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1. Introduction  
 
This dissertation tackles some of the most challenging aspects of using evolutionary 
computation (EC) algorithms in solving complex application-specific optimization 
problems, namely, increasing the reliability of the algorithms and accelerating 
problem-solving. Reliability here refers to the algorithms’ capability to produce 
competitive results despite the varying attributes of the optimization process. 
Evolutionary computation algorithms, a class of nature-inspired optimization 
methods, have been studied extensively during the last five decades. But using these 
algorithms for optimization is a multifaceted process, and a lot of research still 
remains to be done. First, the optimization problem at hand has to be mapped to the 
EC algorithm so that the optimization algorithm can tackle it effectively. Second, the 
optimization algorithm usually has to be tailored specifically to match the 
requirements of the present task to produce the required performance. Third, in many 
cases multiple techniques have to be compared before a decision is made as to which 
method is eventually used. The need for ever more powerful, i.e. more application-
specific, optimization algorithms is clear when we consider the increasingly 
complicated optimization tasks the modern world offers us. In effect, this dissertation 
does not have a single purpose; rather, it aims in a versatile way at elaborating the 
process of using evolutionary computation algorithms for complex optimization 
problems.  
 
The contribution of the work presented here consists of eight publications, [P1]-[P8], 
divided into three separate branches of research, as shown in Fig. 1: the modeling of 
an optimization problem in a computationally efficient form, the development of 
application-specific evolutionary algorithms, and the use of a comprehensive 
statistical scheme for evaluating the differences between two separate algorithms.  
   

Evolution or biologically 
inspired algorithm

Results from multiple runs

Evaluation of the 
algorithm’s performance

1. How to model the 
problem efficiently and 

accurately?

2. How to construct a 
reliable and fast algorithm 

to solve the problem?

3. How to evaluate the 
algorithm based on the 

achieved results?

Challenging optimization 
problem not solvable using 

conventional methods

 
 

Fig. 1. The three branches of EC research studied in this dissertation. 
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The efficient modeling of a system to be optimized is studied in [P3]. Especially in 
applications where single optimization runs can last for days, tailoring a high-
performance algorithm to meet the requirements of that particular problem is highly 
desirable. However, even the best algorithms cannot alleviate the burden imposed by 
a computationally exhaustive objective function. The method proposed in this 
dissertation aims at reducing the time required by the objective function evaluation 
using neural network-based approximations. The problem of modeling an objective 
function efficiently can be interpreted as process identification, as, e.g., in [Kau67]. In 
that early paper a simple evolutionary scheme based on variation and selection was 
used to evolve a model for a single-input-single-output plant. The evolutionary 
scheme was able to choose a number of predefined transfer function blocks that were 
then concatenated to create the overall model of the plant. Computational complexity 
and the computing power available at that time (1967) made the proposed scheme 
slow, but the general concept of evolving models for system identification was found 
beneficial. Later, e.g. in [Wil03], Willmes et al. studied the use of neural networks 
(NN) to approximate the fitness function values of benchmark functions. That work 
consisted of trials in which a neural network was trained off-line and used for 
approximating the fitness function, or trained off-line and updated on-line. The paper 
concluded that updating the neural network on-line is capable of producing better 
solutions than is the case with its off-line counterpart. However, severe reliability 
issues were reported and additional research was called for. In [P3] a neural network 
is used to approximate certain components of a fitness function when designing a 
digital filter and the results show that the computational burden can be halved using 
this approach. Our work differs considerably from previous studies. First of all, the 
scheme introduced in [P3] uses a neural network for the multiple-input-multiple-
output approximation of an objective function and the network is not trained off-line; 
rather, only the network topology is decided beforehand, but the training is done 
completely on-line. Clearly, the network in [P3] can freely evolve in a desired 
direction without the need to make the best of any pre-defined blocks. Publication 
[P3] concludes that the proposed method is capable of accelerating considerably the 
fitness function calculations in this application and, thus, adding to the performance of 
the entire method. 
 
