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    Abstract—In this paper we compare a specific evolu-
tionary programming algorithm with a basic artificial 
immune system-based method in a dynamic combina-
torial optimization task. Evolutionary algorithms are 
known to produce competitive results in optimization 
tasks, where only a single best solution is desirable. 
Artificial immune systems, however, can simultane-
ously find many different competitive solutions, and 
this property makes them an interesting choice in dy-
namic optimization environments. The performance of 
these two algorithms is compared using a non-
parametric statistical framework that does not require 
any knowledge regarding the output distribution of 
the algorithms.  
 

I. INTRODUCTION 
 
     Biologically inspired computational methods have 
been studied for decades and remarkable results have 
been achieved using, among others, artificial neural net-
works, fuzzy logic, and evolutionary algorithms. Natural 
evolution offers us an ever-increasing number of meta-
phors to be transformed in computational procedures as 
we learn more and more about how nature itself works.  
     Artificial Immune System (AIS) [1, 2] is a relatively 
new computational approach to tackling demanding prob-
lems not conveniently solvable using traditional optimiza-
tion techniques. AIS in static optimization problems have 
been studied up to some extent, but there seems to be lit-
tle research on the performance of AIS in dynamic prob-
lems. From the optimization point of view, the AIS 
scheme shares many similarities with evolutionary algo-
rithms (EAs) [3, 4]. It has, however, been observed that 
AIS has better capabilities of preserving the diversity in 
the solution pool and thus producing many good solutions 
instead of just one, as evolutionary algorithms usually do. 
People working with complex dynamic optimization 
problems can find the comparison between EAs and AIS-
based algorithms interesting. The aim of this paper is to 
compare a standard AIS-based optimization method, a 
clonal selection algorithm, and a specialized evolutionary 
algorithm in optimizing a dynamic traveling salesman 
problem (DTSP). DTSPs have been recently studied using 

various soft computing methods, such as neural networks [5], 
evolutionary computation [6, 7, 8, 9], and ant colony optimi-
zation [10]. AIS has been applied for solving TSP before in 
[11], and it has also been applied for dynamic optimization in 
[12]. 
     To conduct reliable and sound comparison between the 
candidate algorithms we employ a statistical scheme intro-
duced in [13]. This framework relies on bootstrap resampling 
and multiple hypothesis testing procedures and requires the 
user to make no distributional assumptions regarding the algo-
rithm’s output. This is very beneficial since it is difficult, if 
not impossible, to define accurately the distribution of the 
output of an evolutionary algorithm. 
     Our paper is divided as follows. Section II describes the 
AIS-based system used in this paper and section III briefly 
explains the evolutionary algorithm used for comparison. In 
section IV the principle of the statistical comparison frame-
work is explained and Section V deals with the TSP problems 
used in this paper. Section VI contains the results, Section VII 
examines the effect of parameters in the statistical framework, 
and Section VIII concludes the paper. 
 

II. ARTIFICIAL IMMUNE SYSTEMS 
 
     Artificial immune system approach to optimization is more 
recent exploitation of natural phenomena in computer science 
than evolutionary algorithms. EAs and AISs share many 
common aspects, but whereas EAs try to model the natural 
evolution, AISs try to benefit from the characteristics of a 
human immune system. Basic algorithm for AIS-based opti-
mization is called the Clonal Selection Algorithm (CSA) and 
it works as follows [1, 2]. 
 
1. Create N antibodies (candidate solutions) randomly to form 
an initial population. 
 
2. Determine the affinity (fitness or cost) of each antibody. 
 
3. Select nb fittest antibodies to form a group Nb. 
 
4. For each member of the group Nb, create a number of 
clones independently and proportionally to their affinity val-
ues. The better the affinity the higher the number of clones 



generated for each of the selected antibodies. The clones 
form a group C.   
 
5. The clone group C undergoes an affinity maturation, in 
which the clones are mutated inversely proportionally to 
their affinities: the better the affinity the smaller the muta-
tion rate. 
 
