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Abstract: This paper proposes a new hierarchical two-population 
genetic algorithm (2PGA). The 2PGA scheme constitutes of two 
differently sized populations containing individuals of similar 
fitness or cost function values. The smaller population, the elite 
population, consists of the best individuals, whereas the larger 
population contains less fit individuals. These populations have 
different characteristics, such as size and mutation probability, 
based on the fitness of the candidate solutions in these 
populations. The performance of our 2PGA is compared to that 
of a single population genetic algorithm (SPGA). Because the 
2PGA has multiple parameters, the significance and the effect of 
the parameters is also studied. Experimental results show that the 
2PGA outperforms the SPGA reliably without increasing the 
amount of fitness function evaluations. Although genetic 
algorithms are used as a platform for the 2PGA scheme, the 
principles presented here are applicable also to other population 
based evolutionary optimization methods. 
 
Keywords: Genetic algorithms, multipopulation genetic algorithm, 
hierarchical populations, evolutionary algorithms, coevolution. 
 

I. Introduction 
 
Genetic algorithms (GA) [1]-[3] is a branch of evolutionary 
computation modeling the nature’s way of finding 
competitive solutions based on the demands of the 
environment. GAs, like other evolutionary computation 
methods, evolve solutions in an iterative manner by applying 
variation and selection operators to a pool of candidate 
solutions. To enhance GAs performance, genetic algorithms 
can take advantage of parallel computing environments due 
to their well parallelizable nature. Parallel implementations 
usually constitute of multiple populations running on several 
separate computing units. Such parallel GAs have been 
studied before, and [4] offers a good introduction to the 
basics of the field. Parallelism in evolutionary algorithms in 
general is discussed in [5]. Parallel multipopulation GAs and 
their parameters are discussed in [6] and [7]. These parallel 
approaches mainly rely on implementing multipopulation 
GAs so that individual populations have their own 
computing units and, thus, these schemes can usually be 
considered as parallel single population genetic algorithms.  
     However, when considering our surrounding 
environment, it is remarkably distinct that these different 
populations are internally divided into smaller groups. These 
groups, whether animal or human, share the property of 
being roughly homogeneous when considering their fitness 
value based on some appropriate fitness function. Genetic 
algorithms using subpopulations have been studied up to 
some extent before. Parallel genetic algorithm scheme is 

studied in [8] in which different crossover operators are used 
in different subpopulations for exploration and exploitation. 
Fourier expansion based approach of dividing the fitness 
landscapes to sub-landscapes and searching them using 
subpopulations is presented in [9]. 
     A notion that the mere implementation of parallel GA 
without actual parallel hardware adds to the performance of 
a serial GA is suggested in [10]. Niching [11], [12] also 
known as speciation, is a popular multipopulation scheme in 
evolutionary computation. In niching, subpopulations are 
used to search a sub-region of the fitness landscape.  
     Coevolution, the use of multiple evolutionary algorithms 
or populations in parallel to achieve a common goal can also 
be seen as a multipopulation approach to evolutionary 
computation. In [13] two separate populations are used:  a 
solution population and a population of test cases. The 
fitness function can be a combination of different test cases. 
In that scheme, the desired property of the test case 
population is to gradually evolve into more challenging but 
appropriate test cases thus enabling the solution population 
to be able to solve even harder problems as the algorithm 
proceeds. An optimization scheme in which two genetic 
algorithms are working with the same population is 
discussed in [14]. The coevolution scheme can be either co-
operative, in which the multiple components work on the 
same side, or a predator-prey scheme, in which the 
components fight each other as in [15]. 
     In this paper, we present a hierarchical two-population 
genetic algorithm (2PGA) that implements two populations 
on a single processing unit. In our approach, the population 
is divided into a small elite population and large, 
hierarchically lower population based on the fitness values 
of the chromosomes. The method can be embedded to 
parallel implementations of GAs running single population 
GAs, or any other population based evolutionary 
computation scheme, side by side. Nowadays practicing 
engineers do not have the time to repeat calculations a 
number of times, and, thus, our goal is to create an algorithm 
that would reliably produce competitive quality solutions 
using only a few runs. 
     Many methods exist that outperform the standard GA. 
For example, in [16] a powerful branch and bound method 
with local sampling is introduced, [17] introduces an 
advanced scatter search mechanism and [18] discusses a 
hybrid algorithm fusing genetic algorithms with a local 
search method. However, our proposed method is intended 
only to be an improvement to the basic algorithm that can be 
later enhanced using different methodologies, e.g., local 
search mechanisms. 



 

     The performance of the proposed 2PGA is compared to 
that of a single population GA (SPGA) and it is evaluated 
using the well-known minimization problems of Ackley and 
Rastrigin, as well as a demanding filter design maximization 
problem and a traveling salesman problem (TSP). 
     This paper is organized as follows. Section II discusses 
the proposed 2PGA scheme and Section III describes the 
reference SPGA scheme. Section IV explains the problems 
used in testing the performance of the algorithms. Section V 
summarizes the experimental results. Section VI discusses a 
three-population hierarchical GA, and Section VII concludes 
the article. 
 

