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ABSTRACT 
 This paper introduces an evolutionary optimiza-
tion algorithm taking advantage of multiple popu-
lations and an adaptive aging parameter to achieve 
faster and more robust convergence. As challeng-
ing test cases, the evolutionary algorithm is used to 
optimize parameters for dynamical fuzzy systems. 
Our results show that the proposed algorithm is 
capable of outperforming the traditional reference 
algorithm. The effect of sampling the membership 
functions of the dynamical fuzzy system in feed-
forward and feedback configurations is also stud-
ied. 
 
Keywords: Evolution strategy, multipopulation, adaptive evolu-
tionary algorithm, dynamic fuzzy system 

 
1. INTRODUCTION 
 
In [7] the authors presented an evolutionary com-
putation scheme [6] in which instead of concentrat-
ing to enhance a single solution, the characteristics 
of the whole solution population were adjusted in 
order to produce competitive results. The presented 
multi-population genetic algorithm (MPGA), later 
renamed as n-population genetic algorithm 
(nPGA), divided the solution population into elite 
and plain populations with different characteristics 
allowing also interpopulation migration of solu-
tions. The proposed scheme proved to produce 
better results more reliably compared to a standard 
genetic algorithm.  
 
In this paper we extend our nPGA scheme by in-
troducing an adaptive age parameter to the system. 
Besides, we use an evolution strategy (ES) instead 
of a genetic algorithm (GA). Age parameters in 
evolutionary algorithms have been used before 
followed by improvement in performance [4,5]. 
Instead of simply trying to determine the remaining 
age of an individual solution, we take into account 
characteristics concerning the whole solution popu-
lation instead of that solution alone. This fits well 
in the earlier nPGA scheme, in which we aim to 
produce favorable environment for producing qual-
ity results reliably, instead of trying to fine tune 

single solutions. Especially in time-consuming 
optimization tasks the reliability of an algorithm is 
crucial, and our results show that using the nPGA 
scheme ( →  nPES) accompanied with adaptive age 
parameters helps to produce an evolution strategy 
with competitive performance. 
 
The performance of the proposed algorithm is 
evaluated by optimizing the parameters of dynami-
cal fuzzy systems containing linguistic information 
feed-forwards or feedbacks [8]. The parameters of 
such dynamic fuzzy systems have not been opti-
mized before using evolutionary computation. 
 
This paper is structured as follows. Section 2 intro-
duces the proposed evolution strategy. Section 3 
discusses the fuzzy systems used as test cases. Sec-
tion 4 summarizes the results and Section 5 finally 
concludes the paper. 
 
2. EVOLUTIONARY COMPUTATION 
 
Evolutionary computation is divided into three 
main categories, namely genetic algorithms, evolu-
tionary programming (EP), and evolution strategies 
[6]. Each of these nature-inspired approaches to 
optimization is based on the principles of recombi-
nation, mutation, and selection; the form of which 
varies from implementation to another. 
 
2.1. EVOLUTION STRATEGIES 
 
In this paper, evolution strategies were used for the 
sake of simplicity of implementation. The methods 
proposed here can be directly implemented also in 
other evolutionary computation methods with only 
minor modifications. The very basic evolution 
strategy is encapsulated by Fogel in [6]: 
 
1. Generate initial population of parent vectors, 

.,,2,1, Pii K=x  

2. Create offspring from each parent vector by 
adding a Gaussian random variable with zero 
mean to each component of 

ix . 



3. Select P  best vectors to act as the parents for 
the next generation. 

4. These steps are repeated until satisfactory re-
sults have been achieved, or run-time require-
ments have been met. 

 
2.2 nPES EVOLUTION STRATEGY 
 
Our nPES scheme aims to emulate animal and hu-
man populations by dividing the whole solution 
population into elite and plain populations. In the 
elite population, animals and humans are better 
considering a certain skill or characteristic. In evo-
lution strategy this means that the solutions in the 
elite population are on the average better than the 
ones in the plain population. Solution vectors in the 
elite population also undergo smaller mutations 
than the ones in the plain population. So, in princi-
ple, the elite population conducts local search 
among the already fit-proven individuals, whereas 
the plain population conducts global search. Once 
assigned to elite population, the individual may fall 
back to the plain population if there are good can-
didate solutions in the plain population. The nPES 
algorithm can be summarized as follows. 
 
