the prior distribution, or the
distribution of the unknown variables before making the observation. The posterior
distribution is

p(Θ |X,H) =
p(X | H,Θ)p(Θ | H)

p(X | H)
. (2.1)

The term p(X | H,Θ) is called the likelihood of the unknown variables given the
data and the term p(X | H) is called the evidence (or marginal likelihood) of the
model.

The marginalisation principle specifies how a learning system can predict or gen-
eralise. The probability of observing A with prior knowledge of X,H is

p(A |X,H) =

∫
p(A | Θ,X,H)p(Θ |X,H)dΘ. (2.2)

24 2. Bayesian probability theory

It means that the probability of observing A can be acquired by summing or
integrating over all different explanations Θ. The term p(A | Θ,X,H) is the
probability of A given a particular explanation Θ and it is weighted with the
probability of the explanation p(Θ |X,H).

Using the marginalisation principle, the evidence term can be written as

p(X | H) =

∫
p(X | Θ,H)p(Θ | H)dΘ. (2.3)

This emphasises the role of the evidence term as a normalisation coefficient. It is
an integral over the numerator of the Bayes rule (2.1). Sometimes it is impossible
to compute the integral exactly, but fortunately it is not always necessary. For ex-
ample, when comparing posterior probabilities of different instantiations of hidden
variables, the evidence cancels out.

2.3 Structure among unknown variables

For getting a model that is useful in new situations, i.e. having generalisation
ability, some structure among the unknown variables Θ needs to be assumed. A
typical structure in machine learning is a division of unknown variables Θ into
parameters θ and latent variables S, Θ = (θ,S). The distinction is that parame-
ters θ are shared among data samples, but there are separate latent variables for
each data sample. Thus, the number of latent variables grows linearly with data
size while the number of parameters stays the same. The latent variables can be
thought of as the internal state of a system. Sometimes computing the posterior
distribution over the parameters θ is called Bayesian learning, leaving the term
Bayesian inference to only refer to computing the posterior distribution of latent
variables S.

Graphical models, described in Chapter 3, provide a formalism for defining the
exact structure of dependencies. The fundamental idea is that a complex system
can be built by combining simpler parts. A graphical model is a graph whose
nodes represent random variables and edges represent direct dependencies.

2.4 Decision theory

Decision theory (see book by Dean and Wellman, 1991) was first formulated by
Blaise Pascal in the 17th century. When faced with a number of actions A, each

2.5. Approximations 25

with possibly more than one possible outcome B with different probabilities P (B |
A), the rational choice is the action that gives the highest expected value U(A):

U(A) =

∫

B

U(A,B)P (B | A), (2.4)

where U(A,B) is the value of action A producing the outcome B. Daniel Bernoulli
refined the idea in the 18th century. In his solution, he defines a utility function
and computes expected utility rather than expected financial value. For example,
people tend to insure their property even though the expected financial value of
the decision is negative (after all, insurance business must be profitable for the
insurance companies). This is explained by the fact that in case of losing one’s
whole property, every euro is more important (has more utility).

Bayesian decision theory (see book by Bernardo and Smith, 2000) works in sit-
uations where the outcomes of actions are unknown but one still has to make
decisions. One simply chooses the action with highest expected utility over the
predictive distribution of outcomes. Bayesian decision theory does not just give a
way to make actions but it is actually the only coherent way of acting. This can
be shown using a so-called Dutch book argument (Resnik, 1987). A Dutch book is
a set of odds and bets which guarantees a profit, no matter what the outcome of
the gamble. A Dutch book can never be made against a Bayesian decision maker,
and if decisions are such that a Dutch book cannot be made against the decision
maker, the decisions can always be interpreted to be made by a Bayesian decision
maker.

Decision theory has a clear connection to control theory. (Dean and Wellman,
1991) The control that minimises a certain cost functional is called the optimal
control (see book by Kirk, 2004). When the control cost is used as the negative
utility −U(·), decision theory provides optimal control, even under uncertainty
(stochastic control). Section 4.3.2 and Publication IV apply Bayesian decision
theory for control in nonlinear state-space models.

2.5 Approximations

The Bayesian probability theory and decision theory sound too good to be true:
They solve learning, inference, and decision making optimally. Unfortunately, the
posterior probability distribution cannot be handled analytically except in the
simplest examples. To solve the integrals in Equations (2.2), (2.3), and (2.4), one
must resort to some kind of approximations. There are three common classes of
approximations: point estimates, sampling, and variational approximations.

26 2. Bayesian probability theory

−2 −1 0 1 2

−2

−1

0

1

2

−2 0 2 4 6 8

−4

−2

0

2

4

6

Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z;xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ |X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its

2.5. Approximations 27

Figure 2.2: A sixth order polynomial is fitted to 10 data points. Left: Maximum
likelihood solution. Right: Bayesian solution. The three curves present 5%, 50%
and 95% fractiles.

performance with unseen test data starts to get worse during the learning with
training data (Haykin, 1999; Bishop, 1995; Chen, 1990). The system starts to lose
its ability to generalise. The same can happen when increasing the complexity
of the model. The model is said to overfit to the data. In this case the model
becomes too complicated and concentrates on random fluctuations in the data.
The left subfigure of Figure 2.2 shows an example of overfitting.

When the model is too simple or the learning is stopped too early, the problem
is called underfitting or underlearning respectively. Balancing between over- and
underfitting has perhaps been the main difficulty in model building. There are
several ways to fight overfitting and overlearning (Haykin, 1999; Bishop, 1995;
Chen, 1990). A popular method is to select the best time to stop learning or the
best complexity of a model by cross-validation (Stone, 1974; Haykin, 1999). Part
of the training data is left for validation and the models are compared based on
their performance with the validation set.

The problems of overlearning and overfitting are mostly related to point estimates.
The example in Figure 2.2 is solved by using the whole posterior distribution in-
stead of a single solution. The use of a point estimate is to approximate integrals so
it should be sensitive to the probability mass rather than to the probability density.
Unfortunately, ML and MAP estimates are attracted to high but sometimes nar-
row peaks. Figure 2.3 shows a situation, where search for the MAP solution first
finds a good representative of the probability mass, but then moves to the highest
peak which is on the border. This type of situation seems to be very common and
the effect becomes stronger, when the dimensionality increases. Appendix D of

28 2. Bayesian probability theory

Figure 2.3: A hypothetical posterior pdf. A point estimate could first find a good
representative of the probability mass, but then overfits to a narrow peak.

Publication I gives an example where point estimates fail completely.

2.5.2 The Laplace approximation

Compared to the point estimates, a more accurate way to approximate the inte-
grals in Equations (2.2), (2.3), and (2.4) is to use the Laplace approximation (see
Bishop, 1995; MacKay, 2003). The basic idea is to find the maximum of the func-
tion to be integrated and apply a second order Taylor series approximation for the
logarithm of that function. In case of computing an expectation over the poste-
rior distribution, the maximum is the MAP solution and the second order Taylor
series corresponds to a Gaussian distribution for which integrals can be computed
analytically. The Laplace approximation can be used to select the best solution
in case several local maxima have been found since a broad peak is preferred over
a high but narrow peak. Unfortunately the Laplace approximation does not help
in situations where a good representative of the probability mass is not a local

2.5. Approximations 29

maximum, like in Figure 2.3.

Laplace approximation can be used to compare different model structures suc-
cessfully. It can be further simplified by retaining only the terms that grow with
the number of data samples. This is known as the Bayesian information criterion
(BIC) by Schwarz (1978). Publication IX uses BIC in structural learning of logical
hidden Markov models.

2.5.3 Expectation-maximisation algorithm

The expectation-maximisation (EM) algorithm (Dempster et al., 1977; Neal and
Hinton, 1999; MacKay, 2003) can be seen as a hybrid of point estimates and
accurate Bayesian treatment. Recall the division of unknown variables Θ into
parameters θ and latent variables S in Section 2.3. EM uses point estimates for
parameters θ and distributions for latent variables S. The idea is that updating is
easy when these two are updated alternately. In the E-step, given certain values
for parameters θ, the posterior distribution of latent variables S can be solved.
In the M-step, the parameters θ are updated to maximise likelihood or posterior
density, given a fixed distribution over latent variables S.

Originally the EM algorithm was used for maximum likelihood estimation in the
presence of missing data. Later it was noted that latent variables can be seen as
missing data and priors can be included to get the MAP estimate.

Note that EM does not only yield a posterior approximation, but also gives practi-
cal rules for iterative updates. In a sense, EM is a recipe or meta-algorithm which
is used to devise particular algorithms using model-specific E and M steps.

EM is popular for its simplicity but speeding up the EM algorithm has been a topic
of interest since its formulation (Meng and van Dyk, 1995). Petersen et al. (2005)
analyse slowness in the limit of low noise (see also Raiko, 2001, Figure 6.1). It can
be more effective to update both S and θ at the same time by for instance using
gradient-based algorithms (for comparison, see Kersting and Landwehr, 2004), hy-
brids of EM and gradient methods (Salakhutdinov et al., 2003), or complementing
alternative updates with line search (Honkela et al., 2003). Also, there are many
benefits from choosing a posterior approximation that is a distribution instead of a
single set of values, such as robustness against overfitting and well-founded model
selection.

The EM algorithm is adapted for parameter estimation of logical hidden Markov
models in Publication VII.

30 2. Bayesian probability theory

2.5.4 Markov chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods (Gelman et al., 1995; MacKay,
2003) approximate the posterior distribution by generating a sequence of random
samples from it. The integrals in Equations (2.2) and (2.4) are approximated by
summing over the samples. There are many algorithms for the actual sampling, the
best-known being Metropolis-Hastings algorithm and the Gibbs sampler (MacKay,
2003; Haykin, 1999). A popular method by Neal (2001) for approximating the
integral in Equation (2.3) is known as annealed importance sampling.

Gibbs sampling introduced by Geman and Geman (1984) is as follows. Known
variables are fixed to their values and unknown variables are given some initial
values. The value of some unknown variable is updated by sampling from its
conditional probability distribution assuming all the other variables fixed. This
is done repeatedly for all unknown variables. First samples are discarded but the
rest represent the posterior distribution, that is, expected values are estimated as
sample means and so on. Assuming that all states can be reached by this process,
the limiting distribution of the process is the true posterior distribution. Gibbs
sampling is used for instance in the BUGS project by Spiegelhalter et al. (1995)
and by Hofmann and Tresp (1996, 1998).

Sampling methods are very general and very accurate assuming enough computa-
tional resources. Unfortunately they are often computationally very demanding.
Also, it is difficult to say when the process has converged (MacKay, 2003). For
instance in the left subfigure of Figure 2.1, it is astronomically rare that the Gibbs
sampler would find its way from one solution mode to the other.

Expectation over the samples for the parameters is often used for interpretation
(including visualisation) purposes, or for fast application phase after learning. This
can be problematic when the posterior distribution is multi-modal. Latent variable
models often exhibit symmetries with respect to permuting the latent variables or
changing signs of pairs of variables as in the left subfigure of Figure 2.1. In this
case, the expected values are completely meaningless.

2.5.5 Variational approximations

Variational Bayesian (VB) methods fit a distribution of a simple form to the true
posterior density. VB is sensitive to probability mass rather than to probability
density. This gives it advantages over point estimates: it is robust against over-
fitting, and it provides a cost function suitable for learning model structures. If
the true posterior has more than one mode (or cluster), VB solution finds just

2.5. Approximations 31

one of them, as shown in the left subfigure of Figure 2.1. VB provides a criterion
for learning, but leaves the algorithm open. Variational Bayesian learning will be
described in more detail in Section 4.1.

Depending on the form of the approximating distribution, variational Bayesian
density estimates can be computationally almost as efficient as point estimates.
Roberts and Everson (2001) compared Laplace approximation, sample based, and
variational Bayesian learning in an independent component analysis problem on
music data. The sources were well recovered using VB learning and the approach
was considerably faster than the sample-based methods. Beal and Ghahramani
(2003) compared VB, BIC, and annealed importance sampling in scoring model
structures. VB gave a good compromise being a lot more accurate than BIC, and
about a hundred times faster than sampling with comparable accuracy.

Expectation propagation by Minka (2001) is closely related to VB. A parametric
distribution is fitted to the true posterior, but the measure of misfit is different. It
aims at a posterior approximation that contains the whole solution. VB approxi-
mation works the other way around: the whole approximation should be contained
within the solution. The difference is most apparent in cases where the posterior
is multi-modal, like in the left subfigure of Figure 2.1. An approximation that
contains both modes, also contains a lot of areas with low probability in between.
In such cases it is reasonable to select a single mode. Expectation propagation
is an algorithm whereas VB is a criterion. Unfortunately the convergence of the
expectation propagation algorithm cannot be guaranteed.

Chapter 3

Graphical models

Graphical models (Pearl, 1988; Jensen et al., 1990; Cowell et al., 1999; Neapolitan,
2004; Bishop, 2006; Murphy, 2001) provide a formalism for defining the structure
for a probabilistic model. A graphical model is a graph whose nodes represent
random variables and edges represent direct dependencies. The models presented
here vary mostly in whether they are static or dynamic and whether the variables
are discrete or continuous valued.

Graphical models have evolved from being a mere academic curiosity into a popular
field of research with a huge number of applications. The applications range from
network engineering to bioinformatics.

All the models and methods studied in this thesis can be seen as extensions of
these basic models, which are therefore introduced here.

3.1 Well-known graphical models

In the following, well-known graphical models are described. Most of them have
been invented before the general framework and thus, the graphical model frame-
work can be seen as a way to view all of these methods as instances of a common
formalism. Using the shared formalism, developments in one field are easier to
transfer to others (Jordan, 1999).

32

3.1. Well-known graphical models 33

burglary

earthquake

alarm

neighbour 1 calls
alarm

report
earthquake

alarmreport

earthquake burglary

calls
neighbour 1

calls
neighbour 2

alarmreport

earthquake burglary

calls
neighbour 1

calls
neighbour 2

alarm
neighbour 2 calls

Figure 3.1: Top left: Bayesian network for the alarm example. Top right: A
Markov network formed by connecting all parents that share a common child
and removing edge directions. Bottom: The corresponding join tree whose nodes
correspond to cliques of the Markov network.

3.1.1 Bayesian networks

Let us study an example by Pearl (1988). Mr. Holmes receives a phone call from his
neighbour about an alarm in his house. As he is debating whether or not to rush
home, he remembers that the alarm might have been triggered by an earthquake.
If an earthquake had occurred, it might be on the news, so he turns on his radio.
The events are shown in Figure 3.1. Marking the events earthquake by E, burglary
by B and so on, the joint probability can be factored into

P (E,B,R,A,N1, N2) =

P (E)P (B | E)P (R | E,B)P (A | E,B,R)P (N1 | E,B,R,A)P (N2 | E,B,R,A,N1)

= P (E)P (B)P (R | E)P (A | E,B)P (N1 | A)P (N2 | A). (3.1)

The first equation is just basic manipulation of probabilities and the second equa-
tion represents conditional independencies. For instance, the probability of an
earthquake report on the radio R does not depend on whether there is a bur-
glary B or not, given that we know whether there was an earthquake or not, so
P (R | E,B) = P (R | E).

34 3. Graphical models

N1=true N1=false
A=true 0.7 0.3
A=false 0.001 0.999

Table 3.1: The conditional probability table describing P (N1 | A).

The graphical representation of the conditional probabilities depicted in the top
left subfigure of Figure 3.1 is intuitive: arrows point from causes to effects. Note
that the graph has to be acyclic, no occurrence can be its own cause. Loops, or
cycles when disregarding directions of the edges, are allowed. Assuming that the
variables are discrete, the conditional probabilities are described using a condi-
tional probability table that lists probabilities for all combinations of values for
the relevant variables. For instance, P (N1 | A) is described in Table 3.1. Recalling
the notation from Section 2.3, the numbers in the conditional probability table are
parameters θ while unobserved variables in the nodes are S.

Inference in Bayesian networks solves questions such as “what is the probability
of burglary given that neighbour 1 calls about the alarm?” Approximate inference
methods such as sampling (see Section 2.5.4) can be used, but in relatively simple
cases, also exact inference can be done. For that purpose, we will form the join
tree of the Bayesian network. First, we connect parents of a node to each other,
and remove all directions of the edges, (see top right subfigure of Figure 3.1). This
is called a Markov network. Next, we find all cliques (fully connected subgraphs)
of the Markov network. Then we create a join tree1 where nodes represent the
cliques in the Markov network and edges are set between nodes who share some
variables (see bottom subfigure of Figure 3.1).