II. Hierarchical 2PGA 
 
The idea of our multipopulation genetic algorithm originates 
from the notion of nature dividing various populations into 
subpopulations, e.g., a small elite and a large plain, based on 
their fitness similarities. In our 2PGA scheme the two 
populations evolve separately in parallel, but they are 
exchanging chromosomes under certain conditions, i.e., the 
best chromosome from the plain population is allowed to 
enter the elite population if its fitness value is high enough. 
Then again, the worst chromosome from the elite population 
is transferred to the plain population to keep the population 
sizes constant. 
     The evolution in both of the subpopulations is as in the 
SPGA. The principal difference is that in the plain 
population the mutation probability is higher. The analogy 
supporting this assumption can be derived from nature, 
where weaker individuals, in terms of fitness, have to 
change their behavior more in order to succeed in 
competition. 
     GAs typically have a tendency of finding a good 
neighborhood fast, but it may take a long time to reach the 
optimum in that area [11]. This is the reason for using 
specialized hybrid methods, in which a GA is used for 
global search, and local search is carried out by some more 
traditional technique, such as the hill-climbing method. Our 
2PGA is an effort to improve the basic GA with little 
additional computation and no separate algorithms. 
     The operation of our 2PGA can be divided into seven 
stages as follows: 
 
1. Generate an initial random population of solutions. 
 
2. Evaluate the fitness (or cost) of the chromosomes in the 

initial population and divide the population into a small 
elite population and large plain population. 

 
3. Evaluate the fitnesses of plain and elite populations. 
 
4. Implement reproduction separately in both of the 

populations. 
 
5. Compose populations for the next generation combining 

parents, offspring, and possibly migrated chromosomes. 
If the fitness value of the best chromosome in the plain 
population supersedes a certain limit value, exchange 
this chromosome with the worst chromosome in the 
elite population. The parents not chosen to reproduce in 

the previous round in the elite population migrate to the 
plain population. 

 
6. Mutate chromosomes using different mutation 

probabilities for both of the populations. Elitist mutation 
that keeps the best solutions in both the populations 
intact is used. 

 
7. Go to 3 or exit if convergence or run time constraints 

have been met. 
 
     The basic idea of 2PGA algorithm is to conduct global 
and local search in parallel using two populations. The elite 
population, having a small mutation probability, searches 
among the best solutions to find even better solutions, 
whereas the large plain population, with large mutation 
probability, searches the whole search space in hope of 
finding new promising areas of high fitness. 
     The proposed method is illustrated in Figs 1-3. Figure 1 
describes the division of the initial population into two 
separate subpopulations in the 2PGA scheme. In this 
illustrative example, the size of the initial population is only 
14 and the elite and the plain populations to be formed 
contain 4 and 10 chromosomes, respectively. So, the elite 
population size, es, is 4. This division into subpopulations 
can be carried out directly after initialization, or 
alternatively, the initial population can be allowed to 
converge as a single population GA for some time. We call 
the point of division as the population division point, nd. 
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Figure 1. Example of how the initial population is divided 
into two subpopulations. 

 
     In addition to the difference in subpopulation sizes, the 
characteristics of the populations also differ in terms of 
mutation probabilities; mp, the mutation probability of the 
plain population is higher than the mutation probability of 
the elite population, me. If the initial population is not 
divided directly after initialization, mutation probability for 
the initial population is described by m. In both plain and 
elite populations an elitist mutation scheme is applied so that 
the best chromosome is never mutated. Thus, two solutions 
per generation are kept intact in terms of mutation, one for 
each population. 



 

      Figure 2 describes how the populations for the next 
generation are composed in 2PGA. Within both the elite and 
plain populations the best half of the chromosomes are 
selected as parents for the next generation. In Fig. 2 this 
means that the two best chromosomes from the elite 
population produce two offspring. The worst two 
chromosomes in the elite population are transferred to the 
plain population. Accordingly, in the plain population the 
four best chromosomes act as parents for four offspring. 
     Therefore, the elite population in the next generation is 
composed of two new offspring and two old parents from 
the previous generation. The plain population, then again, is 
composed of the two chromosomes left out from the elite 
population in the previous generation. In addition, there is 
also the new offspring of the previous plain population 
parent chromosomes. To fill the plain population up to the 
fixed number of chromosomes we add as many 
chromosomes from the previous plain population as there is 
space for. In numbers, two chromosomes from the previous 
elite population are accompanied by four new plain 
population offspring. Therefore, we can accommodate four 
chromosomes from the previous plain population. The rest 
of the chromosomes are discarded. 
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Figure 2. Example of how the subpopulations of generation 
n+1 are formed from the subpopulations of generation n. 

 
     Figure 3 describes the process of how plain 
chromosomes can enter the elite population. Plain 
chromosomes need not have access to the elite population 
during every generation. im, the migration interval describes 
how often the chromosomes are allowed to enter from plain 
population to the elite population. The migration condition, 
cm, describes the condition based on which the migration 
either does or does not take place. In Fig. 3 cm equals one, 
meaning that the best chromosome in the plain population 
has to be better in terms of fitness value than the best 
chromosome in the elite population in order migration to 
take place. Indeed, 1150 excels 1000 and thus migration 
takes place. To keep the population sizes constant, the worst 
chromosome from the elite population, valued 850, is 
transferred to the plain population. 

     The proposed 2PGA scheme can be embedded on every 
population based evolutionary optimization scheme. It is not 
designed to compete with highly sophisticated and 
application specific optimization schemes, such as hybrid 
evolutionary algorithm methods equipped with gradient-
based local search methods. Instead, the proposed scheme is 
intended to improve the performance of the basic 
evolutionary algorithm with minimal computational 
overhead, and thus any modification benefiting a standard 
evolutionary algorithm will also benefit the proposed 
scheme. 
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Figure 3. Example of exchanging chromosomes between 
the two populations in the case the migration condition is 

fulfilled. 
 