1. Generate an initial population of N (here 20) 

random vectors 
2. Run the ES algorithm for G generations. 
3. At the end of the Gth generation, arrange the 

solutions into ascending order based on their 
cost. Assign the K (here 5) best solutions to the 
elite population and the KN −  other solutions 
to the plain population.  

4. Operate the two populations separately using 
different variances for the Gaussian random 
variables in the different populations. 

5. If the cost of the best solution in the plain 
population is lower than that of the best indi-
vidual in the elite population, exchange the 
worst elite solution and the best plain solution. 

6. Continue until satisfactory convergence is 
reached, or runtime requirements are met. 

 
The two-population scheme causes only a slight 
increase in the in the administration costs, but the 
number of solution evaluations remains the same. 
 
2.3 AGING PARAMETER 
 
Aging of individuals affects all biological systems, 
the clearest impact of which is the fact that the in-
dividual perishes after it has reached its maximum 
age. Various aging schemes have been imple-
mented in evolutionary algorithms to control the 
performance of the algorithm. Most papers support 

the idea of preventing stagnation by prohibiting the 
domination of a single solution for a very long time 
[1,4]. So, aging parameter increases the diversity in 
evolutionary computation.  
 
According to the aging scheme presented here, 
each candidate solution is given a life time when it 
is created. Each solution is assigned the same life 
time, which is the number of generation the solu-
tion is going to survive. Elitism in our aging 
scheme is preserved by adding one to the life time 
of the best solution of each generation. When a 
solution dies away, its replacement is created from 
the best candidate solution in the same way as an 
offspring would be created. 
 
2.4 ADAPTIVE AGE PARAMETER 
 
Apart from a constantly decreasing age parameter, 
we designed a system for modifying the age of a 
candidate solution adaptively. An adaptive parame-
ter was implemented in order to improve the per-
formance of the algorithm, since a preset parameter 
values rarely are optimal for the entire runtime of 
the algorithm. Fuzzy logic systems have been suc-
cessfully controlling evolutionary algorithms pre-
viously for example in [9,10]. In other words, the 
age of a solution was modified using fuzzy logic 
system based on the fitness of the offspring created 
from a parent. If the parent was able to produce fit 
offspring, the age of the parent was increased and 
vice versa.  
 
The adaptive life time fuzzy system includes two 
inputs and one output. The inputs describe the 
value of an individual offspring relative to the best 
candidate solution, and also the dynamic cost range 
of the whole population. The input concerning the 
improvement, c∆ , over the best cost by a candidate 
solution is calculated as 
 

bo ccc −=∆ 1     (1) 

 
where 

bc  denotes the cost of the best individual, 
and 

oc  denotes the cost of the offspring. The dy-
namic cost range, d∆ , is calculated as 
 

wb ccd −=∆ 1     (2) 

 
where 

wc  denotes the cost of the worst individual. 

 
Fig. 1 shows the improvement, dynamic range, and 
life time membership functions used in the sys-
tems. 



 In this study, we optimized two kinds of dynamic 
fuzzy systems: linguistic information feed-forward-
based dynamical fuzzy system (LIFFDFS) [2] and 
linguistic information feedback-based dynamical 
fuzzy system (LIFDFS) [3]. Sample optimization 
runs demonstrated different dynamic in the solu-
tion pool, so individual fuzzy membership func-
tions were used for these two schemes. The mem-
bership function describing the improvement was 
the same for both of the systems.  

 
Fig. 1. Fuzzy membership functions related the 
adaptive life time parameter. ((a) c∆ , improve-

ment, (b) d∆ in LIFFDFS scheme, (c) d∆  in 
LIFDFS scheme, (d) life time parameter. 

 
The fuzzy rule base was constructed intuitively so 
that the remaining life time of a solution was in-
creased if it produced a better solution than the 
previous best solution. The remaining life time was 
decreased if the produced solution was worse than 
the previous best. The amount of modification of 
the solutions’ life time depends also on the dynam-
ics of the population. Large improvement in cost 
when the dynamics is large does not increase the 
life time of the parent solution so much as it would 
when the dynamics is small. Dynamics is often 
much larger when the evolution strategy is still in 
its early stages and has not yet converged consid-
erably toward the final value. 
 
The applied fuzzy rule base is shown in Table 1. 
Improvement (I) can be negative large (NL), nega-
tive medium (NM), negative small (NS), zero (ZE), 
positive small (PS), positive medium (PM), posi-
tive large (PL). Dynamics (D) of the population 
can be very small (VS), small (S), medium (M), 

large (L), or very large (VL). The constant to be 
added to the life time of the solution can be nega-
tive large (NL), negative medium (NM), negative 
small (NS), zero (ZE), positive small (PS), positive 
medium (PM), or positive large (PL). 