Publications [P1], [P2], [P4], [P5], and [P6] are studies on reliable evolutionary 
algorithms tailored for specific applications. Publication [P1] studies the effects of 
using adaptive parameters within a genetic algorithm. As a test case [P1] features a 
demanding digital filter design problem. Digital filters have been designed using 
evolutionary computation in numerous studies and various schemes have been 
proposed. Among others, in [Rao96] the coefficients of the filter could be selected 
freely from a discrete set, and in addition, no crossover operators were used to modify 
the candidate solutions. In [Dex95] digital filters are designed using a standard GA, 
but using parallel hardware. The research on filter design is usually focused on the 
application, and the evolutionary computation methods used for that task are rather 
simple and straightforward. More advanced schemes, such as using adaptive variation 
probabilities, as studied in [P1], are less common. In [P2] a multipopulation genetic 
algorithm (GA) is used to solve the same filter design problem as in [P1]. Using a GA 
consisting of multiple solution populations is the first step of this study towards 
controlling the whole solution population adaptively instead of adapting each solution 
separately. In general, many evolutionary computation methods try to enhance a 
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single solution by adjusting its control parameters adaptively, e.g. the variation 
probabilities, but the approach proposed in this dissertation concentrates on entire 
populations. In other words, by adjusting the characteristics of the whole population 
instead of a single solution, advantageous conditions for creating competitive 
candidate solutions can be created. Publication [P4] is a study focused on the effect of 
the various parameters existing in the multipopulation genetic algorithm scheme 
proposed in [P3]. Publications [P5] and [P6] are studies of fusing together fuzzy logic 
(FL) and evolutionary algorithms. In [P5] and [P6] the parameters of a dynamic fuzzy 
system and a demanding combinatorial problem are solved using adaptive evolution 
strategies and evolutionary programming, respectively. The approach of using fuzzy 
logic to control the remaining lifetime of solutions in [P5] and the repetitive 
partitioning of a comprehensive problem into subproblems in [P6] are new.  
 
Publications [P7] and [P8] discuss a methodology for a proper statistical comparison 
of two different evolutionary algorithms. In the field of evolutionary computation the 
widely accepted methods for statistical comparison are not commonly applied. This is 
not due to the scientists’ lack of knowledge regarding such statistical methods; rather, 
the field of evolutionary computation has simply not placed enough stress on the need 
for proper statistical verification of results. This issue is, however, especially 
important, since most results reported in the EC community are based on empirical 
research rather than theoretical analysis. The work presented here illustrates a 
comprehensive scheme to compare statistically the performance of two candidate 
algorithms and hopes to awaken discussion on the matter. Publication [P7] explains a 
statistical scheme based on bootstrap resampling and multiple hypothesis testing for 
comparing two data-generating algorithms. Publication [P8] is an empirical study 
concerning the sensitivity of the parameters of the scheme in [P7], and [P8] also offers 
a comparison of evolutionary programming and artificial immune systems in a 
dynamic environment.  
  
The methods proposed in this dissertation, among others, can be studied either 
theoretically, empirically, or both. Theoretical proof outpowers empirical results and 
it is naturally desirable, but such comprehensive theoretical results may occasionally 
be hard, if not impossible, to derive. Evolutionary algorithms are complex stochastic 
procedures, and often simplifications are required to make theoretical inspection of 
evolutionary algorithms feasible. Then again, the problem follows of how much the 
theoretical results achieved using simplifications correspond to reality. Through 
carefully designed experiments and objectively analyzing the results using proper 
statistical methods it is possible to draw valuable conclusions regarding the outcome 
of the research under certain conditions. However, one must be careful when 
generalizing such results, since empirical results only tell us about the exact process 
under study. The work presented in this dissertation concentrates mainly on empirical 
results. The methods proposed in this dissertation cannot be theoretically proven to be 
generally superior to other methods. However, the same applies to all optimization 
methods; important results achieved more than a decade ago, discussed in Chapter 2 
of this work, state that no optimization algorithm is better than another over all the 
optimization problems. The methods proposed in this dissertation are not intended to 
yield a superior performance over a large collection of problems; rather, they offer 
increased performance over a specific problem or subset of problems. Thus, carefully 
planned and properly conducted empiricism and appropriate statistical analyses 
validates the results in this dissertation. 
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 The rest of the dissertation is organized as follows. Chapter 2 discusses the role of 
soft computing and hard computing methods in optimization in general. Section 3 is a 
description of evolutionary computation methods for optimization and the operators 
related to them. Chapter 4 concentrates on some of the most popular methods used to 
improve the reliability and performance of evolutionary computation algorithms. 
Chapter 5 describes the process of statistically comparing the performance of 
evolutionary algorithms. In Chapter 6, the main results of the publications [P1]-[P8] 
and the contributions of the author are summarized. Finally, Chapter 7 contains 
conclusions, evaluates the dissertation’s scientific value, and makes suggestions for 
future research and development.  
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2. Soft Computing Methods in Optimization 
 