     The implementation of the 2PGA scheme does not 
require parallel hardware, rather it is suitable for all 
platforms, both single processor as well as parallel 
environments. In the 2PGA scheme the two populations are 
different in size as well as in the mutation probability. The 
proposed scheme is similar to coevolution schemes, in 
which separate populations evolve towards a common goal. 
Also, the 2PGA scheme resembles niching since the 
individuals can only reproduce with individuals within the 
same population. However, these individuals can migrate 
between the populations and this does not require complex 
computations, as could be the case in niching methods 
implemented using crowding or fitness sharing. 

 

III. The Reference Genetic Algorithm 
 
To evaluate the performance of the proposed 2PGA method, 
a reference SPGA was constructed and applied to same 
problem as our 2PGA. This reference SPGA operated in six 
stages [1]: 
 
1. Create an initial population randomly. 
 
2. Evaluate the fitness of the chromosomes. 
 



 

3. Mate the chromosomes to produce offspring using 
crossover. Select the best half of the population to 
become parents for the next generation. 

 
4. Select parents and offspring to survive to the next 

generation. 
 
5. Apply elitist mutation to chromosomes so that the best 

chromosome is not mutated. 
 
6. Go to 2 or exit if convergence or run time constraints  

have been met 
 
     The initial populations in the reference SPGAs were 
created randomly. Reproduction was implemented so that 
parents were selected based on their rank and they mated 
with the probability of 1. The best parent mated with the 
second best, third best with fourth best, and so on. 
Reproduction was implemented using blending crossover [3] 
in optimizing Ackley’s and Rastrigin’s functions and a 
single point crossover in the filter design problem. The 
traveling salesman problem was implemented using a 
modification of Grefenstette’s greedy crossover [19]. In all 
the problems, the population for the next generation was 
built up using the best half of the previous generation and 
the offspring of these parents, thus keeping the population 
size constant. 
     Mutation was implemented using an elitist scheme, in 
which the best chromosome was never mutated. The 
mutation probabilities, m, and initial population sizes for the 
reference SPGAs are shown in Table 1. Mutation probability 
here means the probability of a single solution being 
selected for mutation. 
 

Problem m Population size 
Ackley 10% 100 
MGP 40% 80 

Rastrigin 20% 100 
TSP 10% 40 

Table 1. Reference SPGA parameters. 
 
Values presented in Table 1 were found suitable based on 
several test runs. To ensure statistical reliability, each 
algorithm was run 50 times before averages of the results 
were taken. The number of generations run in the Ackley’s 
and Rastrigin’s functions case was 100 000. The filter 
design problem was run for 300 generations and the 
traveling salesman problem was run for 2000 generations. 
The number of generations in each problem was determined 
by the computational requirements of the problem. 
     Naturally, there are algorithms outperforming the 
standard GA, but in this paper comparison is made between 
the standard GA and the proposed method, because  this 
paper studies only the effect of the two-population scheme. 
 
IV. Performance Test Description 
 
A collection of four different kinds of test cases is used in 
this paper and these problems test the capability of the 
proposed scheme in different types of problems. The 
functions of Ackley and Rastrigin represent continuous 
multimodal problems with single optimum. The dimension 

of 30 and 50 is used for these functions, respectively. The 
optimization of the multiplicative general parameter finite 
impulse response filter is a demanding discrete optimization 
problem, with no known global optimum. Finally, a 
demanding 100-city traveling salesman optimization 
problem was used to study combinatorial optimization 
problems.  
   
 
 
     A. Ackley’s Function 
 
The well-known Ackley's function [1] is a continuous 
minimization problem presenting exhaustive search space, in 
which random walk or other brute force methods hardly give 
satisfactory results in a reasonable time. Ackley’s function is 
defined as 
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     In our tests, we used the parameter values suggested in 
[1]. The values are 
 

.3020 ,30 ,2 ,2.0  ,20 321 ≤≤−==== ixnccc π  
 
     The global minimum of Ackley’s function is zero, and 
this is achieved with parameter vector x = [0, …, 0]T. 
 
     B. Multiplicative General Parameter Filter 
 
Predictive lowpass and bandpass filters play an important 
role in numerous delay-constrained signal processing 
applications, especially in the area of 50/60 Hz power 
systems instrumentation. To cope with this demanding 
problem, Vainio et al. introduced the multiplicative general 
parameter (MGP) finite impulse response (FIR) filtering 
scheme in [20]. Since the line frequency tends to vary within 
a constrained interval, typically ±2%, adaptive filters should 
be used. In MGP-FIR the adaptation is achieved through 
adjusting the two MGPs. The coefficient values of the FIR 
basis filter do not change during the adaptation process. The 
purpose of the MGP-FIR is to extract the fundamental 50/60 
Hz sinusoid signal among disturbances without causing any 
delay to this primary signal. 
     In a typical MGP-FIR, the filter output is computed as 
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Where g1(n) and g2(n) present the adaptive MGP parameters, 
and h1(k) and h2(k) are the fixed coefficients of an FIR basis 
filter. Thus, the coefficients of the composite filter are       
θ1(k) = g1(n) h1(k), k∈[0, 1,…, N–1], for the first MGP, and, 
θ2(k) = g2(n) h2(k), k∈[0, 1,…, N–1], for the second MGP. 
An example of MGP-FIR with N=4 is shown in Fig. 4. Here 
N denotes the filter length. The adaptive coefficients, g1(n) 
and g2(n),  are updated as follows 
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where µ is the adaptation gain factor and e(n) is the 
prediction error between the filter output and the training 
signal, i.e.,  x(n)–y(n–p), p being the prediction step. The 
MGP-FIR has two adaptive parameters to adapt only to the 
phase and amplitude of the principal frequency. More 
degrees of freedom would allow the filter to adapt also to 
undesired properties, such as the harmonic frequencies. Our 
training signal s(n) is defined as 
 