6. The affinities of the affinity-matured clones are calcu-
lated. 
 
7. If an affinity-matured clone has a better affinity value 
than the parent antibody, replace the parent antibody with 
the affinity-matured clone. 
 
8. Replace the d lowest affinity antibodies with randomly 
created new antibodies. 
 
9. Go to 3 if run time constraints have not been met, oth-
erwise exit. 
 
     In this paper the size of the antibody population was 
30. Three best antibodies were selected for cloning during 
each generation and 5, 4, or 3 clones were created out of 
the selected antibodies based on their affinity values. At 
the end of each generation, the worst antibody was re-
placed with a randomly created new antibody. The choice 
of parameter values in this case is a trade-off between the 
algorithm’s exploration and exploitation capabilities: lar-
ger initial population and more clones offer better explo-
ration of the search space, but simultaneously the in-
creased computational requirements slow down the ex-
ploitation pace of the best solutions. So, these algorithms 
are parameter-sensitive and the values used were found 
suitable for this paper based on extensive testing. Single 
mutation was applied on high affinity clones, whereas 
lower affinity clones suffered two separate mutations per 
generation.  
 

III. FUZZY LOGIC CONTROLLED EVOLUTIONARY 
PROGRAMMING ALGORITHM 

 
     Evolutionary algorithms have for long been credited as 
tools for solving challenging optimization problems. Ac-
cording to the notorious no free lunch (NFL) theorem 
[14], there does not exist a single optimization algorithm 
that would deliver superior performance in a wide variety 
of problem types. Thus, to get most out of EAs perform-
ance, the algorithms need to be specifically tailored to the 
task at hand. In this paper, we use a specialized evolu-
tionary programming algorithm specifically designed for 
solving large-scale TSPs. The details of the algorithms 
can be found in [15]. In general, the algorithm works as 
follows. 
 

1. Create N solutions randomly to form an initial population. 
 
2. Evaluate the cost of each solution. 
 
3. Operate the following stages for 5 generations at a time (i.e. 
Gw and Gd equal 5, see Fig. 1). 
  
     Stage 1:  

 
1. Create a single offspring per parent through a mu-
tation mechanism.  

  
2. Evaluate the cost of each offspring. 

 
3. Select the fittest half of the parents and offspring 
to form the population for the next generation. 

 
     Stage 2: 
 

1. Select Np best solutions for decomposition and divide 
these solutions into Nd sub solutions. 
 
2. Create No offspring for each sub solution through a 
mutation mechanism. 
 
3. Replace the parent with offspring if the cost of the 
offspring is less than that of the parent. 
 

4. Go to 3 if run time requirements have not been met, otherwise 
exit. 
 
     Fuzzy logic is used to control the parameters Np, No, and Nd. 
Two inputs for both the fuzzy systems are used. These inputs 
describe the state of the solution population. We define dynam-
ics D as the difference between fb, the best, and fw, the worst 
solution in the current population: 
 

)()()( nwfnbfnD −=                               (1) 
 
     The second input to the fuzzy systems is Dstd, the standard 
deviation of three consecutive Ds: 
 

( ) ( ) ( )[ ] 2     1     STD)( −−= nDnDnDstdnD               (2) 
 
      The rule base for determining the number of best individuals 
selected for partitioning, Np, and the number of offspring created 
out of each selected parent, No, is shown in Table I and the de-
fuzzified output is then transformed into Np and No using Table 
II. In the rule base tables VS, S, M, L, and VL stand for very 
small, small, medium, large, and very large. The actual member-
ship functions are defined in [15]. 



 
Fig 1. The principle of fuzzy logic controlled evolutionary programming 

algorithm. 
 

