
P8

Publication P8

J. Martikainen and S. J. Ovaska
“Comparison of a fuzzy EP algorithm and an AIS in dynamic optimization tasks”

in
Proc. of the IEEE Mountain Workshop on Adaptive and Learning Systems

Logan, UT, 2006, pp. 7-12.

© 2006 IEEE. Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Helsinki University of
Technology's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

1-4244-0166-6/06/$20.00 ©2006 IEEE.

Comparison of a Fuzzy EP Algorithm and an AIS
in Dynamic Optimization Tasks

Jarno Martikainen and Seppo J. Ovaska

Helsinki University of Technology
Institute of Intelligent Power Electronics

Espoo, FI-02015 Finland
E-mail: jkmartik@cc.hut.fi, ovaska@ieee.org

 Abstract—In this paper we compare a specific evolu-
tionary programming algorithm with a basic artificial
immune system-based method in a dynamic combina-
torial optimization task. Evolutionary algorithms are
known to produce competitive results in optimization
tasks, where only a single best solution is desirable.
Artificial immune systems, however, can simultane-
ously find many different competitive solutions, and
this property makes them an interesting choice in dy-
namic optimization environments. The performance of
these two algorithms is compared using a non-
parametric statistical framework that does not require
any knowledge regarding the output distribution of
the algorithms.

I. INTRODUCTION

 Biologically inspired computational methods have
been studied for decades and remarkable results have
been achieved using, among others, artificial neural net-
works, fuzzy logic, and evolutionary algorithms. Natural
evolution offers us an ever-increasing number of meta-
phors to be transformed in computational procedures as
we learn more and more about how nature itself works.
 Artificial Immune System (AIS) [1, 2] is a relatively
new computational approach to tackling demanding prob-
lems not conveniently solvable using traditional optimiza-
tion techniques. AIS in static optimization problems have
been studied up to some extent, but there seems to be lit-
tle research on the performance of AIS in dynamic prob-
lems. From the optimization point of view, the AIS
scheme shares many similarities with evolutionary algo-
rithms (EAs) [3, 4]. It has, however, been observed that
AIS has better capabilities of preserving the diversity in
the solution pool and thus producing many good solutions
instead of just one, as evolutionary algorithms usually do.
People working with complex dynamic optimization
problems can find the comparison between EAs and AIS-
based algorithms interesting. The aim of this paper is to
compare a standard AIS-based optimization method, a
clonal selection algorithm, and a specialized evolutionary
algorithm in optimizing a dynamic traveling salesman
problem (DTSP). DTSPs have been recently studied using

various soft computing methods, such as neural networks [5],
evolutionary computation [6, 7, 8, 9], and ant colony optimi-
zation [10]. AIS has been applied for solving TSP before in
[11], and it has also been applied for dynamic optimization in
[12].
 To conduct reliable and sound comparison between the
candidate algorithms we employ a statistical scheme intro-
duced in [13]. This framework relies on bootstrap resampling
and multiple hypothesis testing procedures and requires the
user to make no distributional assumptions regarding the algo-
rithm’s output. This is very beneficial since it is difficult, if
not impossible, to define accurately the distribution of the
output of an evolutionary algorithm.
 Our paper is divided as follows. Section II describes the
AIS-based system used in this paper and section III briefly
explains the evolutionary algorithm used for comparison. In
section IV the principle of the statistical comparison frame-
work is explained and Section V deals with the TSP problems
used in this paper. Section VI contains the results, Section VII
examines the effect of parameters in the statistical framework,
and Section VIII concludes the paper.

II. ARTIFICIAL IMMUNE SYSTEMS

 Artificial immune system approach to optimization is more
recent exploitation of natural phenomena in computer science
than evolutionary algorithms. EAs and AISs share many
common aspects, but whereas EAs try to model the natural
evolution, AISs try to benefit from the characteristics of a
human immune system. Basic algorithm for AIS-based opti-
mization is called the Clonal Selection Algorithm (CSA) and
it works as follows [1, 2].

