

P6

Publication P6

J. Martikainen and S. J. Ovaska
“Using fuzzy evolutionary programming to solve traveling salesman problems”

in
Proc. of the 9thIASTED International Conference on Artificial Intelligence and Soft Computing

Benidorm, Spain, 2005, pp. 49-54.

 © 2005 ACTA Press

Reprinted with kind permission of ACTA Media.

USING FUZZY EVOLUTIONARY PROGRAMMING TO SOLVE TRAVELING
SALESMAN PROBLEMS

Jarno Martikainen
Helsinki University of Technology

 Institute of Intelligent Power Electronics
P. O. Box 3000 FIN-02015 HUT

FINLAND
 E-mail: jkmartik@cc.hut.fi

URL: http://powerelectronics.hut.fi

Seppo J. Ovaska
Helsinki University of Technology

 Institute of Intelligent Power Electronics
P. O. Box 3000 FIN-02015 HUT

FINLAND
 E-mail: ovaska@ieee.org

URL: http://powerelectronics.hut.fi

ABSTRACT
In this paper we present an efficient decomposition tech-
nique to speed up evolutionary algorithms when dealing
with large scale optimization problems. Divide and conquer
methods aim to solving problems in smaller entities and
then combining the sub-solutions to form complete solu-
tions. Often the optimal way to divide the problem varies as
the evolutionary algorithm proceeds, thus making a static
decomposition not the best approach. In this paper, we pre-
sent a fuzzy controlled decomposition algorithm and show
how it outperforms a traditional evolutionary algorithm.

KEY WORDS
Evolutionary computation, traveling salesman problem,
fuzzy logic, divide and conquer.

1. INTRODUCTION

Intuitively, humans tend to cluster large problems into sev-
eral sub-problems that are solved separately and these solu-
tions are then combined to form the overall problem solu-
tion. Especially different research and development proc-
esses are iterative in nature, so that at first a picture of the
whole problem is formulated after which the problem is
divided into less demanding sub-problems. Further, the sub-
problems are elaborated separately after which the parts are
connected and the problem is inspected as a whole. After a
while, the problem can be fine tuned in smaller entities and
the elements can be combined to produce a solution to the
whole problem and so on. This kind of iterative loop can
continue as long as a satisfactory solution is found. We
rarely tackle a large problem as a whole, but split it into
pieces of suitable size. These kind of divide and conquer
methods are not new in the area of evolutionary algorithms
(EAs) either [1].

In this paper, we introduce an efficient divide and conquer
method that throughout the run time of the algorithm in
turns optimizes the whole problem and the very same prob-
lem in less demanding sub-problems. Our goal is to develop
an algorithm that is more reliable, converges faster, and is
persistent to stagnation. The introduced algorithm has vari-
ous tunable parameters, so after being convinced that our
algorithm outperforms a competitive reference algorithm,

we construct a fuzzy control mechanism to adaptively
adjust the parameters during the runtime.

As a test case we use the traveling salesman problem
(TSP). Traveling salesman problem (TSP) is a well
known and a much studied minimization problem [1,2,3].
The problem describes a salesman who has to visit a cer-
tain number of cities without having to visit the same city
twice, in other words, the shortest closed path connecting
all the cities has to be found. A number of common prob-
lems, among others, printed circuit board design [4] and
robot path planning [5], can be converted into a TSP. A
20-city map for the TSP is shown in Fig 1. The bench-
mark test in this paper was a demanding 500-city TSP.

Our paper is structured as follows. Section 2 discusses
evolutionary programming and introduces our approach.
Section 3 presents the simulation results. Section 4 intro-
duces fuzzy logic based control to our decomposition al-
gorithm and section 5 concludes the article.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

x

y

Fig 1. A 20-city TSP example.