TABLE I 
 RULE BASE FOR DETERMINING Np AND No 

Dynamics/Std VS S M L VL 
S M VS VS S S 
M VS S S M M 
L VS S M M M 

VL S M M L VS 
 

TABLE II  
DEFUZZIFIED OUTPUT INTERVALS AND CORRESPONDING 

VALUES FOR Np AND No 
Defuzzified output Np No 
≥ 0 and < 0.2 1 30 
≥ 0.2 and < 0.4 3 10 
≥ 0.4 and < 0.6 5 6 
≥ 0.6 and < 0.8 6 5 
≥ 0.8 and ≤ 1 10 3 

 
      The rule base for determining the number of sub 
paths, Nd, is shown in Table III and the defuzzified output 
is the transformed into Nd Table IV. 
 

TABLE III 
 RULE BASE FOR DETERMINING Nd 

Dynamics/Std VS S M L VL 
S S L M M M 
M M M L L VL 
L M M L VS VS 

VL M L VL VS VS 
 
 
 
 

TABLE IV  
DEFUZZIFIED OUTPUT INTERVALS AND CORRESPONDING VALUES 

FOR Nd 
Defuzzified output Nd 
≥ 0 and < 0.25 5 
≥ 0.25 and < 0.5 3 
≥ 0.5 and < 0.75 1 
≥ 0.75 and ≤ 1 1 

 
The initial population size of 30 individuals was used for this 
algorithm. Both the fuzzy EP and CSA are rather sensitive to 
parameter values. To make the comparison of the algorithms 
objective, the best effort was made to find competitive pa-
rameters for the test schemes used in this paper. 
 

IV. FRAMEWORK FOR STATISTICAL COMPARISON 
 
      The soft computing field is rather young, and it lacks gen-
erally accepted guidelines for statistical testing of the differ-
ences between the performances of two or more algorithms. A 
few tens of runs using different initial populations for each 
run and then comparing the achieved average fitnesses is not 
enough to reliably state one algorithm to perform better than 
another. Also, the much-used student’s t-test may deliver mis-
leading results if the user neglects the requirement of normal 
distribution for the input samples of the test. After all, it is 
difficult, if not impossible, to estimate the output distribution 
of an evolutionary algorithm. Detailed description of the sta-
tistical framework for proper comparison of two optimization 
algorithms can be found in [13].  However, in the following 
the procedure is briefly explained.  
     The applied statistical comparison scheme has two separate 
parts: first as much as possible data is collected and then, 
based on this data, multiple testing procedure is used to see if 
null hypotheses can be rejected. The null hypotheses have to 
be formulated beforehand, and in this case we select the null 
hypothesis to be that there exists no performance difference 
between the two algorithms. This means that if we reject the 
null hypothesis the opposite is true, that is, there exists differ-
ence in the performance of the two algorithms.  It is appropri-
ate to collect as much data as possible, so for each two algo-
rithms to be compared, 50 random initial populations are cre-
ated and 50 one-minute runs for each algorithm per initial 
population are conducted. So, for a single algorithm the calcu-
lations required 2500 minutes per algorithm. The number of 
null hypothesis is also 50, a single hypothesis for each of the 
initial populations. The amount of data collected was decided 
based on the available computational power. 
     After this, test statistics are calculated for the observed 
values as in [13]. The data is then resampled using bootstrap 
resampling technique and test statistics are calculated for the 
resampled values. The tests produce as a result adjusted p-
values that define the minimum confidence level to reject an 
individual hypothesis. In this paper a confidence level of 0.05 
was used to reject an individual hypotheses and the Bon-
ferroni [13] testing procedure was applied. This procedure 
ranks in the middle when comparing different multiple testing 
procedures in terms of conservativeness. 



