
P4

Publication P4

J. Martikainen and S. J. Ovaska
“Hierarchical two-population genetic algorithm”

in
International Journal of Computational Intelligence Research

vol. 2, no. 4, 2006, in press.

© 2006 Research India Publications

Reprinted with kind permission of Research India Publications.

Hierarchical Two-Population Genetic Algorithm
Jarno Martikainen1 and Seppo J. Ovaska2

Helsinki University of Technology, Institute of Intelligent Power Electronics
P. O. Box 3000, 02015 HUT, FINLAND

1 E-mail: jkmartik@cc.hut.fi
2 E-mail: ovaska@ieee.org

URL: http://powerelectronics.hut.fi

Abstract: This paper proposes a new hierarchical two-population
genetic algorithm (2PGA). The 2PGA scheme constitutes of two
differently sized populations containing individuals of similar
fitness or cost function values. The smaller population, the elite
population, consists of the best individuals, whereas the larger
population contains less fit individuals. These populations have
different characteristics, such as size and mutation probability,
based on the fitness of the candidate solutions in these
populations. The performance of our 2PGA is compared to that
of a single population genetic algorithm (SPGA). Because the
2PGA has multiple parameters, the significance and the effect of
the parameters is also studied. Experimental results show that the
2PGA outperforms the SPGA reliably without increasing the
amount of fitness function evaluations. Although genetic
algorithms are used as a platform for the 2PGA scheme, the
principles presented here are applicable also to other population
based evolutionary optimization methods.

Keywords: Genetic algorithms, multipopulation genetic algorithm,
hierarchical populations, evolutionary algorithms, coevolution.

I. Introduction

Genetic algorithms (GA) [1]-[3] is a branch of evolutionary
computation modeling the nature’s way of finding
competitive solutions based on the demands of the
environment. GAs, like other evolutionary computation
methods, evolve solutions in an iterative manner by applying
variation and selection operators to a pool of candidate
solutions. To enhance GAs performance, genetic algorithms
can take advantage of parallel computing environments due
to their well parallelizable nature. Parallel implementations
usually constitute of multiple populations running on several
separate computing units. Such parallel GAs have been
studied before, and [4] offers a good introduction to the
basics of the field. Parallelism in evolutionary algorithms in
general is discussed in [5]. Parallel multipopulation GAs and
their parameters are discussed in [6] and [7]. These parallel
approaches mainly rely on implementing multipopulation
GAs so that individual populations have their own
computing units and, thus, these schemes can usually be
considered as parallel single population genetic algorithms.
 However, when considering our surrounding
environment, it is remarkably distinct that these different
populations are internally divided into smaller groups. These
groups, whether animal or human, share the property of
being roughly homogeneous when considering their fitness
value based on some appropriate fitness function. Genetic
algorithms using subpopulations have been studied up to
some extent before. Parallel genetic algorithm scheme is

studied in [8] in which different crossover operators are used
in different subpopulations for exploration and exploitation.
Fourier expansion based approach of dividing the fitness
landscapes to sub-landscapes and searching them using
subpopulations is presented in [9].
 A notion that the mere implementation of parallel GA
without actual parallel hardware adds to the performance of
a serial GA is suggested in [10]. Niching [11], [12] also
known as speciation, is a popular multipopulation scheme in
evolutionary computation. In niching, subpopulations are
used to search a sub-region of the fitness landscape.
 Coevolution, the use of multiple evolutionary algorithms
or populations in parallel to achieve a common goal can also
be seen as a multipopulation approach to evolutionary
computation. In [13] two separate populations are used: a
solution population and a population of test cases. The
fitness function can be a combination of different test cases.
In that scheme, the desired property of the test case
population is to gradually evolve into more challenging but
appropriate test cases thus enabling the solution population
to be able to solve even harder problems as the algorithm
proceeds. An optimization scheme in which two genetic
algorithms are working with the same population is
discussed in [14]. The coevolution scheme can be either co-
operative, in which the multiple components work on the
same side, or a predator-prey scheme, in which the
components fight each other as in [15].
 In this paper, we present a hierarchical two-population
genetic algorithm (2PGA) that implements two populations
on a single processing unit. In our approach, the population
is divided into a small elite population and large,
hierarchically lower population based on the fitness values
of the chromosomes. The method can be embedded to
parallel implementations of GAs running single population
GAs, or any other population based evolutionary
computation scheme, side by side. Nowadays practicing
engineers do not have the time to repeat calculations a
number of times, and, thus, our goal is to create an algorithm
that would reliably produce competitive quality solutions
using only a few runs.
 Many methods exist that outperform the standard GA.
For example, in [16] a powerful branch and bound method
with local sampling is introduced, [17] introduces an
advanced scatter search mechanism and [18] discusses a
hybrid algorithm fusing genetic algorithms with a local
search method. However, our proposed method is intended
only to be an improvement to the basic algorithm that can be
later enhanced using different methodologies, e.g., local
search mechanisms.

 The performance of the proposed 2PGA is compared to
that of a single population GA (SPGA) and it is evaluated
using the well-known minimization problems of Ackley and
Rastrigin, as well as a demanding filter design maximization
problem and a traveling salesman problem (TSP).
 This paper is organized as follows. Section II discusses
the proposed 2PGA scheme and Section III describes the
reference SPGA scheme. Section IV explains the problems
used in testing the performance of the algorithms. Section V
summarizes the experimental results. Section VI discusses a
three-population hierarchical GA, and Section VII concludes
the article.

II. Hierarchical 2PGA

The idea of our multipopulation genetic algorithm originates
from the notion of nature dividing various populations into
subpopulations, e.g., a small elite and a large plain, based on
their fitness similarities. In our 2PGA scheme the two
populations evolve separately in parallel, but they are
exchanging chromosomes under certain conditions, i.e., the
best chromosome from the plain population is allowed to
enter the elite population if its fitness value is high enough.
Then again, the worst chromosome from the elite population
is transferred to the plain population to keep the population
sizes constant.
 The evolution in both of the subpopulations is as in the
SPGA. The principal difference is that in the plain
population the mutation probability is higher. The analogy
supporting this assumption can be derived from nature,
where weaker individuals, in terms of fitness, have to
change their behavior more in order to succeed in
competition.
 GAs typically have a tendency of finding a good
neighborhood fast, but it may take a long time to reach the
optimum in that area [11]. This is the reason for using
specialized hybrid methods, in which a GA is used for
global search, and local search is carried out by some more
traditional technique, such as the hill-climbing method. Our
2PGA is an effort to improve the basic GA with little
additional computation and no separate algorithms.
 The operation of our 2PGA can be divided into seven
stages as follows:

1. Generate an initial random population of solutions.

2. Evaluate the fitness (or cost) of the chromosomes in the

initial population and divide the population into a small
elite population and large plain population.

3. Evaluate the fitnesses of plain and elite populations.

4. Implement reproduction separately in both of the

populations.

