
P1

Publication P1

J. Martikainen and S. J. Ovaska
“Designing multiplicative general parameter filters using adaptive genetic algorithms”

in
Proc. of the Genetic and Evolutionary Computation Conference

Seattle, WA, 2004, pp. 1162-1167.

© 2004 Springer Science+Business Media

Reprinted with kind permission of Springer Science and Business Media.

Designing Multiplicative General Parameter Filters Using Adaptive
Genetic Algorithms

Jarno Martikainen1, Seppo J. Ovaska2

Institute of Intelligent Power Electronics, Helsinki University of Technology,
 P.O. Box 3000, FIN-02015 HUT, Finland

1jkmartik@cc.hut.fi, 2ovaska@ieee.org

Abstract. Multiplicative general parameter (MGP) approach to finite impulse response (FIR) filtering
introduces a novel way to realize cost effective adaptive filters in compact very large scale integrated
circuit (VLSI) implementations used for example in mobile devices. MGP-filter structure comprises of
additions and only a small number of multiplications, thus making the structure very simple. Only a
couple of papers have been published on this recent innovation and, moreover, MGP-filters have never
been designed using adaptive genetic algorithms (GA). The notion suggesting the use of adaptive pa-
rameters is that optimal parameters of an algorithm may change during the optimization process, and
thus it is difficult to define parameters beforehand that would produce competitive solutions. In this pa-
per, we present results of designing MGP-FIR basis filters using different types of adaptive genetic al-
gorithms, and compare the results to the ones obtained using a simple GA.

1 Introduction

Predictive lowpass and bandpass filters play an important role in numerous delay-constrained signal proc-
essing applications, especially in the area of 50/60 Hz power systems instrumentation. In these applications
distorted line voltages or currents should be filtered without delaying the fundamental frequency compo-
nent. Vainio and Ovaska introduced the multiplicative general parameter (MGP) finite impulse response
(FIR) filtering scheme in [1] and [2]. Since the line frequency tends to vary within a constrained interval,
typically ±2%, adaptive filters should be used. In MGP-FIR the adaptation is achieved through adjusting
the two MGPs. The coefficient values of the basis filter do not change during the adaptation process. An
MGP-FIR is designed in the following way. First we optimize the basis filter either by applying traditional
hard computing methods, or, as this paper presents adaptive genetic algorithms [5]. Next, the MGP-FIR is
used in the actual application, and fine-tuning is left to the multiplicative general parameters. The better the
basis filter attenuates unwanted components and the better the prediction capabilities of the basis filter are,
the easier it is for the MGP filter to adapt to the changing characteristics of the input signal. Digital filters
have been designed before using genetic algorithms, for example in [8] [9], but MGP-FIRs have never been
designed using adaptive genetic algorithms. Thus, the speedup in convergence of the GA in this application
using adaptive parameters was yet to be studied.

The paper is organized as follows. Section 2 describes the multiplicative general parameter approach to
filtering. Section 3 explains the basics of genetic algorithms and defines their use in context with MGP fil-
tering. Section 4 introduces the obtained results. Section 5 includes concluding remarks and Section 6 pre-
sents the paths of our future research work.

2 Multiplicative General Parameters

The MGP filtering method sets low computational requirements to the implementation platform, while it
simultaneously provides effective and robust filtering of disturbances. All this is achieved without delaying
the primary signal component, and maintaining adaptation capabilities around the nominal frequency.

In a typical MGP-FIR, the filter output is computed as

.)()()()()()()(
1

0
2

1

0
211 ∑∑

−

=

−

=

−+−=
N

k

N

k
knxkhngknxkhngny (1)

Where and present the MGP parameters, and and are the fixed coefficients of an FIR
basis filter. Taking this into account, the coefficients of the composite filter
are , for the first MGP, and , , for the
second MGP. An example of MGP-FIR with N=4 is shown in Fig. 1. Here N denotes the filter length.

)(1 ng)(2 ng)(1 kh)(2 kh

),()()(111 khngk =θ [1,...,1,0 −∈ Nk])()()(222 khngk =θ []1...,1,0 −∈ Nk

The filter coefficients in the adaptation process are updated as follows.

