
P5

Publication P5

J. Martikainen and S. J. Ovaska
 “Optimizing dynamical fuzzy systems using aging evolution strategies”

in
 Proc. of the 9thIASTED International Conference on Artificial Intelligence and Soft Computing

Benidorm, Spain, 2005, pp. 5-10.

 © 2005 ACTA Press

 Reprinted with kind permission of ACTA Media.

OPTIMIZING DYNAMICAL FUZZY SYSTEMS USING AGING EVOLUTION
STRATEGIES

Jarno Martikainen

Helsinki University of Technology
 Institute of Intelligent Power Electronics

P. O. Box 3000 FIN-02015 HUT
FINLAND

 E-mail: jkmartik@cc.hut.fi
URL: http://powerelectronics.hut.fi

Seppo J. Ovaska
Helsinki University of Technology

 Institute of Intelligent Power Electronics
P. O. Box 3000 FIN-02015 HUT

FINLAND
 E-mail: ovaska@ieee.org

URL: http://powerelectronics.hut.fi

ABSTRACT
 This paper introduces an evolutionary optimiza-
tion algorithm taking advantage of multiple popu-
lations and an adaptive aging parameter to achieve
faster and more robust convergence. As challeng-
ing test cases, the evolutionary algorithm is used to
optimize parameters for dynamical fuzzy systems.
Our results show that the proposed algorithm is
capable of outperforming the traditional reference
algorithm. The effect of sampling the membership
functions of the dynamical fuzzy system in feed-
forward and feedback configurations is also stud-
ied.

Keywords: Evolution strategy, multipopulation, adaptive evolu-
tionary algorithm, dynamic fuzzy system

1. INTRODUCTION

In [7] the authors presented an evolutionary com-
putation scheme [6] in which instead of concentrat-
ing to enhance a single solution, the characteristics
of the whole solution population were adjusted in
order to produce competitive results. The presented
multi-population genetic algorithm (MPGA), later
renamed as n-population genetic algorithm
(nPGA), divided the solution population into elite
and plain populations with different characteristics
allowing also interpopulation migration of solu-
tions. The proposed scheme proved to produce
better results more reliably compared to a standard
genetic algorithm.

In this paper we extend our nPGA scheme by in-
troducing an adaptive age parameter to the system.
Besides, we use an evolution strategy (ES) instead
of a genetic algorithm (GA). Age parameters in
evolutionary algorithms have been used before
followed by improvement in performance [4,5].
Instead of simply trying to determine the remaining
age of an individual solution, we take into account
characteristics concerning the whole solution popu-
lation instead of that solution alone. This fits well
in the earlier nPGA scheme, in which we aim to
produce favorable environment for producing qual-
ity results reliably, instead of trying to fine tune

single solutions. Especially in time-consuming
optimization tasks the reliability of an algorithm is
crucial, and our results show that using the nPGA
scheme (→ nPES) accompanied with adaptive age
parameters helps to produce an evolution strategy
with competitive performance.

The performance of the proposed algorithm is
evaluated by optimizing the parameters of dynami-
cal fuzzy systems containing linguistic information
feed-forwards or feedbacks [8]. The parameters of
such dynamic fuzzy systems have not been opti-
mized before using evolutionary computation.

This paper is structured as follows. Section 2 intro-
duces the proposed evolution strategy. Section 3
discusses the fuzzy systems used as test cases. Sec-
tion 4 summarizes the results and Section 5 finally
concludes the paper.

2. EVOLUTIONARY COMPUTATION

Evolutionary computation is divided into three
main categories, namely genetic algorithms, evolu-
tionary programming (EP), and evolution strategies
[6]. Each of these nature-inspired approaches to
optimization is based on the principles of recombi-
nation, mutation, and selection; the form of which
varies from implementation to another.

2.1. EVOLUTION STRATEGIES

In this paper, evolution strategies were used for the
sake of simplicity of implementation. The methods
proposed here can be directly implemented also in
other evolutionary computation methods with only
minor modifications. The very basic evolution
strategy is encapsulated by Fogel in [6]:

1. Generate initial population of parent vectors,

.,,2,1, Pii K=x

2. Create offspring from each parent vector by
adding a Gaussian random variable with zero
mean to each component of

ix .