1. Create N antibodies (candidate solutions) randomly to form
an initial population.

2. Determine the affinity (fitness or cost) of each antibody.

3. Select nb fittest antibodies to form a group Nb.

4. For each member of the group Nb, create a number of
clones independently and proportionally to their affinity val-
ues. The better the affinity the higher the number of clones

generated for each of the selected antibodies. The clones
form a group C.

5. The clone group C undergoes an affinity maturation, in
which the clones are mutated inversely proportionally to
their affinities: the better the affinity the smaller the muta-
tion rate.

6. The affinities of the affinity-matured clones are calcu-
lated.

7. If an affinity-matured clone has a better affinity value
than the parent antibody, replace the parent antibody with
the affinity-matured clone.

8. Replace the d lowest affinity antibodies with randomly
created new antibodies.

9. Go to 3 if run time constraints have not been met, oth-
erwise exit.

 In this paper the size of the antibody population was
30. Three best antibodies were selected for cloning during
each generation and 5, 4, or 3 clones were created out of
the selected antibodies based on their affinity values. At
the end of each generation, the worst antibody was re-
placed with a randomly created new antibody. The choice
of parameter values in this case is a trade-off between the
algorithm’s exploration and exploitation capabilities: lar-
ger initial population and more clones offer better explo-
ration of the search space, but simultaneously the in-
creased computational requirements slow down the ex-
ploitation pace of the best solutions. So, these algorithms
are parameter-sensitive and the values used were found
suitable for this paper based on extensive testing. Single
mutation was applied on high affinity clones, whereas
lower affinity clones suffered two separate mutations per
generation.

III. FUZZY LOGIC CONTROLLED EVOLUTIONARY
PROGRAMMING ALGORITHM

 Evolutionary algorithms have for long been credited as
tools for solving challenging optimization problems. Ac-
cording to the notorious no free lunch (NFL) theorem
[14], there does not exist a single optimization algorithm
that would deliver superior performance in a wide variety
of problem types. Thus, to get most out of EAs perform-
ance, the algorithms need to be specifically tailored to the
task at hand. In this paper, we use a specialized evolu-
tionary programming algorithm specifically designed for
solving large-scale TSPs. The details of the algorithms
can be found in [15]. In general, the algorithm works as
follows.

1. Create N solutions randomly to form an initial population.

2. Evaluate the cost of each solution.

3. Operate the following stages for 5 generations at a time (i.e.
Gw and Gd equal 5, see Fig. 1).

 Stage 1:

1. Create a single offspring per parent through a mu-
tation mechanism.

2. Evaluate the cost of each offspring.

3. Select the fittest half of the parents and offspring
to form the population for the next generation.

 Stage 2:

1. Select Np best solutions for decomposition and divide
these solutions into Nd sub solutions.

2. Create No offspring for each sub solution through a
mutation mechanism.

3. Replace the parent with offspring if the cost of the
offspring is less than that of the parent.

4. Go to 3 if run time requirements have not been met, otherwise
exit.

 Fuzzy logic is used to control the parameters Np, No, and Nd.
Two inputs for both the fuzzy systems are used. These inputs
describe the state of the solution population. We define dynam-
ics D as the difference between fb, the best, and fw, the worst
solution in the current population:

)()()(nwfnbfnD −= (1)

 The second input to the fuzzy systems is Dstd, the standard
deviation of three consecutive Ds:

() () ()[] 2 1 STD)(−−= nDnDnDstdnD (2)

 The rule base for determining the number of best individuals
selected for partitioning, Np, and the number of offspring created
out of each selected parent, No, is shown in Table I and the de-
fuzzified output is then transformed into Np and No using Table
II. In the rule base tables VS, S, M, L, and VL stand for very
small, small, medium, large, and very large. The actual member-
ship functions are defined in [15].

Fig 1. The principle of fuzzy logic controlled evolutionary programming

algorithm.