Optimization is a part of our everyday life. For most everyday problems, and many 
engineering ones, convenient deterministic solutions have been created. The current 
problem parameters are manipulated by a well-defined method, and we obtain an 
optimal or competitive solution. For example, when designing a digital filter we need 
to define the passband and stopband characteristics, and there exist various methods 
for solving the filter parameters in such a way that the design criteria are met [Ife93]. 
However, in many complex cases there are no methods to determine whether a certain 
solution is a global extremum unless all the possible solutions are evaluated. In fact, it 
may even be difficult to know whether a problem is difficult or not in the first place. 
The global extrema solutions of problems, although theoretically interesting, are 
usually not required for a practical system to produce satisfactory or even competitive 
results. 
 
This chapter discusses the role of conventional optimization, as well as the emerging 
natural evolution-based optimization methods used in modern-day engineering 
problems. Both are definitely needed, but when should these new methods be used 
and why do the traditional methods not always perform as desired? 
 

2.1 Soft Computing vs. Hard Computing 
 
Optimization methods can generally be divided into conventional computing methods, 
hard computing (HC), and nature-inspired soft computing (SC) methods. HC methods 
are based on theoretically well-defined practices. Examples of popular hard 
computing methods in optimization are the steepest gradient approach, linear 
programming, and Newton’s method. Then again, SC methods, such as evolutionary 
computation, are considered as a group of methods designed on the basis of the 
principles of natural phenomena, and HC methods are the opposite of this, namely, 
methods not directly mimicking natural models.   
 
Traditional HC methods of optimization usually rely on derivative information, if 
such information exists, obtained from the fitness landscape. This term describes the 
value of different solutions in the solution space. Figures 2a and 2b illustrate two very 
different fitness landscapes. In Fig. 2a, a simple derivative method, such as Newton’s 
method, is guaranteed to find the global maximum every time, regardless of the 
starting point. However, when considering the fitness landscape in Fig. 2b, it is by no 
means clear where the algorithm will end. The optimum that is found clearly depends 
on the starting point. 
 
There is a vast reservoir of traditional optimization methods around and these can be 
summarized into three classes: calculus-based methods, enumeration methods, and 
random methods. Goldberg [Gol89] describes these classes as follows. Calculus-based 
methods have been studied extensively and they have been proven to work in a 
variety of practical problems. Calculus-based methods can be divided into indirect 
and direct methods. Indirect methods usually solve a set of nonlinear equations that 
result from the gradient of the objective function being set to zero. An extremum 
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found using this method is usually local. Direct search methods, on the other hand, 
move towards the local gradient at a certain point. However, both of these methods 
lack robustness. Robustness in this case means the ability to find competitive 
solutions despite the difficulty, i.e., multimodality, of the fitness function. Unless 
some sort of random restart mechanism is added, the calculus-based methods get 
stuck at the first extremum they find, whether it is global or local. Another severe 
limitation of calculus-based methods is the fact that they require the objective 
function to be continuous and that there exists a first, or sometimes also a second, 
derivative at each point. In many challenging modern-day problems this is usually not 
the case. For example, when the setup of an electronic circuit is being optimized, there 
is only a discrete set of components available. Thus, no continuous domain exists and 
therefore neither does derivative information.   

 
        Fig. 2a. A simple fitness landscape.              Fig. 2b. A complex fitness landscape. 