)()()()()1(
1

0
111 ∑

−

=

−+=+
N

k

knxkhnengng µ (2)

.)()()()()1(
1

0
222 ∑

−

=

−+=+
N

k
knxkhnengng µ

(3)

Where µ is the adaptation gain factor and is the prediction error between the filter output and the train-
ing signal. The MGP-FIR has two adaptive parameters to adapt only to the phase and amplitude of the
nominal frequency. More degrees of freedom would allow the filter to adapt to undesired properties, such
as the harmonic frequencies. The training signal is defined as

)(ne

)(ts

samples. 900600),(004.0) 512sin(1.0 512sin()(

samples 600300),(004.0)502sin(1.0502sin()(

samples 3000),(004.0) 492sin(1.0 492sin()(

15

,...7,5,3

15

,...7,5,3

15

,...7,5,3

≤<⋅+⋅⋅⋅⋅⋅+⋅⋅⋅=

≤<⋅+⋅⋅⋅⋅⋅+⋅⋅⋅=

≤<⋅+⋅⋅⋅⋅⋅+⋅⋅⋅=

∑

∑

∑

=

=

=

nnrnmn)ns

nnrnmn)ns

nnrnmn)ns

m

m

m

ππ

ππ

ππ

(4)

r(n) denotes a uniformly distributed random value between -1 and 1. The duration of the training signal
is 900 samples. This signal is divided into three parts, each of which contains 300 samples. These training
signal blocks correspond to frequencies of 49 Hz, 50 Hz, and 51 Hz. The training signal constitutes thus of
the nominal frequency sinusoid, odd harmonics up to the 15th with amplitudes 0.1 each, and white noise.
The training signal is similar to that used in [1] and [2], and it mimics the line signal (voltage/current) with
varying fundamental frequency, harmonics, and noise.

Fig. 1. An example of MGP implementation, where N=4. Signal values)1(−nx and)2(−nx are connected to the first
MGP and values and are connected to the second MGP with filter coefficients -1, 1, 1, and -1 respectively)(nx)3(−nx

The basic idea of MGP-FIR filters is that all the samples of input delay line should be connected either
to the first or to the second MGP, and no value should be left unused. Computational efficiency of these
particular MGP filters arises from the fact that the filter coefficients are either -1, 0, or 1. Thus the number
of multiplications in filtering operations is radically reduced compared to a normal filtering operation using
more general coefficient values. Especially in VLSI or other hardware implementations, the number of
multiplications, as well as other operations should be kept at minimum to guarantee fast operation and low
cost of implementation.

3 Genetic Algorithms

Genetic algorithms model the nature’s way of optimizing the characteristics of a system to comply with the
demands of the surrounding environment. Genetic algorithms manipulate the possible problem solutions
using selection methods, crossover and mutation operators, and survival strategies [3] [4] [7].

In this application, the cross connections and coefficients of the basis filter are to be optimized using a
GA. Using non-evolutionary methods would limit the set of tools to using exhaustive search, since no gra-
dient information is available in this problem domain. These filter tap cross connections and coefficients
are modeled as chromosomes in the following way. There are two separate vectors in one chromosome: the
first vector, , of the chromosome represents the weights of the input samples connected to the first
MGP, and the second vector, , corresponds to the weights of the input samples connected to the sec-
ond MGP. The weights can be -1, 0, or 1. -1 and 1 in a vector indicate that this particular input value is as-
sociated to the corresponding MGP. 0, on the other hand, determines that a particular input value is not
associated with the MGP in concern, rather it is connected to the other MGP. An example of a chromosome
is presented in Table 1.

)(1 nh
)(2 nh

Table 1. Example of the the chromosomes, N=40. h1 and h2 associate the input signal values to the first and second
MGPs, respectively

h1 1 1 -1 0 0 1 -1 0 1 1 0 -1 -1 0 1 0 -1 -1 0 1 0 0 0 1 1 0 -1 0 -1 0 1 -1 0 0 0 -1 0 1 1 0
h2 0 0 0 1 -1 0 0 1 0 0 -1 0 0 1 0 -1 0 0 -1 0 1 -1 1 0 0 1 0 1 0 -1 0 0 1 1 1 0 -1 0 0 -1

In [2] Ovaska and Vainio stated that satisfactory results can be achieved using an initial population, the

size of which is twice the number of the filter length. Since the filter length N in this case is 40, the initial
population size was set to be 80.

In this paper, we compare five different genetic algorithms. The first one is a simple genetic algorithm
with no adaptive parameters. The second genetic algorithm applies adaptive mutation and crossover prob-
abilities as presented in [5]. The third genetic algorithm features also the adaptive mutation and crossover
scheme, but with different parameters than in [5]. In the fourth genetic algorithm, we used adaptive µ (see
Eqs. (2) and (3)). The fifth algorithm used modified probabilities of [5], adaptive µ, and seeding.