2. EVOLUTIONARY PROGRAMMING

Evolutionary programming (EP) is a branch of evolution-
ary computing along with genetic algorithms (GAs) and
evolution strategies (ESs) [6,7]. Each method, quite simi-
lar to one another, tries to find an optimal solution by ap-

plying basic operators, such as selection, mutation and re-
production, to a pool of candidate solutions. The structure of
an evolutionary programming based algorithm is formulated
in [6]:

1. Create a random initial population.

2. Mutate each solution to produce an offspring.

3. Select the fittest half of all the parents and offspring to
become parents for the next generation.

4. Got to 2 if exiting conditions have not been met.

In our case, solutions were coded as an array, and each city
was assigned an individual number between 1 and 500. Cit-
ies were visited in the order they appeared in the solution
array and the fitness of a solution was the total path length
visiting all the cities.

Three different types of mutations were allowed [6]. Each
mutation took place with equal probability. First type of
mutation resulted in a simple exchange of the places of two
cities in the solution array. Second type of mutation selected
a random number of consecutive cities and reversed their
order in the solution array. Third type of mutation selected a
random number of consecutive cities and moved this block
to a random location. A single solution could be mutated
only once using one type of mutation per generation.

The method described above was used as a reference algo-
rithm for our study. To outperform the performance of the
reference approach we created two divide and conquer –
type approaches to improve the convergence characteristics
of the reference approach.

2.1. GEOGRAPHICAL DECOMPOSTION
ALGORITHMS

Our Geographical Decomposition Algorithm is based on
geographically decomposing the traveling salesman prob-
lem. These kinds of decomposition and clustering algo-
rithms have been studied extensively in the literature [8].
After the initialization, the map containing all the cities was
divided into four equally large areas, as shown in Fig. 2.
The reference evolutionary programming algorithm was
then used to find as short as possible a path connecting all
the cities within each area. The division into four separate
areas lasted for 5000 generations, after which the individual
parts were connected and the algorithm was run further
45 000 generations according to the principle of the refer-
ence algorithm described above. The simulations were car-
ried out using MATLAB 6 software and a P4 (2.6 GHz)
processor. Average run time for a single 50 000 run was
three hours.

2.2 REPETITIVE DECOMPOSITION ALGORITHM

Geographical decomposition is quite intuitive, but speeds
up the convergence of the reference algorithm only in the
beginning. Therefore, in our Repetitive Decomposition
Algorithm (RDA), we optimize the TSP in turn as a single
route and in turn as several sub-routes. The principle of
Continuous Decomposition is shown in Fig. 3.

Fig 2. The principle of geographical decomposition.

At first the solution pool is initialized. In this case we use
the population size of 20 individuals. After initialization,
the reference algorithm is applied to the whole population
for Gw generations. In this phase, each solution produces
one offspring per generation.

After this the population is decomposed into Nd equally
long paths, and these are optimized separately for Gd gen-
erations. Since it is important to keep the number of solu-
tion evaluations constant throughout the run time of the
algorithm, we must select Np best parents from each path
and produce No offspring for each of them. The product of
Np and No has to equal 20 in order to keep the number of
solution evaluations constant all the time. So, when the
problem is decomposed into les demanding sub-problems,
only a few solutions are selected, but they altogether pro-
duce the same amount of offspring as when the problem
was dealt as a whole.

In short, our algorithm divides a few of the best solutions
containing all the cities into shorter paths with smaller
number of cities and tries to optimize these parts sepa-
rately before composing them together again. The algo-
rithm is also elitist in the sense, that combining the
smaller part to form a complete solution cannot produce
longer path than the one that was originally decomposed.

The RDA has a variety of tunable parameters and the ef-
fect of different values and combinations was experi-
mented.

3. SIMULATION RESULTS

All the algorithms were run using an initial population size
of 20 found suitable using extensive testing and taking into
account the run time requirements. This means that our al-
gorithms evaluated 20 solutions per generation. Also, each
algorithm was run 15 times for 50 000 generations to ensure
some statistical reliability. The averaged results of the refer-
ence algorithm and the Random Decomposition algorithm
are shown in Table 1.

Fig 3. Example of Repetitive Decomposition Algorithm
with Nd=4.

Table 1. The reference approach performance

Algorithm Average Std
Reference algorithm 2393.11 40.99

Geographical Decomposition 1834.98 17.80

The Geographical Decomposition algorithm very reliably
outperforms the reference approach in both terms of average
value and standard deviation. Similar performance results
are also documented in the literature [8].