 
Enumerative search is a so-called brute force method. This means that the algorithm 
calculates the objective function values at every point within the search space. 
Needless to say, this method is very convenient for very small search spaces, but for 
many problems it rapidly becomes extremely inefficient and basically useless as the 
dimensions of the problem increase. This is clear when a traveling salesman problem 
(TSP) is considered, for example. In short, a TSP is solved when the shortest path 
connecting a given number of cities is found. The problem is easy when the number 
of cities is small, e.g. of the order of 10. All the solutions can easily be evaluated and 
the shortest path can be selected. However, even with a moderately large number of 
cities, say 100, the evaluation process of all the paths becomes very time-consuming. 
The number of possible solutions is in this case 99!/2. Random search methods take 
random walks through the search space and they can save the best objective function 
value encountered. More information on some of the elementary HC-based 
optimization methods is found in [Rao78]. Additionally, HC-based optimization is an 
active research area, and new research results are frequently introduced at conferences 
and in journals. 
 
The number of difficult optimization problems is increasing all the time in our 
everyday life, especially in the engineering sciences. During the last five decades the 
field of evolutionary computation has pursued the goal of offering nature-inspired 
solutions to ever more complex optimization tasks that are not reasonably solvable 
using conventional methods. Evolutionary computation methods are among the 
fundamental soft computing techniques, and, as Zadeh has pointed out in [Zad97], 
SC, also well justified theoretically, differs from HC in that, unlike HC, it is tolerant 
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of imprecision, uncertainty, partial truth, and approximation. In addition, the 
capability of SC methods to produce impressive results in difficult optimization tasks 
is due to the flexibility of these methods in conforming to the current problem. 
Popular soft computing methods include, in addition to EC, fuzzy logic and neural 
networks. These methods, although all emerging from nature, have different purposes: 
NN is used for learning and approximation, FL for approximate reasoning, and EC as 
a systematic random search.  
 
An illustrative example of HC and SC methods’ fundamentally different approaches 
to solving real-world control problems is given in [Sic98]. In that paper three different 
approaches were taken to a control problem. The HC- and SC-based methods were all 
capable of performing the task, but the SC methods were acknowledged for their 
flexibility towards varying circumstances, whereas the HC methods performed the 
given task computationally efficiently. 
 

2.2 Soft Computing-Based Optimization: Nature as a Role Model 
 
It is common for biological entities to consciously or unconsciously make the things 
they do better in order to cope with the requirements of the surrounding environment. 
In other words, they optimize their performance with respect to some measurable or 
immeasurable characteristics in order to survive or to succeed in some other way. 
After an optimization process, these optimized biological entities, or any systems in 
general, are improved in terms of speed, stamina, pleasure, or some other measure that 
is appropriate for those specific circumstances. In 1859 Charles Darwin described the 
evolution of species as an optimization process, the primary tools of which are 
variation and selection [Dar59]. Many of Darwin’s findings have been elaborated by 
the achievements of modern-day science, such as genetics, and Steve Jones, a 
Professor of Genetics at University College, London, rewrites the work of Darwin in 
the light of early 21st-century knowledge in [Jon00].  
 
The basic principles of evolution are easily explained using an example. An animal 
population evolves over time and reproduces, creating individuals ever better suited to 
meeting the demands of the environment. In this case the demands of the surrounding 
environment constitute the objective function, i.e. the value of the objective function 
tells us how well each animal survives in the current conditions. Good characteristics 
of an individual could be, for example, the ability to find food and shelter easily.  
 
Good individuals may live longer and get a greater chance of creating offspring and 
thus passing their characteristics on to new generations. This phenomenon of the 
survival of the fittest can be described as a process of selection. Reproduction, or 
passing one’s genes on to the next generation, can be carried out by means of mating, 
in which both the parents contribute to the genetic or trait characteristics of the 
offspring, or by means of asexual reproduction. In asexual reproduction descendants 
are created from a single parent and this kind of reproduction scheme is common, e.g., 
among plants and fungi. Variation is introduced to the animal population by mixing 
individuals’ genetic codes in reproduction and, in addition, by a mutation that can 
randomly alter the genetic code of an individual. Variation is essential for evolution, 
for if no new genetic material or combinations are introduced into the population, the 
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evolution of the population stops. This mechanism of variation and selection has 
shaped, e.g., animals from scratch to what they are today. 
 