 
Table. 1. Fuzzy rule base used in determining the 

life time. 
I \ D VS S M L VL 
NL NL NL NL NL NL 
NM NM NL NL NL NL 
NS NS NM NL NL NL 
ZE ZE ZE ZE NS NM 
PS PS PS PS ZE ZE 
PM PM PS PS PS ZE 
PL PM PM PM PS PS 

 
Both LIFFDFS and LIFDFS predictors were de-
signed to predict the well-known 296-sample Box-
Jenkins time series [11]. The cost of a candidate 
solution is calculated in this time series prediction 
task as 
 

( ) ( )[ ]∑
=

−=
296

1

2~c
k

kykyost          (3) 

 
where ( )ky  is the actual time-series value and ( )ky~  
is the output of the fuzzy predictor. 
 
The principle of the complete nPES algorithm us-
ing the adaptive life time parameter is shown in 
Fig. 2. The algorithm is first initialized, and it is 
run as a single population algorithm for G genera-
tions after which it is divided into two populations 
for the rest of the simulation. 
 
3. DYNAMICAL FUZZY SYSTEMS 
WITH LINGUISTIC INFORMATION 
FEEDFORWARD OR FEEDBACK 
 
Fuzzy systems (FS) [8] are frequently used in in-
dustrial applications. They are capable of trans-
forming human knowledge into computer operable 
programs. FS, however, usually lack dynamical 
properties. On the other hand, this is not the case in 
physical systems. To overcome this problem, Gao 
and Ovaska introduced linguistic information feed-
forward (FF) and feedback (FB) schemes in [2] and 
[3], respectively.  
 
In both of those schemes previous outputs of a sin-
gle fuzzy rule are aggregated to the current output 
of a fuzzy rule. The previous outputs are not com-
bined as such, but they can be manipulated using 
scaling and shifting parameters, marked as a and b, 
respectively. The shifting parameter is able to shift 



the centre of the fuzzy rule output. And the Scaling 
parameter can scale the magnitude of the fuzzy rule 
output. It is imperative to note that the scaling can 
in our implementation have also values outside the 
range [0,1]. 
 
 

First  generationsG

 
 

Fig. 2. The principle of the nPES algorithm with 
adaptive life time parameter. 

 
In addition, it is possible to sample the feed-
forward or feedback membership functions using 
different amount of samples. This is an issue re-
lated to the computational complexity of these sys-
tems, as well as their mapping accuracy. 
 
3.1 LIFFDFS AND LIFDFS STRUCTURES 
  
Linguistic Information Feed-Forward-based Dy-
namical Fuzzy System adds dynamics to a fuzzy 
system by aggregating the current output of a fuzzy 
rule and the one-step-delayed output of the same 
fuzzy rule. The structure of the LIFFDFS is shown 
in Fig. 3. Each rule has its own feed-forward loop.  
 
There is a delayed membership function for each 
rule; and in our case there are 37 rules [2]. Each of 
these feed-forwards or feedbacks can be shifted 
(left/right) and/or scaled. This means that we have 
74 different parameters to be optimized in our sys-
tem.  
 

Whereas LIFFDFS introduced limited dynamics 
taking into account the previous rule output, takes 
LIFDFS advantage indirectly of the whole output 
history of a single fuzzy rule. Fig. 4 shows the 
principle of the LIFDFS. The offspring were cre-
ated similarly to that of the LIFFDFS scheme. 

 
Fig. 3. Linguistic information feed-forward-based 

dynamical fuzzy system. 
 
In the adaptive age nPES scheme the elite offspring 
was created as follows 
 

( )21round,, ⋅+−+= raa npno
      (4)  

 
( )2105.0,, ⋅+−+= rbb npno

      (5) 

 
The plain offspring was created as 
 

( )105round,, ⋅+−+= raa npno
      (6) 

 
( )212.0,, ⋅+−+= rbb npno

       (7) 
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Fig. 4. Linguistic information feedback-based dy-
namical fuzzy system. 