 

Figure 4. An example of MGP implementation, where N=4. 
Signal values (n-1) and (n-2) are connected to the first MGP 
and values (n) and (n-3) are connected to the second MGP 

with filter coefficients -1, 1, 1, and -1 respectively 
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     r(n) denotes a uniformly distributed random value 
between   –1 and 1. The duration of the training signal is 900 
samples. This signal is divided into three parts, each of 
which contains 300 samples. These training signal blocks 
correspond to frequencies of 49 Hz, 50 Hz, and 51 Hz. The 
training signal constitutes thus of the nominal frequency 
sinusoid, odd harmonics up to the 15th with amplitudes 0.1 
each, and white noise. The training signal is similar to that 
used in [20], and it mimics the line voltage/current with 
varying fundamental frequency, harmonics, and noise. 
     The basic idea of MGP-FIR filters is that all the samples 
of input delay line should be connected either to the first or 
to the second MGP, and no value should be left unused. 
Computational efficiency of these particular MGP filters 
arises from the fact that the filter coefficients are either  -1, 
0, or 1. Thus the number of multiplications in filtering 
operations is drastically reduced compared to a normal 
filtering operation using real-valued coefficients. 

     MGP-FIR is designed in the following way. The basis 
filter is optimized first either by applying traditional hard 
computing methods, or, as this paper presents, genetic 
algorithms. This optimization problem is discrete and no 
derivative information is available, so basically only some 
form of exhaustive search is an option to evolutionary 
computation methods. Next, the MGP-FIR is used in the 
actual application, and fine-tuning is left to the 
multiplicative general parameters. 
     The fitness of the chromosomes is evaluated using the 
fitness function: 
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     For convenience, K is assigned a value of 107 to scale the 
output of the fitness function to be expressed in thousands. 
Terms NG49, NG50, and NG51 represent the white noise 
gain at a specific stage of the test input signal. This noise 
gain is calculated as 
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     g1(n) and g2(n) represent the first and second MGP at the 
end of a certain frequency period, respectively, whereas 
h1(n) and h2(n) denote the filter coefficients associated to the 
corresponding MGPs. In other words, NG49 is calculated 
using the MGP values after 300 samples, NG50 and NG51 
are calculated after 600 and 900 samples, respectively, while 
the frequency of the training signal changing every 300 
samples. 
     ITAE49, ITAE50, and ITAE51 stand for the Integral of 
Time-weighted Absolute Error (ITAE) for each of the three 
signal parts, respectively. These terms were added to the 
fitness function to smoothen the adaptation of the filter to 
the varying input signal characteristics. The ITAE is 
calculated as follows. 
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     n is the sample index, and M stands for the sample 
number at the end of a specific frequency period, in this case 
300, 600 and 900. e(n) is the error between the output of the 
system and the pure primary sinusoid without any harmonics 
or noise. While evaluating the performance of the genetic 
algorithms the filter length was 40. Mutation in the case of 
MGP basis filter optimization was conducted so that a single 
gene was changed from 0 to 1/-1, 1 to 0/-1, or -1 to 0/1, in 
order to comply with the MGP theory. 
 
     C. Rastrigin’s Function 
 
Rastrigin’s function is another well-known minimization 
problem. Rastrigins function has a single global minimum at 
zero. 
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     The following parameter values were used here 
 
A=100, w=2π, n=50,  20 ≤ x(i) ≤ 30. 
 
          D. Traveling Salesman Problem 
 
Traveling salesman problem (TSP) is a well-known and 
much studied minimization problem. The problem describes 
a traveling salesman who has to visit a certain number of 
cities without having to visit the same city twice, in other 
words, the shortest closed path connecting all the cities has 
to be found. A number of common problems, among others, 
printed circuit board design [21] and robot path planning 
[22] can be converted to a TSP. In this paper we used a 
challenging 100-city TSP. 
     When solving a TSP using GA, special attention has to 
be paid to the crossover operator. A traditional single point 
crossover could easily create loops, which are unacceptable 
in proper solutions. In this case, we used a modification of 
the Grefenstette’s greedy crossover [19]. The modified 
greedy crossover creates a solution by selecting a random 
city from either of the parents. After this, the next city is 
included by taking the closest city to the previous city in the 
parents. There are four candidate cities. If the closest city 
already exists in the solution, we take the second closest and 
so on. If all the four cities exist in the solution, we take a 
random city that does not yet exist in the solution. 
 
V. Results 
 
Increasing the complexity of an algorithm usually increases 
the possibility to modify the operation of the algorithm by 
tweaking a parameter here and there. However, as can be 
seen from the results, the 2PGA outperforms the reference 
SPGA reliably despite the reasonable initial parameter set 
assigned to it. In the following, we present the evaluation 
results of the various parameter configurations. Before 
presenting the actual results of our optimization runs, Table 
2 sums up the various variables used in the text. To analyze 
the effect of the different parameters of the 2PGA only a 
single parameter was changed at a time, other values 
remaining at the default values presented in Table 3. 
     The Student’s t-test [23] was conducted between the 
SPGA results and the 2PGA results to verify whether we 
really were dealing with different sample means. The 
performance of the reference SPGA in the optimization 
problems is shown in Table 4. Average fitness value over 50 
runs was scaled to equal 1 for comparison purposes. 
     The population division point was considered first, and 
the results are shown in Tables 5-8. Also, the Student’s t-test 
has been conducted to verify that the SPGA and the 2PGA 
sample means are actually different. The smaller the t-value 
the more likely it is that the two sample sets are from 
different distributions. The results show that if the division 
into separate populations occurs too late, the whole 
population may have converged beyond the limit after which 
the 2PGA is not capable of producing as good solutions as 
possible. In the light of these results, a proper point for 
dividing the population into separate entities could lie 
between 0 and 25% of the total number of generation to be 
run. But still, regardless of the division point, the 2PGA was 
able to outperform the reference SPGA. t-test results 
confirm the existence of differences resulting in values 

below 0.05, a value considered to clearly show difference 
between two sample set means. 
 