The fitness of the chromosomes is evaluated using the fitness function:

.
)515049()51,50,49max(ITAEITAEITAENGNGNG

Kfitness
++⋅

= (5)

 K is assigned a value of 107 to scale the output of the fitness function to be expressed in thousands. Terms
NG49, NG50, and NG51 represent the noise gain at a specific stage of the test input signal. These terms
were added to the fitness function to attenuate noise. The noise gain is calculated as

[] [∑∑
−

=

−

=

⋅+⋅=
1

0

2
22

1

0

2
11 .)()()()()(

N

k

N

k

khngkhngnNG] (6)

)(1 ng and represent the first and second MGP at the end of a certain frequency period, respec-
tively, whereas and

)(2 ng
)(1 nh)(2 nh denote the filter coefficients associated to the corresponding MGPs. In

other words, NG49 is calculated using the MGP values after 300 samples, NG50 and NG51 are calculated
after 600 and 900 samples, respectively, the frequency of the training signal changing every 300 samples.

ITAE49, ITAE50, and ITAE51stand for the Integral of Time-weighted Absolute Error (ITAE) for each of
the three signal parts, respectively. These terms were added to the fitness function to smoothen the adapta-
tion of the filter to the varying input signal characteristics. The ITAE is calculated as follows.

.)(
1
∑
=

⋅=
M

n
nenITAE (7)

n is the sample index, and M stands for the sample number at the end of a specific frequency period, in this
case 300, 600 and 900. is the error between the output of the system and the pure input signal without
any harmonics or noise. The GA may in some cases create filters with unreasonably low noise gains, lead-
ing thus to very high fitness value of chromosomes. Theoretical minimum limits can be calculated that
have to be passed in order the filter to be practical [10]. If these limits were not met, a penalty term was
added to corresponding chromosomes’ fitness value so that it was very likely eliminated from the next gen-
eration.

)(ne

The genetic algorithms were given 1000 generations to converge to a solution, and each genetic algo-
rithm was run 20 times to get some statistical reliability. Elitist mutation scheme was applied in each case,
so that the best chromosome was never mutated. A single simulation run of 1000 generations using initial
population of 80 chromosomes and filter length of 40, took 70-80 minutes to run on a Dell computer
equipped with 2.66 GHz Intel Pentium 4 processor, 512 MB of memory, and MATLAB 6.5.0 software.

3.1 Reference Genetic Algorithm

To create a reference point, we implemented a simple genetic algorithm without any fine tuning to solve the
problem. The algorithm starts by creating the initial population. The probabilities of assigning -1, 0, or 1 to
a particular gene in the chromosome related to the first MGP are 1/3 all. In the case of assigning -1 or 1 to
a gene in , 0 is assigned to this same gene in . This is because one input sample can be con-
nected to only one MGP, not both. If 0 is assigned to a gene in the vector related to the first MGP, -1 or 1 is
assigned to a gene related to the second MGP with the probability of 1/2 for both -1 and 1.

)(1 nh)(2 nh

After the generation of the initial population, the chromosomes are arranged in descending order accord-
ing to their fitness values. Mating is based purely on the rank of the chromosomes: the best and the second
best chromosomes act as parents for two offspring. The offspring are created using single-point crossover,
the crossover point of which is selected randomly. Also, the third and fourth best chromosomes constitute
parents for two offspring, and so on. Altogether, 40 best chromosomes produce 40 offspring. Thus the 40
chromosomes with the lowest fitness scores are replaced by the offspring of the 40 best chromosomes. Also
the parents remain within the population thus keeping the population size constant at 80 chromosomes.

The convergence behavior of this reference GA can be seen in Fig. 2. This figure shows clearly how the
simple genetic algorithm converges in a typical optimization run. Maximum and average fitness values for
each generation are well separated, and the minimum fitness lies very close to zero. This simple GA does
not fully converge during the 1000 generations it was allowed to operate. Mutation probability of 5% and µ
value 0.002 were used in this GA.