5. Compose populations for the next generation combining

parents, offspring, and possibly migrated chromosomes.
If the fitness value of the best chromosome in the plain
population supersedes a certain limit value, exchange
this chromosome with the worst chromosome in the
elite population. The parents not chosen to reproduce in

the previous round in the elite population migrate to the
plain population.

6. Mutate chromosomes using different mutation

probabilities for both of the populations. Elitist mutation
that keeps the best solutions in both the populations
intact is used.

7. Go to 3 or exit if convergence or run time constraints

have been met.

 The basic idea of 2PGA algorithm is to conduct global
and local search in parallel using two populations. The elite
population, having a small mutation probability, searches
among the best solutions to find even better solutions,
whereas the large plain population, with large mutation
probability, searches the whole search space in hope of
finding new promising areas of high fitness.
 The proposed method is illustrated in Figs 1-3. Figure 1
describes the division of the initial population into two
separate subpopulations in the 2PGA scheme. In this
illustrative example, the size of the initial population is only
14 and the elite and the plain populations to be formed
contain 4 and 10 chromosomes, respectively. So, the elite
population size, es, is 4. This division into subpopulations
can be carried out directly after initialization, or
alternatively, the initial population can be allowed to
converge as a single population GA for some time. We call
the point of division as the population division point, nd.

Initial population
Elite population

Plain population

 2.

 1.

5.

6.
7.

4.

8.

9.

10.
11.

12.
13.

14.

Rank Fitness

3.

Rank Fitness

Rank Fitness

3.

4.

1.
2.450

425

400
380
350

320
290

285

285
270

240

220

150

90

450

425

400

380

350

320

290
285

285

270
240

220

150
90

3.

1.

2.

4.

5.
6.

7.
8.
9.
10.

Figure 1. Example of how the initial population is divided
into two subpopulations.

 In addition to the difference in subpopulation sizes, the
characteristics of the populations also differ in terms of
mutation probabilities; mp, the mutation probability of the
plain population is higher than the mutation probability of
the elite population, me. If the initial population is not
divided directly after initialization, mutation probability for
the initial population is described by m. In both plain and
elite populations an elitist mutation scheme is applied so that
the best chromosome is never mutated. Thus, two solutions
per generation are kept intact in terms of mutation, one for
each population.

 Figure 2 describes how the populations for the next
generation are composed in 2PGA. Within both the elite and
plain populations the best half of the chromosomes are
selected as parents for the next generation. In Fig. 2 this
means that the two best chromosomes from the elite
population produce two offspring. The worst two
chromosomes in the elite population are transferred to the
plain population. Accordingly, in the plain population the
four best chromosomes act as parents for four offspring.
 Therefore, the elite population in the next generation is
composed of two new offspring and two old parents from
the previous generation. The plain population, then again, is
composed of the two chromosomes left out from the elite
population in the previous generation. In addition, there is
also the new offspring of the previous plain population
parent chromosomes. To fill the plain population up to the
fixed number of chromosomes we add as many
chromosomes from the previous plain population as there is
space for. In numbers, two chromosomes from the previous
elite population are accompanied by four new plain
population offspring. Therefore, we can accommodate four
chromosomes from the previous plain population. The rest
of the chromosomes are discarded.

Plain population

Rank Fitness

Rank Fitness

3.

4.

1.
2.

220

450

425

400
380

350

320

290
285

285

270
240

150
90

3.

1.
2.

4.

5.
6.

7.
8.
9.
10.

Elite population

Generation n+1Generation n

Parents for n+1

Parents for n+1

To plain
population

Plain population

Fitness

Fitness

450
425

350

320
290

285

Elite population

400

380

550

415

250

430

220
350

New Offspring

Parents from
previous elite
population

From previous
elite population

New offspring

Ordered
chromosomes
from plain
population

Figure 2. Example of how the subpopulations of generation
n+1 are formed from the subpopulations of generation n.

 Figure 3 describes the process of how plain
chromosomes can enter the elite population. Plain
chromosomes need not have access to the elite population
during every generation. im, the migration interval describes
how often the chromosomes are allowed to enter from plain
population to the elite population. The migration condition,
cm, describes the condition based on which the migration
either does or does not take place. In Fig. 3 cm equals one,
meaning that the best chromosome in the plain population
has to be better in terms of fitness value than the best
chromosome in the elite population in order migration to
take place. Indeed, 1150 excels 1000 and thus migration
takes place. To keep the population sizes constant, the worst
chromosome from the elite population, valued 850, is
transferred to the plain population.

 The proposed 2PGA scheme can be embedded on every
population based evolutionary optimization scheme. It is not
designed to compete with highly sophisticated and
application specific optimization schemes, such as hybrid
evolutionary algorithm methods equipped with gradient-
based local search methods. Instead, the proposed scheme is
intended to improve the performance of the basic
evolutionary algorithm with minimal computational
overhead, and thus any modification benefiting a standard
evolutionary algorithm will also benefit the proposed
scheme.

Rank Fitness

Rank Fitness

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Elite population

Plain population

1000

950

900

850

1150

950

800

650

650

400

300

275

250

900

250

200

If elite 1.< c x plain

If elite 1.< c x plain 1.

Low mutation probability

High mutation probability

m

m
If elite 1. < c .

m plain 1.

If elite 1. < c .
m plain 1.

Figure 3. Example of exchanging chromosomes between
the two populations in the case the migration condition is

fulfilled.

 The implementation of the 2PGA scheme does not
require parallel hardware, rather it is suitable for all
platforms, both single processor as well as parallel
environments. In the 2PGA scheme the two populations are
different in size as well as in the mutation probability. The
proposed scheme is similar to coevolution schemes, in
which separate populations evolve towards a common goal.
Also, the 2PGA scheme resembles niching since the
individuals can only reproduce with individuals within the
same population. However, these individuals can migrate
between the populations and this does not require complex
computations, as could be the case in niching methods
implemented using crowding or fitness sharing.

III. The Reference Genetic Algorithm

To evaluate the performance of the proposed 2PGA method,
a reference SPGA was constructed and applied to same
problem as our 2PGA. This reference SPGA operated in six
stages [1]:

1. Create an initial population randomly.

2. Evaluate the fitness of the chromosomes.

3. Mate the chromosomes to produce offspring using
crossover. Select the best half of the population to
become parents for the next generation.

4. Select parents and offspring to survive to the next

generation.

5. Apply elitist mutation to chromosomes so that the best

chromosome is not mutated.