TABLE I
 RULE BASE FOR DETERMINING Np AND No

Dynamics/Std VS S M L VL
S M VS VS S S
M VS S S M M
L VS S M M M

VL S M M L VS

TABLE II
DEFUZZIFIED OUTPUT INTERVALS AND CORRESPONDING

VALUES FOR Np AND No
Defuzzified output Np No
≥ 0 and < 0.2 1 30
≥ 0.2 and < 0.4 3 10
≥ 0.4 and < 0.6 5 6
≥ 0.6 and < 0.8 6 5
≥ 0.8 and ≤ 1 10 3

 The rule base for determining the number of sub
paths, Nd, is shown in Table III and the defuzzified output
is the transformed into Nd Table IV.

TABLE III
 RULE BASE FOR DETERMINING Nd

Dynamics/Std VS S M L VL
S S L M M M
M M M L L VL
L M M L VS VS

VL M L VL VS VS

TABLE IV
DEFUZZIFIED OUTPUT INTERVALS AND CORRESPONDING VALUES

FOR Nd
Defuzzified output Nd
≥ 0 and < 0.25 5
≥ 0.25 and < 0.5 3
≥ 0.5 and < 0.75 1
≥ 0.75 and ≤ 1 1

The initial population size of 30 individuals was used for this
algorithm. Both the fuzzy EP and CSA are rather sensitive to
parameter values. To make the comparison of the algorithms
objective, the best effort was made to find competitive pa-
rameters for the test schemes used in this paper.

IV. FRAMEWORK FOR STATISTICAL COMPARISON

 The soft computing field is rather young, and it lacks gen-
erally accepted guidelines for statistical testing of the differ-
ences between the performances of two or more algorithms. A
few tens of runs using different initial populations for each
run and then comparing the achieved average fitnesses is not
enough to reliably state one algorithm to perform better than
another. Also, the much-used student’s t-test may deliver mis-
leading results if the user neglects the requirement of normal
distribution for the input samples of the test. After all, it is
difficult, if not impossible, to estimate the output distribution
of an evolutionary algorithm. Detailed description of the sta-
tistical framework for proper comparison of two optimization
algorithms can be found in [13]. However, in the following
the procedure is briefly explained.
 The applied statistical comparison scheme has two separate
parts: first as much as possible data is collected and then,
based on this data, multiple testing procedure is used to see if
null hypotheses can be rejected. The null hypotheses have to
be formulated beforehand, and in this case we select the null
hypothesis to be that there exists no performance difference
between the two algorithms. This means that if we reject the
null hypothesis the opposite is true, that is, there exists differ-
ence in the performance of the two algorithms. It is appropri-
ate to collect as much data as possible, so for each two algo-
rithms to be compared, 50 random initial populations are cre-
ated and 50 one-minute runs for each algorithm per initial
population are conducted. So, for a single algorithm the calcu-
lations required 2500 minutes per algorithm. The number of
null hypothesis is also 50, a single hypothesis for each of the
initial populations. The amount of data collected was decided
based on the available computational power.
 After this, test statistics are calculated for the observed
values as in [13]. The data is then resampled using bootstrap
resampling technique and test statistics are calculated for the
resampled values. The tests produce as a result adjusted p-
values that define the minimum confidence level to reject an
individual hypothesis. In this paper a confidence level of 0.05
was used to reject an individual hypotheses and the Bon-
ferroni [13] testing procedure was applied. This procedure
ranks in the middle when comparing different multiple testing
procedures in terms of conservativeness.