Variable Description 

 
nd

Population division point. Describes the 
point, after which the population is 
divided into separate subpopulations. 
Expressed as a percentage of the total 
number of generations evaluated before 
the division. 

 
im

Migration interval. Describes the interval 
between the points in which the best 
chromosome from the plain population 
can be transferred to elite population. 
Expressed as a number of generation 
between two migration points. 

es Elite size. Describes the size of elite 
population in percentage of the total 
population size. 

 
cm

Migration condition. Describes the limit 
that has to be superseded in order for a 
plain population chromosome to enter the 
elite population. Described as a value 
relative to the best chromosome in the 
elite population. 

m Mutation probability. Describes the 
mutation probability before the division 
into separate subpopulations. 

mp Mutation probability. Describes the 
mutation probability of the plain 
population after population division. 

me Mutation probability. Describes the 
mutation probability of the elite 
population after population division. 

fave Average fitness. 

fstd Fitness standard deviation. 

fscaled Scaled fitness value. Scaled value 1 
corresponds to the average fitness value of 
the reference SPGA. 

cave Average cost. 

cstd Cost standard deviation. 

cscaled Scaled cost value. Scaled value 1 
corresponds to the average cost value of 
the reference SPGA. 

Table 2. Explanation of symbols used. 
 
 
 
 
 
 
 
 
 
 



 

Problem Ackley MGP Rastrigin TSP 
nd 10% 10% 10% 10% 
im 1 1 1 1 
es 15% 15% 15% 15% 
cm 100% 100% 100% 100% 
m 40% 10% 10% 20% 
mp 80% 20% 20% 40% 
me 20% 5% 5% 10% 

Table 3. Default parameters for the 2PGA. 
 

Problem fave / cave fstd / cstd fscaled / cscaled

Ackley 0.00145 0.00070 1 
MGP 3657 310 1 

Rastrigin 0.0669 0.0408 1 
TSP 725.41 31.32 1 

Table 4. Results for the reference SPGA. 
 

nd cave cstd cscaled t-test 
- 0.00145 0.00070 1 - 
0 0.00080 0.00042 0.55 1.964E-07 

10% 0.00082 0.00039 0.56 2.764E-07 
25% 0.00099 0.00071 0.68 1.329E-03 
50% 0.00110 0.00043 0.76 3.303E-03 

Table 5. Results with different population division points 
(Ackley). 

 
nd fave fstd fscaled t-test 
- 3657 310 1 - 
0 3770 229 1.03 0.0421 

10 % 3772 231 1.03 0.0384 
25 % 3810 175 1.04 0.0032 
50 % 3741 256 1.02 0.1448 

Table 6. Results with different population division points 
(MGP-FIR). 

 
nd cave cstd cscaled t-test 
- 0.0669 0.0408 1 - 
0 0.0201 0.0152 0.30 1.819E-10 

10% 0.0253 0.0207 0.38 1.176E-08 
25% 0.0241 0.0168 0.36 3.003E-09 
50% 0.0519 0.0531 0.77 1.148E-01 

Table 7. Results with different population division points 
(Rastringin). 

 
nd cave cstd cscaled t-test 
- 725.41 31.32 1 - 
0 711.38 34.66 0.98 0.0350 

10 % 710.55 30.24 0.98 0.0169 
25 % 719.21 30.52 0.99 0.3612 
50 % 715.63 25.52 0.99 0.0878 

Table 8. Results with different population division points 
(TSP). 

 
     Results concerning the elite population size are shown in 
Tables 9-12. Results here suggest that the elite population 
should be kept small, to assign more individuals to global 
optimization than to explore already good solutions. The t-
test results clearly point out the differences in the sample 
means. 
 
 

 
es cave cstd cscaled t-test 
- 0.00145 0.00070 1 - 

5% 0.00100 0.00053 0.69 5.423E-05 
25% 0.00096 0.00046 0.67 4.974E-05 
45% 0.00115 0.00053 0.79 5.270E-04 

Table 9. Results with different elite population sizes 
(Ackley). 

es fave fstd fscaled t-test 
- 3657 310 1 - 

5% 3846 201 1.05 0.1270 
25% 3781 214 1.03 0.0071 
45% 3780 230 1.03 0.0029 

Table 10. Results with different elite population sizes  
(MGP-FIR). 

 
es cave cstd cscaled t-test 
- 0.0669 0.0408 1 - 

5% 0.0246 0.0171 0.37 4.422E-09 
25% 0.0234 0.0163 0.35 1.835E-09 
45% 0.0406 0.0341 0.61 7.071E-04 

Table 11. Results with different elite population sizes 
(Rastrigin). 

 
es cave cstd cscaled t-test 
- 725.41 31.32 1 - 

5% 685.38 21.94 0.94 7.022E-11 
25% 712.21 28.43 0.98 2.856E-02 
45% 718.43 30.18 0.99 2.528E-01 

Table 12. Results with different elite population sizes  
(TSP). 