6. Go to 2 or exit if convergence or run time constraints

have been met

 The initial populations in the reference SPGAs were
created randomly. Reproduction was implemented so that
parents were selected based on their rank and they mated
with the probability of 1. The best parent mated with the
second best, third best with fourth best, and so on.
Reproduction was implemented using blending crossover [3]
in optimizing Ackley’s and Rastrigin’s functions and a
single point crossover in the filter design problem. The
traveling salesman problem was implemented using a
modification of Grefenstette’s greedy crossover [19]. In all
the problems, the population for the next generation was
built up using the best half of the previous generation and
the offspring of these parents, thus keeping the population
size constant.
 Mutation was implemented using an elitist scheme, in
which the best chromosome was never mutated. The
mutation probabilities, m, and initial population sizes for the
reference SPGAs are shown in Table 1. Mutation probability
here means the probability of a single solution being
selected for mutation.

Problem m Population size
Ackley 10% 100
MGP 40% 80

Rastrigin 20% 100
TSP 10% 40

Table 1. Reference SPGA parameters.

Values presented in Table 1 were found suitable based on
several test runs. To ensure statistical reliability, each
algorithm was run 50 times before averages of the results
were taken. The number of generations run in the Ackley’s
and Rastrigin’s functions case was 100 000. The filter
design problem was run for 300 generations and the
traveling salesman problem was run for 2000 generations.
The number of generations in each problem was determined
by the computational requirements of the problem.
 Naturally, there are algorithms outperforming the
standard GA, but in this paper comparison is made between
the standard GA and the proposed method, because this
paper studies only the effect of the two-population scheme.

IV. Performance Test Description

A collection of four different kinds of test cases is used in
this paper and these problems test the capability of the
proposed scheme in different types of problems. The
functions of Ackley and Rastrigin represent continuous
multimodal problems with single optimum. The dimension

of 30 and 50 is used for these functions, respectively. The
optimization of the multiplicative general parameter finite
impulse response filter is a demanding discrete optimization
problem, with no known global optimum. Finally, a
demanding 100-city traveling salesman optimization
problem was used to study combinatorial optimization
problems.

 A. Ackley’s Function

The well-known Ackley's function [1] is a continuous
minimization problem presenting exhaustive search space, in
which random walk or other brute force methods hardly give
satisfactory results in a reasonable time. Ackley’s function is
defined as

()2
1 2 3 1 1

1 1

1 1() exp exp cos exp(1)
n n

i
i i

f x c c x c x c
n n= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟= − ⋅ − − ⋅ ⋅ + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑

(1)

 In our tests, we used the parameter values suggested in
[1]. The values are

.3020 ,30 ,2 ,2.0 ,20 321 ≤≤−==== ixnccc π

 The global minimum of Ackley’s function is zero, and
this is achieved with parameter vector x = [0, …, 0]T.

 B. Multiplicative General Parameter Filter

Predictive lowpass and bandpass filters play an important
role in numerous delay-constrained signal processing
applications, especially in the area of 50/60 Hz power
systems instrumentation. To cope with this demanding
problem, Vainio et al. introduced the multiplicative general
parameter (MGP) finite impulse response (FIR) filtering
scheme in [20]. Since the line frequency tends to vary within
a constrained interval, typically ±2%, adaptive filters should
be used. In MGP-FIR the adaptation is achieved through
adjusting the two MGPs. The coefficient values of the FIR
basis filter do not change during the adaptation process. The
purpose of the MGP-FIR is to extract the fundamental 50/60
Hz sinusoid signal among disturbances without causing any
delay to this primary signal.
 In a typical MGP-FIR, the filter output is computed as

1 1

1 1 2 2
0 0

() () () () () () () (2)
N N

k k
y n g n h k x n k g n h k x n k

− −

= =

= − + −∑ ∑

Where g1(n) and g2(n) present the adaptive MGP parameters,
and h1(k) and h2(k) are the fixed coefficients of an FIR basis
filter. Thus, the coefficients of the composite filter are
θ1(k) = g1(n) h1(k), k∈[0, 1,…, N–1], for the first MGP, and,
θ2(k) = g2(n) h2(k), k∈[0, 1,…, N–1], for the second MGP.
An example of MGP-FIR with N=4 is shown in Fig. 4. Here
N denotes the filter length. The adaptive coefficients, g1(n)
and g2(n), are updated as follows
 1

1 1 1
0

(1) () () () () (3)
N

k
g n g n e n h k x n kµ

−

=

+ = + −∑

 1

2 2 2
0

(1) () () () () (4)
N

k
g n g n e n h k x n kµ

−

=

+ = + −∑

where µ is the adaptation gain factor and e(n) is the
prediction error between the filter output and the training
signal, i.e., x(n)–y(n–p), p being the prediction step. The
MGP-FIR has two adaptive parameters to adapt only to the
phase and amplitude of the principal frequency. More
degrees of freedom would allow the filter to adapt also to
undesired properties, such as the harmonic frequencies. Our
training signal s(n) is defined as

Figure 4. An example of MGP implementation, where N=4.
Signal values (n-1) and (n-2) are connected to the first MGP
and values (n) and (n-3) are connected to the second MGP

with filter coefficients -1, 1, 1, and -1 respectively

15

3,5,7,...

15

3,5,7,...

() sin(2 49 0.1 sin(2 49) 0.004 (),

0 300 samples

() sin(2 50 0.1 sin(2 50) 0.004 (),

 300 600 samples

() sin(2 51 0.1 sin(2 51

i

i

 s n n) i n

n

s n n) i n r n

n

s n n) i

π π

π π

π π

=

=

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅

< ≤

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅

< ≤

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

∑

∑

15

3,5,7,...
) 0.004 (),

600 900 samples.
i

n r n

n
=

⋅ + ⋅

< ≤

∑

r n

 (5)

 r(n) denotes a uniformly distributed random value
between –1 and 1. The duration of the training signal is 900
samples. This signal is divided into three parts, each of
which contains 300 samples. These training signal blocks
correspond to frequencies of 49 Hz, 50 Hz, and 51 Hz. The
training signal constitutes thus of the nominal frequency
sinusoid, odd harmonics up to the 15th with amplitudes 0.1
each, and white noise. The training signal is similar to that
used in [20], and it mimics the line voltage/current with
varying fundamental frequency, harmonics, and noise.
 The basic idea of MGP-FIR filters is that all the samples
of input delay line should be connected either to the first or
to the second MGP, and no value should be left unused.
Computational efficiency of these particular MGP filters
arises from the fact that the filter coefficients are either -1,
0, or 1. Thus the number of multiplications in filtering
operations is drastically reduced compared to a normal
filtering operation using real-valued coefficients.