V. STATIC AND DYNAMIC TSP

 The traveling salesman problem is a well-known com-
binatorial optimization problem. In brief, the goal in TSP
is to find a shortest path connecting a number of given
cities. In static TSPs the distances between the cities stay
the same throughout the runtime of an algorithm. In dy-
namic TSPs the connections between the cities can be
expressed for example as costs and these costs vary as a
function of time [16]. Real-world DTSPs can include,
among others, routing problems in which the cost or time
to take a certain route from a place to another varies with
time, e.g., roads may be blocked or ticket prices may
change.
 To evaluate the performances of a specialized EA and
CSA in static optimization problem a 225-city tsp225
from TSPLIB [17] was used. This problem has a known
minimum path length at 3919. However, in this case we
were not primarily interested in the minima the two algo-
rithms would eventually achieve, rather, each algorithm
was given one minute of CPU time on MATLAB 6 soft-
ware and a P4 (2.6 GHz) processor to find as short a path
as possible.
 In [9] Kang et al. correctly stated that the changes in
the cost basis for evaluating dynamic TSP should change
rapidly, for if the changes are too far apart the problem
could be separated into independent sub problems. Two
different dynamic schemes were used to evaluate the per-
formances of the candidate algorithms. Figures 7a and 7b
explain the structure of the test cases. In the first case the
initial cost matrix changes every 10 seconds. The new
cost matrices are not completely random, but a significant
random component is added to the initial cost matrix. In
the second case there are two stages of different length:
20 and 30 seconds separated by a 5 second interval. The
test schemes were designed to test the performance of the
algorithms with rapidly changing conditions with differ-
ent intervals. The first scheme has constant intervals for
optimization whereas in the second scheme the time
available for optimization varies from 5 to 30 seconds.
 For mutation, a single exchange of cities, a multiple-
city block relocation or reversal could be implemented
with equal probability in both CSA and fuzzy EP.

VI. RESULTS
 A. Static TSP

 The results were evaluated based on the average final
tour lengths of the algorithms. The performance differ-
ence between the algorithms was obvious as shown in
Fig. 2, where the fuzzy EP clearly outperforms the CSA.
This notion was confirmed by the statistical frameworks,
since all of the 50 null hypotheses were rejected with the
confidence of 0.95 (α=0.05).
 To confirm the notion of the fuzzy EP outperforming
the CSA, we conducted the statistical test described in

Section IV. The time used for optimization was not enough to
achieve the global minimum of the problem, but in this paper
the emphasis was on the dynamic behaviour of the cost func-
tion, i.e., the capabilities of the algorithms in rapidly changing
environments with a small amount of time for optimization
were studied.

Fig. 2. The average performance of the candidate algorithms in the static test

scheme.
 B. Dynamic TSP

 Figure 3 shows the average performance in the case of the
first dynamic test scheme. The fuzzy EP does slightly better
during the first cost matrix, and as the first change occurs, the
algorithms perform rather similarly. After consecutive
changes in the cost matrix, however the CSA outperforms the
fuzzy EP algorithm.
 The number of rejected hypotheses in Table VI confirms
the notion that at the start the fuzzy EP performs slightly bet-
ter than the CSA. As Table VI shows, 23 out of 50 hypotheses
are rejected. This is almost half of the hypotheses and it gives
some indication to the fact that the fuzzy EP could be per-
forming better. At the 20 second mark, however, none of the
hypotheses could be rejected, so it is reasonable to consider
the two algorithm’s performance similar. From 30 seconds
onward nearly all the hypotheses are rejected and this indi-
cates that the CSA clearly outperforms the fuzzy EP.
 Figure 4 shows the average performance characteristics of
the candidate algorithms in the second dynamic scheme. Simi-
lar to the first dynamic scheme, the fuzzy EP seems to be do-
ing better than the CSA in the early stages of the algorithm,
that is, until the first change of the cost matrix. It is safe to say
that the fuzzy EP outperforms the CSA at the time of the first
change since all of the 50 null hypotheses are rejected. From
then on, nearly all the hypotheses are rejected and the CSA
outperforms very reliably the fuzzy EP. The number of re-
jected null hypotheses is presented in Table VI.

 Fig. 3. The performance of the candidate algorithms on the first dy-
namic environment.

TABLE VI

REJECTED HYPOTHESES IN THE DYNAMIC SCHEMES
First Dynamic Scheme Second Dynamic Scheme

Time [s] Rejected
hypothesis

Time [s] Rejected
hypothesis

10 23 5 50
20 0 25 49
30 49 30 50
40 50 60 50
50 50
60 50

Fig. 4. The performance of the candidate algorithms on the second dy-

namic environment.