We can rewrite the joint distribution in Equation 3.1 as

P (E,B,R,A,N1, N2) =
P (R,E)P (E,B,A)P (A,N1)P (A,N2)

P (E)P (A)P (A)
, (3.2)

where the numerator is a product of distributions of nodes in the join tree and the
denominator is the product of the distributions of the edges of the join tree. Then
the inference question “what is the probability of burglary given that neighbour
1 calls about the alarm?” is solved by substituting N1 = true and marginalising

1We assume for now that the join tree is really a tree.

3.1. Well-known graphical models 35

the uninteresting variables away:

P (B | N1 = true) =
P (B,N1 = true)

P (N1 = true)

∝ P (B,N1 = true)

=
∑

E,R,A,N2

P (E,B,R,A,N1 = true, N2)

=
∑

E,R,A,N2

P (R,E)P (E,B,A)P (A,N1 = true)P (A,N2)

P (E)P (A)P (A)
,

(3.3)

where ∝ means “proportional to”. The constant P (N1 = true) can be ignored if
the resulting distribution is normalised in the end. Summing over all the latent
variables is often prohibitively computationally expensive, so better means have
been found.

For efficient marginalisation in join trees, there is an algorithm called belief prop-
agation (Pearl, 1988) based on message passing. First, any one of the nodes in
the join tree is selected as a root. Messages π are sent away from the root and
messages λ towards the root. The marginal posterior probability of a node X in
the join tree given observations e is decomposed into two parts:

P (X | e) ∝ P (X | eanc(X))P (edesc(X) | X)

= π(X)λ(X), (3.4)

where eanc(X) and edesc(X) are the observations in the ancestor and descendant
nodes of X in the join tree accordingly. The messages can be computed recursively
by

π(X) =
∑

Y

P (X | Y)π(Y) (3.5)

λ(Y) =
∏

j

λj(Y) (3.6)

λX(Y) =
∑

X

λ(X)P (X | Y) (3.7)

where Y is the parent of X in the join tree and j are its children, including
X . The message π for the root node is set to the prior probability of the node,
and the messages λ are set to uniform distribution for the unobserved leaf nodes.
The belief propagation algorithm extended for logical hidden Markov models in
Publication VII.

36 3. Graphical models

Returning to the example in Equation 3.2 and selecting node (E,B,A) as the root
of the join tree, the necessary messages are

π(E,B,A) = P (E,B,A) (3.8)

λ(R,E)(E,B,A) =
∑

R

λ(R)P (R | E,B,A) (3.9)

λ(A,N1)(E,B,A) =
∑

N1

λ(N1)P (N1 | E,B,A) (3.10)

λ(A,N2)(E,B,A) =
∑

N2

λ(N2)P (N2 | E,B,A). (3.11)

Since λ(R) and λ(N2) are uniform (unobserved leaf nodes), it is easy to see that
λ(R,E)(E,B,A) and λ(A,N2)(E,B,A) are also uniform and can thus be ignored.
We get

P (B | N1 = true) =
∑

E,A

π(E,B,A)λ(E,B,A)

=
∑

E,A

P (E,B,A)λ(A,N1)(E,B,A)

=
∑

E,A

P (E,B,A)P (N1 = true | E,B,A)

=
∑

E,A

P (E)P (B)P (A | E,B)P (N1 = true | A). (3.12)

For the inference to be exact, the join tree must not have loops (like the name
implies). Loopy belief propagation by Murphy et al. (1999) uses belief propagation
algorithm regardless of loops. Experiments show that in many cases it still works
fine. The messages are initialised uniformly and iteratively updated until the
process hopefully converges. It is also possible to find an exact solution by getting
rid of loops at the cost of increased computational complexity. This happens by
adding edges to the Markov network.

Bayesian networks can manage continuous valued variables, when three simplifying
assumptions are made (Pearl, 1988). All interactions between variables are linear,
the sources of uncertainty are normally distributed, and the causal network is singly
connected (no two nodes share both common descendants and common ancestors).
Instead of tables, the conditional probabilities are described with linear mappings.
Posterior probability is Gaussian.

Bayesian networks are static, that is, each data sample is independent from oth-
ers. The extension to dynamic (or temporal) Bayesian networks (see Ghahramani,

3.1. Well-known graphical models 37

1998) is straightforward. Assume that the data samples x, e.g. x = (E,B,R,A,N1, N2),
are indexed by time t. Each variable can have as parents variables of sample x(t−1)
in addition to the variables of the sample itself x(t). Hidden Markov models (see
Section 3.1.5) are an important special case of dynamic Bayesian networks.

Linearity assumption can be relaxed when some approximations are made. Sec-
tion 4.4 and Publication I present such a framework based on variational Bayesian
learning. There are also other approaches. Hofmann and Tresp (1996) study
Bayesian networks with nonlinear conditional density estimators. Inference is
based on Gibbs sampling and learning is based on cross-validated maximum a
posteriori estimation.

3.1.2 Markov networks

Markov networks (Pearl, 1988), historically also known as Markov random fields,
are undirected graphical models. A Markov network does not commit on whether
A caused B, it is interested only whether there is a dependency or not. A popular
application is images where pixels are variables and edges are drawn between
neighbouring pixels.

Since inference in Bayesian networks was explained by first transforming it into a
Markov network, inference in Markov networks does not require much additional
attention. We just start directly from the undirected graph, like in the top right
subfigure of Figure 3.1. The joint density can be written directly as in Equa-
tion 3.2, but the standard way of writing the joint distribution is different. The
joint distribution is proportional to the product of potentials ψ over the cliques of
the network, for example:

P (E,B,R,A,N1, N2) ∝ ψ(R,E)ψ(E,B,A)ψ(A,N1)ψ(A,N2). (3.13)

Like Bayesian networks, Markov networks can manage continuous values with
same simplifying assumptions that can be relaxed by resorting to approximations.
Hofmann and Tresp (1998) introduce nonlinear Markov networks. Each continuous
valued variable xi is modelled using all of its neighbours Bi in the network. The
modelled conditional densities pM (xi | Bi) can be directly used for Gibbs sampling.
The complete likelihood function involves some integrals which cannot be solved
in closed form but need to be approximated numerically. Taskar et al. (2002)
introduce relational Markov networks (RMN) where the structure of the Markov
network is defined by the relational data. Each variable might have a different
number of neighbours, but generalisation is possible due to shared clique potentials.

38 3. Graphical models

a21 a31
x (t)1 x (t)

1 2

x (t)2 3

s (t) s (t)

a11

a a a
12

22
32

Figure 3.2: Graphical representations of factor analysis, principal component anal-
ysis, and independent component analysis are the same. Latent variables in the
top layer are fully connected to the observations in the bottom layer. In this case,
the vectors s(t) are two dimensional and x(t) are three dimensional.

Section 6.3 and Publication VI extend these ideas into nonlinear relational Markov
networks.

3.1.3 Factor analysis and principal component analysis

Factor analysis (Harman, 1967; Kendall, 1975; Hyvärinen et al., 2001) (FA) can be
seen as a Bayesian network consisting of two layers, depicted in Figure 3.2. The
top layer contains latent variables s(t) and the bottom layer contains observations
x(t). The two layers are fully connected, that is, each observation has all of the
latent variables as its parents. The index t stands for the data case.

The mapping from factors to data is linear2

x(t) = As(t) + n(t), (3.14)

or componentwise

xi(t) =
∑

j

aijsj(t) + nj(t), (3.15)

where n(t) is noise or reconstruction error vector. Typically the dimensionality
of the factors is smaller than that of the data. Factors and noise are assumed
to have a Gaussian distribution with an identity and diagonal covariance matrix,

2Note that the data is assumed to be zero mean here to simplify the equations.

3.1. Well-known graphical models 39

respectively. Recalling the notation from Section 2.3, parameters θ include the
weight matrix A and noise covariance for n(t).

Equation (3.14) does not fix the matrix A, since there is a group of rotations that
yields identical observation distributions. Several criteria have been suggested for
determining the rotation. One is parsimony, which roughly means that most of
the values in A are close to zero. Another one leads to independent component
analysis described in Section 3.1.4. Sections 4.2 and 4.4.2 describe extensions of
factor analysis releasing from the linearity assumption of the dependency between
factors and observations.

Principal component analysis (PCA) (Jolliffe, 1986; Kendall, 1975; Hyvärinen
et al., 2001), equivalent to the Hotelling transform, the Karhunen-Loève trans-
form, and the singular value decomposition, is a widely used method for finding
the most important directions in the data in the mean-square sense. It is the
solution of the FA problem under low noise (see Bishop, 2006) with orthogonal
principal components (the columns of the weight matrix A).

The first principal component a1 corresponds to the line on which the projection
of the data has the greatest variance:

a1 = arg max
||ξ||=1

T∑

t=1

(ξT
x(t))2. (3.16)

The other components are found recursively by first removing the projections to
the previous principal components:

ak = arg max
||ξ||=1

T∑

t=1

[
ξT

(
x(t)−

k−1∑

i=1

aia
T
i x(t)

)]2

. (3.17)

There are many other ways to formulate PCA, including probabilistic PCA (Bishop,
1999). In practice, the principal components are found by calculating the eigen-
vectors of the covariance matrix C of the data

C = E
{
x(t)x(t)T

}
(3.18)

The eigenvalues are positive and they correspond to the variances of the projections
of data on the eigenvectors. The weight matrix A is formed from the eigenvectors
and it is always orthogonal.

40 3. Graphical models

3.1.4 Independent component analysis

The mixing model of independent component analysis (ICA) is similar to that of
the FA (see Figure 3.2), but in the basic case with equal number of factors (or
components) as observations and without the noise term. The data is thought to
have been generated from independent components s(t) through a square mixing
matrix A by

x(t) = As(t). (3.19)

The components s(t) are independent, that is,

p(s1, s2, . . . , sn) = p1(s1)p2(s2) . . . pn(sn), (3.20)

and the assumption of Gaussianity of the components is relaxed. Assuming that
at most one of the independent components is Gaussian, the model is identifiable
(Comon, 1994).

In the basic case, the number of components is the same as the number of ob-
servation and the components can be reconstructed from data given the mixing
matrix A by s(t) = A−1x(t). The independence of the reconstructed s(t) can
then be measured for instance by the non-Gaussianity of the components or by
mutual information (Hyvärinen et al., 2001). ICA can thus be done by iteratively
maximising such a measure. ICA has many fields of applications, such as brain
imaging (Vigário et al., 1998), telecommunications (Raju et al., 2006; Ristaniemi,
2000), speech separation, and so on (Hyvärinen et al., 2001).

ICA can be approached from different starting points. It can be viewed as a
Bayesian network when the one dimensional distributions for the components are
modelled with for example mixtures-of-Gaussians (Attias, 1999, 2001; Choudrey
et al., 2000; Miskin and MacKay, 2001). This is also known as independent fac-
tor analysis. Extensions to the basic ICA involve additive noise, convolutive or
nonlinear mixing, and the number of components might differ from the number of
observations (Hyvärinen et al., 2001).

Publication III studies the reconstruction of corrupted values in data by indepen-
dent factor analysis.

3.1.5 Hidden Markov models

Hidden Markov models (HMMs) (Rabiner and Juang, 1986) are dynamic Bayesian
networks with a certain structure. Observed data are assumed to be generated as
a function of an unobserved state which is evolving stochastically in time. The

3.1. Well-known graphical models 41

S(0) S(1) S(2)

x(1) x(2)

S(3)

start

0.3:h0.7:h

bag

coin1 coin2

1.0

0.3:t 0.7:t
0.50.5

s(0) s(1) s(2) s(3)

start bag

coin1

coin2

coin1

coin2

coin1

coin2

bag bag

Figure 3.3: Graphical representations of a hidden Markov model. Top left: The
corresponding Bayesian network. Top right: The transitions are represented with
an arrow and annotated with transition probabilities and possible observations.
Bottom: The trellis showing all the possible evolutions of states unrolled in time.

observations x(t) are conditioned on state s(t). The discrete state s(t) at time t
is a latent variable and the conditional probability for a state transition P (s(t) |
s(t−1)) does not depend on t. Here we will use a non-standard formulation where
the state transition is conditioned on the observation as well, that is, P (s(t) |
s(t− 1), x(t− 1)). It is fairly easy to see that the two approaches are equivalent3

in representational capacity. Appendix B of Publication VII shows that the two
approaches are equivalent in a setting generalised to first-order logic.

Figure 3.3 shows an example of a HMM. There are two bent coins in a bag, one
gives more heads and the other more tails. A person draws a coin randomly from
the bag and tosses it until it lays tails up. At that point it is put back to the bag
and one of the coins is drawn and tossed again. At time 0, the system is always in
the start state (s(0) =start). Afterwards, it is always either in state coin1 or coin2
possibly going through an auxiliary state bag. The state being hidden (or latent)
means that one does not know which coin is used, only the sequence of heads and
tails is observed.

3By either ignoring the conditioned x(t − 1) or including a copy of the observation to the
hidden state.

42 3. Graphical models

The instance of belief propagation algorithm for HMMs is called the forward-
backward algorithm. In the example, this would give the probabilities for which
coin was drawn from the bag at each stage. It is also possible to learn the param-
eters from observations, say, estimate how badly the coins are bent. That can be
done using the Baum-Welch algorithm, which is the instance of EM algorithm for
HMMs.

Hidden Markov models are very popular for analysing sequential data. Application
areas include computational biology (Koski, 2001), speech recognition (Rabiner
and Juang, 1986), natural language processing (Charniak, 1993), user modelling
(Lane, 1999), and robotics (Meila and Jordan, 1996).

There are several extensions of HMMs such as factorial HMMs by Ghahramani and
Jordan (1997), relational Markov models by Anderson et al. (2002), and extension
based on tree automata by Frasconi et al. (2002). Section 6.2 and Publication VII
introduce an extension of hidden Markov models to first-order logic, which gener-
alises all of the above.

3.1.6 State-space models

Linear state-space models (see textbook by Chen, 1999) share the same structure as
hidden Markov models but now the states s(t) and observations x(t) are continuous
valued vectors. The conditional probabilities are represented as a linear mapping
with additive Gaussian noise:

s(t) = Bs(t− 1) + ns(t) (3.21)

x(t) = As(t) + nx(t) (3.22)

Note that Equation (3.22) is exactly the same as (3.14), that is, state-space models
can be seen as a dynamic extension of factor analysis. The dynamics in Equa-
tion (3.21) correspond to linear dynamical systems discretised in the time domain.

Again, the belief propagation algorithm has another name, and it was originally
derived from a different starting point probably by a Danish statistician T.N.
Thiele in 1880 and later popularised by Kalman (1960) (see also the textbook by
Anderson and Moore, 1979). In the context of state-space models, belief prop-
agation is known as the Kalman smoother. It is popular in many applications
fields, including econometrics (Engle and Watson, 1987), radar tracking (Chui and
Chen, 1991), control systems (Maybeck, 1979), signal processing, navigation, and
robotics.

In control systems, dynamics can be affected by control inputs u(t). Equation

3.2. Tasks 43

(3.21) for dynamics is replaced by

s(t) = Bs(t− 1) + Cu(t) + ns(t). (3.23)

Note that the control inputs u(t) are coming from outside the generative model.
One possibility is to use feedback control (see textbook by Doyle et al., 1992),

u(t) = −Kx(t− 1) + r(t), (3.24)

but note that K and r(t) should be chosen so as to accomplish the control goal,
not by inference or learning.

Section 4.3 studies an extension to nonlinear state-space models where the linear
mappings A and B are replaced by multi-layer perceptron networks. Section 4.3.2
and Publication IV study control in nonlinear state-space models.

3.2 Tasks

This thesis studies four tasks that can be done with graphical models: inferring
the distributions for latent variables, estimating (or learning) parameters of the
model, learning the structure of the model, and making decisions. Each of them
is described in turn.

3.2.1 Inference

Inference is the task of computing the posterior probability over the latent vari-
ables S given a fixed set of parameters θ, the data X and the model structure H,
according to the Bayes rule (Equation 2.1). The distribution is often very high di-
mensional and for all practical purposes it is represented as marginal distributions
(see Eq. 2.2) over groups of variables. The computations are not straightforward
and therefore one needs to use algorithms such as belief propagation, described in
Section 3.1.1.