V. STATIC AND DYNAMIC TSP 
 
     The traveling salesman problem is a well-known com-
binatorial optimization problem. In brief, the goal in TSP 
is to find a shortest path connecting a number of given 
cities. In static TSPs the distances between the cities stay 
the same throughout the runtime of an algorithm. In dy-
namic TSPs the connections between the cities can be 
expressed for example as costs and these costs vary as a 
function of time [16]. Real-world DTSPs can include, 
among others, routing problems in which the cost or time 
to take a certain route from a place to another varies with 
time, e.g., roads may be blocked or ticket prices may 
change. 
     To evaluate the performances of a specialized EA and 
CSA in static optimization problem a 225-city tsp225 
from TSPLIB [17] was used. This problem has a known 
minimum path length at 3919. However, in this case we 
were not primarily interested in the minima the two algo-
rithms would eventually achieve, rather, each algorithm 
was given one minute of CPU time on MATLAB 6 soft-
ware and a P4 (2.6 GHz) processor to find as short a path 
as possible.  
     In [9] Kang et al. correctly stated that the changes in 
the cost basis for evaluating dynamic TSP should change 
rapidly, for if the changes are too far apart the problem 
could be separated into independent sub problems. Two 
different dynamic schemes were used to evaluate the per-
formances of the candidate algorithms. Figures 7a and 7b 
explain the structure of the test cases. In the first case the 
initial cost matrix changes every 10 seconds. The new 
cost matrices are not completely random, but a significant 
random component is added to the initial cost matrix. In 
the second case there are two stages of different length: 
20 and 30 seconds separated by a 5 second interval.  The 
test schemes were designed to test the performance of the 
algorithms with rapidly changing conditions with differ-
ent intervals. The first scheme has constant intervals for 
optimization whereas in the second scheme the time 
available for optimization varies from 5 to 30 seconds. 
     For mutation, a single exchange of cities, a multiple-
city block relocation or reversal could be implemented 
with equal probability in both CSA and fuzzy EP. 
 

VI. RESULTS 
     A. Static TSP 
 
     The results were evaluated based on the average final 
tour lengths of the algorithms. The performance differ-
ence between the algorithms was obvious as shown in 
Fig. 2, where the fuzzy EP clearly outperforms the CSA. 
This notion was confirmed by the statistical frameworks, 
since all of the 50 null hypotheses were rejected with the 
confidence of 0.95 (α=0.05).  
     To confirm the notion of the fuzzy EP outperforming 
the CSA, we conducted the statistical test described in 

Section IV. The time used for optimization was not enough to 
achieve the global minimum of the problem, but in this paper 
the emphasis was on the dynamic behaviour of the cost func-
tion, i.e., the capabilities of the algorithms in rapidly changing 
environments with a small amount of time for optimization 
were studied.  

 
Fig. 2. The average performance of the candidate algorithms in the static test 

scheme. 
     B. Dynamic TSP 
 
     Figure 3 shows the average performance in the case of the 
first dynamic test scheme. The fuzzy EP does slightly better 
during the first cost matrix, and as the first change occurs, the 
algorithms perform rather similarly. After consecutive 
changes in the cost matrix, however the CSA outperforms the 
fuzzy EP algorithm. 
     The number of rejected hypotheses in Table VI confirms 
the notion that at the start the fuzzy EP performs slightly bet-
ter than the CSA. As Table VI shows, 23 out of 50 hypotheses 
are rejected. This is almost half of the hypotheses and it gives 
some indication to the fact that the fuzzy EP could be per-
forming better. At the 20 second mark, however, none of the 
hypotheses could be rejected, so it is reasonable to consider 
the two algorithm’s performance similar. From 30 seconds 
onward nearly all the hypotheses are rejected and this indi-
cates that the CSA clearly outperforms the fuzzy EP. 
     Figure 4 shows the average performance characteristics of 
the candidate algorithms in the second dynamic scheme. Simi-
lar to the first dynamic scheme, the fuzzy EP seems to be do-
ing better than the CSA in the early stages of the algorithm, 
that is, until the first change of the cost matrix. It is safe to say 
that the fuzzy EP outperforms the CSA at the time of the first 
change since all of the 50 null hypotheses are rejected. From 
then on, nearly all the hypotheses are rejected and the CSA 
outperforms very reliably the fuzzy EP. The number of re-
jected null hypotheses is presented in Table VI. 