3. Select P best vectors to act as the parents for
the next generation.

4. These steps are repeated until satisfactory re-
sults have been achieved, or run-time require-
ments have been met.

2.2 nPES EVOLUTION STRATEGY

Our nPES scheme aims to emulate animal and hu-
man populations by dividing the whole solution
population into elite and plain populations. In the
elite population, animals and humans are better
considering a certain skill or characteristic. In evo-
lution strategy this means that the solutions in the
elite population are on the average better than the
ones in the plain population. Solution vectors in the
elite population also undergo smaller mutations
than the ones in the plain population. So, in princi-
ple, the elite population conducts local search
among the already fit-proven individuals, whereas
the plain population conducts global search. Once
assigned to elite population, the individual may fall
back to the plain population if there are good can-
didate solutions in the plain population. The nPES
algorithm can be summarized as follows.

1. Generate an initial population of N (here 20)

random vectors
2. Run the ES algorithm for G generations.
3. At the end of the Gth generation, arrange the

solutions into ascending order based on their
cost. Assign the K (here 5) best solutions to the
elite population and the KN − other solutions
to the plain population.

4. Operate the two populations separately using
different variances for the Gaussian random
variables in the different populations.

5. If the cost of the best solution in the plain
population is lower than that of the best indi-
vidual in the elite population, exchange the
worst elite solution and the best plain solution.

6. Continue until satisfactory convergence is
reached, or runtime requirements are met.

The two-population scheme causes only a slight
increase in the in the administration costs, but the
number of solution evaluations remains the same.

2.3 AGING PARAMETER

Aging of individuals affects all biological systems,
the clearest impact of which is the fact that the in-
dividual perishes after it has reached its maximum
age. Various aging schemes have been imple-
mented in evolutionary algorithms to control the
performance of the algorithm. Most papers support

the idea of preventing stagnation by prohibiting the
domination of a single solution for a very long time
[1,4]. So, aging parameter increases the diversity in
evolutionary computation.

According to the aging scheme presented here,
each candidate solution is given a life time when it
is created. Each solution is assigned the same life
time, which is the number of generation the solu-
tion is going to survive. Elitism in our aging
scheme is preserved by adding one to the life time
of the best solution of each generation. When a
solution dies away, its replacement is created from
the best candidate solution in the same way as an
offspring would be created.

2.4 ADAPTIVE AGE PARAMETER

Apart from a constantly decreasing age parameter,
we designed a system for modifying the age of a
candidate solution adaptively. An adaptive parame-
ter was implemented in order to improve the per-
formance of the algorithm, since a preset parameter
values rarely are optimal for the entire runtime of
the algorithm. Fuzzy logic systems have been suc-
cessfully controlling evolutionary algorithms pre-
viously for example in [9,10]. In other words, the
age of a solution was modified using fuzzy logic
system based on the fitness of the offspring created
from a parent. If the parent was able to produce fit
offspring, the age of the parent was increased and
vice versa.

The adaptive life time fuzzy system includes two
inputs and one output. The inputs describe the
value of an individual offspring relative to the best
candidate solution, and also the dynamic cost range
of the whole population. The input concerning the
improvement, c∆ , over the best cost by a candidate
solution is calculated as

bo ccc −=∆ 1 (1)

where

bc denotes the cost of the best individual,
and

oc denotes the cost of the offspring. The dy-
namic cost range, d∆ , is calculated as

wb ccd −=∆ 1 (2)

where

wc denotes the cost of the worst individual.

Fig. 1 shows the improvement, dynamic range, and
life time membership functions used in the sys-
tems.

 In this study, we optimized two kinds of dynamic
fuzzy systems: linguistic information feed-forward-
based dynamical fuzzy system (LIFFDFS) [2] and
linguistic information feedback-based dynamical
fuzzy system (LIFDFS) [3]. Sample optimization
runs demonstrated different dynamic in the solu-
tion pool, so individual fuzzy membership func-
tions were used for these two schemes. The mem-
bership function describing the improvement was
the same for both of the systems.

Fig. 1. Fuzzy membership functions related the
adaptive life time parameter. ((a) c∆ , improve-

ment, (b) d∆ in LIFFDFS scheme, (c) d∆ in
LIFDFS scheme, (d) life time parameter.