One of the advantages of graphical models is that handling of missing values in data
is straightforward and consistent. Instead of belonging to data X, missing values
belong to latent variables S and their reconstructions (or posterior distributions)
are inferred as any other latent variables. Reconstruction of missing values in
linear and nonlinear models is studied in Section 4.1.4 and Publication II.

Exact inference by belief propagation has exponential computational complexity
with respect to the size of the largest clique in the Markov network (see Figure 3.1),

44 3. Graphical models

so often one needs to settle for approximated inference. In some extensions such
as nonlinear state-space models described in Section 4.3, there is no analytical
solution at all. Different kinds of approximate methods are described in Section 2.5.

3.2.2 Parameter learning

The task of learning the parameters of a model means that given a set of data cases
or observations X and a model structure H, one can infer the distribution over
the model parameters θ, found for instance in the conditional probability table
in Table 3.1, in the clique potentials ψ in Equation (3.13), in the mapping A in
Equation (3.14), or the transition probabilities in Figure 3.3. Parameter learning
does not differ from inference in Bayesian probability theory, so the reasons for
studying them separately are mostly practical. For instance in the EM algorithm,
the updates of parameters and latent variables are done separately and in different
ways. Also, local update rules work efficiently in parameter learning, whereas
explicit propagation of information is important in state inference of dynamic
systems (see Publication V).

Parameter learning can be really simple. Consider learning the values in the con-
ditional probability table for neighbour 1 calling about the alarm in case there is
an alarm or not, P (N1 | A) in Table 3.1. Given data samples where we observe
whether there was an alarm and whether the neighbour called or not, let us settle
for a point estimate: the most likely set of parameters. The ML solution is simply
to count how many times each of the four cases appear in the data and turn them
into probabilities by normalising each row to sum to one.

3.2.3 Structural learning

Also the structure of the model can be learned from data. This includes adding
edges between nodes and possibly new nodes. A straightforward way of learning
the structure is to try out different structures H and select the one with the largest
marginal likelihood P (X | H) (see Equation 2.3). Depending on the approxima-
tions, sometimes more complex models need to be explicitly penalised (MacKay,
1995b).

Just like parameter learning includes inference as a subproblem, structural learn-
ing includes parameter learning as a subproblem. To measure the model evidence
for a structure, parameters need to be learned. A standard way of searching is
to generate candidate structures by making minimal changes in the current hy-

3.2. Tasks 45

pothesis, such as adding, deleting, or reversing an edge. Parameters of the current
hypothesis can be used as a good first guess for the parameters of the candidates.
In a greedy search, the best candidate is selected as the next hypothesis. Getting
stuck in a local minimum can be avoided for instance by using simulated annealing
by Kirkpatrick et al. (1983) (Haykin, 1999).

Structural EM by Friedman (1998) speeds up structural search. The posterior
distribution over the latent variables is inferred for the current hypothesis and
fixed. Then, candidate hypotheses are evaluated using this distribution, that is,
only the parameters are updated. As before, one of the candidates is selected
as the next current hypothesis and the inference is done again. Now, instead
of running EM algorithm for each candidate structure, only a single M-step of
the EM algorithm is needed. Candidate evaluation is not as accurate as before,
but this is easily compensated by the large speed-up. The structural learning
algorithm for logical hidden Markov models, introduced in Publication IX, is based
on generalised structural EM.

There is a second broad class of algorithms for structural learning besides per-
forming a search. These are known as independence-based or constraint-based
algorithms. For example, Bromberg et al. (2006) discover structures of Markov
networks using independence tests.

3.2.4 Decision making

The fourth task, decision making, differs a lot from the other three. The task is
to select actions that maximise expected utility, as explained in Section 2.4. The
actions or controls appear as external inputs in the graphical model, such as the
control inputs u(t) in Section 3.1.6.

Utility, like random variables, can also be decomposed into nodes. The global
utility is a sum of local utilities. A utility node has as parents all the actions and
random variables on which it depends. Now, the values for action nodes can be
selected to maximise expected utility (Cowell et al., 1999). The resulting graph is
called an influence diagram (Pearl, 1988).

In model-predictive control (e.g. Eduardo Fernández Camacho, 2004), actions can
be selected as follows. First, some initial guess for the actions is made. Latent
variables and utilities are inferred for a given sequence of actions. The gradient of
total expected utility with respect to each random variable and action is propa-
gated backwards to each action. Actions are updated in the direction of increasing
utility, and the process is iterated. Application of this to control in nonlinear

46 3. Graphical models

state-space models is described in Section 4.3.2 and Publication IV.

Chapter 4

Variational learning of

nonlinear graphical models

This chapter describes extensions of graphical models with continuous values to
the case where the linearity assumption is relaxed. These are known as nonlinear
graphical models. For reasons explained in Section 2.5, nonlinear graphical model
suit well to be handled using variational Bayesian methods.

Section 4.1 describes variational Bayesian methods in general and the rest of the
chapter describes some particular models.

4.1 Variational Bayesian methods

Variational Bayesian (VB) learning (Barber and Bishop, 1998; Hinton and van
Camp, 1993; Lappalainen and Miskin, 2000; MacKay, 1995a, 2003; Jordan et al.,
1999; Lappalainen and Honkela, 2000) is a fairly recently introduced (Wallace,
1990; Hinton and van Camp, 1993) approximate fully Bayesian method, which has
become popular because of its good properties. Its key idea is to approximate
the exact posterior distribution p(Θ | X,H) by another distribution q(Θ) that is
computationally easier to handle.

Typically, the misfit of the approximation is measured by the Kullback-Leibler
(KL) divergence between two probability distributions q(v) and p(v). The KL

47

48 4. Variational learning of nonlinear graphical models

divergence is defined by

D(q(v) ‖ p(v)) =

∫
q(v) ln

q(v)

p(v)
dv ≥ 0 (4.1)

which measures the difference in the probability mass between the densities q(v)
and p(v). Its minimum value 0 is achieved when the densities q(v) and p(v) are
the same.

The VB method works by iteratively minimising the misfit between the actual
posterior pdf and its parametric approximation using the KL divergence. Note
that VB learning defines the goal and a performance measure, but leaves the
actual algorithm open. The approximating distribution q(Θ) is usually chosen to
be a product of several independent distributions, one for each parameter or a
set of similar parameters. Even a crude approximation of a diagonal multivariate
Gaussian density is adequate for finding the region where the mass of the actual
posterior density is concentrated. The mean values of the Gaussian approximation
provide reasonably good point estimates of the unknown parameters, and the
respective variances measure the reliability of these estimates. An example is
given in Figure 2.1.

A main motivation of using VB is that it avoids overfitting which would be a
difficult problem if ML or MAP estimates were used (see Section 2.5). VB method
allows one to select a model having appropriate complexity, making often possible
to infer the correct number of sources or latent variables.

Variational Bayes is closely related to information theoretic approaches which min-
imise the description length of the data, because the description length is defined
to be the negative logarithm of the probability. Minimal description length thus
means maximal probability. The information theoretic view provides insights to
many aspects of learning and helps explain several common problems (Honkela
and Valpola, 2004; Hinton and van Camp, 1993).

4.1.1 Cost function

The basic idea in variational Bayesian learning is to minimise the misfit between
the exact posterior pdf p(Θ |X,H) and its parametric approximation q(Θ). The

4.1. Variational Bayesian methods 49

misfit is measured here with the Kullback-Leibler (KL) divergence

CKL = D(q(Θ) ‖ p(Θ |X,H)) =

〈
ln

q(Θ)

p(Θ |X,H)

〉
(4.2)

=

∫
q(Θ) ln

q(Θ)

p(Θ |X,H)
dΘ,

where the operator 〈·〉 denotes an expectation over the distribution q(Θ). The
marginal likelihood p(X | H) is hard to evaluate and therefore the cost function
C that is actually used is

C =

〈
ln

q(Θ)

p(X,Θ | H)

〉
= CKL − ln p(X | H). (4.3)

A typical choice of posterior approximations q(Θ) is Gaussian with limited co-
variance matrix, that is, all or most of the off-diagonal elements are fixed to zero.
Often the posterior approximation is assumed to be a product of independent
factors. The factorial approximation, combined with the factorisation of the joint
probability like in Equation (3.1), leads to the division of the cost function in Equa-
tion (4.3) into a sum of simple terms, and thus to a relatively low computational
complexity.

Miskin and MacKay (2001) used VB learning for ICA (See Section 3.1.4). They
compared two approximations of the posterior: The first was a Gaussian with
full covariance matrix, and the second was a Gaussian with a diagonal covariance
matrix. They noticed that the factorial approximation is computationally more
efficient and still gives a bound on the evidence and does not suffer from overfitting.
On the other hand, Ilin and Valpola (2005) showed that the factorial approximation
favours a solution that has an orthogonal mixing matrix, which can deteriorate the
performance.

4.1.2 Model selection

VB learning offers another important benefit. Comparison of different models is
straightforward. The Bayes rule can be applied again to get the probability of a
model given the data

p(Hi |X) =
p(X | Hi)p(Hi)

p(X)
, (4.4)

where p(Hi) is the prior probability of the model Hi and p(X) is a constant that
can be ignored. A lower bound on the evidence term p(X | Hi) is obtained from

50 4. Variational learning of nonlinear graphical models

Equation (4.3) and it is

p(X | Hi) = exp(CKL − C) ≥ exp(−C). (4.5)

Multiple models can be used as a mixture-of-experts model (Haykin, 1999). The
experts can be weighted with their probabilities p(Hi | X) given in equation
(4.4). Lappalainen and Miskin (2000) show that the optimal weights in the sense
of variational Bayesian approximation are in fact p(Hi) exp(−C). If the models
have equal prior probabilities p(Hi), the weights simplify further to exp(−C). In
practice, the costs C tend to differ in the order of hundreds or thousands, which
makes the model with the lowest cost C dominant. Therefore it is reasonable to
concentrate on model selection rather than weighting.

4.1.3 Optimisation and local minima

Using nonlinear models leads to an optimisation problem with many local minima.
This makes the method sensitive to initialisation. Typically initialisation is based
on linear PCA (see Section 3.1.3). This can lead to suboptimal results if the mixing
is strongly nonlinear. Honkela et al. (2004) significantly improve performance by
using a nonlinear model (kernel PCA) for initialisation instead.1

Learning and inference are based on minimising the cost function in Equation (4.3)
by iterative updates. There are two essentially different approaches for that. In
the first approach, updates are local, that is, only some variables are updated while
assuming that the posterior distribution over other variables stays constant. The
second option is to update all variables at once. Benefits of local updating include
biological motivation (all interaction in brains is local), modularity, parallelisabil-
ity, and easily guaranteed convergence. Global updates, on the other hand, are
often faster. Both approaches are used in this work. Honkela et al. (2003) show
how local updates can be transformed into global ones.

Some parts of a latent variable model might be effectively turned off during learn-
ing. This happens when a latent variable has no effect on any of the other latent
variables or observations. Such a set of parameter values is a local minimum of the
cost function. In such cases, it is reasonable to either change the model structure
accordingly, or reinitialise those parts. Publication I discusses these issues and
measures against suboptimal local minima in detail.

1The use of nonlinear models is nontrivial, like choosing a good kernel in kernel PCA.

4.1. Variational Bayesian methods 51

4.1.4 Missing values

Handling missing values in data is an important point in statistical analysis (Little
and D.B.Rubin, 1987). Generative models can usually easily deal with missing
observations, and can also be used to fill in the missing values. In supervised
learning, the data is split into two parts: inputs and desired outputs. Learning
data includes both, but in the end, the model is used for predicting outputs based
only on the test inputs. By ignoring the splitting and creating a model for the
whole data, unsupervised learning can be used for a similar task as supervised
learning. Both the inputs and desired outputs of the learning data are treated
equally. When a generative model for the combined data is learned, it can be
used to reconstruct the missing outputs for the test data. The scheme used in
unsupervised learning is more flexible because any part of the data can act as the
cue which is used to complete the rest of the data. In supervised learning, the
inputs always act as the cue.

The quality of the reconstructions provides insight to the properties of different
unsupervised models. Self-organising maps by Kohonen (2001), factor analysis,
and its nonlinear extensions were studied in Publication II by reconstructing the
missing values of various data sets. Experiments were conducted using four differ-
ent scenarios for the missing values. This way, different aspects of the algorithms
could be studied. These included accuracy in high-dimensional data, high non-
linearity, memorisation, and generalisation. The performance of several models
varied a lot according to the different settings.

One of the experiments in both Publications II and V involves missing values
in speech spectrograms. Spectrograms represent energy of the frequency content
in a short time window for a number of time points and frequencies. Speech
spectrogram is a standard representation in speech recognition. Palomäki et al.
(2004) apply the missing-data framework to recognise reverberant speech. The
algorithm seeks strong speech onsets not contaminated by reverberation and speech
recognition is based on only the values that are observed. This approach increases
the recognition accuracy substantially.

4.1.5 Partially observed values

A single value in the data can be somewhere between being observed and missing.
So-called coarse data means that we only know that a data point belongs to a
certain subset of all possibilities. So-called soft or fuzzy data generalises this
further by giving weights to the possibilities. Pearl (1988) handles the issue with

52 4. Variational learning of nonlinear graphical models

x

y

y

x

y

x

Figure 4.1: Some x-values of the data are observed only partially. They are marked
with dotted lines representing their confidence intervals. Top: A simple data set
for a factor analysis problem. Bottom left: In a compared approach, where a
distribution is fixed over the values, the model (a Gaussian shown as the ellipse)
needs to adjust to cover the distributions. Bottom right: In the virtual evidence
approach, the partially observed values are reconstructed based on the model.

so called virtual evidence. The partially observed node itself is set as missing, but
a new node is added as a child for it. Observing the new node produces a wanted
likelihood term for the partially observed node.

In Publication III, different ways of handling partially observed values are stud-
ied in context of variational Bayesian learning. A simple example comparing two
different approaches is given in Figure 4.1. The virtual evidence approach is rec-
ommended based on both theory and experimentation in which independent factor
analysis (see Section 3.1.4) was applied to real image data.

Green et al. (2001) and Seltzer et al. (2004) study missing and unreliable values
framework to improve speech recognition in noisy environment. The recognition
accuracy is greatly improved in noisy environments by first identifying components
in the spectrographic representation that are corrupt.

4.2. Nonlinear factor analysis 53

4.2 Nonlinear factor analysis

Recall factor analysis described in Section 3.1.3, in which the conditional density in
Equation (3.14) is restricted to be linear. In nonlinear FA, the generative mapping
from factors (or latent variables or sources) to data is no longer restricted to be
linear. The general form of the model is

x(t) = f(s(t),θf) + n(t) . (4.6)

This can be viewed as a model about how the observations were generated from
the sources. The vectors x(t) are observations at time t, s(t) are the sources, and
n(t) are noise. The function f(·) is a mapping from source space to observation
space parametrised by θf .

Lappalainen and Honkela (2000) use a multi-layer perceptron (MLP) network (see
Haykin, 1999) with tanh-nonlinearities to model the mapping f :

f(s;A,B,a,b) = B tanh(As + a) + b , (4.7)

where the tanh nonlinearity operates on each component of the input vector sep-
arately. The mapping f is thus parameterised by the matrices A and B and bias
vectors a and b. MLP networks are well suited for nonlinear FA. First, they are
universal function approximators (see Hornik et al., 1989, for proof) which means
that any type of nonlinearity can be modelled by them in principle. Second, it is
easy to model smooth, nearly linear mappings with them. This makes it possible
to learn high dimensional nonlinear representations in practice.

The traditional use of MLP networks differs a lot from the use in nonlinear FA.
Traditionally MLP networks are used in a supervised manner, mapping known
inputs s(t) to desired outputs x(t). During training of the network, both s(t) and
x(t) are observed, whereas in nonlinear FA, s(t) is always latent. The traditional
learning problem is much easier and can be reasonably solved by using just point
estimates.

The used posterior approximation is a fully factorial Gaussian:

q(Θ) =
∏

i

q(Θi) =
∏

i

N
(
Θi; Θi, Θ̃i

)
, (4.8)

where the unknown variables Θi include the factors s, the matrices A and B,
and other parameters. Thus for each unknown variable θi, there are two parame-
ters, the posterior mean Θi and the posterior variance Θ̃i. The distribution that
propagates through the nonlinear mapping f has to be approximated. Honkela

54 4. Variational learning of nonlinear graphical models

and Valpola (2005) suggest to do this by linearising the tanh-nonlinearities using
a Gauss-Hermite quadrature. This works better than a Taylor approximation or
using a Gauss-Hermite quadrature on the whole mapping f .

