
P7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Publication P7 
 

D. Shilane, J. Martikainen, S. Dudoit, and S. J. Ovaska 
“A general framework for statistical performance comparison of evolutionary computation algorithms” 

in 
Proc. of the IASTED International Conference on Artificial Intelligence and Applications 

Innsbruck, Austria, 2006, pp. 7-12.
 

                                    © 2006 ACTA Press 
 

                Reprinted with kind permission of ACTA Media. 
 
 

 
 



A GENERAL FRAMEWORK FOR STATISTICAL PERFORMANCE 
COMPARISON OF EVOLUTIONARY COMPUTATION ALGORITHMS 

 
 

David Shilane 
University of California, 

Berkeley 
Division of Biostatistics 

140 Warren Hall 
Berkeley, CA 94720 

USA 
E-mail: 

dshilane@berkeley.edu 

Jarno Martikainen 
Helsinki University of 

Technology 
 Institute of Intelligent 

Power Electronics 
P. O. Box 3000 
 FI-02015 HUT 

FINLAND 
 E-mail: jkmartik@cc.hut.fi 

Sandrine Dudoit 
University of California, 

Berkeley 
Division of Biostatistics 

140 Warren Hall 
Berkeley, CA 94720 

USA 
E-mail: 

sandrine@stat.berkeley.edu 

Seppo J. Ovaska 
Helsinki University of 

Technology 
 Institute of Intelligent 

Power Electronics 
P. O. Box 3000 
 FI-02015 HUT 

FINLAND 
 E-mail: ovaska@ieee.org 

 
 

ABSTRACT 
This paper proposes a statistical methodology for 
comparing the performance of evolutionary computation 
algorithms. A two-fold sampling scheme for collecting 
performance data is introduced, and this data is assessed 
using a multiple hypothesis testing framework relying on 
a bootstrap resampling procedure. The proposed method 
offers a convenient, flexible, and reliable approach to 
comparing algorithms in a wide variety of applications. 
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1. Introduction 
 
Evolutionary algorithms (EAs) [1,2] are used to estimate 
the solution to difficult optimization problems. An EA’s 
result is determined by a stochastic process with two 
sources of variation: the fitness of the input or initial 
population (used interchangeably), and the algorithm’s 
improvements on this fitness produced via the 
mechanisms of selection, reproduction, and mutation.  
EAs are often hand-crafted to meet the requirements of a 
particular problem because no single optimization 
algorithm can solve all optimization problems 
competitively [3]. When alternative algorithms are 
proposed, their relative efficacies should be assessed. This 
paper seeks to provide a general methodology for 
comparing the performance of evolutionary algorithms 
based on statistical sampling and hypothesis testing. 
 
In [4], Christenssen and Wineberg explain the use of 
appropriate statistics in artificial intelligence and propose 
non-parametric tests to verify the data’s output 
distribution. In [5], Flexer proposes many guidelines for 
statistical evaluation of neural networks that can also be 
applied to evolutionary computation. Czarn et. al [6] 
discuss the use of the Analysis of Variance (ANOVA) in 
comparing the performance of EAs. However, such 
procedures rely upon distributional assumptions that are 

not necessarily valid and limit the class of performance 
metrics that can be used. 
 
An EA’s initial population consists of a set of starting 
values for the evolution process. Most previous EA 
performance comparisons have only considered results for 
a single initial population or even provided different 
inputs for each algorithm studied. Supplying different 
single inputs to each EA may result in a founder effect, in 
which a population’s initial advantage is continually 
propagated to successive generations. Furthermore, 
relying upon a single input can at best determine the 
plausibility of preferring one candidate EA to another 
given suitable initial conditions. We can alleviate these 
issues by assessing relative performance over each of a 
representative sample of initial populations. 
 
For each particular sampled input, performance 
differences can be assessed using a hypothesis test. 
Student’s t-statistics [7] are commonly used to test the 
equality of two population means. However, the 
parametric t-test assumes that the data are normally 
distributed. If this assumption is not valid, the resulting 
inference may not be meaningful. Therefore, we require a 
more general and objective framework for statistical 
comparison of evolutionary computation algorithms. 
 