 MGP-FIR is designed in the following way. The basis
filter is optimized first either by applying traditional hard
computing methods, or, as this paper presents, genetic
algorithms. This optimization problem is discrete and no
derivative information is available, so basically only some
form of exhaustive search is an option to evolutionary
computation methods. Next, the MGP-FIR is used in the
actual application, and fine-tuning is left to the
multiplicative general parameters.
 The fitness of the chromosomes is evaluated using the
fitness function:

.
)515049()51,50,49max(ITAEITAEITAENGNGNG

Kfitness
++⋅

= (6)

 For convenience, K is assigned a value of 107 to scale the
output of the fitness function to be expressed in thousands.
Terms NG49, NG50, and NG51 represent the white noise
gain at a specific stage of the test input signal. This noise
gain is calculated as

[] [∑∑
−

=

−

=

⋅+⋅=
1

0

2
22

1

0

2
11 .)()()()()(

N

k

N

k

khngkhngnNG]

)

 (7)

 g1(n) and g2(n) represent the first and second MGP at the
end of a certain frequency period, respectively, whereas
h1(n) and h2(n) denote the filter coefficients associated to the
corresponding MGPs. In other words, NG49 is calculated
using the MGP values after 300 samples, NG50 and NG51
are calculated after 600 and 900 samples, respectively, while
the frequency of the training signal changing every 300
samples.
 ITAE49, ITAE50, and ITAE51 stand for the Integral of
Time-weighted Absolute Error (ITAE) for each of the three
signal parts, respectively. These terms were added to the
fitness function to smoothen the adaptation of the filter to
the varying input signal characteristics. The ITAE is
calculated as follows.

.)(
1
∑
=

⋅=
M

n

nenITAE (8)

 n is the sample index, and M stands for the sample
number at the end of a specific frequency period, in this case
300, 600 and 900. e(n) is the error between the output of the
system and the pure primary sinusoid without any harmonics
or noise. While evaluating the performance of the genetic
algorithms the filter length was 40. Mutation in the case of
MGP basis filter optimization was conducted so that a single
gene was changed from 0 to 1/-1, 1 to 0/-1, or -1 to 0/1, in
order to comply with the MGP theory.

 C. Rastrigin’s Function

Rastrigin’s function is another well-known minimization
problem. Rastrigins function has a single global minimum at
zero.

(()2

1
() () co s ()

n

i
f x A n x i A w x i

=

= ⋅ + − ⋅ ⋅∑ (9)

 The following parameter values were used here

A=100, w=2π, n=50, 20 ≤ x(i) ≤ 30.

 D. Traveling Salesman Problem

Traveling salesman problem (TSP) is a well-known and
much studied minimization problem. The problem describes
a traveling salesman who has to visit a certain number of
cities without having to visit the same city twice, in other
words, the shortest closed path connecting all the cities has
to be found. A number of common problems, among others,
printed circuit board design [21] and robot path planning
[22] can be converted to a TSP. In this paper we used a
challenging 100-city TSP.
 When solving a TSP using GA, special attention has to
be paid to the crossover operator. A traditional single point
crossover could easily create loops, which are unacceptable
in proper solutions. In this case, we used a modification of
the Grefenstette’s greedy crossover [19]. The modified
greedy crossover creates a solution by selecting a random
city from either of the parents. After this, the next city is
included by taking the closest city to the previous city in the
parents. There are four candidate cities. If the closest city
already exists in the solution, we take the second closest and
so on. If all the four cities exist in the solution, we take a
random city that does not yet exist in the solution.

V. Results

Increasing the complexity of an algorithm usually increases
the possibility to modify the operation of the algorithm by
tweaking a parameter here and there. However, as can be
seen from the results, the 2PGA outperforms the reference
SPGA reliably despite the reasonable initial parameter set
assigned to it. In the following, we present the evaluation
results of the various parameter configurations. Before
presenting the actual results of our optimization runs, Table
2 sums up the various variables used in the text. To analyze
the effect of the different parameters of the 2PGA only a
single parameter was changed at a time, other values
remaining at the default values presented in Table 3.
 The Student’s t-test [23] was conducted between the
SPGA results and the 2PGA results to verify whether we
really were dealing with different sample means. The
performance of the reference SPGA in the optimization
problems is shown in Table 4. Average fitness value over 50
runs was scaled to equal 1 for comparison purposes.
 The population division point was considered first, and
the results are shown in Tables 5-8. Also, the Student’s t-test
has been conducted to verify that the SPGA and the 2PGA
sample means are actually different. The smaller the t-value
the more likely it is that the two sample sets are from
different distributions. The results show that if the division
into separate populations occurs too late, the whole
population may have converged beyond the limit after which
the 2PGA is not capable of producing as good solutions as
possible. In the light of these results, a proper point for
dividing the population into separate entities could lie
between 0 and 25% of the total number of generation to be
run. But still, regardless of the division point, the 2PGA was
able to outperform the reference SPGA. t-test results
confirm the existence of differences resulting in values

below 0.05, a value considered to clearly show difference
between two sample set means.

Variable Description

nd

Population division point. Describes the
point, after which the population is
divided into separate subpopulations.
Expressed as a percentage of the total
number of generations evaluated before
the division.

im

Migration interval. Describes the interval
between the points in which the best
chromosome from the plain population
can be transferred to elite population.
Expressed as a number of generation
between two migration points.

es Elite size. Describes the size of elite
population in percentage of the total
population size.

cm

Migration condition. Describes the limit
that has to be superseded in order for a
plain population chromosome to enter the
elite population. Described as a value
relative to the best chromosome in the
elite population.

m Mutation probability. Describes the
mutation probability before the division
into separate subpopulations.

mp Mutation probability. Describes the
mutation probability of the plain
population after population division.

me Mutation probability. Describes the
mutation probability of the elite
population after population division.

fave Average fitness.

fstd Fitness standard deviation.

fscaled Scaled fitness value. Scaled value 1
corresponds to the average fitness value of
the reference SPGA.

cave Average cost.

cstd Cost standard deviation.

cscaled Scaled cost value. Scaled value 1
corresponds to the average cost value of
the reference SPGA.

Table 2. Explanation of symbols used.

Problem Ackley MGP Rastrigin TSP
nd 10% 10% 10% 10%
im 1 1 1 1
es 15% 15% 15% 15%
cm 100% 100% 100% 100%
m 40% 10% 10% 20%
mp 80% 20% 20% 40%
me 20% 5% 5% 10%

Table 3. Default parameters for the 2PGA.

Problem fave / cave fstd / cstd fscaled / cscaled

Ackley 0.00145 0.00070 1
MGP 3657 310 1

Rastrigin 0.0669 0.0408 1
TSP 725.41 31.32 1

Table 4. Results for the reference SPGA.

nd cave cstd cscaled t-test
- 0.00145 0.00070 1 -
0 0.00080 0.00042 0.55 1.964E-07

10% 0.00082 0.00039 0.56 2.764E-07
25% 0.00099 0.00071 0.68 1.329E-03
50% 0.00110 0.00043 0.76 3.303E-03

Table 5. Results with different population division points
(Ackley).

nd fave fstd fscaled t-test
- 3657 310 1 -
0 3770 229 1.03 0.0421

10 % 3772 231 1.03 0.0384
25 % 3810 175 1.04 0.0032
50 % 3741 256 1.02 0.1448

Table 6. Results with different population division points
(MGP-FIR).

nd cave cstd cscaled t-test
- 0.0669 0.0408 1 -
0 0.0201 0.0152 0.30 1.819E-10

10% 0.0253 0.0207 0.38 1.176E-08
25% 0.0241 0.0168 0.36 3.003E-09
50% 0.0519 0.0531 0.77 1.148E-01

Table 7. Results with different population division points
(Rastringin).

nd cave cstd cscaled t-test
- 725.41 31.32 1 -
0 711.38 34.66 0.98 0.0350

10 % 710.55 30.24 0.98 0.0169
25 % 719.21 30.52 0.99 0.3612
50 % 715.63 25.52 0.99 0.0878

Table 8. Results with different population division points
(TSP).

