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ABSTRACT 
In this paper we present an efficient decomposition tech-
nique to speed up evolutionary algorithms when dealing 
with large scale optimization problems. Divide and conquer 
methods aim to solving problems in smaller entities and 
then combining the sub-solutions to form complete solu-
tions. Often the optimal way to divide the problem varies as 
the evolutionary algorithm proceeds, thus making a static 
decomposition not the best approach. In this paper, we pre-
sent a fuzzy controlled decomposition algorithm and show 
how it outperforms a traditional evolutionary algorithm. 
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1. INTRODUCTION 
 
Intuitively, humans tend to cluster large problems into sev-
eral sub-problems that are solved separately and these solu-
tions are then combined to form the overall problem solu-
tion. Especially different research and development proc-
esses are iterative in nature, so that at first a picture of the 
whole problem is formulated after which the problem is 
divided into less demanding sub-problems. Further, the sub-
problems are elaborated separately after which the parts are 
connected and the problem is inspected as a whole. After a 
while, the problem can be fine tuned in smaller entities and 
the elements can be combined to produce a solution to the 
whole problem and so on. This kind of iterative loop can 
continue as long as a satisfactory solution is found. We 
rarely tackle a large problem as a whole, but split it into 
pieces of suitable size. These kind of divide and conquer 
methods are not new in the area of evolutionary algorithms 
(EAs) either [1].  
 
In this paper, we introduce an efficient divide and conquer 
method that throughout the run time of the algorithm in 
turns optimizes the whole problem and the very same prob-
lem in less demanding sub-problems. Our goal is to develop 
an algorithm that is more reliable, converges faster, and is 
persistent to stagnation. The introduced algorithm has vari-
ous tunable parameters, so after being convinced that our 
algorithm outperforms a competitive reference algorithm, 

we construct a fuzzy control mechanism to adaptively 
adjust the parameters during the runtime. 
 
As a test case we use the traveling salesman problem 
(TSP). Traveling salesman problem (TSP) is a well 
known and a much studied minimization problem [1,2,3]. 
The problem describes a salesman who has to visit a cer-
tain number of cities without having to visit the same city 
twice, in other words, the shortest closed path connecting 
all the cities has to be found. A number of common prob-
lems, among others, printed circuit board design [4] and 
robot path planning [5], can be converted into a TSP. A 
20-city map for the TSP is shown in Fig 1. The bench-
mark test in this paper was a demanding 500-city TSP. 
 
Our paper is structured as follows.  Section 2 discusses 
evolutionary programming and introduces our approach. 
Section 3 presents the simulation results. Section 4 intro-
duces fuzzy logic based control to our decomposition al-
gorithm and section 5 concludes the article. 
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Fig 1. A 20-city TSP example. 

 
2. EVOLUTIONARY PROGRAMMING 
 
Evolutionary programming (EP) is a branch of evolution-
ary computing along with genetic algorithms (GAs) and 
evolution strategies (ESs) [6,7]. Each method, quite simi-
lar to one another, tries to find an optimal solution by ap-



plying basic operators, such as selection, mutation and re-
production, to a pool of candidate solutions. The structure of 
an evolutionary programming based algorithm is formulated 
in [6]: 
 
1. Create a random initial population. 
 
2. Mutate each solution to produce an offspring. 
 
3. Select the fittest half of all the parents and offspring to 
become parents for the next generation. 
 
4. Got to 2 if exiting conditions have not been met. 
 
In our case, solutions were coded as an array, and each city 
was assigned an individual number between 1 and 500. Cit-
ies were visited in the order they appeared in the solution 
array and the fitness of a solution was the total path length 
visiting all the cities.  
 
Three different types of mutations were allowed [6]. Each 
mutation took place with equal probability. First type of 
mutation resulted in a simple exchange of the places of two 
cities in the solution array. Second type of mutation selected 
a random number of consecutive cities and reversed their 
order in the solution array. Third type of mutation selected a 
random number of consecutive cities and moved this block 
to a random location. A single solution could be mutated 
only once using one type of mutation per generation. 
 
The method described above was used as a reference algo-
rithm for our study. To outperform the performance of the 
reference approach we created two divide and conquer –
type approaches to improve the convergence characteristics 
of the reference approach. 
 