VII. EFFECT OF PARAMETERS OF THE STATISTICAL
SCHEME

 The statistical framework used to evaluate the results
in this paper contains a few selectable parameters. The
effect of two of them, the number on initial populations
and the number of runs per initial population were stud-
ied. Figures 5 and 6 show the percentage of rejected hy-
potheses as the function of initial populations and runs per
population.
 In statistical testing the more data we have the better.
In Fig. 5, small number of runs per initial population

gives different results than using a larger number of runs.
This indicates that using a small amount of runs one could
easily make false conclusions about the relative performances
of the algorithms. This is the case especially in situation
where the difference in performances of the algorithms is not
clear. Figure 5 was calculated using the values from the first
dynamic optimization scheme at 10 seconds. For 50 initial
populations and 50 runs each population 23 of the initial 50
null hypotheses were rejected, as shown in Table VI.

Fig. 5. The effect of parameter values in the statistical framework on the

percentage of rejected hypotheses in a case where the two algorithms perform
quite similarly.

Fig. 6. The effect of parameter values in the statistical framework on the

percentage of rejected hypotheses in a case where the two algorithms perform
very differently.

 In Fig. 6 the effect of parameters is shown in case in which
the performance difference is clearer. Even at small number of
runs a major number of the null hypotheses can be rejected
and solid conclusion can be made. Figure 6 was calculated
using results from the first dynamic scheme at 60 seconds. As
shown in Table VI, for 50 initial populations and 50 runs each
population, all the 50 initial null hypotheses were rejected.

VIII. CONCLUSIONS

 In this paper, we have studied the performances of an ap-
plication specific EA and a standard CSA in dynamic envi-

ronments. Based on the results it seems that the special-
ized EA is capable of outperforming the CSA in static
environment. Certainly, EAs usually target for a single
best solution and the whole population is structured
online to achieve the best possible single solution. Then
again, CSAs emphasize the goal of achieving multiple
good solutions simultaneously. In static problems this
means that in CSA the computational resources have to be
divided between multiple competing good solutions,
whereas in EAs all the computational resources benefit
the currently best solution.
 Aiming for a single best solution has drawbacks, the
most critical of which is the degradation of the population
diversity. This can be clearly seen in the results of the
fuzzy EP in dynamic environments: the initial population
covers the search space up to some degree, but after run-
ning for a while the population has biased considerably
and it is difficult for the EAs to explore the search space
rapidly. Certainly, EAs can find the new optima after a
while, but this requires time since the biased population
needs more diversity before such new optima can be
found. In CSA-based systems a degree of diversity is con-
tained in memory cells. This means that when the cost
matrix changes the CSA has good chances of having a
reasonably good solution to start the search from even
without a sudden increase of diversity.
 In this paper, a statistical framework was used to con-
firm the results. This non-parametric testing scheme has a
few parameters and their effect was studied in terms of
the number of initial populations and the number of runs
per initial population. The more data we have the more
confident we can be about the results. Analysis of the
parameter values shows that using too few samples to
draw conclusions may cause erroneous results.

ACKNOWLEDGMENT

 This research work was funded by the Academy of
Finland under Grant 214144.

REFERENCES

[1] L. N. de Castro and J. Timmis, Artificial Immune Systems: A New
 Computational Intelligence Approach. London, UK: Springer

Verlag, 2002.
[2] L. N. de Castro and F. J. Von Zuben, “Learning and optimization
 using the clonal selection principle,” IEEE Transactions on Evo-

lutionary Computation, vol. 6, no. 3, 2002, pp. 239-251.

[3] T. Bäck, Evolutionary Algorithms in Theory and Practice. New York,
NY: Oxford University Press, 1996.

[4] D. B. Fogel, Evolutionary Computation, Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 2000.