The fuzzy rule base was constructed intuitively so
that the remaining life time of a solution was in-
creased if it produced a better solution than the
previous best solution. The remaining life time was
decreased if the produced solution was worse than
the previous best. The amount of modification of
the solutions’ life time depends also on the dynam-
ics of the population. Large improvement in cost
when the dynamics is large does not increase the
life time of the parent solution so much as it would
when the dynamics is small. Dynamics is often
much larger when the evolution strategy is still in
its early stages and has not yet converged consid-
erably toward the final value.

The applied fuzzy rule base is shown in Table 1.
Improvement (I) can be negative large (NL), nega-
tive medium (NM), negative small (NS), zero (ZE),
positive small (PS), positive medium (PM), posi-
tive large (PL). Dynamics (D) of the population
can be very small (VS), small (S), medium (M),

large (L), or very large (VL). The constant to be
added to the life time of the solution can be nega-
tive large (NL), negative medium (NM), negative
small (NS), zero (ZE), positive small (PS), positive
medium (PM), or positive large (PL).

Table. 1. Fuzzy rule base used in determining the

life time.
I \ D VS S M L VL
NL NL NL NL NL NL
NM NM NL NL NL NL
NS NS NM NL NL NL
ZE ZE ZE ZE NS NM
PS PS PS PS ZE ZE
PM PM PS PS PS ZE
PL PM PM PM PS PS

Both LIFFDFS and LIFDFS predictors were de-
signed to predict the well-known 296-sample Box-
Jenkins time series [11]. The cost of a candidate
solution is calculated in this time series prediction
task as

() ()[]∑
=

−=
296

1

2~c
k

kykyost (3)

where ()ky is the actual time-series value and ()ky~
is the output of the fuzzy predictor.

The principle of the complete nPES algorithm us-
ing the adaptive life time parameter is shown in
Fig. 2. The algorithm is first initialized, and it is
run as a single population algorithm for G genera-
tions after which it is divided into two populations
for the rest of the simulation.

3. DYNAMICAL FUZZY SYSTEMS
WITH LINGUISTIC INFORMATION
FEEDFORWARD OR FEEDBACK

Fuzzy systems (FS) [8] are frequently used in in-
dustrial applications. They are capable of trans-
forming human knowledge into computer operable
programs. FS, however, usually lack dynamical
properties. On the other hand, this is not the case in
physical systems. To overcome this problem, Gao
and Ovaska introduced linguistic information feed-
forward (FF) and feedback (FB) schemes in [2] and
[3], respectively.

In both of those schemes previous outputs of a sin-
gle fuzzy rule are aggregated to the current output
of a fuzzy rule. The previous outputs are not com-
bined as such, but they can be manipulated using
scaling and shifting parameters, marked as a and b,
respectively. The shifting parameter is able to shift

the centre of the fuzzy rule output. And the Scaling
parameter can scale the magnitude of the fuzzy rule
output. It is imperative to note that the scaling can
in our implementation have also values outside the
range [0,1].

First generationsG

Fig. 2. The principle of the nPES algorithm with
adaptive life time parameter.

In addition, it is possible to sample the feed-
forward or feedback membership functions using
different amount of samples. This is an issue re-
lated to the computational complexity of these sys-
tems, as well as their mapping accuracy.

3.1 LIFFDFS AND LIFDFS STRUCTURES

Linguistic Information Feed-Forward-based Dy-
namical Fuzzy System adds dynamics to a fuzzy
system by aggregating the current output of a fuzzy
rule and the one-step-delayed output of the same
fuzzy rule. The structure of the LIFFDFS is shown
in Fig. 3. Each rule has its own feed-forward loop.

There is a delayed membership function for each
rule; and in our case there are 37 rules [2]. Each of
these feed-forwards or feedbacks can be shifted
(left/right) and/or scaled. This means that we have
74 different parameters to be optimized in our sys-
tem.

Whereas LIFFDFS introduced limited dynamics
taking into account the previous rule output, takes
LIFDFS advantage indirectly of the whole output
history of a single fuzzy rule. Fig. 4 shows the
principle of the LIFDFS. The offspring were cre-
ated similarly to that of the LIFFDFS scheme.