 Fig. 2. Typical convergence behavior of the reference GA

3.2 Adaptive Genetic Algorithm

Optimal parameters for a GA may change during the iteration process and thus it is usually difficult to
choose initial parameters that produce satisfactory results. Adaptive GA (AGA) parameters have been stud-
ied by Srinivas and Patnaik in [5]. In their approach, the mutation probability, , and the crossover prob-
ability, , are adjusted as follows.

mp
cp

() ,
max

'
max1

ave
'

ave
c ff

ff
ffkp ≥

−
−

= (8)

 ,3 ave
'

c ffkp <= (9)

() ,
max

max2
ave

ave
m ff

ff
ffkp ≥

−
−

= (10)

. ,4 avem ffkp <= (11)

321 , and 4 represent coefficients with values equal or less than one. f , , kkk k max denotes the maximum fit-
ness value of a generation, whereas fave denotes the average fitness value of the same generation. f’ denotes
the higher fitness value of a parent pair. The authors of [5] propose values 1.0, 0.5, 1.0, and 0.5 for

, and respectively. 32 4
Using this approach, the crossover probability decreases as the fitness value of the chromosome ap-

proaches f

1 , , kkk k

max and is 0.0 for a chromosome with fitness value equal to fmax. Also, mutation probability ap-
proaches zero as the fitness of a chromosome approaches fmax. µ value 0.002 was also used in this GA.

The convergence behavior of this AGA can be seen in Fig. 3. This algorithm converges rapidly and the
maximum value stays the same for the rest of the time. The maximum is however local, since the fitness
value is smaller than with the reference GA. Maximum, average, and minimum fitnesses are the same after
about 70 generations.

 Fig. 3. Typical convergence behavior of the AGA

3.3 Adaptive Genetic Algorithm with Modified Probabilities

The values for 321 , and 4k presented in [5] are not obviously appropriate for all applications. Re-

ferring to the “no free lunch” theorem discussed by Wolpert and Macready in [6] and Fogel in [7], we de-
cided to give value equal to one for each of the 321 , and 4k , because the values presented in [5] do not
perform so well in this application. This way we may prevent premature convergence, which seemed to be
a problem in our application, when 1.0, 0.5, 1.0, and 0.5 were assigned to

 , , kkk

 , , kkk

4, 3, 2, 1, , =iki respectively.
Since elitist mutation saves the best solution from corruption, we apply the mutation probability of 1.0 to
all but the best chromosome. This way, although possibly near the optimal solution, we still search effi-
ciently the surroundings for a better one. Typical convergence behavior of this AGA can be seen in Fig. 4.
This GA converges to the maximum rather slowly, while the minimum stays close to 0 all the time.

Fig. 4. Typical convergence behavior of the AGA using modified probabilities

3.4 Adaptive Genetic Algorithm with Modified Probabilities and the µ-Term

In the previously presented GAs we used a constant adaptation gain factor µ (see Eqs. (2) and (3)). Since
the characteristics of the input signal vary with time, it is difficult to determine the optimal parameters of
the system before the optimization process. Adaptive µ was applied in order to speed up the convergence of
genetic algorithm.

The chromosome was modified so that one gene was added to present the µ value. The µ values in the
initial population were chosen randomly so that 009.00 << µ . Values larger than this can easily make the
filter unstable. In crossover the offspring µ value, oµ , was calculated as follows.

.)1(21 ppo rr µµµ ⋅−+⋅= (12)

r stands for a random number between 0 and 1.
1pµ and

2pµ are theµvalues of the first and second par-
ents, respectively. Mutation was applied as follows.

. 5.0 ,1.0
5.0 ,1.0

≥−=
<+=

r
r

m

m

µµµ
µµµ (13)

mµ presents the value ofµafter mutation, and r is a uniformly distributed random number between 0 and
1. An example of the converged µ values and corresponding fitnesses are shown in Table 2. The average
converged µ value of the 20 runs was 0.0034. This value can be considered as the practical maximum µ
value. Values larger than 0.0034 could easily cause the filter to be unstable, whereas values below 0.0034
merely slow the convergence of the GA down.

Table 2. Example of converged µ values an correponding fitnesses. Each run was done using 1000 generations

Run Converged µ Best fitness

1 0.0034 3420
2 0.0025 3069
3 0.0032 3735
4 0.0030 3225
5 0.0042 3387
6 0.0044 2962
7 0.0034 2877
8 0.0042 3249
9 0.0029 3504

10 0.0036 3052
11 0.0029 3541
12 0.0033 3447
13 0.0037 3761
14 0.0026 3606
15 0.0039 3481
16 0.0040 3215
17 0.0037 3304
18 0.0026 3776
19 0.0028 3772
20 0.0026 3722

Average 0.0034 3405

The convergence of this AGA with modified probabilities of [5] and adaptive µ is shown in Fig. 5. This

GA converges quite rapidly, and the average fitness follows quite close the maximum fitness. The mini-
mum fitness values vary a lot, because µ is a sensitive parameter and even small changes can easily make
the filter unstable resulting in a low fitness value.