 
     Result concerning migration interval are displayed in 
Tables 13-16. Results suggest that the populations should be 
given a little time to converge before individuals are 
exchanged between the populations. Too short convergence 
time between migration points may cause oscillation, and 
too long time, then again, may lead to premature 
convergence of the whole algorithm. As expected, the t-test 
values show that there exists difference in the means using 
different im parameter settings. However, for the TSP, using 
these migration intervals the 2PGA was in fact outperformed 
by the SPGA. This is likely due to the fact that the migration 
intervals for this kind of problem were too large. Migration 
intervals less than 2% produced better results. 
 

im cave cstd cscaled t-test 
- 0.00145 0.00070 1 - 

2% 0.00092 0.00049 0.64 0.0004 
5% 0.00097 0.00038 0.67 0.0001 

10% 0.00102 0.00047 0.70 0.0155 
Table 13. Results with different migration intervals  

(Ackley). 
 

im fave fstd fscaled t-test 
- 3657 310 1 - 

2% 3742 261 1.02 0.0005 
5% 3802 202 1.04 0.0221 

10% 3810 184 1.04 0.0267 
Table 14. Results with different migration intervals  

(MGP-FIR). 
 



 

im cave cstd cscaled t-test 
- 0.0669 0.0408 1 - 

2% 0.0299 0.0207 0.45 2.242E-07 
5% 0.0255 0.0172 0.38 7.682E-09 
10
% 

0.0425 0.0472 0.64 6.777E-03 

Table 15. Results with different migration intervals 
(Rastrigin). 

 
im cave cstd cscaled t-test 
- 725.41 31.32 1 - 

2% 755.77 39.07 1.04 4.645E-05 
5% 760.42 32.95 1.05 4.109E-07 

10% 767.85 34.94 1.06 6.054E-09 
Table 16. Results with different migration intervals  

(TSP). 
 
     The conditions for migration between the populations 
were studied next. Results are shown in Tables 17-20. 
Results show that the migrating chromosome should not 
differ too much from the best chromosome in the elite 
population in order not to harm the local search of the elite 
population. t-test results confirm that there is difference in 
setting different values to the migration condition parameter. 
In minimization problems the condition the condition is 
larger than 1 and in maximization problems smaller than 1. 
When considering migration intervals, the SPGA 
outperformed 2PGA in the TSP case. Also in this case, the 
used values were likely out of reasonable range for this 
specific problem. 
 

cm cave cstd cscaled t-test 
- 0.00145 0.00070 1 - 

1.01 0.00101 0.00049 0.69 0.0004 
1.05 0.00117 0.00060 0.81 0.0203 
1.10 0.00113 0.00039 0.77 0.0047 
Table 17. Results with different migration conditions 

(Ackley). 
 

cm fave fstd fscaled t-test 
- 3657 310 1 - 

0.99 3772 263 1.03 0.0487 
0.95 3856 152 1.05 0.0001 
0.90 3814 209 1.04 0.0039 
Table 18. Results with different migration conditions  

(MGP-FIR). 
 

cm cave cstd cscaled t-test 
- 0.0669 0.0408 1 - 

1.01 0.0330 0.0255 0.49 3.291E-06 
1.05 0.0257 0.0174 0.38 9.001E-09 
1.10 0.0262 0.0160 0.39 1.060E-08 
Table 19. Results with different migration conditions 

(Rastrigin). 
 

cm cave cstd cscaled t-test 
- 725.41 31.32 1 - 

1.01 744.24 34.00 1.03 5.117E-03 
1.05 838.08 37.66 1.16 3.712E-29 
1.10 832.38 37.42 1.15 9.820E-28 

Table 20. Results with different migration conditions  
(TSP). 

 
m mp me cave cstd cscaled t-test 

10% - - 0.00145 0.00070 1 - 
10% 10% 10% 0.00156 0.00072 1.08 4.459E-01
10% 20% 5% 0.00096 0.00055 0.66 1.814E-04
10% 5% 5% 0.00309 0.00145 2.13 5.364E-10

Table 21. Results with different mutation probability 
schemes (Ackley). 

 
Finally, different mutation probability conditions were 
verified, and the results are shown in Tables 21-24. These 
results suggest that the elite population should undergo 
fewer mutations than the plain population in order to finally 
achieve good results. In the larger plain population, the 
number of mutations should be high. The low t-test value in 
the case of both population’s mutation probabilities being 
lower than the reference SPGA mutation probability 
describes remarkable differences in the two sample sets. 
However, exceptionally in this case, the SPGA performs 
significantly better than the 2PGA due to the fact that the 
used mutation probability is insufficiently low. 
 

m mp me fave fstd fscaled t-test 
40% - - 3657 310 1 - 
40% 40% 40% 3637 339 1.00 0.7608 
40% 80% 20% 3857 165 1.06 0.0001 
40% 20% 20% 3534 320 0.97 0.0534 

Table 22. Results with different mutation probability 
schemes (MGP-FIR). 

 
m mp me cave cstd cscaled t-test 

10% - - 0.0669 0.0408 1 - 
10% 10% 10% 0.1339 0.0986 2.00 3.602E-05
10% 20% 5% 0.0274 0.0190 0.41 3.501E-08
10% 5% 5% 0.4996 0.2428 7.46 3.714E-17

Table 23. Results with different mutation probability 
schemes (Rastrigin). 

 
     m mp me cave cstd cscaled t-test 

20% - - 725.41 31.32 1 - 
20% 20% 20% 747.21 29.21 1.03 5.320E-04
20% 40% 10% 708.49 26.63 0.98 4.266E-03
20% 10% 10% 773.61 44.31 1.07 1.312E-08

Table 24. Results with different mutation probability 
schemes (TSP). 