Using linear independent component analysis (ICA, see Section 3.1.4) on sources
s(t) found by nonlinear factor analysis is a solution to the nonlinear ICA prob-
lem, that is, finding independent components that have been nonlinearly mixed
to form the observations. A variety of approaches for nonlinear ICA are reviewed
by Jutten and Karhunen (2004). Often, a special case known as post-nonlinear
ICA is considered. In post-nonlinear ICA, the sources are linearly mixed with the
mapping A followed by component-wise nonlinear functions:

f(s; θf) = φ(As + a), (4.9)

where the nonlinearity φ again operates on each element of its argument vector
separately. Ilin and Honkela (2004) consider post-nonlinear ICA by variational
Bayesian learning.

4.3 Nonlinear state-space models

In many cases, measurements originate from a dynamical system and form time
series. In such cases, it is often useful to model the dynamics in addition to the
instantaneous observations. Valpola and Karhunen (2002) extend the nonlinear
factor analysis model by adding a nonlinear model for the dynamics of the sources
s(t). This results in a state-space model where the sources can be interpreted
as the internal state of the underlying generative process. On the other hand,
nonlinear state-space models are a direct extension of linear state-space models
(see Section 3.1.6) where the linearity assumption is relaxed.

The nonlinear static model of Equation (4.6) is extended by adding another non-
linear mapping g to model the dynamics. This leads to source model

s(t) = s(t− 1) + g(s(t− 1),θg) + ns(t) , (4.10)

g(s;C,D, c,d) = D tanh(Cs + c) + d , (4.11)

where s(t) are the sources (states), ns(t) is the Gaussian noise, and the dynamics
mapping g(·) is modelled by an MLP network.

In case the dynamic system is changing slowly, there are high correlations between
consecutive states. This is taken into account by giving up the fully factorial
posterior approximation used in nonlinear FA. The posterior distribution of each

4.3. Nonlinear state-space models 55

component i of the state vector s(t) is conditioned on the same component i of the
state vector s(t− 1). The approximate density q(si(t) | si(t− 1)) is parameterised
by the mean, linear dependence, and variance (see Valpola and Karhunen, 2002,
for details).

Considering the sequence of consecutive mappings g in the system dynamics, where
each mapping g consists of a linear mapping, component-wise nonlinearities, and
a second linear mapping, one might think that one of the two linear mappings
before and after the states is redundant since two consecutive linear mappings can
always be combined into one. The second mapping allows the model to select
a representation where the variational approximation is most accurate. It also
allows the dimensionality of the state-space to be different from the number of
used nonlinearities, thus decreasing computational complexity in some cases.

An important advantage of the VB method is its ability to learn a high-dimensional
latent source space. Computational and over-fitting problems have been major
obstacles in developing this kind of unsupervised methods thus far. Potential
applications for the method include prediction and process monitoring, control,
and speech enhancement for recognition. Is process monitoring, Ilin et al. (2004)
show that VB learning is able to find a model which is capable of detecting an
abrupt change in the underlying dynamics of a fairly complex nonlinear process.

4.3.1 State inference

In linear state space models, the sequence of states or sources s(1), . . . , s(T) can
be exactly inferred from data with an algorithm called the Kalman smoothing
by Kalman (1960) (see also Anderson and Moore, 1979). Ghahramani and Beal
(2001) show how belief propagation and the junction tree algorithms can be used
in the inference in the variational Bayesian setting. As an example they perform
inference in linear state-space models. Exact inference is accomplished using a
single forward and backward sweep. Unfortunately these results do not apply to
nonlinear state space models.

The idea behind iterated extended Kalman smoother (see Anderson and Moore,
1979) is to linearise the mappings f and g around the current state estimates s(t)
using the first terms of the Taylor series expansion. The algorithm alternates be-
tween updating the states by Kalman smoothing and renewing the linearisation.
When the system is highly nonlinear or the initial estimate is poor, the iterated ex-
tended Kalman smoother may diverge. The iterative unscented Kalman smoother
by Julier and Uhlmann (1997) replaces the local linearisation by a deterministic
sampling technique. The sampled points are propagated through the nonlineari-

56 4. Variational learning of nonlinear graphical models

ties, and a Gaussian distribution is fitted to them. The use of non-local informa-
tion improves convergence and accuracy at the cost of doubling the computational
complexity, but still there is no guarantee of convergence.

Particle filtering (Doucet et al., 2001) is an increasingly popular method for state
inference. It generates random samples from the posterior distribution. The basic
version requires a large number of particles or samples to provide a reasonable ac-
curacy. If the state space is high dimensional, the sufficient number of samples can
become prohibitively large. There are many improvements for the basic algorithm
to improve efficiency. One of them, Rao-Blackwellisation (see e.g. Ristic et al.,
2004), uses analytical solutions to some of the filtering equations instead of pure
sampling.

Variational Bayesian inference in nonlinear state-space models is based on updating
the posterior approximation of states for minimising the cost function C. Recall
that C is a sum of simple terms. Terms that involve a certain state s(t) at time
t are independent of all the other states except the closest neighbours s(t − 1)
and s(t+ 1). Most optimisation algorithms would thus only consider information
from the closest neighbours for each update. Information spreads around slowly
because the states of different time slices affect each other only between updates.
It is possible to predict this interaction by a suitable approximation.

Publication V introduces an update algorithm for the posterior mean of the states
s(t) by approximating total derivatives

dC

ds(t)
=

T∑

τ=1

∂C

∂s(τ)

∂s(τ)

∂s(t)
. (4.12)

Once we can approximate ∂s(t)
∂s(t−1) and ∂s(t)

∂s(t+1) by linearising the mappings f and

g, the total derivatives are computed efficiently using the chain rule and dynamic
programming. To summarise, the novel algorithm is based on minimising a varia-
tional Bayesian cost function and the novelty is in propagating the gradient ∂C

∂s(τ)

through the state sequence.

When an algorithm is based on minimising a cost function, it is fairly easy to guar-
antee convergence. While the Kalman filter is clearly the best choice for inference
in linear Gaussian models, the problem with many of the nonlinear generalisation
is that they cannot guarantee convergence. Even when the algorithms converge,
convergence can be slow. Another recent fix for convergence by Psiaki (2005)
comes with a large computational cost.

Publication V compares the proposed algorithm to some of the existing methods
using two experimental setups: Simulated double inverted pendulum and real-

4.3. Nonlinear state-space models 57

world speech spectra. The results were better than any of the comparison methods
in all cases. The comparison to particle filtering was not conclusive because the
particle filter was not Rao-Blackwellisised.

4.3.2 Control

Model predictive control (see Morari and Lee, 1999, for a survey) aims at control-
ling a dynamical system by using a predictive model. Control inputs u(t) are added
to the nonlinear state-space model. In publication IV this is done by modifying
the system dynamics in Equation (4.10) by

[
u(t)
s(t)

]
= g

([
u(t− 1)
s(t− 1)

]
,θg

)
+ m(t). (4.13)

Compared to Equation (3.23), the control signals u(t) are not coming from out-
side the model, but they are modelled as well. Whereas feedback control in Equa-
tion (3.24) models control inputs as a fixed function of the observations, Equa-
tion (4.13) only gives a distribution for the control inputs and leaves the exact
selection open.

Publication IV studies three different control schemes in this setting. Direct control
is based on using the internal forward model directly by selecting the mean of the
probability distribution given by Equation (4.13). Direct control is fast to use, but
the learning of the mapping g is hard to do well.

The second control scheme is nonlinear model-predictive control (see e.g. Eduardo
Fernández Camacho, 2004), which is based on optimising control signals based on
maximising a utility function. First, an initial guess for the control signals u(t) is
made. The posterior distribution of the future states are inferred. The gradient
of total expected utility with respect to states and control signals is propagated
backwards in time. Control signals are then updated in the direction of increasing
utility. This process is iterated as long as there is time before the next control
signal needs to be selected. Nonlinear model-predictive control can be seen as
applying decision theory (see Sections 2.4 and 3.2.4).

Optimistic inference control, introduced in Publication IV, is the third studied
control scheme. It is based on Bayesian inference answering the question: “As-
suming success in the end, what will happen in near future?” Control signal is
inferred given the history of observations and assuming wanted observations af-
ter a gap of missing values. Inference combines the internal forward model with
the evidence propagating backwards from the desired future. Optimistic infer-
ence control lacks in flexibility and theoretical foundation compared to nonlinear

58 4. Variational learning of nonlinear graphical models

F

x

θ

Figure 4.2: The cart-pole system. The goal is to swing the pole to an upward
position and stabilise it without hitting the walls. The cart can be controlled by
applying a force to it.

model-predictive control, but it provides a link between two problems: inference
and control. It gave the inspiration for the inference algorithm introduced in Pub-
lication V. Tornio and Raiko (2006) apply the algorithm back in control. Attias
(2003) independently discovered the idea behind optimistic inference control, call-
ing it planning by probabilistic inference. His example, finding a goal in a grid
world, is quite different from control, but the underlying idea is still the same.

The proposed control methods were tested with a cart-pole swing-up task in Fig-
ure 4.2. Figure 4.3 illustrates the model predictive control in action. The experi-
mental results in Publication IV confirm that selecting actions based on a state-
space model instead of the observation directly has many benefits: First, it is more
resistant to noise because it implicitly involves filtering. Second, the observations
(without history) do not always carry enough information about the system state.
Third, when nonlinear dynamics are modelled by a function approximator such as
an MLP network, a state-space model can find such a representation of the state
that it is more suitable for the approximation and thus more predictable.

Model development is by far the most critical and time-consuming step in imple-
menting a model predictive controller (Morari and Lee, 1999). The analysis in
Publication IV is of course very shallow compared to the huge mass of control
literature but there seems to be need for sophisticated model learners (or system
identifiers). For instance, Rosenqvist and Karlström (2005) also learn a nonlinear
state-space model for control. The nonlinearities are modelled using piecewise lin-
ear mappings. Parameters are estimated using the prediction error method, which
is equivalent to the maximum likelihood estimation in the Bayesian framework.

4.4. Bayes Blocks for nonlinear Bayesian networks 59

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

time steps

ob
se

rv
ed

 s
ta

te x
dx
θ
dθ
F

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

hi
dd

en
 s

ta
te

time steps

Figure 4.3: Top: The pole is successfully swung up by moving first to the left
and then right. Predictions are plotted with grey. Bottom: The hidden states,
observations, and the control signal in the same situation. The current time t = 16
is marked with a vertical dash line. The prediction horizon is 40 steps.

4.4 Bayes Blocks for nonlinear Bayesian networks

Nonlinear factor analysis and nonlinear state-space models can be seen as spe-
cial cases of Bayesian networks where the linearity assumption is relaxed. Aside
from these two, there are lots of possibilities to build the model structure that
defines the dependencies between the parameters and the data. To be able to
manage the variety, a modular software package using C++/Python called the
Bayes Blocks (Valpola et al., 2003a) has been created. It is introduced in Publi-
cation I and in an earlier conference paper by Valpola et al. (2001).

60 4. Variational learning of nonlinear graphical models

−1zv

m s

As+a f(s)
s(t−1)

s
A,a

s

s(t)

Figure 4.4: First subfigure from the left: The circle represents a Gaussian node cor-
responding to the latent variable s conditioned by mean m and variance exp(−v).
Second subfigure: Addition and multiplication nodes are used to form an affine
mapping from s to As + a. Third subfigure: A nonlinearity f is applied immedi-
ately after a Gaussian variable. The rightmost subfigure: Delay operator delays a
time-dependent signal by one time unit.

The design principles for Bayes Blocks have been the following. Firstly, we use
standardised building blocks that can be connected rather freely and can be learned
with local learning rules, i.e. each block only needs to communicate with its neigh-
bours. Secondly, the system should work with very large scale models. Com-
putational complexity is linear with respect to the number of data samples and
connections in the model.

The building blocks include Gaussian variables, summation, multiplication, and
nonlinearity. The framework does not make much difference in parameters θ and
latent variables S, the former are represented with scalars and the latter as vec-
tors. Variational Bayesian learning provides a cost function which can be used for
updating the variables as well as optimising the model structure. The derivation
of the cost function, as well as learning and inference rules, is automatic which
means that the user only needs to define the connections between the blocks.

The Gaussian node is a variable node and the basic element in building hierarchi-
cal models. Figure 4.4 (leftmost subfigure) shows the schematic diagram of the
Gaussian node. Its output is the value of a Gaussian random variable s, which
is conditioned by the inputs m and v. Denote generally by N

(
x;mx, σ

2
x

)
the

probability density function of a Gaussian random variable x having the mean mx

and variance σ2
x. Then the conditional probability function of the variable s is

p(s | m, v) = N (s;m, exp(−v)). As a generative model, the Gaussian node takes
its mean input m and adds to it Gaussian noise (or innovation) with variance
exp(−v).

4.4. Bayes Blocks for nonlinear Bayesian networks 61

The addition and multiplication nodes are used for summing and multiplying vari-
ables. These standard mathematical operations are typically used to construct
linear mappings between the variables. A nonlinear computation node can be
used for constructing nonlinear mappings between the variable nodes. The de-
lay operation can be used to model dynamics. Harva et al. (2005) implements
several new blocks including mixture-of-Gaussians and rectified Gaussians. Harva
and Kabán (2005) use the rectified Gaussian node to create a factor model with
non-negativity constraints and Nolan et al. (2006) applies Bayes Blocks in an as-
tronomical problem.

Nodes propagate certain expectations about their state to their neighbours in
the network. For variable nodes in a network, update rules for the posterior
approximation q that minimise the cost function C given that q of all the other
variables stays constant, have been derived. The updates are very simple since
the posterior approximation q is of a very simple form: It is a Gaussian with a
diagonal covariance matrix.

Winn and Bishop (2005) introduce an algorithm called variational message passing
with close similarities with Bayes Blocks. It does not allow for nonlinearities or
variance modelling (see the following section), but on the other hand, it handles
discrete variables more freely. It also allows for a posterior approximation fac-
torised such that disjoint groups of variables are independent, but dependencies
within the group are modelled. Variational message passing updates the poste-
rior approximation of one factor at a time using VB learning. Note that the best
properties of Bayes Blocks and variational message passing could be combined.

Similar models can be studied also with rather different posterior approximations.
Spiegelhalter et al. (1995) introduce the BUGS software package that uses Gibbs
sampling (see Section 2.5.4) for Bayesian inference. The package supports mixture
models, nonlinearities, and non-stationary variance. A thorough experimental
comparison to Bayes Blocks would be very valuable.

4.4.1 Variance modelling

In many models, variances are assumed to have constant values although this as-
sumption is often unrealistic in practice. Joint modelling of means and variances
is difficult in many learning approaches, because it can give rise to infinite proba-
bility densities. In Bayesian methods where sampling is employed, the difficulties
with infinite probability densities are avoided, but these methods are not efficient
enough for very large models. The Bayes Blocks allow to build hierarchical or
dynamical models for the variance.

62 4. Variational learning of nonlinear graphical models

The Bayes Blocks framework was used by Valpola et al. (2004) to jointly model
both variances and means in biomedical MEG data. The same approach can be
used to translate any model for a mean to a model for a variance, so a large number
of models in the literature could be explored as models for variance as well.

The left subfigure of Figure 4.5 shows how linear state-space model (see Sec-
tion 3.1.6) is built using Bayes Blocks. It can be extended into a model for
both means and variances as depicted graphically in the right subfigure of Fig-
ure 4.5. The variance sources u(t) characterise the innovation process of s(t), in
effect telling how much the signal differs from the predicted one but not in which
direction it is changing. Both regular sources s(t) and variance sources u(t) are
modelled dynamically by using one-step recursive prediction model for them. The
model equations are:

x(t) = As(t) + a + nx(t) (4.14)

s(t) = Bs(t− 1) + b + ns(t) (4.15)

nsi(t) = N (nsi(t); 0, exp [−ui(t)]) (4.16)

u(t) = Cu(t− 1) + c + nu(t), (4.17)

where the variance of nsi(t), the ith component of the noise vector ns(t), is deter-
mined by the variance source ui(t).