 Fig. 5. Typical convergence behavior of the AGA using adaptive µ

3.5 Adaptive Genetic Algorithm Using Seeding

When analyzing the chromosomes produced by the GA mentioned above, one could see a systematical
structure in the converged solutions. All the GAs had a tendency of creating blocks of consecutive equal
gene values within a chromosome. An example of a converged chromosome can be seen in Table 3.

Table 3. Example of converger chromosomes. Note the block like structure of the genes

h1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0
h2 -1 1 1 1 -1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 -1 1 1 1

This kind of repeating structure was present in nearly all the converged chromosomes. Bearing this in

mind, seeding was applied to the GA while generating the initial population. Seeding means applying the
information of the structure of the solution to the generation process of the initial set of chromosomes.
Seeding was implemented so that the chromosomes in the initial population we formed of blocks of random
number of consecutive equal gene values. The block length was set to be 1 at the minimum and the other
extreme was a chromosome constituting only of a single gene value.

The typical convergence behavior of this GA is presented in Fig. 6. The convergence rate is rather fast.
Variations in minimum fitness are explained by the adaptive µ, since the filter can easily become unstable if
the µ value changes too drastically.

Fig. 6. Typical convergence behavior of the AGA using modified probabilities, adaptive µ, and seeding

4 Results

The performance of the different GA approaches in MGP filter design are reported in Table 4. Each GA
took about 70-80 minutes to go through 1000 generations. However, there were significant differences in
the convergence properties of the algorithms. The adaptive GA proposed in [5] was clearly the fastest to
converge, but the algorithm was very likely trapped in a local minimum, and it thus behaved worse in sta-
tistical sense than the simple GA used for reference.

Modifying the probabilities of the AGA produced fitness average closer to the reference GA than with
original parameters, while simultaneously reducing the number of required generations to one tenth. Add-
ing the adaptive µ term succeeded in achieving higher average fitness, while simultaneously increasing the
number of required generations. Applying seeding helped the adaptive µ enhanced AGA to produce best
results, indicating highest average fitness with even better convergence characteristics as the AGA with
adaptive µ but without seeding. Standard deviations presented in Table 4 indicate that the AGA with modi-
fied probabilities, adaptive µ, and seeding converges to high fitness solutions rather reliably.

The time to achieve the best results was 11.5 minutes, which is about 18% of the time required by the
reference GA to produce results. The gained speedup makes the introduced method a tempting tool for
practicing engineers. The average time to go through 1000 generations is almost the same for all the GAs.
Then again, the differences between the average convergence times are notable.

Table 4. Performance comparison of the featured Gas. The results are averages of 20 runs

Genetic Algorithm Average
Best Fitness
/ Standard
Deviation

Convergence
(generations) /

Standard Devia-
tion

Time
(mins)

Convergence
Time (mins)

Simple GA 3249 / 324 837 / 130 76.4 63.9
AGA 1472 / 505 21 / 11 77.9 1.6
AGA, Modified Probabilities 2824 / 557 89 / 34 76.7 6.8
AGA, Modified Probabilities and µ 3638 / 287 329 / 218 73.9 24.3
AGA, Modified Probabilities, µ, seeding 3617 / 329 156 / 65 73.6 11.5

The best converged chromosome had fitness value of 3985 and was achieved using AGA with adaptive

µ and seeding. This chromosome is presented in Table 5.

Table 5. The best converged chromosome

h1 1 1 1 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
h2 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 -1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1

Fig. 9 describes the signals before and after filtering. The evaluation signal eval(n) used is defined as fol-

lows.

samples. 900600 ,) 512sin(15.0 512sin()(

samples 600300 ,)502sin(15.0502sin()(

samples 3000 ,) 492sin(15.0 492sin()(

15

,...7,5,3

15

,...7,5,3

15

,...7,5,3

≤<⋅⋅⋅⋅⋅+⋅⋅⋅=

≤<⋅⋅⋅⋅⋅+⋅⋅⋅=

≤<⋅⋅⋅⋅⋅+⋅⋅⋅=

∑

∑

∑

=

=

=

nnmn)neval

nnmn)neval

nnmn)neval

m

m

m

ππ

ππ

ππ

(14)