This paper proposes a two-fold sampling scheme to 
perform repeated EA trials at each of a representative 
sample of possible inputs. The candidate EAs’ efficacies 
will be assessed in a multiple hypothesis testing 
framework that relies upon bootstrap resampling [8] to 
estimate the joint distribution of the test statistics. This 
methodology will establish a procedure for fair 
comparison of EAs that can be considered general in the 
following aspects: first, the results do not rely heavily on 
a single advantageous input. Second, the bootstrap-based 
testing procedure is applicable to any data-generating 
distribution and requires no a priori model assumptions. 
Finally, this methodology can be applied to essentially 
any function of the data collected, so the researcher is free 
to choose how performance should be evaluated. 

 



The paper is organized as follows: Section 2 describes the 
two-fold sampling scheme for data collection. Section 3 
introduces performance comparison in a multiple 
hypothesis testing framework. Section 4 shows how to 
use the bootstrap to estimate the test statistic’s underlying 
distribution. Section 5 introduces a variety of multiple 
testing procedures. Section 6 provides an example 
comparing the performance of two EAs seeking to 
minimize Ackley’s function. Section 7 discusses further 
applications of statistics in EAs and concludes the paper. 
 
2. Data Collection Using Two-Fold Sampling 
 
An EA’s initial population or input is a set of individuals 
that serve as starting values for the algorithm. Because an 
EA’s result depends both on its input fitness and its 
efficacy given this initial population, data must be 
collected in a two-fold sampling scheme. We will first 
generate a representative sample of initial populations, 
and then, for each of these inputs, we will perform a 
number of trials of each candidate EA. If we specify g, 
the number of generations each EA is allowed to evolve, 
the data are collected via the following algorithm: 
 
1. Generate M initial populations of H individuals. Each 

individual is described by a D-dimensional vector of 
traits (or genes). The value of D corresponds to the 
dimension of the domain of the function to be 
optimized.  The value of the dth gene of the hth 
individual of the mth population is labeled ymh,d. (When 
referring to an overall population ym or single 
individual ymh within that population, the unnecessary 
indices will be dropped.)  Populations of individuals 
are constructed from genes randomly generated from 
an associated D-dimensional distribution function P. 
When all genes of all individuals are independent and 
equally likely, a uniform distribution is used. The 
resulting M×H individuals (and hence the M 
populations) are independent and identically 
distributed (i.i.d.). 

 
2. Because an EA with a particular input follows a 

stochastic process, we will sample results for each of 
the inputs generated in Step 1. For each initial 
population ym, perform na, a , trials of algorithm 
a. Save the optimal result observed after g generations 
as the [m,i]

}2,1{∈

th entry of an M×na data matrix Xa(g).  
 

The values na specify the sample size, and M 
represents the number of hypotheses, each of which 
correspond to an initial population. In general, one 
should collect as much data as possible given the 
computational constraints of the problem. 

 
3. Multiple Hypothesis Testing 
 
For any comparison, we must first select the theoretical 
parameter of interest µa(ym,g), which in this setting is an 
EA’s measure of performance given initial population ym 
and the number of generations g. A typical choice for 
µa(ym,g) is the expected optimum fitness after g 

generations. This parameter will be estimated by a 
statistic

∧ , which is just a function of the observed 
data X

),( gymaµ
a(g). When the expected optimum fitness is the 

parameter of interest, the corresponding statistic is the 
sample mean: 
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( ) ( )[ ]

22

,
1

1,  ( ,
na

a m a am i
ia

y g X g y g
n

σ
∧

=

= − 
 

∑ )mµ
∧  , m=1,…, M; a=1,2  (2) 

 
A multiple hypothesis testing framework is needed to 
compare algorithmic performance based on the data 
collected in Section 2. Typically we wish to demonstrate 
that the EAs differ significantly in performance given an 
initial population, so a skeptical null hypothesis would 
assume for each input that no difference in performance 
exists between the two algorithms. This corresponds to 
the multiple null hypotheses 
 

1 2: ( , ) ( , ) 0 ;  1,...,  m m mH y g y g m Mµ µ− = =    (3) 
 
We will test (3) at multiple significance level α (e.g. 
FWER 0.05 – Section 5). The null hypothesis can take 
many forms depending on the researcher’s priorities. For 
example, one may wish to show that a new algorithm’s 
expected optimal fitness after g generations is greater than 
that of an established standard or that its performance 
falls in a particular range. 
 