4.4.2 Hierarchical nonlinear factor analysis

In hierarchical nonlinear factor analysis (HNFA) (Raiko, 2001; Valpola et al.,
2003b), there are a number of layers of Gaussian variables, the bottom-most layer
corresponding to the data. There is a linear mixture mapping from each layer to
all the layers below it. The middle layer variables are immediately followed by a
nonlinearity. The model structure for a three-layer network using Bayes Blocks is
depicted in the left subfigure of Figure 4.6. Model equations are

h(t) = As(t) + a + nh(t) (4.18)

x(t) = Bφ[h(t)] + Cs(t) + b + nx(t) , (4.19)

where nh(t) and nx(t) are Gaussian noise terms and the nonlinearity φ(ξ) =
exp(−ξ2) operates on each element of its argument vector separately. This activa-
tion function has the universal approximation property as well (see Stinchcombe
and White, 1989, for proof). Note that the short-cut mapping C from sources
to observations means that hidden nodes only need to model the deviations from
linearity.

4.4. Bayes Blocks for nonlinear Bayesian networks 63

−1z

A

B

s(t)

x(t)

A

u(t) s(t)

x(t)

−1z

B

−1z

C

Figure 4.5: Model structures represented using the blocks in Figure 4.4. Observed
variables are shaded. Left: A linear Gaussian state-space model. Right: A dynamic
model for the variances of the sources which also have a recurrent dynamic model.

HNFA has latent variables h(t) in the middle layer, whereas in nonlinear FA, the
middle layer is purely computational. This results in some differences. Firstly, the
cost function C in HNFA is evaluated without resorting to approximation, since
the required integrals can be solved analytically. Secondly, the computational
complexity of HNFA is linear with respect to the number of sources, whereas the
computational complexity of nonlinear FA is quadratic. HNFA is thus applicable
to larger problems, and it is feasible to use even more layers than three. Also, the
efficient pruning facilities of Bayes Blocks allow determining whether the nonlinear-
ity is really needed and pruning it out when the mixing is linear, as demonstrated
by Honkela et al. (2005).

The good properties of HNFA come with a cost. The simplifying assumption of
diagonal covariance of the posterior approximation, made both in nonlinear FA
and HNFA, is much stronger in HNFA because it applies also in the middle layer
variables h(t). Publication II compares the two methods in reconstructing missing
values in speech spectrograms. As seen in the right subfigure of Figure 4.6, HNFA is
able to reconstruct the spectrogram reasonably well, but quantitative comparison
reveals that the models learned in HNFA are more linear (and thus in some cases

64 4. Variational learning of nonlinear graphical models

s(t)

x(t)

h(t)

C

A

B

Original data

Data with missing values

HNFA reconstruction

Figure 4.6: Left: The model structure for hierarchical nonlinear factor analysis
(HNFA). Right: Some speech data with and without missing values (Setting 1)
and the reconstruction given by HNFA.

worse) compared to the ones learned in nonlinear FA.

4.4.3 Relational models

So far, the models have been divided into two categories: static and dynamic. In
static modelling, each observation or data sample is independent of the others. In
dynamic models, the relations between consecutive observations are modelled. The
generalisation of both is that the relations are described in the data itself, that
is, each observation might have a different model structure. The following two
chapters concentrate on relational models. One of the models, nonlinear relational
Markov network (see Section 6.3), is implemented using Bayes Blocks.

Chapter 5

Inductive logic programming

Often the structure that relates objects or variables in machine learning tasks is
assumed to be constant, for example, the data comes in samples of fixed size as in
all of the models presented in Section 3.1. Sometimes the samples are structured,
like molecules, or related to each other in an individual manner, like web pages.
First-order logic, or equivalently, relational modelling is needed to represent such
structured data. Inductive logic programming aims at learning logic programmes
from data by combining machine learning and first-order logic, but let us first
discuss logic programming in general.

5.1 Logic programming

The main idea of logic programming is that deduction can be viewed as a form of
computation (Sterling and Shapiro, 1994). The declarative statement

H ⇐ B1 ∧B2 ∧B3 (5.1)

can be interpreted procedurally as “to solveH , solveB1 andB2 andB3”, or shortly
H ← B1, B2, B3. A logic programme is thus a set of logical axioms and it is run by
querying for a proof of some goal statement. The closed world assumption (Reiter,
1978) is used, that is, everything that cannot be proven to be true, is assumed to
be false.

Normally the statements in a logic programme are restricted to be of the form
H ← B1, . . . , Bn, that is, they are so-called Horn clauses. This ensures that the

65

66 5. Inductive logic programming

proof for the goal statement has a simple tree structure. Atom H is called the head
of the clause and the atoms B1, . . . , Bn form the body of the clause. Statements
with n = 0 are called facts because the proof of the head does not require solving
any more statements.

Logic programming uses first-order logic. This means that an atom can be struc-
tured as a predicate followed by a number of arguments in brackets. Some of the
arguments can be variables.1 An example of a rule (or clause) that uses first-order
logic is son(X,Y)← parent(Y,X),male(X), that is, X is the son of Y if Y is the
parent of X and X is male. X and Y are logical variables that can represent any
object (people in this case). Variables are written in upper case to avoid confusion.
Atoms that do not contain any variables are called ground. Completeness theo-
rem by Gödel (1929) states that in first-order predicate calculus every logically
valid formula is provable. Second-order logic allows variables as predicates, but
completeness does not hold anymore.

A logic programme that contains the rule son(X,Y)← parent(Y,X),male(X) and
some ground facts such as parent(mary, robert) and male(robert), can answer a
query son(X,mary). The solver finds the rule and tries to solve the body of the
rule, that is parent(mary,X) and male(X). The only solution is X = robert which
is returned as the output of the programme.

Prolog is the best-known logic programming language. Sterling and Shapiro (1994)
wrote a good book on logic programming and Prolog in specific. Logic program-
ming differs somewhat from traditional procedural programming. The clearest
difference is that the values of variables are fixed once set. Where procedural
programmes tend to have for-loops, logic programmes use recursion instead. The
strong areas of logic programming include handling structured data, symbolic ma-
nipulation, and self-changing programmes. In inductive logic programming, rules
in logic programmes are learned from examples.

5.2 Inductive logic programming

Inductive logic programming (ILP) provides tools for relational data mining, that
is, mining from data stored in multiple tables. It works with the powerful lan-
guage of logic programmes, both as prior domain knowledge and as describing
the discovered patterns. A good introduction to the theory, implementation, and

1Atoms may in general be nested. For example knows(X, mother(X, Y)) ← mother(X, Y)
means that every person X knows that she is the mother of Y if that really is the case. Nested
atoms are out of the scope of this thesis.

5.2. Inductive logic programming 67

1 1
1 1

1 1
1

0
0

00
0

Wines
a b c

john
mary
robert
linda

More
specific

More
general

{}

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

Figure 5.1: Left: Wine tasting data where 1 means that the person liked the wine.
Right: The hypothesis space includes all combinations of items (wines) ordered in
a trellis where the edges represent minimal generalisation (upwards) or minimal
specialisations (downwards). The dashed curve represents the border between
frequent and infrequent itemsets, assuming 30% frequency threshold.

applications of ILP is written by Muggleton and De Raedt (1994). Another in-
troduction to ILP that also relates logic programming terminology to database
terminology, is given by Dzeroski and Lavrac (2001). Books that address ILP
have been written by De Raedt (2005, 1996); Lloyd (2003), and Furukawa et al.
(1999).

The basic data mining task of ILP is as follows: Given positive (and possibly neg-
ative) examples, a concept description language, and possibly background knowl-
edge, find a set of association rules that covers most of the positive examples but
only few of the negative examples.

5.2.1 Example on wine tasting

Let us first study a simple example of propositional data mining in the domain
of wine tasting. The task is to recommend wines based on the list of other wines
that a person likes. Let us assume that we have a large database with information
of whether or not some people like a particular wine. This can be represented as
a table with wines as columns and people as rows. Each cell contains a 1 if the
person likes the wine and 0 if not. Such a table is shown in Figure 5.1.

First, we will find interesting sets of wines. We measure how often all the wines

68 5. Inductive logic programming

of the set are liked by the same people. A frequent itemset is a set of columns for
which the number of rows that has only 1s in the corresponding cells is greater
than some threshold. Let us say that a group of wines is a frequent itemset if at
least 30% of the people like all of them. In this case, the frequent itemsets are
{}, {a}, {b}, {c}, and {a, b}.

The hypothesis space for different itemsets (or patterns) is depicted in Figure 5.1.
The different hypotheses have a partial order for generality and specificity. If
an itemset is frequent, all itemsets that are generalisations of it, are also. If an
itemset is not frequent, all itemsets that are specialisations of it, are infrequent
as well. This property is essential for pruning the hypothesis space during search.
For instance, if we know that {a, c} is not frequent, we also know that {a, b, c}
is not frequent without testing. The size of the hypothesis space is exponential
with respect to the number of items, so pruning is essential to achieve a reasonable
computational complexity.

An association rule tells that if a person likes a certain set of wines, he or she will
like some other wine. A frequent itemset can be transformed into an association
rule by choosing one of the wines to be the one to be predicted based on the
others. Now we can test whether the rule applies to all the people in the database,
or is statistically significant. The found rules are the logic programme that were
inferred from the data inductively. In the example, we can find the rule b ← a

that applies to all cases, that is, everyone who likes wine a also likes wine b.

5.2.2 From propositional to relational learning

The wine tasting example is simple: The data consist of a single table and each row
had only one index (the name of the person). This case is called attribute-value
learning or propositional learning. The case with relational data in multiple tables
and with multiple indices is more complex. In the wine example, first we need to
reformulate b← a as likes(X, b)← likes(X, a), that is, every person X who likes a,
also likes b. Then, we could also have knowledge of marriages between people, that
is, husband(X,Y) is true iff X is the husband of Y . Now the hypotheses include
clauses such as likes(X,Y) ← husband(X,Z), likes(Z, Y), that is, every husband
X likes all the wines Y that his wife Z likes. We could also know the grape and
origin of each wine and make a hypothesis that anyone who likes a wine that is
made of Pinot Noir likes all wines from the same origin. The hypothesis space
becomes more complex, but the trellis defined by the generality relationships is
still present as is.

For traversing the hypothesis space, refinement operators are used. One is the

5.2. Inductive logic programming 69

most general specialisation, mgs(·), that corresponds to an edge downwards in the
lattice of Figure 5.1. Let us define that D > C means that D is more specific than
C. Hypothesis D ∈ mgs(C) iff D > C and there is no hypothesis E such that
D > E > C. For example, hypothesis {a, b} is more specific than hypothesis {a}
since everyone who likes both wines a and b trivially like wine a. The hypothesis
{a, b} is also a most general specialisation of {a} since there is no other hypothesis
that would fit between these two. Note that a hypothesis may have more than one
most general specialisation. The least general generalisation, lgg(·), is the inverse
of mgs(·). It corresponds to an edge upwards in the hypothesis lattice. D ∈ lgg(C)
iff D < C and there is no E such that D < E < C.

One can generate all (possibly infinite) hypotheses in the hypothesis space if one
applies the most general specialisation operation to the null hypothesis repeatedly.
Two of such systems include FOIL by Quinlan (1990) and PROGOL by Muggleton
(1995). Some ILP systems, such as GOLEM by Muggleton and Feng (1992) and
Aleph by Srinivasan (2005), start from the most specific hypotheses and work their
way upwards using the least general generalisation, and some ILP systems use both
types of refinement operators. There are dozens of ILP systems listed on the web
page2 of Network of Excellence in Inductive Logic Programming ILPnet2.

5.2.3 Applications

ILP is often applied to data mining tasks. The goal is not always just concept
learning, as presented above. It is also possible to perform classification, distance
based learning, clustering, descriptive learning, kernel based learning, reinforce-
ment learning, and so on. Here are two example applications.

Toxicological databases list molecules and their effects to living organisms. It is
possible to use ILP to predict this activity based on the structure of the molecule.
The structure can be represented as relational tables containing atoms and bonds.
Itemsets are the frequent substructures in the molecules that should be useful
in classification. Figure 5.2 shows an example. Helma et al. (2000) test several
different ILP systems on predictive toxicology. Graph based molecular data mining
(see overview by Fischer and Meinl, 2004) is an active research topic with lots of
unsolved questions.

Intrusion detection systems are used to monitor computer systems for signs of
security violations. Normally the alerts are presented to the human analyst, but
Pietraszek and Tanner (2005) present an application of ILP for automatic classifi-

2http://www.cs.bris.ac.uk/∼ILPnet2/

70 5. Inductive logic programming

Figure 5.2: Two molecules share a substructure in the bottom left arms. Sub-
structures are useful in classifying molecules.

cation of alerts to decrease the number of false alerts. The data contain the time
of day and week, source and destination ports and IP addresses of the connection,
as well as the amount of traffic for each alert. There is also some background
knowledge such as the network topology. Other alerts related to the current one
are essential in some cases such as password guessing and port scanning. The
induced rules were comprehensible and could decrease the number of false alarms
considerably.

Chapter 6

Statistical relational learning

Chapters 3 and 4 study machine learning from data containing discrete and con-
tinuous values. Statistical relational learning or probabilistic logic learning adds
another element: References are used to describe relationships between objects.
For example, the contents of a web page can be described by a number of at-
tributes, but the links between pages are important as well. Taskar et al. (2002)
show that using relational information in classification of web pages makes the
task much easier.

First-order logic is one way of handling references (or relations). Statistical rela-
tional learning can also be seen as an extension of inductive logic programming
(ILP) described in Chapter 5. The motivation of upgrading ILP to incorporate
probabilities is that the data often contain noise or errors, which calls for a prob-
abilistic approach.

There is a large body of work concerning statistical relational learning in many
different frameworks. See (De Raedt and Kersting, 2003) for an overview and
references. Two of these frameworks will be briefly reviewed in the following.

The formalism of probabilistic relational models (PRMs) by Koller (1999); Getoor
et al. (2001) provides an elegant graphical representation of objects, attributes,
and references (see Figure 6.1). Perhaps its close analogy with relational databases
and object oriented programming has made the formalism quite popular. A PRM
consists of two parts: the relational schema for the domain and the probabilistic
component. Given a database, the relational schema defines a structure for a
Bayesian network over the attributes in the data. The probabilistic component

71

72 6. Statistical relational learning

a c
b

Person’s opinions

a c
b

Wife

Person’s opinions

husband(john,mary)
opinion(john,a)

opinion(john,b)

opinion(mary,b)

Figure 6.1: Left: The graphical representation of a probabilistic relational model.
Right: The parents of opinion(john, b) in a Bayesian network created by a
Bayesian logic programme when applying rules opinion(X, b)← opinion(X, a) and
opinion(X,Y)← husband(X,Z), opinion(Z, Y). The full network is not shown.

describes dependencies among attributes, both within the same object and between
attributes of related objects. The conceptual simplicity comes with a cost in
generality. For instance probabilistic dependencies between links are harder to
represent and require special treatment (Getoor et al., 2002). PRMs have been
applied for instance to gene expression data by Segal et al. (2001).

Kersting and De Raedt (2001, 2006) introduced the framework of Bayesian logic
programmes (BLPs). BLPs generalise Bayesian networks, logic programming, and
probabilistic relational models. Each atom has a random variable associated to it.
For each clause, there is the conditional distribution of the head given the body.
The proofs of all statements form a (possibly infinite) Bayesian network where
atoms are nodes and the head atom of each clause is a child node of the nodes in
the body of the clause. Again, given the logical part of the data, a BLP forms
a Bayesian network over the attributes of the data. Bayesian networks must be
acyclic so the same applies to both PRMs and BLPs.

Let us continue the wine tasting example in Chapter 5 and discuss it from a
BLP point of view. Instead of likes(X,Y) atoms we use opinion(X,Y) and as-
sociate a variable (attribute) to the atom that actually tells what the opinion
is. Then the rule opinion(X, b) ← opinion(X, a) means that the opinion on wine

6.1. Combination rules 73

b depends on the same person’s opinion on wine a. The rule opinion(X,Y) ←
husband(X,Z), opinion(Z, Y) tells that the opinion about a wine depends on the
wife’s opinion on the same wine. The actual probabilistic dependencies are placed
in conditional probability distributions associated to each rule. Note that whereas
a rule in ILP can only make the atom likes(X,Y) true but never false, a rule in
BLP can change the opinion to good or bad.