 The amplitude response of the filter presented in Table 5. after 600 samples of the evaluation signal can
be seen in Figs. 7. This response shows how the GA tries to dampen the harmonic frequencies of the nomi-
nal components (i.e., 150 Hz, 250 Hz, …, 750 Hz). The phase delay in samples is shown in Fig. 8. The
phase delay is negative in the 50 Hz region, and thus the filter has the desired predictive capabilities. Table
6 shows the calculated total harmonic distortion (THD) values for each of the training signal nominal fre-
quency components before and after filtering. After filtering the THD values as well as the amplitudes of
the harmonics are about a tenth of the values before filtering.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency in Hz

M
ag

ni
tu

de

 Fig. 7. Instantaneous magnitude responses of the MGP-FIR

30 35 40 45 50 55 60 65

-4

-3

-2

-1

0

1

Frequency in Hz

P
ha

se
 d

el
ay

 in
 s

am
pl

es

Fig. 8. Phase delay of the MGP-FIR. The phase delay in samples is negative in the 50 Hz region, as it should be in pre-

dictive filters

Fig. 9. Test signal defined in Eq. (13) (dash dotted) is filtered using the best MGP-FIR given in Table 5. Output (solid

line) is almost sinusoidal

Table 6. Total harmonic distortions (THD) of the best MGP-FIR basis filter

 Input amplitude Output at 49 Hz Output at 50 Hz Output at 51 Hz
Nominal frequency 1 0.87 0.93 0.88

3rd harmonic 0.15 0.018 0.016 0.011
5th harmonic 0.15 0.023 0.025 0.023
7th harmonic 0.15 0.018 0.009 0.008
9th harmonic 0.15 0.012 0.012 0.013
11th harmonic 0.15 0.010 0.008 0.006
13th harmonic 0.15 0.005 0.002 0.007
15th harmonic 0.15 0.005 0.004 0.007

THD 39.7% 4.4% 3.7% 3.6%

5 Conclusions

In this paper, we have presented a new way to design MGP-FIR basis filters. Adaptive genetic algorithms
produced better results than genetic algorithms without any adaptive parameters. Knowing what to look for,
or understanding the structure of the possible solution helped to apply seeding in the GA in order to further
speed up the optimization process. Also, it is likely that using adaptive µ and seeding as parts of the design
process had a greater impact on the final results than the use of adaptive mutation and crossover probabili-
ties. MGP-FIRs were designed using evolutionary programming in [2], but the approaches used in the pre-
sent paper make the GA converge more rapidly. Having said that, we conclude that the best proposed
method excels among the others in MGP-FIR design methods, and should therefore be regarded as a com-
petitive tool for experts working in the field of power systems instrumentation.

6 Future Work

Our future work will concentrate on experimenting how multiple population GAs would affect the per-
formance of the optimization process. Also, since GAs are by nature well parallelizable, a parallel comput-
ing approach to GA aided design of MGP-FIRs will be explored.

References

1. Vainio, O., Ovaska, S.J., Pöllä, M.: Adaptive filtering using multiplicative general parameters for zero-crossing de-
tection. IEEE Transactions on Industrial Electronics, Vol. 50, No. 6, Dec 2003, 1340-1342

2. Ovaska, S.J, Vainio, O.: Evolutionary programming in the design of adaptive filters for power systems harmonies
reduction. IEEE International Conference on Systems, Man and Cybernetics, Vol. 5, Oct 2003, 4760-4766

3. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, NY (1996)
4. Haupt, R. L., Haupt, S. E.: Practical Genetic Algorithms. John Wiley & Sons, New York, NY (1998)
5. Srinivas, M., Patnaik, L. M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transac-

tions on Systems, Man and Cybernetics, Vol. 24, No. 4, Apr 1994, 656-667
6. Wolpert, D. H., Macready, W. G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary

Computation, Vol. 1, No. 1, Apr 1997
7. Fogel, D.B.: Evolutionary Computation, Toward a New Philosophy of Machine Learning. IEEE Press, Piscataway,

NJ (2000)
8. Wade, G., Roberts, A., Williams, G.: Multiplier-less FIR filter design using a genetic algorithm. IEE Proceedings of

Vision, Image and Signal Processing, Vol. 143, No. 3, Jun 1996
9. Lee, A.; Ahmadi, M., Jullien, G.A., Miller, W.C., Lashkari, R.S.: Digital filter design using genetic algorithm. IEEE

Symposium on Advances in Digital Filtering and Signal Processing, 1998, Jun 1998, 34-38
10. Vainio, O., Ovaska, S.J.: Noise reduction in zero crossing detection by predictive digital filtering. IEEE Transac-

tions on Industrial Electronics, Vol. 42, No. 1, Feb 1995, 58-62