 Results concerning the elite population size are shown in
Tables 9-12. Results here suggest that the elite population
should be kept small, to assign more individuals to global
optimization than to explore already good solutions. The t-
test results clearly point out the differences in the sample
means.

es cave cstd cscaled t-test
- 0.00145 0.00070 1 -

5% 0.00100 0.00053 0.69 5.423E-05
25% 0.00096 0.00046 0.67 4.974E-05
45% 0.00115 0.00053 0.79 5.270E-04

Table 9. Results with different elite population sizes
(Ackley).

es fave fstd fscaled t-test
- 3657 310 1 -

5% 3846 201 1.05 0.1270
25% 3781 214 1.03 0.0071
45% 3780 230 1.03 0.0029

Table 10. Results with different elite population sizes
(MGP-FIR).

es cave cstd cscaled t-test
- 0.0669 0.0408 1 -

5% 0.0246 0.0171 0.37 4.422E-09
25% 0.0234 0.0163 0.35 1.835E-09
45% 0.0406 0.0341 0.61 7.071E-04

Table 11. Results with different elite population sizes
(Rastrigin).

es cave cstd cscaled t-test
- 725.41 31.32 1 -

5% 685.38 21.94 0.94 7.022E-11
25% 712.21 28.43 0.98 2.856E-02
45% 718.43 30.18 0.99 2.528E-01

Table 12. Results with different elite population sizes
(TSP).

 Result concerning migration interval are displayed in
Tables 13-16. Results suggest that the populations should be
given a little time to converge before individuals are
exchanged between the populations. Too short convergence
time between migration points may cause oscillation, and
too long time, then again, may lead to premature
convergence of the whole algorithm. As expected, the t-test
values show that there exists difference in the means using
different im parameter settings. However, for the TSP, using
these migration intervals the 2PGA was in fact outperformed
by the SPGA. This is likely due to the fact that the migration
intervals for this kind of problem were too large. Migration
intervals less than 2% produced better results.

im cave cstd cscaled t-test
- 0.00145 0.00070 1 -

2% 0.00092 0.00049 0.64 0.0004
5% 0.00097 0.00038 0.67 0.0001

10% 0.00102 0.00047 0.70 0.0155
Table 13. Results with different migration intervals

(Ackley).

im fave fstd fscaled t-test
- 3657 310 1 -

2% 3742 261 1.02 0.0005
5% 3802 202 1.04 0.0221

10% 3810 184 1.04 0.0267
Table 14. Results with different migration intervals

(MGP-FIR).

im cave cstd cscaled t-test
- 0.0669 0.0408 1 -

2% 0.0299 0.0207 0.45 2.242E-07
5% 0.0255 0.0172 0.38 7.682E-09
10
%

0.0425 0.0472 0.64 6.777E-03

Table 15. Results with different migration intervals
(Rastrigin).

im cave cstd cscaled t-test
- 725.41 31.32 1 -

2% 755.77 39.07 1.04 4.645E-05
5% 760.42 32.95 1.05 4.109E-07

10% 767.85 34.94 1.06 6.054E-09
Table 16. Results with different migration intervals

(TSP).

 The conditions for migration between the populations
were studied next. Results are shown in Tables 17-20.
Results show that the migrating chromosome should not
differ too much from the best chromosome in the elite
population in order not to harm the local search of the elite
population. t-test results confirm that there is difference in
setting different values to the migration condition parameter.
In minimization problems the condition the condition is
larger than 1 and in maximization problems smaller than 1.
When considering migration intervals, the SPGA
outperformed 2PGA in the TSP case. Also in this case, the
used values were likely out of reasonable range for this
specific problem.

cm cave cstd cscaled t-test
- 0.00145 0.00070 1 -

1.01 0.00101 0.00049 0.69 0.0004
1.05 0.00117 0.00060 0.81 0.0203
1.10 0.00113 0.00039 0.77 0.0047
Table 17. Results with different migration conditions

(Ackley).

cm fave fstd fscaled t-test
- 3657 310 1 -

0.99 3772 263 1.03 0.0487
0.95 3856 152 1.05 0.0001
0.90 3814 209 1.04 0.0039
Table 18. Results with different migration conditions

(MGP-FIR).

cm cave cstd cscaled t-test
- 0.0669 0.0408 1 -

1.01 0.0330 0.0255 0.49 3.291E-06
1.05 0.0257 0.0174 0.38 9.001E-09
1.10 0.0262 0.0160 0.39 1.060E-08
Table 19. Results with different migration conditions

(Rastrigin).

cm cave cstd cscaled t-test
- 725.41 31.32 1 -

1.01 744.24 34.00 1.03 5.117E-03
1.05 838.08 37.66 1.16 3.712E-29
1.10 832.38 37.42 1.15 9.820E-28

Table 20. Results with different migration conditions
(TSP).

m mp me cave cstd cscaled t-test

10% - - 0.00145 0.00070 1 -
10% 10% 10% 0.00156 0.00072 1.08 4.459E-01
10% 20% 5% 0.00096 0.00055 0.66 1.814E-04
10% 5% 5% 0.00309 0.00145 2.13 5.364E-10

Table 21. Results with different mutation probability
schemes (Ackley).

Finally, different mutation probability conditions were
verified, and the results are shown in Tables 21-24. These
results suggest that the elite population should undergo
fewer mutations than the plain population in order to finally
achieve good results. In the larger plain population, the
number of mutations should be high. The low t-test value in
the case of both population’s mutation probabilities being
lower than the reference SPGA mutation probability
describes remarkable differences in the two sample sets.
However, exceptionally in this case, the SPGA performs
significantly better than the 2PGA due to the fact that the
used mutation probability is insufficiently low.

m mp me fave fstd fscaled t-test
40% - - 3657 310 1 -
40% 40% 40% 3637 339 1.00 0.7608
40% 80% 20% 3857 165 1.06 0.0001
40% 20% 20% 3534 320 0.97 0.0534

Table 22. Results with different mutation probability
schemes (MGP-FIR).

m mp me cave cstd cscaled t-test

10% - - 0.0669 0.0408 1 -
10% 10% 10% 0.1339 0.0986 2.00 3.602E-05
10% 20% 5% 0.0274 0.0190 0.41 3.501E-08
10% 5% 5% 0.4996 0.2428 7.46 3.714E-17

Table 23. Results with different mutation probability
schemes (Rastrigin).

 m mp me cave cstd cscaled t-test

20% - - 725.41 31.32 1 -
20% 20% 20% 747.21 29.21 1.03 5.320E-04
20% 40% 10% 708.49 26.63 0.98 4.266E-03
20% 10% 10% 773.61 44.31 1.07 1.312E-08

Table 24. Results with different mutation probability
schemes (TSP).