2.1. GEOGRAPHICAL DECOMPOSTION 
ALGORITHMS 
 
Our Geographical Decomposition Algorithm is based on 
geographically decomposing the traveling salesman prob-
lem. These kinds of decomposition and clustering algo-
rithms have been studied extensively in the literature [8]. 
After the initialization, the map containing all the cities was 
divided into four equally large areas, as shown in Fig. 2. 
The reference evolutionary programming algorithm was 
then used to find as short as possible a path connecting all 
the cities within each area. The division into four separate 
areas lasted for 5000 generations, after which the individual 
parts were connected and the algorithm was run further 
45 000 generations according to the principle of the refer-
ence algorithm described above. The simulations were car-
ried out using MATLAB 6 software and a P4 (2.6 GHz) 
processor. Average run time for a single 50 000 run was 
three hours. 
 
 
 

2.2 REPETITIVE DECOMPOSITION ALGORITHM 
 
Geographical decomposition is quite intuitive, but speeds 
up the convergence of the reference algorithm only in the 
beginning. Therefore, in our Repetitive Decomposition 
Algorithm (RDA), we optimize the TSP in turn as a single 
route and in turn as several sub-routes. The principle of 
Continuous Decomposition is shown in Fig. 3. 

 
Fig 2. The principle of geographical decomposition. 
 
At first the solution pool is initialized. In this case we use 
the population size of 20 individuals. After initialization, 
the reference algorithm is applied to the whole population 
for Gw generations. In this phase, each solution produces 
one offspring per generation.  
 
After this the population is decomposed into Nd equally 
long paths, and these are optimized separately for Gd gen-
erations. Since it is important to keep the number of solu-
tion evaluations constant throughout the run time of the 
algorithm, we must select Np best parents from each path 
and produce No offspring for each of them. The product of 
Np and No has to equal 20 in order to keep the number of 
solution evaluations constant all the time. So, when the 
problem is decomposed into les demanding sub-problems, 
only a few solutions are selected, but they altogether pro-
duce the same amount of offspring as when the problem 
was dealt as a whole. 
 
In short, our algorithm divides a few of the best solutions 
containing all the cities into shorter paths with smaller 
number of cities and tries to optimize these parts sepa-
rately before composing them together again. The algo-
rithm is also elitist in the sense, that combining the 
smaller part to form a complete solution cannot produce 
longer path than the one that was originally decomposed. 
 
The RDA has a variety of tunable parameters and the ef-
fect of different values and combinations was experi-
mented. 
 
 
 



3. SIMULATION RESULTS 
 
All the algorithms were run using an initial population size 
of 20 found suitable using extensive testing and taking into 
account the run time requirements. This means that our al-
gorithms evaluated 20 solutions per generation. Also, each 
algorithm was run 15 times for 50 000 generations to ensure 
some statistical reliability. The averaged results of the refer-
ence algorithm and the Random Decomposition algorithm 
are shown in Table 1. 
 

 
Fig 3. Example of Repetitive Decomposition Algorithm 
with Nd=4. 

 
Table 1. The reference approach performance 

Algorithm Average Std 
Reference algorithm 2393.11 40.99 

Geographical Decomposition 1834.98 17.80 

 
The Geographical Decomposition algorithm very reliably 
outperforms the reference approach in both terms of average 
value and standard deviation. Similar performance results 
are also documented in the literature [8]. 
 
The performance of the RDA is shown in Table 2.  The av-
erages and standard deviations suggest that the Continuous 
decomposition algorithm is superior to the algorithms pre-
sented previously in this paper. This, however, is not a sur-
prise since the divide and conquer principle is applied to the 
problem throughout the run time of the algorithm, where as 
in the previously discussed algorithms it is implemented 
only once after initialization. 
 

Our experiments suggest that the decomposition of the 
solutions should take place quite frequently for a short 
time. Optimizing the whole problem for five generations 
and then decomposing it for another five generations out-
performed 25 and 50 generation intervals. 
 
Selecting only a few best solutions to be decomposed and 
producing several offspring for these few parents outper-
formed the option of selecting more parents and produc-
ing fewer offspring. 
 
Finally, in our tests, the number of decompositions was 
not found so critical, all the options performing in a rela-
tively similar way. 
 