Fig. 3. Linguistic information feed-forward-based

dynamical fuzzy system.

In the adaptive age nPES scheme the elite offspring
was created as follows

()21round,, ⋅+−+= raa npno
 (4)

()2105.0,, ⋅+−+= rbb npno

 (5)

The plain offspring was created as

()105round,, ⋅+−+= raa npno
 (6)

()212.0,, ⋅+−+= rbb npno

 (7)

Fuzzy Rule 1

Fuzzy Rule 2

Fuzzy Rule n

 z-1 , a b

 , a b

 , a b

1

2 2

1

n n

 z-1

 z-1

Fig. 4. Linguistic information feedback-based dy-
namical fuzzy system.

3.2 PLAIN EVOLUTION STRATEGY

The plain ES used for reference, is as presented in
2.1. The population size was 20 solutions and the
algorithm was allowed to converge for 150 genera-
tions. 10 separate runs were conducted for statisti-

Fuzzy Rule 1

Fuzzy Rule 2

Fuzzy Rule n

z -1 , a b

 , a b

 , a b

1

2 2

1

n n

z -1

z -1

cal reliability. These values were selected based on
the long running times of the algorithm. The off-
spring in the plain algorithm was created as follows

()84round,, ⋅+−+= raa npno
 (8)

()2115.0,, ⋅+−+= rbb npno

 (9)

where

noa ,
describes the offsprings shifting parame-

ter for the nth rule,
poa ,

the parents shifting pa-
rameter for the n:th rule, “round” is a rounding
operator, and r is a random variable with applica-
tion specific variance.

4. OPTIMIZATION RESULTS

The optimization of LIFFDFS/LIFDFS parameters
is computationally very challenging, since, among
others, the fitness calculation of a single candidate
solution requires evaluation of several membership
functions for each sample value of the time series.
Therefore, the number of membership functions’
sampling points was optimized separately, and this
result was then used when optimizing the shifting
and scaling parameters of the system.

4.1 NUMBER OF SAMPLING POINTS

The results were surprising. Intuitively, the more
points are used in the sampling the more accurate
the feed-forward or feedback membership function
is, and thus, the better the mapping result is. This
was, however, not the conclusion from the results.
As the results in Table 2 show, the system using
five samples produced best results in terms of the
median value. Ten separate tests were run for each
number of samples.

The results can be interpreted that the sampling
process may also aim to overcome the deficiencies
of the original fuzzy system. If the selection and
alignment of the original membership functions is
not optimal, the situation could be improved by
sampling the feedback using an application specific
amount of samples.

Table 2. Performance of the plain ES using differ-

ent number of samples.
of samples Average Cost Std

1 470.74 10.94
5 416.64 8.63
10 438.50 9.36
25 443.49 4.50

150 436.13 6.60

4.2 ADAPTIVE LIFE TIME

Before implementing the fuzzy adaptive life-time
scheme, different constant life-time parameters
were tested, and the results are shown in Table 3.
These test were carried out for the LIFFDFS.

Table 3. Performance of the nPES algorithm using

constant life-time parameter.
Life Time Average Cost Std

2 415.96 5.00
3 424.56 7.86
5 419.19 4.11
10 422.11 7.36
25 417.18 7.55

As can be seen from Table 3, the performance of
the algorithm varies depending on the life-time
parameter. The life-time parameter being 2, it was
clear that no single solution survived for long and
replacing solutions were created from the best can-
didate solution at a rapid pace. Then again, using a
large life-time parameter, the selection took care of
discarding some solutions, and only a few new
solutions were created because of the aging
scheme. Creating a new solution to replace a per-
ished solution because of aging adds to the compu-
tational costs of the algorithm.

Using adaptive life time parameter as described in
2.4. yielded better results. The improvement was
not without extra cost. In the LIFFDFS scheme on
the average 2.9 new solutions per generation were
generated and evaluated. Then again, on the
LIFDFS scheme the corresponding figure was 4.8.

Table 4. presents the results achieved optimizing
the LIFFDFS and LIFDFS systems and using both
the plain and adaptive methods. The results are
averages of 10 runs.

 The adaptive algorithm produces better results
both in terms of average cost and standard devia-
tion.