 Figures 5-8 show a comparison between the
performance of the 2PGA and the reference SPGA solving
the different test problems. The 2PGA results include both
the best and the worst parameter setting in terms of the
average fitness values. The results show that 2PGA usually
outperforms SPGA when the parameter settings are
reasonable. Figures 9-12 show the corresponding standard
deviations. As can be seen, the standard deviation is usually
lower using 2PGA than SPGA.

SPGA Div. point Elite size Mig. int. Mig. cond.
0

0.5

1

1.5
x 10

-3

C
st
 a
ve
ra
ge

o

Best cost average
Worst cost average

Figure 5. Comparison of the achieved cost value averages

between the reference SPGA and 2PGAs with different
parameters in the Ackley’s function minimization problem.

SPGA Div. point Elite size Mig. int. Mig. cond.
3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

4000

Fi
tn
es
s
av
er
a
ge

Best fitness average
Worst fitness average

Figure 6. Comparison of the achieved fitness value averages
between the reference SPGA and 2PGAs with different

parameters in the MGP basis filter maximization problem.

SPGA Div. point Elite size Mig. int. Mig. cond.
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
os
t a
ve
ra
ge

Best cost average
Worst cost average

Figure 7. Comparison of the achieved cost value averages
between the reference SPGA and 2PGAs with different

parameters in the Rastrigin’s function minimization
problem.

SPGA Div. point Elite size Mig. int. Mig. cond.
0

100

200

300

400

500

600

700

800

900

1000
Best cost average
Worst cost average

C
os
t a
ve
ra
ge

C
os

t A
ve

ra
ge

C
os

t A
ve

ra
ge

Figure 8. Comparison of the achieved cost value averages

between the reference SPGA and 2PGAs with different
parameters in the TSP minimization problem.

SPGA Div. point Elite size Mig. int. Mig. cond.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

C
os
t s
ta
nd
ar
d
de
vi
at
io
n

Best standard deviation
Worst standard deviation

Figure 9. Comparison of the achieved standard deviations
between the reference SPGA and 2PGAs with different

parameters in the Ackley’s function minimization problem.

C
os

t S
ta

nd
ar

d
D

ev
ia

tio
n

Fi
tn

es
s

A
ve

ra
ge

SPGA Div. point Elite size Mig. int. Mig. cond.
0

50

100

150

200

250

300

350

400

Fi
tn
es
s
st
an
da
rd
 d
ev
ia
tio
n

Best standard deviation
Worst standard deviation

Figure 10. Comparison of the achieved standard deviations
between the reference SPGA and 2PGAs with different

parameters in the MGP basis filter maximization problem.

Fi
tn

es
s

S
ta

nd
ar

d
D

ev
ia

tio
n

C
os

t A
ve

ra
ge

SPGA Div. point Elite size Mig. int. Mig. cond.
0

0.01

0.02

0.03

0.04

0.05

0.06

C
os
t s
ta
nd
ar
d
de
vi
at
io
n

Best standard deviation
Worst standard deviation

Figure 11. Comparison of the achieved standard deviations
between the reference SPGA and 2PGAs with different

parameters in the Rastrigin’s function minimization
problem.

SPGA Div. point Elite size Mig. int. Mig. cond.
0

5

10

15

20

25

30

35

40

45

50

C
os
t s
ta
nd
ar
d
de
vi
at
io
n

Best standard deviation
Worst standard deviation

Figure 12. Comparison the achieved standard deviations
between the reference SPGA and 2PGAs with different

parameters in the TSP minimization problem.

 Finally, Figs. 13-16 display the averaged convergence
characteristics of the reference GA and the 2PGA schemes.
The figures clearly show the better convergence
characteristics of the 2PGA scheme compared to those of the
reference GA. The reference parameter values, shown in
Table 3, were used for the 2PGA calculations.

2 3 4 5 6 7 8 9 10
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

Generations

C
os
t

Reference GA
2PGA

Figure 13. Convergence characteristic of the 2PGA and the

reference GA in Ackley’s function minimization.

0 50 100 150 200 250 300
2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

Generations

C
os

t S
ta

nd
ar

d
D

ev
ia

tio
n

Reference GA
2PGA

Fi
tn
es
s

Fi
tn

es
s

Figure 14. Convergence characteristic of the 2PGA and the

reference GA in MGP-FIR maximization.

200 400 600 800 1000 1200 1400 1600 1800 2000
700

750

800

850

900

950

1000

1050

1100

1150

Generations

C
os
t

Reference GA
2PGA

C
os

t S
ta

nd
ar

d
D

ev
ia

tio
n

C
os

t

Figure 15. Convergence characteristic of the 2PGA and the

reference GA in TSP minimization.

2 3 4 5 6 7 8 9 10
x 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Generations

Reference GA
2PGA

C
os
t

C
os

t

Figure 16. Convergence characteristic of the 2PGA and the

reference GA in Rastrigin’s function minimization.

C
os

t

 Commonly, parameters within evolutionary algorithms
are quite application specific and no strict guidelines can be
given to achieve good results in a specific problem. We
demonstrated above that almost regardless of the evaluated
parameter settings our proposed 2PGA produces better
results than the ordinary SPGA used as a reference. The
performance of the reference SPGA can naturally be tuned
for example using seeding, adaptive parameters, and such,
but the same improvements would also benefit the 2PGA