Table 2. The Continuous decomposition algorithm per-
formance. 

Gw Gd Nd Np No Average Std. 
5 5 10 5 4 1698.92 24.60 
25 25 10 5 4 1709.55 19.07 
50 50 10 5 4 1721.59 23.26 
20 20 10 1 20 1705.96 24.76 
20 20 10 4 5 1729.80 28.85 
20 20 10 10 2 1734.09 30.24 
20 20 5 5 4 1714.87 16.59 
20 20 10 5 4 1711.84 32.31 
20 20 25 5 4 1713.81 25.61 

 
Despite the final results shown in Table 2, the conver-
gence characteristics of the algorithm using different pa-
rameter sets varied quite interestingly.  
 
Figs. 4 and 5 show the convergence characteristics of dif-
ferent decomposition interval settings Gw and  Gd. It is 
clearly visible from Figs. 4 and 5 that setting Gw=5 and 
Gd=5 outperforms other parameter sets throughout the 
entire optimization run. So, our results suggest that op-
timizations should be decomposed into smaller sub prob-
lems quite frequently and for a short time. 
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Fig 4. Convergence characteristics of RDA using different 
Gw  and  Gd. (Solid line:  Gw=5 and Gd=5, dash dotted 
line: Gw=25 and Gd=25, dashed line: Gw=50 and Gd=50). 
 
Figs. 6 and 7 show how the RDA converges using differ-
ent parameter settings for Nd. It is noticeable that in the 



beginning all the parameter settings perform almost equally 
well. Using extensive testing, we came to conclusion that in 
the very early stages of the algorithm, the whole problem 
should be divided into very small pieces. After the algo-
rithm has converged for a short while, there should be me-
dium size decompositions, as Fig. 6 shows. Finally towards 
the end, in Fig 7. larger decompositions seem to have the 
best convergence.  
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Fig 5. Convergence characteristics of RDA using different 
Gw  and  Gd. (Solid line:  Gw=5 and Gd=5, dash dotted line: 
Gw=25 and Gd=25, dashed line: Gw=50 and Gd=50). 
 
Fig. 8 shows the convergence characteristics using different 
values for Np and No. Fig. 8 clearly shows that by selecting a 
few promising solutions to be decomposed and producing a 
couple of offspring for each of them produces fast conver-
gence in the beginning. However, after a while, when the 
algorithm has converged more, selecting only the best solu-
tion and producing the maximum number of offspring for it 
produces better performance towards the end. This, also, is 
quite intuitive. Early in the algorithm we cannot be sure 
which candidates eventually lead to good solutions, so we 
should try a few of them. When the algorithm has converged 
for some time, we know that, for this run, the best candidate 
is likely to produce better solutions than the other candi-
dates. Thus, we should concentrate on the best solution 
when decomposing the problem. 
 
4. FUZZY REPETITIVE DECOMPOSITION 
ALGORITHM 

 
Since having different parameter sets produces different 
performance, it is tempting to develop an adaptive system to 
control the RDA. Fuzzy logic [9] is known to be capable of 
transforming human intuition easily into control structures. 
In the following, we construct a fuzzy logic based adaptive 
control structure [10,11], FRDA, to enhance the conver-
gence of the standard RDA. 
 
Fuzzy logic system controls three RDA parameter, Nd, Np, 
and No. Since Gw=5 and Gd=5 produced superior perform-
ance in Table 2, there is no need to adjust these parameters 
on-line. We have altogether two fuzzy controllers in the 

system, one controlling Nd, and the other controlling both 
Np and No. 
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Fig 6. Convergence characteristics of RDA using different 
Nd. (Solid line:  Nd =5, dash dotted line: Nd =10, dashed 
line: Nd =25). 
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Fig 7. Convergence characteristics of RDA using different 
Nd. (Solid line:  Nd =5, dash dotted line: Nd =10, dashed 
line: Nd =25). 
 