6.1 Combination rules

There is one non-trivial point in forming a Bayesian network from a PRM or a BLP.
It is when there are one-to-many or many-to-many relationships or equivalently
multiple proofs for a single atom. The child node in the Bayesian network would get
many sets of parents where each set defines a conditional probability distribution
for the child. The number of parents varies from sample to sample. This is solved
by combination rules (or combining rules or aggregate dependencies or aggregate
functions) which combine many probability distributions into one.

Figure 6.1 shows a situation where two rules apply to opinion(john, b). Each rule
gives a conditional probability for John’s opinion about wine b and they must be
combined using a combination rule. Note that the number of rules that apply,
varies from sample to sample.

The most typical combination rule is the noisy-or (see Pearl, 1988) for binary
variables. The probability of the binary variable x being false given its binary
parents y = (y1, . . . , yn) is P (x = 0 | y) =

∏
i|yi=1 qi, that is, x is false iff all its

possible causes yi are independently inhibited by noise with probability qi each.
For example, each disease yi has a probability 1 − qi to cause fever x and the
patient gets the fever if any one of the diseases cause it.

Noisy-or is asymmetric with respect to the binary variables it deals with. If zeros
and ones are mutually exchanged, the rule becomes noisy-and. Publication VI
studies two combination rules that are symmetric and can be applied to discrete
and continuous values as well. The first is Näıve Bayes (or maximum entropy)
combination rule which corresponds to having a Markov network where the dif-
ferent sets of parents are not connected to each other. The second is product of
experts, where the probability density is a function of the product of probability
densities proposed by the different experts (or sets of parents). Other combination
rules include sigmoid (Neal, 1992), noisy maximum and minimum (Diez, 1993),
mixture of experts, and any aggregate functions such as sum, average, median,
mode, and count (Getoor, 2001; Kersting and De Raedt, 2006).

74 6. Statistical relational learning

6.2 Logical hidden Markov models

Logical hidden Markov models (LOHMMs) introduced in Publication VII, deal
with sequences of structured symbols in the form of logical atoms, rather than
flat characters. They can be seen as a special case of statistical relational learning
or as an extended version of hidden Markov models (HMMs, see Section 3.1.5).
LOHMMs try to retain as much of the expressiveness of first-order logic as possible
while still having as efficient algorithms for learning as HMMs. States and obser-
vations are logical atoms and transitions can involve variable bindings. LOHMMs
have been implemented in Prolog.

Many real world sequences such as protein secondary structures or UNIX shell logs
exhibit a rich internal structure. Traditional probabilistic models of sequences,
however, consider sequences of unstructured symbols only. For instance, con-
sider a sequence of UNIX commands, which may have parameters such as “emacs
lohmms.tex, ls, latex lohmms.tex”. Commands are essentially structured. Ap-
plying HMMs requires either 1) ignoring the structure of the commands (i.e., the
parameters), or 2) taking all possible parameters explicitly into account. The
former approach results in a serious information loss and the latter leads to a com-
binatorial explosion in the number of symbols and parameters of the HMM and as
a consequence inhibits generalisation. Using logical atoms, the above UNIX com-
mand sequence can be represented as “emacs(lohmms.tex), ls, latex(lohmms.tex)”.
There are two important motivations for using logical atoms at the symbol level.
Firstly, variables in the atoms allow one to make abstraction of specific symbols.
For example, the logical atom emacs(X) represents all files X edited using emacs.
Secondly, unification allows one to share information among states. For example,
the sequence emacs(X), latex(X) denotes that the same file is used as an argument
for both emacs and latex.

Let us return to the coin example in Section 3.1.5 to help define a LOHMM as a
generative model. Figure 6.2 shows the HMM and the corresponding LOHMM.
Transitions are divided into two steps (compared to just one in HMMs). To gen-
erate data, first, a rule (or an abstract transition) is selected according to the
(abstract) transition probabilities to find out the resulting abstract state (an atom
such as coin(X)). Only the rules with most specific bodies are applied, for instance
in the state coin(2), the rules for coin(X) are not used. Second, the remaining vari-
ables in the atom are instantiated using so called selection probabilities. The scope
of variables is restricted to single transitions, that is, abstract states coin(X) and
coin(Y) are equivalent after variable bindings in that transition are taken into
account. Note that also the observations (h and t) can be structured atoms in
general.

6.2. Logical hidden Markov models 75

0.7:t

0.3:h0.7:h

0.3:t

start

bag

coin1 coin2
0.5 0.5

1.0

h
0.3:coin(2) coin(2)

t
0.7:coin(X) coin(2)

1.0:coin(X) start

t

h

0.3:coin(Y) coin(X)

0.7:coin(X) coin(X)

0.7:t

0.3:h

start

coin(X)

1.0

0.3:t

coin(Y) coin(2)

0.7:h

coin(_)

2

0.50.5

1

Figure 6.2: Left: A graphical representation of a hidden Markov model repeated
from Figure 3.3. Right:The corresponding logical hidden Markov model. Bottom:
The logical hidden Markov model written as a logic programme. Solid arrows
are abstract transitions, dashed arrows denote special cases, and dotted edges are
needed because of the scope of variables. White-headed arrows in the bottom right
show the selection probabilities.

The rules of a LOHMM form a logic programme where the only fact is the start
state. The proof network for the observation sequence forms a structure of the
corresponding graphical model. Figure 6.3 depicts a graph formed by unfolding
a tiny LOHMM in the UNIX command sequence modelling. Using the graph
it is possible to see how to generalise inference algorithms of HMMs. As for
HMMs, three inference problems are of interest. Let H be a LOHMM and let
X = x1, x2, . . . , xT , T > 0, be a finite sequence of ground observations:

Evaluation: Determine the probability P (X | H) that sequence X was generated

76 6. Statistical relational learning

by the model H.

Most likely state sequence: Determine the hidden state sequence that has most
likely produced the observation sequence X.

Parameter estimation: Given a set {X1, . . . ,Xk} of observation sequences, de-
termine the most likely parameters for the abstract transitions and the se-
lection distributions of H.

Publication VII addresses each of these problems in turn by extending the existing
solutions for HMMs. Belief propagation (see Section 3.1.1), also known as the
forward-backward algorithm in the context of HMMs, is used to compute the
probability of a particular abstract and ground transition at a particular time,
given parameters. Belief propagation, as well as evaluation and finding the most
likely hidden state sequence have the computational complexity of O(Ts2) where
T is the data size and s is the number of possible states.

Probabilities found by belief propagation can be further used for parameter up-
dating by summing over time to get expected counts for both abstract transitions
and selections. Raiko et al. (2002) explain how this ML parameter estimation
is transformed into a more Bayesian solution. The computational complexity is
O(I(Ts2+d)) where I is the number of iterations and d is the number of parameters
in the model. Experiments (see Section 6.2.3) demonstrate that LOHMMs possess
several advantages over traditional HMMs for applications involving structured
sequences.

6.2.1 Reachable states

An important point for computational efficiency in the parameter learning algo-
rithm is the pruning of unreachable states. Before any probabilistic parameters
are even considered, the algorithm finds all the reachable hidden states at each
time step, given the whole observation sequence. The algorithm works as follows.

The only reachable state at time 0 is the start state. Then for each time t from
0 to T − 1, all the transitions from St that agree with the current observation xt

are used to produce the set of reachable states St+1. At this stage, the states are
reachable given the observation sequence so far. Finally for each time t back from
T − 1 to 0, those states in St whose transitions lead outside St+1, are removed.
This takes into account the whole observation sequence.

Note that this procedure resembles the forward-backward algorithm for HMMs.
As a by-product, it can be used to check whether an observation sequence could

6.2. Logical hidden Markov models 77

ls(t)

ls(U’)

ls(o)

em(F’,U)

em(F’,o)

latex(f1,t)

start

em(F,U)

ls(U’)

ls(o)

ls(t)

em(f1,o)

em(f1,t)

latex(f1,t)

ls(o)

ls(t)

ls(o)

ls(t)

ls(U’’)

em(F’’,U)
em(f2,o)

latex(f2,t)

em(F’’,o)em(f2,t)

...

abstract selection abstract selection abstract
transition

selection
transitiontransition

s2s0 s1

Figure 6.3: A logical hidden Markov model is unfolded in time to form a trellis.
Transitions are factorised into two steps, abstract transitions (rules) and selection
(variable instantiation). The example represents user modelling where the states
include commands ls, emacs, and latex, and the user type (t or o) is included as
part of the hidden state. Filenames f1 and f2 are the other arguments of emacs
and latex. See Publication VII for details.

have been generated with the LOHMM. If not, the sets of reachable states are
empty.

6.2.2 Structural learning

The increase in expressiveness of LOHMMs over traditional HMMs comes at the
expense of a more complex model selection problem. Indeed, different abstraction
levels have to be explored. Publication IX proposes a novel method for selecting
logical hidden Markov models from data. The proposed method adapts structural
expectation maximisation (EM) by Friedman (1997). It combines a generalised
expectation maximisation algorithm, which optimises parameters, with structure
search for model selection using inductive-logic-programming (ILP) refinement op-
erators. Structural learning of traditional HMMs has not been very popular, only
recently Won et al. (2006) applied genetic algorithms for that.

78 6. Statistical relational learning

Given a set {X1, . . . ,Xk} of observation sequences, a (possibly infinite) set of
LOHMMs structures, and a scoring function, find the model structure that max-
imises the score.

Selecting a structure of a LOHMM is a significant problem for many reasons.
Firstly, extracting structures from experts can be a laborious and expensive pro-
cess. Secondly, HMMs are commonly learned by estimating the maximum like-
lihood parameters of a fixed, fully connected model. Such an approach is not
feasible for LOHMMs as different abstraction levels have to be explored. Finally,
the parameter estimation of a LOHMM is a costly nonlinear optimisation problem,
so the näıve search is infeasible.

The idea behind structural EM is to first infer the distribution over the hidden
states and collect sufficient statistics about it. In the case of LOHMMs the suf-
ficient statistics are the expected counts of how many times a ground transition
is used. Then different model structures are evaluated based on those statistics.
Evaluating new structures is thus made independent of the number and length of
the data cases — a feature which is important for scaling up.

6.2.3 Applications

LOHMMs have been applied to several different problems. Publication VIII ad-
dresses the application to protein-fold recognition. The number of determined
protein structures is growing rapidly and there are different classification schemes
for them. There is a need for computer methods that can automatically extract
structural signatures for classes of proteins. The secondary structure of a pro-
tein is represented as a sequence of structured symbols, so applying LOHMMs is
very natural. The results on the database and classification scheme SCOP (Struc-
tural Classification Of Proteins from Murzin et al. (1995)) indicate that LOHMMs
possess several advantages over other approaches.

Another application of LOHMMs in the biological domain is the mRNA signal
structure detection presented in Publication VII. mRNA molecules fold to form a
secondary structure which can be described with concepts such as stacking regions,
hairpin loops, and interior loops. The secondary structure of an mRNA forms a
tree which makes it more challenging than that of a protein. A LOHMM was used
to parse a tree in in-order (the node itself between its children) while the tree
structure is essentially stored in the arguments of the hidden state. Classification
accuracy was higher than with the comparison method by Horváth et al. (2001).

UNIX command sequences have been studied with LOHMMs in Publication IX.

6.3. Nonlinear relational Markov networks 79

Figure 6.4: A small protein fold represented emphasising the secondary structure
with helices (blue) and strands (green).

Tasks that have been considered for UNIX command sequences include the pre-
diction of the next command in the sequence by Davison and Hirsh (1998), the
classification of a command sequence in a user category by Korvemaker and Greiner
(2000); Jacobs and Blockeel (2001), and anomaly detection by Lane (1999). LOHMMs
could be applied to all of these tasks and Publication IX reports experiments in
the classification task with results comparable to other methods.

Landwehr et al. (2006) use a custom implementation of LOHMMs for haplotype
reconstruction from genotype data. The proposed method offers a competitive
trade-off between accuracy and computational complexity compared to other state-
of-the-art systems developed for the task.

6.3 Nonlinear relational Markov networks

Bayesian networks assume acyclicity of the network structure. The directed edges
in the graph can be interpreted as causal dependencies and nothing can cause
itself. The same assumption is inherited by BLPs and PRMs.1 In some cases it is
difficult or irrelevant to try to model the direction of the dependency. Say, whether
the husband adopts opinions from his wife, or vice versa, or whether people with
certain combinations of opinions are more likely to marry. Using directed edges
for describing friendship would definitely lead into cycles with a group of friends.
Markov networks (see Section 3.1.2) model dependencies with undirected edges so

1LOHMMs are acyclic by definition since all directed edges point from past to future.

80 6. Statistical relational learning

that it only tells that there is a dependency but not what causes what.

Relational Markov networks (RMN) by Taskar et al. (2002) are to Markov networks
what BLPs are to Bayes networks. A RMN is specified by a set of clique templates
(the logical part) and a potential for each clique template (the probabilistic part).
For instance, the probabilistic part of the template (opinion(X,Y), husband(X,Z),
opinion(Z, Y)) could describe how the opinions of the husband X and wife Z about
the wine Y are related. Given a relational database, the RMN produces an unrolled
Markov network over all the attributes in the data. The cliques instantiated by
a certain template share the same clique potential. Note that an RMN does not
require explicit combination rules.

The general inference task in RMNs is to compute the posterior distribution over
all the attributes. The network induced by data can be very large and densely
connected, so exact inference is often intractable. The loopy belief propagation
algorithm by Murphy et al. (1999) (see Section 3.1.1) is used as an approximation.
The learning task, or the estimation of the clique potentials, requires alternat-
ing between updating the parameters of the potentials and running the inference
algorithm on the unrolled Markov network.

Nonlinear relational Markov networks (NRMN), introduced in Publication VI,
combine the ideas of relational Markov networks by Taskar et al. (2002) and non-
linear Markov networks (NMN) by Hofmann and Tresp (1998) (see Section 3.1.2).
The combination is not very straightforward because the models are quite differ-
ent: RMN specifies potentials over cliques of the network whereas NMN specifies
a distribution of each variable given its neighbours in the network. In NRMN, the
first approach is chosen.

Recall Figure 3.1 that shows a Markov network and its join tree. A node in the
join tree corresponds to a clique in a Markov network. NRMN defines a proba-
bility distribution over the attributes in each clique template. The distributions
are provided by HNFA described in Section 4.4.2. The maximum entropy com-
bination rule requires marginalisation of probability distributions. In nonlinear
models, this cannot usually be done exactly and therefore another combination
rule was selected. In the product-of-experts (PoE) combination rule, the probabil-
ity density is the average of the incoming probability densities on the logarithmic
scale. A characteristic of PoE is that implicit weighting happens in some sense
automatically. When one of the experts gives a distribution with high entropy
(little information) and another one with low entropy (much information), the
combination is close to the latter one.

NRMNs extend graphical models in both nonlinear and relational directions at the
same time. Convergence is guaranteed regardless of loops, unlike in the loopy BP

6.3. Nonlinear relational Markov networks 81

algorithm. There is a lot of room for improvement, though. The current version of
NRMN includes many simplifying assumptions, such as diagonality of the posterior
covariance matrix in HNFA, and separate learning of experts. Experiments with
the game of Go (see Figure 6.5) give promise for NRMNs.

82 6. Statistical relational learning

Figure 6.5: Top left: The board of a Go game in progress. Two players alternately
place stones on empty points trying to surround area and opponent stones. Top
right: The expected owner of each point is visualised with the shade of grey. For
instance, the two white stones in the upper right corner are very likely to be
captured. Bottom left: The strings of stones with their expected owner as the
colour of the square. Pairs of related strings are connected with a blue line if
the blocks have same colours and with a red line when the blocks have opposing
colours. The lines also represent the structure of the implied Markov network.
Bottom right: The covariance between owning a point and scoring high can be
used to determine which parts of the board are important (red). The study of this
kind of data is left as future work.

Chapter 7

Discussion

Extending graphical models to different directions provides a framework where
an ever increasing number of machine learning methods fit. Some people oppose
general solutions in principle, as problem-specific solutions are often more efficient
in practice. A general framework, on the other hand, gives many benefits. Let us
think of a speech recognition system consisting of three modules: the first converts
an audio stream to phonemes, the second stacks phonemes into words, and the
third stacks words into sentences. The communication of uncertainty between
modules becomes an important point. If all the modules are built as graphical
models, this interaction is straightforward and well founded. Secondly, the same
methods can be used to analyse DNA sequences as well as phoneme sequences.
A general framework, such as the one introduced in Publication I, allows reuse of
ideas and software between sometimes surprisingly different applications.