 
 Fig. 3. The performance of the candidate algorithms on the first dy-
namic environment. 

 
TABLE VI  

REJECTED HYPOTHESES IN THE DYNAMIC SCHEMES 
First Dynamic Scheme Second Dynamic Scheme 

Time [s] Rejected 
hypothesis 

Time [s] Rejected 
hypothesis 

10 23 5 50 
20 0 25 49 
30 49 30 50 
40 50 60 50 
50 50   
60 50   

 
Fig. 4. The performance of the candidate algorithms on the second dy-

namic environment. 
 

VII. EFFECT OF PARAMETERS OF THE STATISTICAL 
SCHEME 

 
     The statistical framework used to evaluate the results 
in this paper contains a few selectable parameters. The 
effect of two of them, the number on initial populations 
and the number of runs per initial population were stud-
ied. Figures 5 and 6 show the percentage of rejected hy-
potheses as the function of initial populations and runs per 
population. 
     In statistical testing the more data we have the better. 
In Fig. 5, small number of runs per initial population 

gives different results than using a larger number of runs.                  
This indicates that using a small amount of runs one could 
easily make false conclusions about the relative performances 
of the algorithms. This is the case especially in situation 
where the difference in performances of the algorithms is not 
clear. Figure 5 was calculated using the values from the first 
dynamic optimization scheme at 10 seconds. For 50 initial 
populations and 50 runs each population 23 of the initial 50 
null hypotheses were rejected, as shown in Table VI. 

 
Fig. 5. The effect of parameter values in the statistical framework on the 

percentage of rejected hypotheses in a case where the two algorithms perform 
quite similarly. 

 
Fig. 6. The effect of parameter values in the statistical framework on the 

percentage of rejected hypotheses in a case where the two algorithms perform 
very differently. 

 
     In Fig. 6 the effect of parameters is shown in case in which 
the performance difference is clearer. Even at small number of 
runs a major number of the null hypotheses can be rejected 
and solid conclusion can be made. Figure 6 was calculated 
using results from the first dynamic scheme at 60 seconds. As 
shown in Table VI, for 50 initial populations and 50 runs each 
population, all the 50 initial null hypotheses were rejected. 

 
VIII. CONCLUSIONS 

 
     In this paper, we have studied the performances of an ap-
plication specific EA and a standard CSA in dynamic envi-



ronments. Based on the results it seems that the special-
ized EA is capable of outperforming the CSA in static 
environment. Certainly, EAs usually target for a single 
best solution and the whole population is structured 
online to achieve the best possible single solution. Then 
again, CSAs emphasize the goal of achieving multiple 
good solutions simultaneously. In static problems this 
means that in CSA the computational resources have to be 
divided between multiple competing good solutions, 
whereas in EAs all the computational resources benefit 
the currently best solution. 
     Aiming for a single best solution has drawbacks, the 
most critical of which is the degradation of the population 
diversity. This can be clearly seen in the results of the 
fuzzy EP in dynamic environments: the initial population 
covers the search space up to some degree, but after run-
ning for a while the population has biased considerably 
and it is difficult for the EAs to explore the search space 
rapidly. Certainly, EAs can find the new optima after a 
while, but this requires time since the biased population 
needs more diversity before such new optima can be 
found. In CSA-based systems a degree of diversity is con-
tained in memory cells. This means that when the cost 
matrix changes the CSA has good chances of having a 
reasonably good solution to start the search from even 
without a sudden increase of diversity.    
     In this paper, a statistical framework was used to con-
firm the results. This non-parametric testing scheme has a 
few parameters and their effect was studied in terms of 
the number of initial populations and the number of runs 
per initial population. The more data we have the more 
confident we can be about the results. Analysis of the 
parameter values shows that using too few samples to 
draw conclusions may cause erroneous results. 
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Fig 7. The dynamic schemes used for testing. 