scheme. Some guidelines on finding the proper parameter
settings can, however, be given based on these results.
 The total population should be divided into
subpopulations before the algorithm has converged, thus
eliminating the change of further improvement in fitness
values. Experiments suggest that this division should take
place before some 25% of the total number of generations is
run. Intuitively, everybody cannot be elite, so the size of
elite population should be limited to those individuals who
posses the highest fitness or lowest cost. Elite size around
5% of the total population is favored by the simulation
results.
 Migration interval should be long enough for the
populations to converge moderately, but not too much.
Migration interval of 5-10% of the total number of
generations has produced plausible solutions in our
experiments. Migration condition sets the limits for the
chromosomes from the plain population trying to enter the
elite population. Results from the experiments point that the
fitness of the plain population chromosome should roughly
be at most 1.05 or 0.95 of the cost of the best chromosome
in the elite population depending if we are dealing with
minimization or maximization problem, respectively. This
way, relatively moderate chromosomes cannot interfere the
search of the local optimum.
 Mutation probabilities are very application specific
parameters, and only the ratio between the plain and elite
population mutation probabilities can be given here. To
stress the local search nature of the elite population the
mutation probability should be kept rather small, whereas
the individuals in the plain population should be more likely
to undergo mutations while searching the whole solution
space.
 The comparison of SPGA and 2PGA results is somewhat
problematic. Naturally, the number of function evaluations
has to remain the same, as it does in this case. The number
of mutations per run, however, rarely is exactly the same.
This is likely the case when using for example adaptive
mutation probabilities. It is generally not a problem, since
the computational burden induced by a mutation operation is
generally negligible to that of a solution evaluation. In terms
of mutation, what our results show, is that when we find a
mutation probability m giving us good results, we can get
even better results using two populations, elite and plain,
using mutation probabilities of 0.5m and 2m, respectively.
 It seems a feasible solution to pick the best parameters
from the alternatives presented above, and see how such an
algorithm performs. Unfortunately, the relations between the
parameters are more complex than that, but picking up the
best values for every parameter still produces competitive
result.
 The computational burden of 2PGA does not differ much
from that of the reference SPGA, since both the algorithms
use the same amount of crossovers and chromosome
evaluations. The need for extra computation arises only
during the initialization of the two populations and
migration procedure later on. Tests show at maximum a 5%
increase in computation time when using 2PGA scheme
compared to that of a SPGA.
´

VI. Hierarchical 3PGA

The term two-population genetic algorithm implies that
there could be even more populations than the previously
considered plain and elite populations used in the 2GPA.
The three-population GA, 3PGA, is a complex system and
the performance comparison between the two-population
and the single population GAs in not so straightforward. A
careful consideration has to be made that the result are
comparable, in other words, the amount of fitness function
evaluations remains the same. The populations in the 3PGA
are formed as in the two-population case explained in
Section II. The migration from middle to elite and lower to
middle population happens as described earlier in Section II
related to 2PGA. Also, the chromosomes not selected as
parents for next generation are transferred from elite to
middle population, from middle to lower population or
discarded. In Table 25 we present the population parameters
for the 3PGAs.

Problem Elite
pop.
size

Middle
pop. size

Lower
pop. size

Total
pop. size

MGP 12 42 26 80
Ackley 16 52 32 100
Table 25. Population sizes for three-population 3PGAs.

 To test the performance of the 3PGA, we implemented
the algorithm to solve two test problems, the Ackley’s
function and the MGP filter design problem. The total
population sizes in both the MGP basis filter and Ackley’s
function optimization are the same as in the respective
SPGAs, as are also the number of reproduced individuals
per generation. The parameters for the reference SPGAs can
be seen in Table 26. The reproduction characteristics for
both the MGP basis filter problem and the Ackley’s function
optimization problem are shown in Tables 27 and 28,
respectively.

Problem Pop. size Parents Offspr. Discarded
MGP 80 16 16 16

Ackley 100 22 22 22
Table 26. The reproduction characteristics of the reference

SPGAs.

 Table 26 shows that when optimizing the MGP basis
filter, for every generation 16 parents produce 16 offspring,
which replace 16 worst chromosomes in the population. For
Ackley’s function optimization the corresponding figure is
22.

Population Elite Middle Low
Population size 12 42 26

Parents 6 8 2
Offspring 6 8 2

Migrated lower 6 14 -
Discarded - - 16

Mutation probability 10% 20% 100%
Table 27. Reproduction and mutation characteristics of the
three-population 3PGA for the MGP basis filter scheme for

each generation.

Population Elite Middle Low
Population size 16 52 32

Parents 8 10 4
Offspring 8 10 4

Migrated lower 8 18 -
Discarded - - 22

Mutation probability 20% 40% 100%
Table 28. Reproduction and mutation characteristics of the

3PGA for the Ackley’s function scheme for each generation.

 Similar migration scheme was used in the 3PGA as was
in the 2PGA. Chromosomes could migrate to upper
population if their fitness was higher than the fitness of the
best chromosome in the upper population. The worst
chromosome from the upper population was then migrated
to lower population.
 Results using 2PGA and 3PGA are not directly
comparable, because different number of offspring was
created on each generation. The results of the Reference
SPGA with the same reproduction characteristics as the
3PGA in the case of MGP basis filter optimization are
shown in table 29. The results are averages of 50 runs. The
results for optimizing Ackley’s function with the three-
population MPGA are shown in Table 30.

Algorithm fave fstd
SPGA 3631 306
3PGA 3773 215

Table 29. Results of the 3PGA in the MGP basis filter
maximization.

Algorithm cave cstd

SPGA 0.00172 0.00072
3PGA 0.00081 0.00041

Table 30. Results of the 3PGA in the Ackley’s function
minimization.

 The results show that the 3PGA outperforms the
corresponding SPGA. However, the 3PGA is a rather
complex system to implement and it is obvious that the
2PGA outperforms the three-population counterpart in terms
of programming convenience. Based on the experience
gained programming 2PGAs and 3PGAs, and also
considering the results achieved, we prefer using 2PGA
instead of 3PGA. Hierarchical GAs with more than three
populations have not been experimented with and are not
convenient for problems with population sizes of the
magnitudes dealt in this paper.

VII. Conclusion

In this paper, we have presented a hierarchical
multipopulation genetic algorithm scheme. In our idea, the
solution population is divided into multiple intermigrating
entities based on their similar fitness characteristics. The
proposed scheme aims to mimic the phenomena distinct to
both human and animal populations, according to which

individuals tend to gather in groups of homogeneous fitness
characteristics. Evaluation results show that the suggested
system is capable of producing competitive performance
compared to the traditional single population genetic
algorithm. As our scheme requires negligible amount of
additional calculation, it could well add to the performance
of every algorithm using some sort of single population
genetic algorithm as a part of it.
 Our multipopulation genetic algorithm is somewhat more
complex than the regular single population genetic
algorithm, and it also has more tunable parameters. Our
results show, however, that almost regardless of the
reasonable parameter settings, the proposed scheme is
capable of producing competitive results in optimization
problems in terms of fitness values and convergence
reliability.
 The proposed 2PGA scheme cannot replace hybrid
algorithms equipped with hill-climbing methods or other
fusion methods, but it offers a valuable addition to the
performance of a standard genetic algorithm, thus making it
attractive basic platform for any application involving a GA,
or any other evolutionary computation method.

Acknowledgments

 The authors whish to thank the referees for their insightful
comments. This research work was funded by the Academy
of Finland under Grant 214144.

References

[1] T. Bäck. Evolutionary Algorithms in Theory and

Practice, Oxford University Press, New York, NY,
1996.

[2] D. B. Fogel. Evolutionary Computation: Toward a

New Philosophy of Machine Intelligence, IEEE Press,
Piscataway, NJ, 2000.

[3] R. L. Haupt and S. E. Haupt. Practical Genetic

Algorithms, John Wiley & Sons, New York, NY,
1998.