The performance of the RDA is shown in Table 2. The av-
erages and standard deviations suggest that the Continuous
decomposition algorithm is superior to the algorithms pre-
sented previously in this paper. This, however, is not a sur-
prise since the divide and conquer principle is applied to the
problem throughout the run time of the algorithm, where as
in the previously discussed algorithms it is implemented
only once after initialization.

Our experiments suggest that the decomposition of the
solutions should take place quite frequently for a short
time. Optimizing the whole problem for five generations
and then decomposing it for another five generations out-
performed 25 and 50 generation intervals.

Selecting only a few best solutions to be decomposed and
producing several offspring for these few parents outper-
formed the option of selecting more parents and produc-
ing fewer offspring.

Finally, in our tests, the number of decompositions was
not found so critical, all the options performing in a rela-
tively similar way.

Table 2. The Continuous decomposition algorithm per-
formance.

Gw Gd Nd Np No Average Std.
5 5 10 5 4 1698.92 24.60
25 25 10 5 4 1709.55 19.07
50 50 10 5 4 1721.59 23.26
20 20 10 1 20 1705.96 24.76
20 20 10 4 5 1729.80 28.85
20 20 10 10 2 1734.09 30.24
20 20 5 5 4 1714.87 16.59
20 20 10 5 4 1711.84 32.31
20 20 25 5 4 1713.81 25.61

Despite the final results shown in Table 2, the conver-
gence characteristics of the algorithm using different pa-
rameter sets varied quite interestingly.

Figs. 4 and 5 show the convergence characteristics of dif-
ferent decomposition interval settings Gw and Gd. It is
clearly visible from Figs. 4 and 5 that setting Gw=5 and
Gd=5 outperforms other parameter sets throughout the
entire optimization run. So, our results suggest that op-
timizations should be decomposed into smaller sub prob-
lems quite frequently and for a short time.

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R
ou

te
 L

en
gt

h

Generations x 1000

5-5
25-25
50-50

Fig 4. Convergence characteristics of RDA using different
Gw and Gd. (Solid line: Gw=5 and Gd=5, dash dotted
line: Gw=25 and Gd=25, dashed line: Gw=50 and Gd=50).

Figs. 6 and 7 show how the RDA converges using differ-
ent parameter settings for Nd. It is noticeable that in the

beginning all the parameter settings perform almost equally
well. Using extensive testing, we came to conclusion that in
the very early stages of the algorithm, the whole problem
should be divided into very small pieces. After the algo-
rithm has converged for a short while, there should be me-
dium size decompositions, as Fig. 6 shows. Finally towards
the end, in Fig 7. larger decompositions seem to have the
best convergence.

150 200 250 300 350 400 450 500

1700

1800

1900

2000

2100

2200

2300

2400

2500

R
ou

te
 L

en
gt

h

Generations x 1000

5-5
25-25
50-50

Fig 5. Convergence characteristics of RDA using different
Gw and Gd. (Solid line: Gw=5 and Gd=5, dash dotted line:
Gw=25 and Gd=25, dashed line: Gw=50 and Gd=50).

Fig. 8 shows the convergence characteristics using different
values for Np and No. Fig. 8 clearly shows that by selecting a
few promising solutions to be decomposed and producing a
couple of offspring for each of them produces fast conver-
gence in the beginning. However, after a while, when the
algorithm has converged more, selecting only the best solu-
tion and producing the maximum number of offspring for it
produces better performance towards the end. This, also, is
quite intuitive. Early in the algorithm we cannot be sure
which candidates eventually lead to good solutions, so we
should try a few of them. When the algorithm has converged
for some time, we know that, for this run, the best candidate
is likely to produce better solutions than the other candi-
dates. Thus, we should concentrate on the best solution
when decomposing the problem.

4. FUZZY REPETITIVE DECOMPOSITION
ALGORITHM

Since having different parameter sets produces different
performance, it is tempting to develop an adaptive system to
control the RDA. Fuzzy logic [9] is known to be capable of
transforming human intuition easily into control structures.
In the following, we construct a fuzzy logic based adaptive
control structure [10,11], FRDA, to enhance the conver-
gence of the standard RDA.