To test (3), we must construct test statistics and 
corresponding decision rules that reject the null 
hypotheses when the test statistics exceed a to-be-
determined cut-off. We will test each component null 
hypothesis using a two-sample t-statistic: 
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In order to specify cut-offs that probabilistically control a 
suitably defined Type I error rate (Section 5), we must 
estimate the underlying distribution of (4). When the data 
are assumed to follow a Normal distribution, Student’s t-
distribution is appropriate. However, if this assumption is 
not valid, the test statistics may not follow any 
mathematically simple distribution. Under any of these 
circumstances, the distribution of (4) can be estimated 
using the bootstrap. 
 
4. Using the Bootstrap in Hypothesis Testing 
 
The bootstrap is a simulation-based resampling method 
that uses the data collected to derive a statistic’s estimated 

 



distribution in a mathematically simple but 
computationally intensive way. This estimate is 
consistent, asymptotically efficient, and does not rely 
upon parametric assumptions, so it is widely applicable to 
many problems in statistical inference [8]. In a hypothesis 
testing environment, we can estimate the underlying joint 
distribution of (4) via the following algorithm [9]:  
 
1. Specify a number B (typically at least 10,000 for 
multiple hypothesis testing) of bootstrap iterations. 
 
2. Let n=n1+n2.  Concatenate the columns of X1(g) and 
X (g) to form an M×n data matrix X(g). For each   
b∈ 1,…, B, sample n columns at random with 
replacement from X(g) and store this resampling in an 
M×n matrix X

2

#b(g).  The first n1 columns of X#b(g) are 
considered the bootstrap resampled data for a=1 at this 
iteration, and the final n2 columns correspond to a=2. 
 
3. For b=1,…,B, compute statistics from the resampled 
data X#b(g) of Step 2 that correspond to the test statistics 
(4). Store these values in an M×B matrix T(g). 
 
4. Obtain an M×B matrix Z(g) by shifting T(g) about its 
row means and scaling by its row standard deviations. 
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m=1,…, M; b=1,…,B.      (5) 
 
The estimate of (4)’s joint distribution is given by the 
empirical distribution function of the columns of (5). For 
hypothesis testing applications, the bootstrap is 
implemented in the MTP function of the R statistical 
programming environment’s multtest package [10,11].  
 
5. Test Results and Statistical Inferences 
 
The significance level α, the observed test statistics (4), 
and the bootstrap test statistic matrix Z(g) constitute the 
input to a Multiple Testing Procedure (MTP). In this 
setting, a variety of methods that reflect a diversity of 
attitudes toward risk are available. Statistical tests can 
generate two types of errors: a Type I (or false positive) 
error occurs when a true null hypothesis is incorrectly 
rejected, and a Type II (false negative) error occurs when 
a false null is not rejected. When testing M hypotheses 
simultaneously, as in (3), we define the random variables:  
 
V: The total of Type I errors (not observed)       (6) 
R: The number of rejected hypotheses (observed)     (7) 
 
Classical MTPs sought to control the Family-Wise Error 
Rate (FWER). More recent research has been developed 
to control the generalized Family-Wise Error Rate 
(gFWER), False Discovery Rate (FDR), and the Tail 

Probability for the Proportion of False Positives (TPPFP), 
which are defined in Table 1. 
 