Figs. 5 and 6 illustrate the average convergence
behavior of the same methods. Dashed line de-
scribing the adaptive method shows slightly faster
convergence characteristics than the plain method.

Table 4. Performance of the nPES algorithms.
Algorithm Average Cost Std

Plain LIFFDFS 419.36 8.17
Adaptive LIFFDFS 413.12 5.42

Plain LIFDFS 197.66 10.81
Adaptive LIFDFS 193.50 8.64

5. DISCUSSION

In this paper, we introduced an evolution strategy
using the nPES scheme that implemented an adap-
tive life-time extension. The results show im-
provement over the performance of a reference
algorithm in a demanding parameter optimization
application. Also, our research showed that the
sampling fuzzy feed-forward of feedback member-
ship functions using different number of points can
enhance the performance of a dynamical fuzzy
system.

0 50 100 150
400

420

440

460

480

500

520

540

560

580

Generations

C
os

t

Plain FF
Adaptive FF

Fig. 5. Convergence behavior of the reference and

the modified ES in the LIFFDFS scheme.

0 50 100 150
100

200

300

400

500

600

700

800

Generations

C
os

t

Plain FB
Adaptive FB

Fig. 6. Convergence behavior of the reference and

the modified ES in the LIFDFS scheme.

ACKNOWLEDGMENT

The authors would like to thank Finnish IT Center
for Science, CSC, for allowing us to use their com-
putation services.

REFERENCES

[1] A. Ghosh, S. Tsutsui, & H. Tanaka, Function Opti-

mization in Nonstationary Environment Using

Steady State Genetic Algorithms with Aging of In-
dividuals. Proc. of the IEEE International Confer-
ence on Evolutionary Computation, (Piscataway,
NJ: IEEE Press, 1998), 666-671.

[2] X.Z. Gao, & S.J. Ovaska, Linguistic Information

Feed-Forward-Based Dynamical Fuzzy Systems –
Part II: Evaluation. Proc. of the IEEE International
Workshop on Soft Computing in Industrial Applica-
tions, Binghamton, NY, 2003, 81-84.

[3] X.Z. Gao, & S.J. Ovaska, Dynamical Fuzzy Sys-

tems with Linguistic Information Feedback. Sys-
tematic organisation of information in fuzzy sys-
tems, P. Melo-Pinto et al., (Eds.), (Amsterdam, The
Netherlands IOS Press, 2002), 179-195.

[4] A. Huber, & D.A. Mlynski, An Efficient Age-

Controlled Evolution Approach Solving the As-
signment problem on Analog Transistor Arrays.
Proc. of the 40th Midwest Symposium on Circuits
and Systems, Sacramento, CA, 1997, 1042-1045.

[5] M. Washita, & H. Iba, Island Model GP with Immi-

grants Aging and Depth-Dependent Crossover.
Proc. of the IEEE Congres on Evolutionary Compu-
tation, Honolulu, HI, 2002, Vol. 1, 267-272.

[6] D.B. Fogel, Evolutionary computation, toward a

new philosophy of machine intelligence (Piscata-
way, NJ: IEEE Press, 2000).

[7] J. Martikainen, & S.J. Ovaska, Designing Multipli-

cative General Parameter Filters Using Multipopu-
lation Genetic Algorithm. Proc. of the 6th Nordic
Signal Processing Symposium, Espoo, Finland,
2004, 25-28.

[8] L. Wang, A course in fuzzy systems and control.

(Upper Saddle River, NJ: Prentice-Hall Interna-
tional, 1997).

[9] S. McClintock, T. Lunney, & A. Hashim, A Fuzzy

Logic Controlled Genetic Algorithm Environment.
Proc. of the IEEE International Conference on
Computational Cybernetics and Simulation, Or-
lando, FL, 1997, Vol. 3, 2181-2186.

[10] Z. Bingul, A. Sekmen, & S. Zein-Sabatto, Evolu-

tionary Approach to Multi-Objective Problems Us-
ing Adaptive Genetic Algorithms. Proc. of the IEEE
International Conference on Systems, Man, and Cy-
bernetics, Nashville, TN, 2000, Vol. 3, 1923-1927.

[11] G.E.P Box, & G.M. Jenkins, Time series analysis:

forecasting and control, 2nd ed, (San Francisco:
Holden-Day, 1976).