Fuzzy logic system controls three RDA parameter, Nd, Np,
and No. Since Gw=5 and Gd=5 produced superior perform-
ance in Table 2, there is no need to adjust these parameters
on-line. We have altogether two fuzzy controllers in the

system, one controlling Nd, and the other controlling both
Np and No.

5 10 15 20 25 30 35 40 45 50

2000

4000

6000

8000

10000

12000

14000

16000

R
ou

te
 L

en
gt

h

Generations x 1000

5
10
25

Fig 6. Convergence characteristics of RDA using different
Nd. (Solid line: Nd =5, dash dotted line: Nd =10, dashed
line: Nd =25).

300 320 340 360 380 400 420 440 460 480 500

1720

1740

1760

1780

1800

1820

1840

Generations x 1000

R
ou

te
 L

en
gt

h
5
10
25

Fig 7. Convergence characteristics of RDA using different
Nd. (Solid line: Nd =5, dash dotted line: Nd =10, dashed
line: Nd =25).

We use two inputs for both the fuzzy systems. These in-
puts describe the state of the solution population. We de-
fine dynamics D as the difference between fb, the best,
and fw, the worst solution in the current population:

)()()(nwfnbfnD −= (1)

In addition, D is averaged over three consecutive genera-
tions to smooth rapid changes. D tends to be large when
the population has not yet converged so much towards the
final solution. As the population converges D decreases.
If D equals to zero, all the solutions in the population are
the same.

50 100 150 200 250 300 350 400 450

2000

2500

3000

3500

4000

4500

5000

5500

6000

R
ou

te
 L

en
gt

h

Generations x 1000

1-20
10-2
4-5

Fig 8. Convergence characteristics of RDA using different
Np and No. (Solid line: Np and No=5, dash dotted line: Np
and No =10, dashed line: Np and No =25).

The second input to the fuzzy systems is Dstd, the standard
deviation of three consecutive Ds:

() () ()[] 2 1 STD)(−−= nDnDnDstdnD (2)

where “STD” is a standard deviation operator. Dstd also de-
scribes the state of the solution population. Not yet con-
verged population has a higher Dstd than a population that
has somewhat converged.

The input membership functions for D are shown in Fig. 9
and for Dstd in Fig. 10.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

 D
e
gr

e
e

of
 M

em
b
er

sh
ip

Average Dynamics

Fig. 9. The input membership functions for D from left to
right: VS, S, M, L, VL.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

 D
eg

re
e
 o

f M
e
m

b
er

sh
ip

Dynamics Std.

Fig. 10. The input membership functions for D from left to
right: S, M, L, VL.

The used output membership functions are shown in Fig.
11.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

D
eg

re
e
 o

f M
em

be
rs

hi
p

Defuzzified output

Fig. 11. The output membership functions for D from left
to right: VS, S, M, L, VL.

The rule base for determining Np and No is shown in Table
3 and the defuzzified output is then transformed into Np
and No using Table 4.

Table 3. Rule base for determining Np and No.

Dynamics/Std VS S M L VL
S M VS VS S S
M VS S S M M
L VS S M M M

VL S M M L VS

Table 4. Defuzzified output intervals and corresponding

values for Np and No.

Defuzzified output Np No
≥ 0 and < 0.2 1 20
≥ 0.2 and < 0.4 2 10
≥ 0.4 and < 0.6 4 5
≥ 0.6 and < 0.8 5 4
≥ 0.8 and ≤ 1 10 2

The purpose of the rule base in Table 3 is to a use small
amount of parents and a lot of offspring when the algo-
rithm has not yet converged at all. When some conver-
gence has taken place, the number of parents in the de-
composition is increased and the number of offspring is
decreased. When the algorithm has converged a lot, again,
only a few parents are used.

The rule base for determining Nd is shown in Table 5 and
the defuzzified output is the transformed into Nd Table 6.

Table 5. Rule base for determining Nd.
Dynamics/Std VS S M L VL

S S L M M M
M M M L L VL
L M M L VS VS

VL M L VL VS VS

Table 6. Defuzzified output intervals and corresponding
values for Np and No.