 
3.2 PLAIN EVOLUTION STRATEGY 
 
The plain ES used for reference, is as presented in 
2.1. The population size was 20 solutions and the 
algorithm was allowed to converge for 150 genera-
tions. 10 separate runs were conducted for statisti-
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cal reliability. These values were selected based on 
the long running times of the algorithm. The off-
spring in the plain algorithm was created as follows 
 

( )84round,, ⋅+−+= raa npno
  (8) 

 
( )2115.0,, ⋅+−+= rbb npno

  (9) 
 
where 

noa ,
describes the offsprings shifting parame-

ter for the nth rule, 
poa ,

the parents shifting pa-
rameter for the n:th rule, “round” is a rounding 
operator, and r is a random variable with applica-
tion specific variance.  
 
4. OPTIMIZATION RESULTS  
 
The optimization of LIFFDFS/LIFDFS parameters 
is computationally very challenging, since, among 
others, the fitness calculation of a single candidate 
solution requires evaluation of several membership 
functions for each sample value of the time series. 
Therefore, the number of membership functions’ 
sampling points was optimized separately, and this 
result was then used when optimizing the shifting 
and scaling parameters of the system. 
 
4.1 NUMBER OF SAMPLING POINTS 
 
The results were surprising. Intuitively, the more 
points are used in the sampling the more accurate 
the feed-forward or feedback membership function 
is, and thus, the better the mapping result is. This 
was, however, not the conclusion from the results. 
As the results in Table 2 show, the system using 
five samples produced best results in terms of the 
median value. Ten separate tests were run for each 
number of samples.  
 
The results can be interpreted that the sampling 
process may also aim to overcome the deficiencies 
of the original fuzzy system. If the selection and 
alignment of the original membership functions is 
not optimal, the situation could be improved by 
sampling the feedback using an application specific 
amount of samples. 
 
Table 2. Performance of the plain ES using differ-

ent number of samples.  
# of samples Average Cost Std 

1 470.74 10.94 
5 416.64 8.63 
10 438.50 9.36 
25 443.49 4.50 

150 436.13 6.60 

 

4.2 ADAPTIVE LIFE TIME 
 
Before implementing the fuzzy adaptive life-time 
scheme, different constant life-time parameters 
were tested, and the results are shown in Table 3. 
These test were carried out for the LIFFDFS. 
 
Table 3. Performance of the nPES algorithm using 

constant life-time parameter. 
Life Time Average Cost Std 

2 415.96 5.00 
3 424.56 7.86 
5 419.19 4.11 
10 422.11 7.36 
25 417.18 7.55 

 
As can be seen from Table 3, the performance of 
the algorithm varies depending on the life-time 
parameter. The life-time parameter being 2, it was 
clear that no single solution survived for long and 
replacing solutions were created from the best can-
didate solution at a rapid pace. Then again, using a 
large life-time parameter, the selection took care of 
discarding some solutions, and only a few new 
solutions were created because of the aging 
scheme. Creating a new solution to replace a per-
ished solution because of aging adds to the compu-
tational costs of the algorithm.  
 
Using adaptive life time parameter as described in 
2.4. yielded better results. The improvement was 
not without extra cost. In the LIFFDFS scheme on 
the average 2.9 new solutions per generation were 
generated and evaluated. Then again, on the 
LIFDFS scheme the corresponding figure was 4.8. 
 
Table 4. presents the results achieved optimizing 
the LIFFDFS and LIFDFS systems and using both 
the plain and adaptive methods. The results are 
averages of 10 runs. 
 
 The adaptive algorithm produces better results 
both in terms of average cost and standard devia-
tion. 
 
Figs. 5 and 6 illustrate the average convergence 
behavior of the same methods. Dashed line de-
scribing the adaptive method shows slightly faster 
convergence characteristics than the plain method. 
 

Table 4. Performance of the nPES algorithms. 
Algorithm Average Cost Std 

Plain LIFFDFS  419.36 8.17 
Adaptive LIFFDFS 413.12 5.42 

Plain LIFDFS 197.66 10.81 
Adaptive LIFDFS 193.50 8.64 

 



5. DISCUSSION 
 
In this paper, we introduced an evolution strategy 
using the nPES scheme that implemented an adap-
tive life-time extension. The results show im-
provement over the performance of a reference 
algorithm in a demanding parameter optimization 
application. Also, our research showed that the 
sampling fuzzy feed-forward of feedback member-
ship functions using different number of points can 
enhance the performance of a dynamical fuzzy 
system. 
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Fig. 5. Convergence behavior of the reference and 

the modified ES in the LIFFDFS scheme. 
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Fig. 6. Convergence behavior of the reference and 

the modified ES in the LIFDFS scheme. 
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