Table 1: Type I Error Rates. 
Type I Error Rate Parameter Quantity Controlled 

FWER - Pr(V > 0) 

gFWER k (int) Pr(V > k) 

FDR - E[V / R] 

TPPFP q (%) Pr(V/R >q) 
 

As summarized in [9,11,12,13,14,15], Table 2 lists a 
selection of available MTPs for each Type I error rate. 
The results of a multiple hypothesis test can be 
summarized in terms of rejection regions for the test 
statistics, confidence regions for the parameters of 
interest, and adjusted p-values [12]. The rejection region 
provides a set of values for which each hypothesis Hm of 
(3) is rejected while controlling the desired Type I error 
rate at level α. A corresponding set of 1-α confidence 
regions may also be constructed. 
 

Table 2: MTPs by Type I Error Rate. 
Type I Error Rate Multiple Testing Procedures 

FWER SS maxT, SS minP, SD maxT, 
SD minP, Bonferroni, Holm, 

Hochberg, SS Sidak, SD Sidak 

gFWER Augmentation Procedure 

FDR Conservative Augmentation, 
Restrictive Augmentation, BY, 

BH 

TPPFP Augmentation Procedure 
 
Adjusted p-values define the minimum value of α 
necessary to reject each hypothesis Hm of (3). Adjusted p-
values from different testing procedures controlling the 
same Type I error rate may be directly compared, with 
smaller values reflecting a less conservative test [14]. The 
multiple testing procedures above are automated in the 
MTP function of the R multtest package [10,11]. The 
user needs only supply the data, the value of α, the form 
of the null hypothesis, the test statistic, the Type I error 
rate to control, and the MTP. 
 
6. Example: Ackley’s Function Minimization 
 
6.1. Defining Ackley’s Function 
 
We seek to compare two candidate EAs that approximate 
the minimum of a D=10-dimensional Ackley function [2]. 
With  as in Section 2, Ackley’s 
multimodal function, which achieves a known minimum 
at the origin, is defined as: 

,1 ,( ,..., )mh mh mh Dy y y=
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6.2. Candidate EAs Ack1 and Ack2 
 
The algorithms Ack1 and Ack2 were devised to estimate 
the minimum of (8). Each EA takes an input population 
ym as described in Section 2. Each individual of this 
population has associated fitness fit(ymh) given by (8). At 
each generation, the algorithm includes a selection, 
reproduction, and mutation phase: 
 
Selection: Sort and re-label the H individuals in order of 
increasing fit(ymh), h=1,…,H. The H/2 best-fit individuals 
– those with the smallest values of (8) – are selected for 
breeding, while the other members will not reproduce. 
(Floor(H/2) may be used for odd values of H.) 
 
Reproduction: For h=1,…,H/4, pair individuals ym,2h-1 
and ym,2h for mating. Each pair produces two offspring to 
replace individuals not selected. For the first child (c=1), 
a uniform random variable weight1 is selected on (0,1), 
and the second child (c=2) receives weight2 = 1 - weight1. 
Traits are inherited (vector-wise) by the weighted average 
 

( ) ( ) hmchmcchHm yweightyweighty 2,12,122/, 1 ⋅−+⋅= −+−+   (9) 

 
Mutation: Each offspring yH/2+1,…,yH will mutate 
independently in a single gene at birth with probability 
muta. When mutation occurs, the gene is selected from a 
uniform random variable on 1,…, D, and this trait is 
assigned a uniform random variable on (-20, 30). In this 
example, mutation probabilities for Ack1 and Ack2 were 
mut1=0.1 and mut2=0.8, respectively. Because at most one 
of the D=10 genes may mutate, the population’s expected 
proportion of mutating genes is therefore 1% and 8% for 
the two algorithms, respectively.  Otherwise, Ack1 and 
Ack2 were identical. 
 
The initial population is considered the completion of the 
reproduction and mutation phases for the 0th generation. 
The process of selection, reproduction, and mutation 
repeats a total of g generations, and the estimate to the 
minimum of (8) is given in the resulting population by 
 

( ) [ ]RESULT , 1, ,mhmin fit y h H = ∈  K   (10) 

 
The value of (10) observed for EA a on the ith trial given 
initial population ym is stored as the [m,i]th  entry of Xa(g). 
Because the reproduction and mutation phases introduce 
variability at each generations, the value Xa(g)[m,i] is a 
random variable. 
 