 
      Figures 5-8 show a comparison between the 
performance of the 2PGA and the reference SPGA solving 
the different test problems. The 2PGA results include both 
the best and the worst parameter setting in terms of the 
average fitness values. The results show that 2PGA usually 
outperforms SPGA when the parameter settings are 
reasonable. Figures 9-12 show the corresponding standard 
deviations. As can be seen, the standard deviation is usually 
lower using 2PGA than SPGA. 
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Figure 5. Comparison of the achieved cost value averages 

between the reference SPGA and 2PGAs with different 
parameters in the Ackley’s function minimization problem. 
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Figure 6. Comparison of the achieved fitness value averages 
between the reference SPGA and 2PGAs with different 

parameters in the MGP basis filter maximization problem. 
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Figure 7. Comparison of the achieved cost value averages 
between the reference SPGA and 2PGAs with different 

parameters in the Rastrigin’s function minimization 
problem. 
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Figure 8. Comparison of the achieved cost value averages 

between the reference SPGA and 2PGAs with different 
parameters in the TSP minimization problem. 
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Figure 9. Comparison of the achieved standard deviations 
between the reference SPGA and 2PGAs with different 

parameters in the Ackley’s function minimization problem. 
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Figure 10. Comparison of the achieved standard deviations 
between the reference SPGA and 2PGAs with different 

parameters in the MGP basis filter maximization problem. 
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Figure 11. Comparison of the achieved standard deviations 
between the reference SPGA and 2PGAs with different 

parameters in the Rastrigin’s function minimization 
problem. 
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Figure 12. Comparison the achieved standard deviations 
between the reference SPGA and 2PGAs with different 

parameters in the TSP minimization problem.     
 
     Finally, Figs. 13-16 display the averaged convergence 
characteristics of the reference GA and the 2PGA schemes. 
The figures clearly show the better convergence 
characteristics of the 2PGA scheme compared to those of the 
reference GA. The reference parameter values, shown in 
Table 3, were used for the 2PGA calculations. 
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Figure 13. Convergence characteristic of the 2PGA and the 

reference GA in Ackley’s function minimization. 
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Figure 14. Convergence characteristic of the 2PGA and the 

reference GA in MGP-FIR maximization. 
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Figure 15. Convergence characteristic of the 2PGA and the 

reference GA in TSP minimization. 
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Figure 16. Convergence characteristic of the 2PGA and the 

reference GA in Rastrigin’s function minimization. 
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     Commonly, parameters within evolutionary algorithms 
are quite application specific and no strict guidelines can be 
given to achieve good results in a specific problem. We 
demonstrated above that almost regardless of the evaluated 
parameter settings our proposed 2PGA produces better 
results than the ordinary SPGA used as a reference. The 
performance of the reference SPGA can naturally be tuned 
for example using seeding, adaptive parameters, and such, 
but the same improvements would also benefit the 2PGA 



 

scheme. Some guidelines on finding the proper parameter 
settings can, however, be given based on these results. 
      The total population should be divided into 
subpopulations before the algorithm has converged, thus 
eliminating the change of further improvement in fitness 
values. Experiments suggest that this division should take 
place before some 25% of the total number of generations is 
run. Intuitively, everybody cannot be elite, so the size of 
elite population should be limited to those individuals who 
posses the highest fitness or lowest cost. Elite size around 
5% of the total population is favored by the simulation 
results. 
     Migration interval should be long enough for the 
populations to converge moderately, but not too much. 
Migration interval of 5-10% of the total number of 
generations has produced plausible solutions in our 
experiments. Migration condition sets the limits for the 
chromosomes from the plain population trying to enter the 
elite population. Results from the experiments point that the 
fitness of the plain population chromosome should roughly 
be at most 1.05 or 0.95 of the cost of the best chromosome 
in the elite population depending if we are dealing with 
minimization or maximization problem, respectively. This 
way, relatively moderate chromosomes cannot interfere the 
search of the local optimum. 
      Mutation probabilities are very application specific 
parameters, and only the ratio between the plain and elite 
population mutation probabilities can be given here. To 
stress the local search nature of the elite population the 
mutation probability should be kept rather small, whereas 
the individuals in the plain population should be more likely 
to undergo mutations while searching the whole solution 
space. 
     The comparison of SPGA and 2PGA results is somewhat 
problematic. Naturally, the number of function evaluations 
has to remain the same, as it does in this case. The number 
of mutations per run, however, rarely is exactly the same. 
This is likely the case when using for example adaptive 
mutation probabilities. It is generally not a problem, since 
the computational burden induced by a mutation operation is 
generally negligible to that of a solution evaluation. In terms 
of mutation, what our results show, is that when we find a 
mutation probability m giving us good results, we can get 
even better results using two populations, elite and plain, 
using mutation probabilities of 0.5m and 2m, respectively. 
     It seems a feasible solution to pick the best parameters 
from the alternatives presented above, and see how such an 
algorithm performs. Unfortunately, the relations between the 
parameters are more complex than that, but picking up the 
best values for every parameter still produces competitive 
result. 
     The computational burden of 2PGA does not differ much 
from that of the reference SPGA, since both the algorithms 
use the same amount of crossovers and chromosome 
evaluations. The need for extra computation arises only 
during the initialization of the two populations and 
migration procedure later on. Tests show at maximum a 5% 
increase in computation time when using 2PGA scheme 
compared to that of a SPGA. 
´ 
 