Sometimes it is also reasonable to step back from generality and study useful spe-
cial cases. For instance in statistical relational learning, most attention has been
devoted to highly expressive formalisms. Logical hidden Markov models, intro-
duced in Publication VII, can be seen as an attempt towards downgrading such
highly expressive frameworks. They retain most of the essential logical features
but are easier to understand, adapt, and learn. For the same reasons, simple sta-
tistical techniques (such as logistic regression or näıve Bayes) have been combined
with ILP refinement operators for traversing the search space (see e.g. Popescul
et al., 2003; Landwehr et al., 2005). In nonlinear modelling, special cases such
as nonlinear state-space models, allow for specialised algorithms for initialisation,
visualisation, and inference. Publication V presented an algorithm to speed up
inference in nonlinear state-space models.

83

84 7. Discussion

Computational complexity plays an important part in the methods presented in
this work. Whereas the time complexity of some methods scale exponentially w.r.t.
the size of the problem, the methods studied here scale linearly or quadratically.
This allows for tackling relatively large problems. For instance, the dimensionality
was hundreds in Publication I and the number of possible states was again hundreds
in Publication VIII. In small problems, where even exponential computational
complexity is not prohibitive, the methods studied here do not probably give the
most accurate results.

The learning and inference algorithms presented in this work concentrate on a
single solution candidate with its neighbourhood. This approach is good for its
computational efficiency but it is prone to bad local optima. In many problems
such as tracking (Särkkä et al., 2006), it is very important to explore many different
solutions. It is possible to keep track of several solution candidates at the same
time and during adaptation, to move bad candidates to the vicinity of a better
ones. This same idea is used in beam search, particle filters (Doucet et al., 2001),
and genetic algorithms.

Studying machine learning can also help in understanding how the human mind
works. In the brain, most of the interaction is local, in the sense that the brain
cells directly affect only those cells with which they are in contact. Some machine
learning methods like the belief propagation and the Bayes Blocks framework,
share this notion, while others, such as line search in an optimisation of a global
cost function, do not. Some people would thus prefer the former. It is of course true
that machine learning does not have to work by the same principles as biological
brains, but local algorithms have the benefit of being parallelisable.

7.1 Future work

Perhaps the most important suggestion for future work is to bring lessons learned
from the special cases of nonlinear state-space models and logical hidden Markov
models back to the more general frameworks. Both have good algorithms for
learning and inference that could be generalised.1 The method for nonlinear state-
space models includes properties such as posterior dependencies and control, that
have not been implemented in the otherwise more flexible Bayes Blocks framework.

The visualisation of the learning process could help understanding the methods
better, as well as help to find better initialisations, model structures, or means to
avoid local minima. This is especially important for new users who do not know

1The algorithmic improvements in nonlinear state-space models are ongoing.

7.1. Future work 85

the methods well. Also general usability in most methods needs improvement so
that potential users become users at all.

The number of node types in the Bayes Blocks framework could be increased. Fea-
sible blocks not presented here include discrete variables, the error function non-
linearity (see Frey and Hinton, 1999), the absolute value, the maximum function
(adapt Harva and Kabán, 2005), and MLP networks. The posterior dependencies
of Gaussian variables could be handled relatively easily if the clique size of the join
tree (see Figure 3.1) stays reasonable. If the clique size is too large, it is possible to
use dummy random variables that have posterior correlations with other variables
but no other role in modelling. The framework could also allow parallel processing.
The assumption that vectorised nodes have the same length and they all have the
same parents restrict their use in relational models, whereas scalar nodes have a
lot of overhead and are thus inefficient when used to emulate more flexible vector
nodes.

In some applications, the components of the data have coordinates, like the pixels
of an image in computer vision. A latent variable could refer to the coordinates, as
is done for instance by Winn and Joijic (2005). In another example, changing the
pitch of a voice moves it vertically in the spectrogram. It would be quite reasonable
to model the place of an object or a pitch of a voice with latent variables, but MLP
networks would not be well suited to model the mapping to observations. It would
be important to be able to model these rather different kinds of nonlinear mappings
compared to the ones used in this thesis.

All the learning methods in this thesis aim at unsupervised learning where all the
data is modelled with equal interest. When it is known beforehand how the model
is going to be used, one could concentrate the learning efforts to the task at hand.
This related to attention in cognitive modelling, and discriminative learning (see
Taskar et al., 2002, for an example) in machine learning. Even better, Lasserre
et al. (2006) introduce a principled hybrid of generative and discriminative models.

More applications are needed to show the full potential of the studied methods.
Nonlinear state-space models could easily be used as feature extraction in speech
recognition. An interesting application for relational models would be to study
library data including title, contents, lending history, classification, and keywords
for the material. The found model could be then applied to find structure in web
pages. The application to the game of Go could also be continued. An experimental
comparison of Bayes Blocks and BUGS software libraries would reveal strengths
and weaknesses of different posterior approximations.

In control or decision making, sometimes the best decision is to first gather more
information to be able to make better decisions later. This is known as probing

86 7. Discussion

or exploration, depending on whether information is gathered about the state of
the world or the model of the world. It would be interesting to continue work
by Bar-Shalom (1981) studying probing in control and by Thrun (1992) studying
exploration in control.

There are many ways to combine neural (nonlinear) and logical (relational) meth-
ods. In the models presented here, the logical part defines the structure where the
neural part then operates. It would be possible to let the neural part decide which
logical structures to study. Such a system would be able to use computational
resources more efficiently. For instance in the game of Go, a neural pattern recog-
nition system could decide with which settings a search for local move sequences
should be performed.

Bibliography

Anderberg, M. (1973). Cluster Analysis for Applications. Academic Press, New
York, NY.

Anderson, B. and Moore, J. (1979). Optimal Filtering. Prentice-Hall, Englewood
Cliffs, NJ.

Anderson, C., Domingos, P., and Weld, D. (2002). Relational Markov models and
their application to adaptive web navigation. In Hand, D., Keim, D., Zäıne, O.,
and Goebel, R., editors, Proceedings of the Eighth International Conference on
Knowledge Discovery and Data Mining (KDD-02), pages 143–152, Edmonton,
Canada. ACM Press.

Attias, H. (1999). Independent factor analysis. Neural Computation, 11(4):803–
851.

Attias, H. (2001). ICA, graphical models and variational methods. In Roberts,
S. and Everson, R., editors, Independent Component Analysis: Principles and
Practice, pages 95–112. Cambridge University Press.

Attias, H. (2003). Planning by probabilistic inference. In Bishop, C. M. and Frey,
B. J., editors, Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics (AISTATS 2003), Key West, Florida.

Bar-Shalom, Y. (1981). Stochastic dynamic programming: Caution and probing.
IEEE Transactions on Automatic Control, 26(5):1184–1195.

Barber, D. and Bishop, C. M. (1998). Ensemble learning in Bayesian neural net-
works. In Bishop, C. M., editor, Neural Networks and Machine Learning, pages
215–237. Springer, Berlin.

Bayes, T. (1763/1958). Studies in the history of probability and statistics: IX.
Thomas Bayes’s essay towards solving a problem in the doctrine of chances.
Biometrika, 45:296–315.

87

88 BIBLIOGRAPHY

Beal, M. and Ghahramani, Z. (2003). The variational Bayesian EM algorithm
for incomplete data: with application to scoring graphical model structures.
Bayesian Statistics 7, 7:453–464.

Bernardo, J. M. and Smith, A. F. M. (2000). Bayesian Theory. J. Wiley.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press.

Bishop, C. M. (1999). Latent variable models. In Jordan, M., editor, Learning in
Graphical Models, pages 371–403. The MIT Press, Cambridge, MA, USA.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bromberg, F., Margaritis, D., and Honavar, V. (2006). Efficient Markov net-
work structure discovery from independence tests. In SIAM Data Mining 2006
(SDM06). To appear.

Charniak, E. (1993). Statistical Language Learning. MIT Press, Cambridge, Mas-
sachusetts.

Chen, C., editor (1990). Neural Networks For Pattern Recognition And Their
Applications. World Scientific Publishing, Singapore.

Chen, C. (1999). Linear System Theory and Design. Oxford University Press,
Oxford. 3rd Edition.

Choudrey, R., Penny, W., and Roberts, S. (2000). An ensemble learning approach
to independent component analysis. In Proc. of the IEEE Workshop on Neural
Networks for Signal Processing, Sydney, Australia, December 2000, pages 435–
444. IEEE Press.

Chui, C. and Chen, G. (1991). Kalman Filtering: With Real-Time Applications.
Springer.

Codd, E. (1970). A relational model of data for large shared data banks. Commu-
nications of the Association of Computing Machinery, 13(6):377–387.

Comon, P. (1994). Independent component analysis – a new concept? Signal
Processing, 36:287–314.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999).
Probabilistic Networks and Expert Systems. Springer-Verlag, New York.

Cox, R. T. (1946). Probability, frequency and reasonable expectation. American
Journal of Physics, 14(1):1–13.

BIBLIOGRAPHY 89

Davison, B. and Hirsh, H. (1998). Predicting sequences of user actions. In Pre-
dicting the Future: AI Approaches to Time-Series Analysis, pages 5–12. AAAI
Press. Proceedings of AAAI-98/ICML-98 Workshop, published as Technical
Report WS-98-07.

De Raedt, L., editor (1996). Advances in Inductive Logic Programming. IOS Press.

De Raedt, L. (2005). From Inductive Logic Programming to Multi-Relational Data
Mining. Cognitive Technologies. Springer-Verlag.

De Raedt, L. and Kersting, K. (2003). Probabilistic Logic Learning. ACM-
SIGKDD Explorations: Special issue on Multi-Relational Data Mining, 5(1):31–
48.

Dean, T. L. and Wellman, M. P. (1991). Planning and Control. Morgan Kaufmann.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. J. of the Royal Statistical Society,
Series B (Methodological), 39(1):1–38.

Diez, F. (1993). Parameter adjustment in Bayes networks: The generalized noisy
or-gate. In Proceedings of the Ninth Conference on Uncertainty in Artificial
Intelligence (UAI ’93), pages 99–105, San Francisco, CA. Morgan Kaufmann.

Doucet, A., de Freitas, N., and Gordon, N. J. (2001). Sequential Monte Carlo
Methods in Practice. Springer Verlag.

Doyle, J. C., Francis, B. A., and Tannenbaum, A. R. (1992). Feedback control
theory. MacMillan, New York.

Dubois, D. and Prade, H. (1993). Fuzzy sets and probability: misunderstandings,
bridges and gaps. In Proceedings of the Second IEEE Conference on Fuzzy
Systems, pages 1059–1068.

Dzeroski, S. and Lavrac, N. (2001). Introduction to inductive logic programming.
In Dzeroski, S. and Lavrac, N., editors, Relational Data Mining, pages 48–73.
Springer-Verlag.

Eduardo Fernández Camacho, C. B. (2004). Model Predictive Control. Springer.

Engle, R. F. and Watson, M. W. (1987). The Kalman filter: applications to
forecasting and rational-expectations models. In Bewley, T. F., editor, Advances
in Econometrics Fifth World Congress. Cambridge University Press.

Fischer, I. and Meinl, T. (2004). Graph based molecular data mining—an overview.
In Thissen, W., Wieringa, P., Pantic, M., and Ludema, M., editors, IEEE SMC
2004 Conference Proceedings, pages 4578–4582, Den Haag, The Netherlands.

90 BIBLIOGRAPHY

Frasconi, P., Soda, G., and Vullo, A. (2002). Hidden Markov models for text cate-
gorization in multi-page documents. Journal of Intelligent Information Systems,
18(2/3):195–217.

Frey, B. J. and Hinton, G. E. (1999). Variational learning in nonlinear Gaussian
belief networks. Neural Computation, 11(1):193–214.

Friedman, N. (1997). Learning belief networks in the presence of missing val-
ues and hidden variables. In Fisher, D., editor, Proceedings of the Fourteenth
International Conference on Machine Learning (ICML-1997), pages 125–133,
Nashville, Tennessee, USA. Morgan Kaufmann.

Friedman, N. (1998). The Bayesian structural EM algorithm. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI’98), pages 129–138.

Furukawa, K., Michie, D., and Muggleton, S. (1999). Machine Intelligence 15:
Machine intelligence and inductive learning. Oxford University Press.

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (1995). Bayesian Data Analysis.
Chapman & Hall/CRC Press, Boca Raton, Florida.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721–741.

Getoor, L. (2001). Learning Statistical Models from Relational Data. PhD thesis,
Stanford University.

Getoor, L., Friedman, N., Koller, D., and Pfeffer, A. (2001). Learning probabilistic
relational models. In Džeroski, S. and Lavrač, N., editors, Relational Data
Mining, pages 307–333. Springer-Verlag.

Getoor, L., Friedman, N., Koller, D., and Taskar, B. (2002). Learning probabilistic
models of link structure. Journal of Machine Learning Research, 3:679–707.

Ghahramani, Z. (1998). Learning dynamic Bayesian networks. In Giles, C. and
Gori, M., editors, Adaptive Processing of Sequences and Data Structures, Lecture
Notes in Computer Science, pages 168–197. Springer-Verlag, Berlin.

Ghahramani, Z. and Beal, M. (2001). Propagation algorithms for variational
Bayesian learning. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances
in Neural Information Processing Systems 13, pages 507–513. The MIT Press,
Cambridge, MA, USA.

Ghahramani, Z. and Jordan, M. (1997). Factorial hidden Markov models. Machine
Learning, 29:245–273.

BIBLIOGRAPHY 91

Giarratano, J. and Riley, G. (1994). Expert Systems, Principles and Programming.
PWS Publishing Company, Boston.

Gödel, K. (1929). Über die Vollständigkeit des Logikkalküls. PhD thesis, University
Of Vienna.

Green, P., Barker, J., Cooke, M., and Josifovski, L. (2001). Handling missing and
unreliable information in speech recognition. In Proceedings of the Eighth In-
ternational Workshop on Artificial Intelligence and Statistics (AISTATS 2001),
pages 49–56, Key West, Florida, USA.

Hanson, C. W. and Marshall, B. (2001). Artificial intelligence applications in the
intensive care unit. Critical Care Medicine, 29(2):427–435.

Harman, H. (1967). Modern Factor Analysis. University of Chicago Press, 2nd
edition.

Harva, M. and Kabán, A. (2005). A variational Bayesian method for rectified
factor analysis. In Proc. Int. Joint Conf. on Neural Networks (IJCNN’05),
pages 185–190, Montreal, Canada.

Harva, M., Raiko, T., Honkela, A., Valpola, H., and Karhunen, J. (2005). Bayes
Blocks: An implementation of the variational Bayesian building blocks frame-
work. In Proceedings of the 21st Conference on Uncertainty in Artificial Intel-
ligence (UAI 2005), pages 259–266, Edinburgh, Scotland.

Haykin, S. (1999). Neural Networks – A Comprehensive Foundation, 2nd ed.
Prentice-Hall.

Helma, C., Gottmann, E., and Kramer, S. (2000). Knowledge discovery and data
mining in toxicology. Statistical Methods in Medical Research, 9:329–358. Special
issue on Data Mining in Medicine.

Hinton, G. E. and van Camp, D. (1993). Keeping neural networks simple by
minimizing the description length of the weights. In Proc. of the 6th Ann. ACM
Conf. on Computational Learning Theory, pages 5–13, Santa Cruz, CA, USA.

Hofmann, R. and Tresp, V. (1996). Discovering structure in continuous variables
using Bayesian networks. In Touretzky, D. S., Mozer, M. C., and Hasselmo,
M. E., editors, Advances in Neural Information Processing Systems, volume 8,
pages 500–506. The MIT Press.

Hofmann, R. and Tresp, V. (1998). Nonlinear Markov networks for continuous
variables. In Jordan, M. I., Kearns, M. J., and Solla, S. A., editors, Advances
in Neural Information Processing Systems, volume 10, pages 521–529. The MIT
Press.

92 BIBLIOGRAPHY

Honkela, A., Harmeling, S., Lundqvist, L., and Valpola, H. (2004). Using kernel
PCA for initialisation of variational Bayesian nonlinear blind source separation
method. In Puntonet, C. G. and Prieto, A., editors, Proc. of the Fifth In-
ternational Conference on Independent Component Analysis and Blind Signal
Separation (ICA 2004), volume 3195 of Lecture Notes in Computer Science,
pages 790–797, Granada, Spain. Springer-Verlag, Berlin.