It should be noted that Ack1 and Ack2 were designed 
solely to provide an illustrative example of our 

comparison methodology. Different population sizes, 
reproduction schemes, or mutation rates may lead to 
improved estimates of (8)’s minimum. 
 
6.3. Study Design and Results 
 
Using the two-fold sampling approach of Section 2, we 
generated M=100 initial populations y1,…,yM, each 
consisting of H=100 individuals of D=10 dimensions. 
Each individual’s traits were initialized using pseudo-
random number generation from a uniform distribution on 
the interval (-20, 30). The function (8) was used to assess 
each individual’s fitness. Then, for each initial population 
m=1,…, M, we collected optimum fitness data on 
n1=n2=50 trials of the EAs. On each trial, both Ack1 and 
Ack2 were allowed to reproduce for g=10000 generations. 
The resulting data are displayed in Fig. 1.  
 

 
Fig. 1: Performance data for Ack1 and  

Ack2 by initial population. 
 

Figure 2 shows the average performance of the algorithms 
for each initial population. Though Ack2 produces a better 
mean value of (10) than Ack1 at each initial population, 
Fig. 1 shows that Ack1 is capable of producing 
competitive results for some trials across all inputs. 
Furthermore, Ack1 appears to exhibit greater variance 
than Ack2 in its estimates. Therefore, it is not immediately 
clear that Ack2 performs better than Ack1. 
 
We performed two-sided tests of the multiple hypotheses 
(3) corresponding to no difference in performance 
between Ack1 and Ack2 at each given input versus the 
alternative of unequal performance. Note that one could 
also perform one-sided tests that designate one candidate 
EA as superior to the other. 
 
The hypotheses (3) were tested using the multtest 
package [10,11] of R at FWER level α=0.05 based on the 
data collected and the statistic (4). We first employed the  
FWER-controlling SS maxT MTP at nominal level 
α =0.05. Figure 3 shows several summary plots of the SS 
maxT results. The first plot shows how R (7) grows as a 

 



function of α. The second plot shows the ordered SS 
maxT adjusted p-values. This curve indicates that 92 
hypotheses are rejected at level α=0.05. The third plot 
shows how the SS maxT adjusted p-value for a hypothesis 
decreases with the absolute value of the test statistic. Here 
the adjusted p-value value approaches 0.05 as the test 
statistic increases toward -2.75. The final plot of Fig. 3 
shows the unordered adjusted SS maxT p-values, which 
allow one to identify the initial populations that result in 
significant (p.adj<0.05) performance differences. 
 

 
Fig. 2: Average Performance by Initial Population. 

 
Fig. 3: Summary displays for SS maxT testing. 

 
We then implemented a selection of the MTPs listed in 
Table 2 to test (3) under different Type I error rates. Table 
3 displays the number of hypotheses rejected by each 
MTP at varying levels of α. The following procedures 
reject all 100 hypotheses at level α=0.05: Holm, 
Hochberg, SidakSD, BY, and BH. 
 
For the gFWER and TPPFP augmentation procedures, the 
question remains whether 8 false positives or an 8% rate 
of false positives, respectively, is tolerable in testing for 

EA performance differences. This question is 
epistemological in nature and must be decided by the 
scientific community. In practice, a maximum value for 
these parameters should be established before comparison 
takes place. Although the particular benchmark is 
somewhat arbitrary (much like the choice of α=0.05 in 
hypothesis testing), establishing a uniform standard is 
necessary for future studies. 
 
Table 3: The number of rejected hypotheses as a function 

of α for a selection of MTPs. 
Rate MTP α=0.01 α=0.03 α=0.05 α=0.07 α=0.10 

 SS maxT 72 86 92 93 96 

Bonf. 75 90 93 95 95 

Holm 100 100 100 100 100 

Hochberg 100 100 100 100 100 

SS Sidak 83 90 94 95 95 

 
F 
W 
E 
R 

SD Sidak 100 100 100 100 100 

gFWER 
(5) 

72 
 

86 92 93 96 G 
F 
W 
E 
R 

gFWER 
(10) 

77 91 97 98 100 

AMTP 
Conserv. 