 

VI. Hierarchical 3PGA 
 
The term two-population genetic algorithm implies that 
there could be even more populations than the previously 
considered plain and elite populations used in the 2GPA. 
The three-population GA, 3PGA, is a complex system and 
the performance comparison between the two-population 
and the single population GAs in not so straightforward. A 
careful consideration has to be made that the result are 
comparable, in other words, the amount of fitness function 
evaluations remains the same. The populations in the 3PGA 
are formed as in the two-population case explained in 
Section II. The migration from middle to elite and lower to 
middle population happens as described earlier in Section II 
related to 2PGA. Also, the chromosomes not selected as 
parents for next generation are transferred from elite to 
middle population, from middle to lower population or 
discarded. In Table 25 we present the population parameters 
for the 3PGAs. 
 

Problem Elite 
pop. 
size 

Middle 
pop. size 

Lower 
pop. size 

Total 
pop. size 

MGP 12 42 26 80 
Ackley 16 52 32 100 
Table 25. Population sizes for three-population 3PGAs. 

 
     To test the performance of the 3PGA, we implemented 
the algorithm to solve two test problems, the Ackley’s 
function and the MGP filter design problem. The total 
population sizes in both the MGP basis filter and Ackley’s 
function optimization are the same as in the respective 
SPGAs, as are also the number of reproduced individuals 
per generation. The parameters for the reference SPGAs can 
be seen in Table 26. The reproduction characteristics for 
both the MGP basis filter problem and the Ackley’s function 
optimization problem are shown in Tables 27 and 28, 
respectively. 
 

Problem Pop. size Parents Offspr. Discarded 
MGP 80 16 16 16 

Ackley 100 22 22 22 
Table 26. The reproduction characteristics of the reference 

SPGAs. 
 
     Table 26 shows that when optimizing the MGP basis 
filter, for every generation 16 parents produce 16 offspring, 
which replace 16 worst chromosomes in the population. For 
Ackley’s function optimization the corresponding figure is 
22. 
 

Population Elite Middle Low 
Population size 12 42 26 

Parents 6 8 2 
Offspring 6 8 2 

Migrated lower 6 14 - 
Discarded - - 16 

Mutation probability 10% 20% 100% 
Table 27. Reproduction and mutation characteristics of the 
three-population 3PGA for the MGP basis filter scheme for 

each generation. 



 

 
 
 
 

Population Elite Middle Low 
Population size 16 52 32 

Parents 8 10 4 
Offspring 8 10 4 

Migrated lower 8 18 - 
Discarded - - 22 

Mutation probability 20% 40% 100% 
Table 28. Reproduction and mutation characteristics of the 

3PGA for the Ackley’s function scheme for each generation. 
 

     Similar migration scheme was used in the 3PGA as was 
in the 2PGA. Chromosomes could migrate to upper 
population if their fitness was higher than the fitness of the 
best chromosome in the upper population. The worst 
chromosome from the upper population was then migrated 
to lower population. 
     Results using 2PGA and 3PGA are not directly 
comparable, because different number of offspring was 
created on each generation. The results of the Reference 
SPGA with the same reproduction characteristics as the 
3PGA in the case of MGP basis filter optimization are 
shown in table 29. The results are averages of 50 runs. The 
results for optimizing Ackley’s function with the three-
population MPGA are shown in Table 30. 
 

Algorithm fave fstd
SPGA 3631 306 
3PGA 3773 215 

Table 29. Results of the 3PGA in the MGP basis filter 
maximization. 

 
Algorithm cave cstd

SPGA 0.00172 0.00072 
3PGA 0.00081 0.00041 

Table 30. Results of the 3PGA in the Ackley’s function 
minimization. 

 
     The results show that the 3PGA outperforms the 
corresponding SPGA. However, the 3PGA is a rather 
complex system to implement and it is obvious that the 
2PGA outperforms the three-population counterpart in terms 
of programming convenience. Based on the experience 
gained programming 2PGAs and 3PGAs, and also 
considering the results achieved, we prefer using 2PGA 
instead of 3PGA. Hierarchical GAs with more than three 
populations have not been experimented with and are not 
convenient for problems with population sizes of the 
magnitudes dealt in this paper. 
 
VII. Conclusion 
 
In this paper, we have presented a hierarchical 
multipopulation genetic algorithm scheme. In our idea, the 
solution population is divided into multiple intermigrating 
entities based on their similar fitness characteristics. The 
proposed scheme aims to mimic the phenomena distinct to 
both human and animal populations, according to which 

individuals tend to gather in groups of homogeneous fitness 
characteristics. Evaluation results show that the suggested 
system is capable of producing competitive performance 
compared to the traditional single population genetic 
algorithm. As our scheme requires negligible amount of 
additional calculation, it could well add to the performance 
of every algorithm using some sort of single population 
genetic algorithm as a part of it. 
     Our multipopulation genetic algorithm is somewhat more 
complex than the regular single population genetic 
algorithm, and it also has more tunable parameters. Our 
results show, however, that almost regardless of the 
reasonable parameter settings, the proposed scheme is 
capable of producing competitive results in optimization 
problems in terms of fitness values and convergence 
reliability. 
     The proposed 2PGA scheme cannot replace hybrid 
algorithms equipped with hill-climbing methods or other 
fusion methods, but it offers a valuable addition to the 
performance of a standard genetic algorithm, thus making it 
attractive basic platform for any application involving a GA, 
or any other evolutionary computation method. 
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