[4] M. Nowostawski and R. Poli. “Parallel genetic

algorithm taxonomy”, in Proceedings of the 3rd
International Conference on Knowledge-Based
Intelligent Information Engineering Systems,
Adelaide, Australia, pp. 88-92, 1999.

[5] E. Alba and M. Tomassini. “Parallelism and

evolutionary algorithms”, IEEE Transactions on
Evolutionary Computation, VII (5), pp. 443-462,
2002.

[6] E. Cantú-Paz. “Markov chain models of parallel

genetic algorithms”, IEEE Transactions on
Evolutionary Computation, IV (3), pp. 216-226,
2000.

[7] J. Branke, A. Kamper, and H. Scheck. “Distribution

of evolutionary algorithms in heterogeneous
networks,” Genetic and Evolutionary Computation

Conference, LNCS 3102, Springer, Berlin, Germany,
pp. 923-934, 2004.

[8] F. Herrera and M. Lozano. “Gradual distributed real-

coded genetic algorithms”, IEEE Transactions on
Evolutionary Computation, IV (1), pp. 43-63, 2000.

[9] V. Slavov and N. Nikolaev. “Genetic algorithms,

sublandscapes and subpopulations,” in Foundations
of genetic Algorithms 5, W. Banzhaf and C. Reeves
(Eds.), Morgan Kaufmann, San Francisco, CA, 1999.

[10] V. S. Gordon and D. Whitley. “Serial and parallel

genetic algorithms as function optimizers”, in
Proceedings of the 5th International Conference on
Genetic Algorithms, San Mateo, CA, pp. 177-183,
1993.

[11] D. E. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learning, Boston, MA:
Kluwer Academic Publishers, 1989.

[12] P. J. Darwen and X. Yao. “Speciation as automatic

categorical modularization”, IEEE Transactions on
Evolutionary Computation, I (2), pp. 101-108, 1997.

[13] J. Werfel, M. Mitchell, and J. P. Crutchfield.

“Resource sharing and coevolution in evolving
cellular automata”, IEEE Transactions on
Evolutionary Computation, IV (4), pp. 388-393,
2000.

[14] H. Handa, N. Baba, O. Katai, T. Sawaragi, and T.

Horiuchi. “Genetic algorithm involving coevolution
mechanism to search for effective genetic
information”, in Proceedings of the IEEE
International Conference on Evolutionary
Computation, Indianapolis, IN, pp. 709-714, 1997.

[15] T. Arita and A. Ojika. “Generation of color patterns

based on the interactions between predators and
prey”, in Proceedings of IEEE International
Conference on Evolutionary Computation, Nagoya,
Japan, pp. 291-294, 1996.

[16] M. Sun and A. W. Johnson. “Interval branch and

bound with local sampling for constrained global

optimization”, Journal of Global Optimization,
XXXIII, pp. 61-82, 2005.

[17] M. Laguna and M. Marti. “Experimental testing of

advanced scatter search designs for global
optimization of multimodal functions”, Journal of
Global Optimization, XXXIII, pp. 235-255, 2005.

[18] A. R. Hedar and M. Fukushima. “Simplex coding

genetic algorithm for the global optimization of
nonlinear functions,” in Multi-Objective
Programming and Goal Programming, T. Tanino, T.
Tanaka and M. Inuiguchi (Eds.), Springer-Verlag,
Berlin-Heidelberg, pp. 135-140, 2003.

[19] J. Grefenstette, R. Gopal, R. Rosmaita, and D. Gucht.

“Genetic algorithms for the traveling salesman
problem”, in Proceedings of the Second International
Conference on Genetic Algorithms, Lawrence
Eribaum Associates, Mahwah, NJ, pp. 160-168,
1985.

[20] S. J. Ovaska and O. Vainio. “Evolutionary-

programming-based optimization of reduced-rank
adaptive filters for reference generation in active
power filters”, IEEE Transactions on Industrial
Electronics, LI (4), pp. 910-916, 2004.

[21] K. Fujimura, O.-C. Kwaw, and H. Tokutaka.

“Optimization of surface component mounting on
the printed circuit board using SOM-TSP method”,
in Proceedings of the 6th International Conference
on Neural Information Processing, Perth, Australia,
pp. 131-136, 1999.

[22] W. Sheng, N. Xi, M. Song, and Y. Chen.

“Optimization in Automated Surface Inspection of
Stamped Automotive Parts”, in Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 2, Lausanne, Switzerland,
pp. 1850-1855, 2002.

[23] J. S. Milton and J. C. Arnold. Introduction to

Probability and Statistics: Principles and
Applications for Engineering and the Computing
Science, McGraw-Hill, New York, NY, 1990.

Author Biographies

JARNO MARTIKAINEN received an M.Sc. and an Lic.Sc. degree in
electrical engineering from the Helsinki University of Technology in
2003 and 2006, respectively. He is currently working towards the Ph.D.
degree. His research interests include evolutionary algorithms in time-
constrained optimization and the fusion of soft computing techniques.

SEPPO J. OVASKA (M’85–SM’91) received an M.Sc. degree in electrical
engineering from Tampere University of Technology, Finland, an Lic.Sc.
degree in computer science and engineering from Helsinki University of
Technology, Finland, and a D.Sc. degree in electrical engineering from
Tampere University of Technology in 1980, 1987, and 1989, respectively.

 He is currently a Professor in the Department of Electrical and
Communications Engineering, Helsinki University of Technology. Before
joining Helsinki University of Technology in 1996, he was an
Associate/Full Professor in the Department of Information Technology,
Lappeenranta University of Technology, Finland. From 1980 to 1992, he
held engineering, research, and R&D management positions with Kone
Elevators and Nokia Research Center, both in Finland and in Kentucky. In
the summer of 1999, he was a Visiting Scientist at Muroran Institute of
Technology, Japan; in the summers of 2000 and 2001, at Virginia
Polytechnic Institute and State University; in the summers of 2002–2004, at
Utah State University; and in the summer of 2005, at University of Passau,
Germany. His research interests are in soft computing, fault diagnosis,
signal processing, and control. During his career, he has authored or
coauthored over 200 papers in peer-reviewed journals and international
conferences. He edited “Computationally Intelligent Hybrid Systems: The
Fusion of Soft Computing and Hard Computing” (Wiley – IEEE Press,
2004), and holds nine patents in the area of systems and control.
 Dr. Ovaska is an Associate Editor for the IEEE Transactions on Systems,
Man, and Cybernetics—Part C: Applications and Reviews and the IEEE
Transactions on Neural Networks. He was the Founding General Chair of
the 1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in In-
dustrial Applications. In addition, he was the General Chair of the 5th
Online World Conference on Soft Computing in Industrial Applications
(2000). Dr. Ovaska is a recipient of two Outstanding Contribution Awards
of the IEEE Systems, Man, and Cybernetics Society.