66 77 86 90 96 

AMTP 
Rest. 

66 77 86 90 96 

BY 99 100 100 100 100 

 

 
F 
D 
R 

BH 100 100 100 100 100 

Tppfp 
(.07) 

72 86 92 93 96 T 
P 
P 
F 
P 

Tppfp 
(.10) 

77 92 99 100 100 

 
The results of the MTPs suggest a performance difference 
between Ack1 and Ack2. On each of M=100 sample input 
populations, Ack2 achieved a smaller average observed 
minimum. All MTPs rejected at least 86 of the M=100 
hypotheses at level α=0.05, and a number of procedures 
rejected all hypotheses at level α=0.01.  Therefore, based 
upon the data collected, we conclude that Ack2 
significantly outperforms Ack1 in estimating the 
minimum of (8) when the expected optimum fitness is the 
parameter of interest. Because the two algorithms only 
differed in their mutation probabilities, it appears that 
increased mutation is beneficial in this application. 

 
7. Conclusion 
 
Although this paper’s methodology provides a general 
approach to EA performance comparison, the reader 
should be cautioned that issues of sample size cannot be 
neglected. In particular, the bootstrap approximation of 
(4)’s joint distribution grows more accurate as the values 
B and na increase. In practice, researchers may choose to 
collect as much data as a pre-specified time limit will 
allow. Data-adaptive study designs may also be 

 



 

implemented to halt data collection once a pre-specified 
level of statistical power is achieved. 
The framework proposed in this paper allows the 
researcher to choose the parameter of interest in an EA 
comparison. When parameters other than the expected 
optimum fitness are used (such as the median, 75th 
percentile, or other quantile estimates), our methodology 
is applicable provided that the necessary data are 
collected and appropriate estimating statistics (1), null 
hypotheses (3), and test statistics (4) are chosen.  In 
crafting an EA for a particular optimization problem, this 
paper’s methodology can be used iteratively to select the 
best among a set of candidate parameter values for 
quantities such as the mutation rate, population size, and 
selection proportion. When three or more EAs are 
simultaneously compared, a null hypothesis of equality in 
means may be tested using F statistics. 
If competing algorithms draw from different input sets, 
then testing average results from representative input 
samples in a single (M=1) test may be considered. When 
the input sets are identical, an alternative to the approach 
of this paper may choose to average all trials in a single 
hypothesis test provided that all inputs are i.i.d. The 
choice of which approach to use is philosophical: this 
paper assumes that EAs should be compared using the 
same input sample. In this setting, the parameter of 
interest is the expected performance given the initial 
population. This allows the algorithm to be assessed 
solely on its own merits without any possibility of a 
founder effect. However, if one views the input 
generation and resulting evolution as inextricably linked 
in the same algorithm, then a single hypothesis testing 
framework may be more appropriate, and this paper’s 
methodology is otherwise applicable. In this scenario, the 
parameter of interest shifts to the unconditional 
expectation of performance, and each EA should generate 
inputs independently for comparison trials. Though a 
single test may simplify the interpretation of performance 
differences, this approach is not applicable when inputs 
are dependently generated and lacks the appeal of direct 
performance comparison on the same trial inputs. 
 
The researcher may also wish to compare EAs as a 
function of time by collecting data at regular generational 
intervals. Displaying performance curves and confidence 
regions graphically may allow one to quickly determine 
decision criteria and search for clues about an algorithm’s 
rate of convergence and asymptotic result. Finally, an 
EA’s efficacy should be considered in terms of both 
performance and computational complexity. Researchers 
may consider performing a comparison in which each 
candidate algorithm is allowed to run for the same amount 
of time instead of the same number of generations to 
satisfy both objectives simultaneously. 
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