We use two inputs for both the fuzzy systems. These in-
puts describe the state of the solution population. We de-
fine dynamics D as the difference between fb, the best, 
and fw, the worst solution in the current population: 
 

 )()()( nwfnbfnD −=                  (1) 
 
In addition, D is averaged over three consecutive genera-
tions to smooth rapid changes. D tends to be large when 
the population has not yet converged so much towards the 
final solution. As the population converges D decreases. 
If D equals to zero, all the solutions in the population are 
the same. 
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Fig 8. Convergence characteristics of RDA using different 
Np and No. (Solid line:  Np and No=5, dash dotted line: Np 
and No =10, dashed line: Np and No =25). 
 
The second input to the fuzzy systems is Dstd, the standard 
deviation of three consecutive Ds: 
 

( ) ( ) ( )[ ] 2     1     STD)( −−= nDnDnDstdnD       (2) 
 
where “STD” is a standard deviation operator. Dstd also de-
scribes the state of the solution population. Not yet con-
verged population has a higher Dstd than a population that 
has somewhat converged.  
 
The input membership functions for D are shown in Fig. 9 
and for Dstd in Fig. 10. 
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Fig. 9. The input membership functions for D from left to 
right: VS, S, M, L, VL. 
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Fig. 10. The input membership functions for D from left to 
right: S, M, L, VL. 

 
The used output membership functions are shown in Fig. 
11. 
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Fig. 11. The output membership functions for D from left 
to right: VS, S, M, L, VL. 
 
The rule base for determining Np and No is shown in Table 
3 and the defuzzified output is then transformed into Np 
and No using Table 4. 
 

Table 3. Rule base for determining Np and No. 
 

Dynamics/Std VS S M L VL 
S M VS VS S S 
M VS S S M M 
L VS S M M M 

VL S M M L VS 

 
Table 4. Defuzzified output intervals and corresponding 

values for Np and No. 
 

Defuzzified output Np No 
≥ 0 and < 0.2 1 20 
≥ 0.2 and < 0.4 2 10 
≥ 0.4 and < 0.6 4 5 
≥ 0.6 and < 0.8 5 4 
≥ 0.8 and ≤ 1 10 2 

 
The purpose of the rule base in Table 3 is to a use small 
amount of parents and a lot of offspring when the algo-
rithm has not yet converged at all. When some conver-
gence has taken place, the number of parents in the de-
composition is increased and the number of offspring is 
decreased. When the algorithm has converged a lot, again, 
only a few parents are used. 
 
The rule base for determining Nd is shown in Table 5 and 
the defuzzified output is the transformed into Nd Table 6.  
 

Table 5. Rule base for determining Nd. 
Dynamics/Std VS S M L VL 

S S L M M M 
M M M L L VL 
L M M L VS VS 

VL M L VL VS VS 

 
 
 
 



Table 6. Defuzzified output intervals and corresponding 
values for Np and No. 

 
Defuzzified output Nd 
≥ 0 and < 0.25 25 
≥ 0.25 and < 0.5 10 
≥ 0.5 and < 0.75 5 
≥ 0.75 and < 0.1 2 

 
Here, purpose of the rule base in Table 5 is to use small sub-
problems when the algorithm is still at its early stages. After 
some convergence, medium sub-problems are used. Finally, 
towards the end large sub problems are used. Towards the 
end the algorithm may suffer stagnation, so when D and Dstd 
are both very low, medium sub problems are used to relieve 
the situation. 
 
As the results in Table 7 show, the fuzzy controlled RDA 
outperforms the standard RDA in terms of average shortest 
path over 15 runs. Fig. 12 shows the improved convergence 
performance of the FRDA compared to that of the RDA:  
 

Table 7. The reference approach performance. 
Algorithm Average Std 
RDA 1698.92 24.59 
FRDA 1679.89 33.39 
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Fig.12. Comparison of the fuzzy and non-fuzzy RDA’s con-

vergence characteristics. 
 
5. CONCLUSION 
 
In this paper we have presented a new divide and conquer 
based evolutionary algorithm, RDA. To our best knowledge, 
this kind of repetitive decomposition/composition algorithm 
has newer been used before. In this paper we also presented 
a fuzzy controlled RDA, the FRDA. In our approach fuzzy 
controller adjusts the decomposition parameters based on 
dynamics characteristics of the solution population. By 
adaptively changing the decomposition parameters our algo-
rithm is capable of producing competitive results in TSP 
optimization compared to an algorithm using static parame-
ters.  
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