[5] K. Shinozawa, T. Uchiyama, and K. Shimohara, “An approach for
solving dynamic TSPs using neural networks,” in Proc. of the IEEE In-
ternational Joint Conference on Neural Networks, Singapore, 1991,
vol. 3, pp. 2450-2454.

[6] A. Zhou, L. Kang, and Z. Yan, “Solving dynamic TSP with evolution-
ary approach in real time,” in Proc. of the Congress on Evolutionary
Computation, Canberra, Australia, 2003, vol. 2, pp. 951-957.

[7] Z.-C. Huang, X.-L. Hu, and S.-D. Chen, “Dynamic traveling salesman
problem based on evolutionary computation,” in Proc. of the Congress
on Evolutionary Computation, Seoul, Korea, 2001, vol. 2, pp. 1283-
1288.

[8] X.-S. Yan, L.-S. Kang, Z.-H. Cai, and H. Li, “An approach to dynamic
traveling salesman problem,” in Proc. of the International Conference
on MachineLearning and Cybernetics, Shanghai, China, 2004, vol. 4,
pp. 2418-2420.

[9] L. Kang, A. Zhou, B. McKay, Y. Li, and Z. Kang, “Benchmarking
algorithms for dynamic traveling salesman problems,” in Proc. of the
Congress on Evolutionary Computation, Portland, OR, 2004, vol. 2,
pp. 1286-1292.

[10] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati,
“A new algorithm for a dynamic vehicle routing problem based on ant
colony system,” Technical Report IDSIA-23-02, Instituto Dalle Molle
di Studi sull’Intelligenza Artificiale, Switzerland, 2003.

[11] S. Endo, N. Toma, and K. Yamada, “Immune algorithm for n-TSP,” in
 Proc. of the IEEE International Conference on Systems, Man, and
 Cybernetics, San Diego, CA, 1998, vol. 4, pp. 3844-3849.
[12] Z. Li, J. Wu, and Z. Mao, “Application of artificial immune algorithm
 in the dynamic zoning of elevator traffic,” in Proc. of the 5th World
 Congress on Intelligent Control and Automation, Hangzhou, China,
 2004, vol. 3, pp. 2222-2226. In Chinese.
[13] D. Shilane, J. Martikainen, S. Dudoit, and S. J. Ovaska, “A general
 framework for statistical performance comparison of evolutionary
 computation algorithms,” In Proc. of the IASTED International Con-
 ference on Artificial Intelligence and Applications, Innsbruck, Austria,
 2006, pp. 7-12.
[14] D. H. Wolpert and W. G. Macready, “No free lunch theorems for opti-
 mization,” IEEE Transactions on Evolutionary Computation, vol.
 1, no. 1, 1997, pp. 67-82.
[15] J. Martikainen and S. J. Ovaska, “Using fuzzy evolutionary program-
 ming to solve traveling salesman problems,” in Proc. of the 9th
 IASTED International Conference on Artificial Intelligence and Soft
 Computing, Benidorm, Spain, 2005, pp. 49-54.
[16] A. Zhou, L. Kang, and Z. Yan, “Solving dynamic TSP with evolution
 ary approach in real time,” in Proc. of the Congress on Evolutionary
 Computation, Canberra, Australia, 2003, vol. 2, pp. 951-957.
[17] University of Heidelberg, Department of Computer Science, Trav-
 eling Salesman Problem library, TSPLIB. Cited 03/15/06. Available at
 <http://www.iwr.uni-heidelberg.de/
 groups/comopt/software/TSPLIB95/>.

a)
Initial
cost

matrix
10 s 2nd cost

matrix 10 s 3rd cost
matrix 10 s 4th cost

matrix 10 s 5th cost
matrix 10 s 6th cost

matrix 10 s Final
result

 b)
Initial
cost

matrix
5 s

2nd
cost

matrix
20 s

3rd
cost

matrix
5 s

4th
cost

matrix
30 s Final

result

Fig 7. The dynamic schemes used for testing.