Defuzzified output Nd
≥ 0 and < 0.25 25
≥ 0.25 and < 0.5 10
≥ 0.5 and < 0.75 5
≥ 0.75 and < 0.1 2

Here, purpose of the rule base in Table 5 is to use small sub-
problems when the algorithm is still at its early stages. After
some convergence, medium sub-problems are used. Finally,
towards the end large sub problems are used. Towards the
end the algorithm may suffer stagnation, so when D and Dstd
are both very low, medium sub problems are used to relieve
the situation.

As the results in Table 7 show, the fuzzy controlled RDA
outperforms the standard RDA in terms of average shortest
path over 15 runs. Fig. 12 shows the improved convergence
performance of the FRDA compared to that of the RDA:

Table 7. The reference approach performance.
Algorithm Average Std
RDA 1698.92 24.59
FRDA 1679.89 33.39

50 100 150 200 250 300 350 400

2000

3000

4000

5000

6000

7000

8000

R
ou

te
 L

en
gt

h

Generations x 1000

Non-Fuzzy
Fuzzy

Fig.12. Comparison of the fuzzy and non-fuzzy RDA’s con-

vergence characteristics.

5. CONCLUSION

In this paper we have presented a new divide and conquer
based evolutionary algorithm, RDA. To our best knowledge,
this kind of repetitive decomposition/composition algorithm
has newer been used before. In this paper we also presented
a fuzzy controlled RDA, the FRDA. In our approach fuzzy
controller adjusts the decomposition parameters based on
dynamics characteristics of the solution population. By
adaptively changing the decomposition parameters our algo-
rithm is capable of producing competitive results in TSP
optimization compared to an algorithm using static parame-
ters.

REFERENCES

[1] C.L. Valenzuela & A.J. Jones, A parallel implementation of
evolutionary divide and conquer for the TSP. Proc. First Inter-
national Conference on Genetic Algorithms in Engineering Sys-
tems: Innovations and Applications, 446, Galesia, Sep 1995, 499
– 504.

[2] H.-K. Tsai, J.-M. Yang & C.-Y. Kao, Solving traveling
salesman problems by combining global and local search
mechanisms. Proc. 2002 Congress on Evolutionary Compu-
tation, 2, May 2002, 1290 – 1295.

[3] H. Watabe & T. Kawaoka, Application of multi-step GA to
the traveling salesman problem. Proc. Fourth International
Conference on Knowledge-Based Intelligent Engineering Sys-
tems and Allied Technologies, vol. 2, Honolulu, HI, 2000, 510 –
513.

[4] K. Fujimura, O.-C. Kwaw & H. Tokutaka, Optimization of
surface component mounting on the printed circuit board using
SOM-TSP method. Proc. 6th International Conference on Neu-
ral Information Processing, Perth, Australia, 1999, 131 – 136.

[5] W. Sheng, N. Xi, M. Song & Y. Chen, Optimization in
automated surface inspection of stamped automotive parts. Proc.
IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 2, Lausanne, Switzerland, 2002, 1850 – 1855.

[6] D. B. Fogel, Evolutionary computation, toward a new phi-
losophy of machine intelligence (Piscataway, NJ: IEEE Press,
2000).

[7] T. Bäck, T.: Evolutionary algorithms in theory and practice
(New York, NY: Oxford University Press, 1996).

[8] N. Aras, I.K. Altinel, J. Oommen, A Kohonen-like decompo-
sition method for the Euclidean traveling salesman problem-
KNIES_DECOMPOSE. IEEE Transactions on Neural Networks
14(4), Jul 2003, 869 – 890.

[9] L. Wang, A course in fuzzy systems and control (Upper Sad-
dle River, NJ: Prentice-Hall International, 1997).

[10] S. McClintock, T. Lunney, A. Hashim, A Fuzzy Logic Con-
trolled Genetic Algorithm Environment. Proc. IEEE Interna-
tional Conference on Computational Cybernetics and Simula-
tion, vol. 3, Orlando, FL, 1997, 2181 – 2186.

[11] K. Pytel, G. Kluka, A. Szymonik, Fuzzy methods of driving
genetic algorithms. Proc. Fourth International Workshop on
Robot Motion and Control, Puszczykowo, Poland, 2004, 339 –
343.