Honkela, A., Östman, T., and Vigário, R. (2005). Empirical evidence of the lin-
ear nature of magnetoencephalograms. In Proc. 13th European Symposium on
Artificial Neural Networks (ESANN 2005), pages 285–290, Bruges, Belgium.

Honkela, A. and Valpola, H. (2004). Variational learning and bits-back coding: an
information-theoretic view to Bayesian learning. IEEE Transactions on Neural
Networks, 15(4):800–810.

Honkela, A. and Valpola, H. (2005). Unsupervised variational Bayesian learning
of nonlinear models. In Saul, L., Weiss, Y., and Bottou, L., editors, Advances
in Neural Information Processing Systems 17, pages 593–600. MIT Press, Cam-
bridge, MA, USA.

Honkela, A., Valpola, H., and Karhunen, J. (2003). Accelerating cyclic update
algorithms for parameter estimation by pattern searches. Neural Processing
Letters, 17(2):191–203.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366.

Horváth, T., Wrobel, S., and Bohnebeck, U. (2001). Relational instance-based
learning with lists and terms. Machine Learning, 43:53–80.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Anal-
ysis. J. Wiley.

Ilin, A. and Honkela, A. (2004). Postnonlinear independent component analysis by
variational Bayesian learning. In Puntonet, C. G. and Prieto, A., editors, Proc.
of the Fifth International Conference on Independent Component Analysis and
Blind Signal Separation (ICA 2004), volume 3195 of Lecture Notes in Computer
Science, pages 766–773, Granada, Spain. Springer-Verlag, Berlin.

Ilin, A. and Valpola, H. (2005). On the effect of the form of the posterior ap-
proximation in variational learning of ICA models. Neural Processing Letters,
22(2):183–204.

Ilin, A., Valpola, H., and Oja, E. (2004). Nonlinear dynamical factor analysis for
state change detection. IEEE Transactions on Neural Networks, 15(3):559–575.

BIBLIOGRAPHY 93

Jacobs, N. and Blockeel, H. (2001). The learning shell: Automated macro con-
struction. In User Modeling 2001, pages 34–43.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge Uni-
versity Press, Cambridge, UK.

Jensen, F., Lauritzen, S. L., and Olesen, K. G. (1990). Bayesian updating in
causal probabilistic networks by local computations. Computational Statistics
Quarterly, 4:269–282.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag.

Jordan, M., editor (1999). Learning in Graphical Models. The MIT Press, Cam-
bridge, MA, USA.

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction
to variational methods for graphical models. In Jordan, M., editor, Learning in
Graphical Models, pages 105–161. The MIT Press, Cambridge, MA, USA.

Julier, S. and Uhlmann, J. (1997). A new extension of the Kalman filter to non-
linear systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and Controls.

Jutten, C. and Karhunen, J. (2004). Advances in blind source separation (BSS) and
independent component analysis (ICA) for nonlinear mixtures. International
Journal of Neural Systems, 14(5):267–292.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45.

Kendall, M. (1975). Multivariate Analysis. Charles Griffin & Co.

Kersting, K. and De Raedt, L. (2001). Bayesian logic programs. Technical Report
151, Institute for Computer Science, University of Freiburg, Germany.

Kersting, K. and De Raedt, L. (2006). Bayesian Logic Programming: Theory
and tool. In Getoor, L. and Taskar, B., editors, An Introduction to Statistical
Relational Learning. MIT Press. To appear.

Kersting, K. and Landwehr, N. (2004). Scaled conjugate gradients for maximum
likelihood: An empirical comparison with the EM algorithm. In J. A. Gámez,
S. M. and Salmerón, A., editors, ”Advances in Bayesian Networks”, Series:
Studies in Fuzziness and Soft Computing, volume 146, pages 235–254. Springer.

Kirk, D. E. (2004). Optimal Control Theory. Courier Dover Publications.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598):671–680.

94 BIBLIOGRAPHY

Klir, G. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions. Prentice-Hall Inc.

Kohonen, T. (2001). Self-Organizing Maps. Springer, 3rd, extended edition.

Koller, D. (1999). Probabilistic relational models. In Džeroski, S. and Flach, P.,
editors, Proceedings of Ninth International Workshop on Inductive Logic Pro-
gramming (ILP-99), volume 1634 of LNAI, pages 3–13, Bled, Slovenia. Springer.

Korvemaker, B. and Greiner, R. (2000). Predicting UNIX command files: Adjust-
ing to user patterns. In Adaptive User Interfaces: Papers from the 2000 AAAI
Spring Symposium, pages 59–64.

Koski, T. (2001). Hidden Markov Models for Bioinformatics. Kluwer Academic
Publishers.

Landwehr, N., Kersting, K., and De Raedt, L. (2005). nFOIL: Integrating Näıve
Bayes and Foil. In Veloso, M. and Kambhampat, S., editors, Proceedings of
the Twentieth National Conference on Artificial Intelligence (AAAI-05), pages
275–282, Pittsburgh, Pennsylvania, USA. AAAI Press.

Landwehr, N., Mielikäinen, T., Eronen, L., Toivonen, H., and Mannila, H. (2006).
Constrained hidden markov models for population-based haplotyping. In Rouso,
J., Kaski, S., and Ukkonen, E., editors, Proceedings of the Workshop on Prob-
abilistic Modeling and Machine Learning in Structural and Systems Biology
(PMSB), Tuusula, Finland.

Lane, T. (1999). Hidden Markov models for human/computer interface modeling.
In Rudström, Å., editor, Proceedings of the IJCAI-99 Workshop on Learning
about Users, pages 35–44, Stockholm, Sweden.

Lappalainen, H. and Honkela, A. (2000). Bayesian nonlinear independent compo-
nent analysis by multi-layer perceptrons. In Girolami, M., editor, Advances in
Independent Component Analysis, pages 93–121. Springer-Verlag, Berlin.

Lappalainen, H. and Miskin, J. (2000). Ensemble learning. In Girolami, M., editor,
Advances in Independent Component Analysis, pages 75–92. Springer-Verlag,
Berlin.

Lasserre, J., Bishop, C. M., and Minka, T. (2006). Principled hybrids of generative
and discriminative models. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, New York.

Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, New York.

BIBLIOGRAPHY 95

Little, R. and D.B.Rubin (1987). Statistical Analysis with Missing Data. J. Wiley
& Sons.

Lloyd, J. (2003). Logic for Learning: Learning Comprehensible Theories from
Structured Data. Springer-Verlag.

MacKay, D. J. C. (1995a). Developments in probabilistic modelling with neural
networks – ensemble learning. In Neural Networks: Artificial Intelligence and
Industrial Applications. Proc. of the 3rd Annual Symposium on Neural Networks,
pages 191–198.

MacKay, D. J. C. (1995b). Probable networks and plausible predictions—a re-
view of practical Bayesian methods for supervised neural networks. Network:
Computation in Neural Systems, 6:469–505.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press.

Maybeck, P. S. (1979). Stochastic models, estimation, and control, volume 141 of
Mathematics in Science and Engineering. Academic Press.

Meila, M. and Jordan, M. I. (1996). Learning fine motion by markov mixtures of
experts. In Touretzky, D., Mozer, M. C., and Hasselmo, M., editors, Advances
in Neural Information Processing Systems 8. MIT Press.

Meng, X. L. and van Dyk, D. A. (1995). Augmenting data wisely to speed up
the em algorithm. In Proceedings of the Statistical Computing Section of the
American Statistical Association, pages 160–165.

Minka, T. (2001). Expectation propagation for approximate Bayesian inference.
In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,
UAI 2001, pages 362–369.

Miskin, J. and MacKay, D. J. C. (2001). Ensemble learning for blind source
separation. In Roberts, S. and Everson, R., editors, Independent Component
Analysis: Principles and Practice, pages 209–233. Cambridge University Press.

Morari, M. and Lee, J. (1999). Model predictive control: Past, present and future.
Computers and Chemical Engineering, pages 667–682.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing
Journal, 13:245–286.

Muggleton, S. and De Raedt, L. (1994). Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19/20:629–679.

96 BIBLIOGRAPHY

Muggleton, S. and Feng, C. (1992). Efficient induction in logic programs. In
Muggleton, S., editor, Inductive Logic Programming, pages 281–298. Academic
Press.

Murphy, K. P. (2001). An introduction to graphical models. Technical report,
Intel Research.

Murphy, K. P., Weiss, Y., and Jordan, M. I. (1999). Loopy belief propagation for
approximate inference: An empirical study. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI’99), pages 467–475.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995). SCOP: a
structural classification of proteins database for the investigation of sequences
and structures. Journal of Molecular Biology, 247:536–540.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelli-
gence, 56:71–113.

Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing,
11(2):125–139.

Neal, R. M. and Hinton, G. E. (1999). A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Jordan, M. I., editor, Learning in
Graphical Models, pages 355–368. The MIT Press, Cambridge, MA, USA.

Neapolitan, R. E. (2004). Learning Bayesian Networks. Pearson Prentice Hall,
Upper Saddle River, NJ.

Nolan, L., Harva, M., Kabán, A., and Raychaudhury, S. (2006). A data-driven
Bayesian approach for finding young stellar populations in early-type galaxies
from their UV-optical spectra. Monthly Notices of the Royal Astronomical So-
ciety, 366(1):321–338.

Palomäki, K. J., Brown, G. J., and Barker, J. (2004). Techniques for handling con-
volutional distortion with ”missing data” automatic speech recognition. Speech
Communication, 43:123–142.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufman, San Francisco.

Petersen, K. B., Winther, O., and Hansen, L. K. (2005). On the slow convergence
of EM and VBEM in low noise linear mixtures. Neural Computation, 17(9):1921–
1926.

BIBLIOGRAPHY 97

Pietraszek, T. and Tanner, A. (2005). Data mining and machine learning—towards
reducing false positives in intrusion detection. Information Security Technical
Report Journal, 10(3):169–183.

Popescul, A., Ungar, L., Lawrence, S., and Pennock, D. (2003). Statistical rela-
tional learning for document mining. In Proceedings of the IEEE International
Conference on Data Mining (ICDM-03), pages 275–282.

Psiaki, M. (2005). Backward-smoothing extended Kalman filter. Journal of Guid-
ance, Control, and Dynamics, 28(5).

Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning,
5(3):239–266.

Rabiner, L. R. and Juang, B. H. (1986). An introduction to hidden Markov models.
IEEE Acoustics, Speech, and Signal Processing Magazine, 3(1):4–15.

Raiko, T. (2001). Hierarchical nonlinear factor analysis. Master’s thesis, Helsinki
University of Technology, Espoo.

Raiko, T., Kersting, K., Karhunen, J., and De Raedt, L. (2002). Bayesian learn-
ing of logical hidden markov models. In Proceedings of the Finnish Artificial
Intelligence Conference (STeP 2002), pages 64–71, Oulu, Finland.

Raju, K., Ristaniemi, T., Karhunen, J., and Oja, E. (2006). Jammer suppression
in DS-CDMA arrays using independent component analysis. IEEE Trans. on
Wireless Communications, 5(1):77–82.

Reiter, R. (1978). On closed world data bases. In Logic and Data Bases, pages
119–140. Plenum Publ. Co., New York.

Resnik, M. (1987). Choices: An Introduction to Decision Theory. University of
Minnesota Press, Minneapolis, Minnesota.

Ristaniemi, T. (2000). Synchronization and Blind Signal Processing in CDMA
Systems. PhD thesis, University of Jyväskylä, Jyväskylä, Finland.

Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter.
Artech House.

Roberts, S. and Everson, R. (2001). Introduction. In Roberts, S. and Everson, R.,
editors, Independent Component Analysis: Principles and Practice, pages 1–70.
Cambridge University Press.

Rosenqvist, F. and Karlström, A. (2005). Realisation and estimation of piecewise-
linear output-error models. Automatica, 41(3):545–551.

98 BIBLIOGRAPHY

Russell, S. and Norvig, P. (1995). Artificial Intelligence A Modern Approach.
Prentice-Hall, New Jersey.

Salakhutdinov, R., Roweis, S. T., and Ghahramani, Z. (2003). Optimization with
EM and expectation-conjugate-gradient. In Proceedings of the international
conference on machine learning (ICML-2003), pages 672–679.

Särkkä, S., Vehtari, A., and Lampinen, J. (2006). Rao-Blackwellized particle filter
for multiple target tracking. Information Fusion. to appear.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464.

Segal, E., Taskar, B., Gasch, A., Friedman, N., and Koller, D. (2001). Rich
probabilistic models for gene expression. Bioinformatics, 17:243–252.

Seltzer, M., Raj, B., and Stern, R. (2004). A Bayesian framework for spectro-
graphic mask estimation for missing feature speech recognition. Speech Com-
munication, 43(4):379–393.

Spiegelhalter, D., Thomas, A., Best, N., and Gilks, W. (1995). BUGS: Bayesian
inference using Gibbs sampling, version 0.50.

Srinivasan, A. (2005). The Aleph manual. Available at http://web.comlab.ox.
ac.uk/oucl/work/ashwin.srinivasan/.

Sterling, L. and Shapiro, E. (1994). The Art of Prolog. The MIT Press, second
edition.

Stinchcombe, M. and White, H. (1989). Universal approximation using feedforward
networks with non-sigmoid hidden layer activation functions. In Proceedings of
the International Joint Conference on Neural Networks (IJCNN ’89), pages I–
613–617.

Stone, M. (1974). Cross-validation choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, 36:111–147.

Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative probabilistic models
for relational data. In Proc. Conference on Uncertainty in Artificial Intelligence
(UAI02), pages 485–492, Edmonton.

Thrun, S. (1992). The role of exploration in learning control. In White, D. and
Sofge, D., editors, Handbook for Intelligent Control: Neural, Fuzzy and Adaptive
Approaches. Van Nostrand Reinhold, Florence, Kentucky 41022.

BIBLIOGRAPHY 99

Tornio, M. and Raiko, T. (2006). Variational Bayesian approach for nonlinear
identification and control. In Proceedings of the IFAC Workshop on Nonlinear
Model Predictive Control for Fast Systems (NMPC FS06), Grenoble, France. To
appear.

Valpola, H., Harva, M., and Karhunen, J. (2004). Hierarchical models of variance
sources. Signal Processing, 84(2):267–282.

Valpola, H., Honkela, A., Harva, M., Ilin, A., Raiko, T., and
Östman, T. (2003a). Bayes blocks software library. Available at
http://www.cis.hut.fi/projects/bayes/software/.

Valpola, H. and Karhunen, J. (2002). An unsupervised ensemble learning method
for nonlinear dynamic state-space models. Neural Computation, 14(11):2647–
2692.

Valpola, H., Östman, T., and Karhunen, J. (2003b). Nonlinear independent factor
analysis by hierarchical models. In Proc. 4th Int. Symp. on Independent Com-
ponent Analysis and Blind Signal Separation (ICA2003), pages 257–262, Nara,
Japan.

Valpola, H., Raiko, T., and Karhunen, J. (2001). Building blocks for hierarchi-
cal latent variable models. In Proc. 3rd Int. Conf. on Independent Component
Analysis and Signal Separation (ICA2001), pages 710–715, San Diego, USA.

Vigário, R., Jousmäki, V., Hämäläinen, M., Hari, R., and Oja, E. (1998). Inde-
pendent component analysis for identification of artifacts in magnetoencephalo-
graphic recordings. In Advances in Neural Information Processing System 10
(Proc. NIPS 97), pages 229–235. MIT Press.

Wallace, C. S. (1990). Classification by minimum-message-length inference. In
Aki, S. G., Fiala, F., and Koczkodaj, W. W., editors, Advances in Computing
and Information – ICCI ’90, volume 468 of Lecture Notes in Computer Science,
pages 72–81. Springer, Berlin.

Winn, J. and Bishop, C. M. (2005). Variational message passing. Journal of
Machine Learning Research, 6:661–694.

Winn, J. and Joijic, N. (2005). LOCUS: Learning object classes with unsupervised
segmentation. In Proc. IEEE Intl. Conf. on Computer Vision (ICCV), pages
756–763, Beijing.

Won, K.-J., Prugel-Bennett, A., and Krogh, A. (2006). Evolving the structure
of hidden Markov models. IEEE Transactions on Evolutionary Computation,
10(1):39–49.