Natural evolution can be translated into a computational optimization technique, as 
follows. First, a population of random solutions is created. The population here refers 
to an animal species in the previous example, where a single solution corresponds to 
an individual animal. There also needs to be a way to calculate a value of the 
objective function, i.e. the function that is being optimized, for each and every 
individual. In nature, individuals struggle or survive, or both, and in EC methods we 
get an output produced by the objective function that can be arranged into an ordered 
list describing how good a solution this specific individual is. Reproduction is carried 
out in EC methods in such a way that a single solution is modified or multiple 
solutions are combined to create offspring solutions, the characteristics of which are a 
combination of the characteristics of a single parent or more parents. Additionally, 
some or all characteristics of the solution can be mutated so as to induce further 
variation in the solution population. Finally, those solutions that produce the best 
objective function values have the best chances in probabilistic terms of making it to 
the next generation to reproduce. This is how variation and selection are implemented 
in EC methods. The details of the operators used in evolutionary computation 
algorithms are discussed in Chapter 3. 
 
Computational methods based on natural evolution can, for now, only be a pale 
shadow of what nature is implementing every day. Still, taking the basic elements of 
evolution, namely variation and selection, it has been shown that robust and powerful 
optimization methods can be created. In the context of using natural phenomena as 
models for optimization, novel paradigms are proposed and accepted, not necessarily 
for being faithful to their sources of inspiration, but for being useful and feasible. At 
this point it is necessary to bear in mind that evolutionary computation methods only 
model evolution and natural behavior from the genetic or trait point of view. The 
phenotype, the final outcome of an individual in nature, is an extremely complex 
combination of genetics and environment that is very difficult, if not impossible, to 
understand and model on the basis of current knowledge. Therefore, evolutionary 
computation in most cases neglects the effect of environmental factors. 
  
The field of evolutionary computation is not fragmenting: rather, it is uniting from 
fragments based on different aspects and implementations of variation and selection. 
The main paths that should finally lead to a unified evolutionary computation field are 
genetic algorithms (GA), evolution strategies (ES), and evolutionary programming 
(EP). Additionally, other biologically inspired methods, such as artificial immune 
systems (AIS), are nowadays considered as a sub-group of evolutionary computation. 
Evolutionary computation has established its place in the fields of science and 
engineering, and an impressive but by no means complete list of recent application 
areas where evolutionary computation has been successfully applied is given below: 
 

• Acoustics [Sat02] 
• Aerospace engineering [Oba00]  
• Astronomy and astrophysics [Cha95] 
• Arts [Hau00] 
• Chemistry [Ass98]  
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• Digital signal processing [Bri01] 
• Electrical engineering [Dav97] 
• Financial markets [Mah96]  
• Gaming [Fog01] 
• Geophysics [Sam93] 
• Healthcare [Ji06] 
• Materials engineering [Gir02]  
• Mathematics and algorithms [Hau98]  
• Medical engineering [Yon02] 
• Military and law enforcement [Kew02] 
• Molecular biology [Koz99] 
• Music [Une03] 
• Pattern recognition and data mining [Au03] 
• Routing and scheduling [Bur99] 
• Sports [Sch00] 
• Systems engineering [Ben02] 
 

An important moment for the EC community was the year 1997, when the Institute of 
Electrical and Electronics Engineers (IEEE) started publishing the IEEE Transactions 
on Evolutionary Computation [Tec06]. Each acclaimed research area within the 
electrical and electronics engineering community has its own publication in this 
series. Together with conferences, this publication is one of the most respected 
sources of research reporting in the field today. Among others, Evolutionary 
Computation [Evo06], a journal published by the MIT Press, is also a recognized 
publication in its field.   

 
Although evolutionary computation algorithms have proven to be powerful 
optimization tools, there is still a great deal to be done in terms of the reliability and 
robustness of the algorithms and accelerating-problem solving. It has been shown, e.g. 
in [Fog06], that if the operators of the evolutionary algorithm fulfill certain 
requirements, the evolutionary algorithm is guaranteed to achieve the global optimum. 
The requirements are an elitist selection operator and the capability of a variation 
operator to transform a solution from any state to any other state (see Chapter 3 for 
details). Unfortunately, there are no guarantees regarding the time it takes the 
algorithm to arrive at such an optimum. Nowadays there is often no time to run an 
optimization algorithm dozens of times to get a satisfactory result: instead, 
competitive results should be achieved using as few runs as possible.  
 

2.3 Capabilities of Evolutionary Computation  
 
Evolutionary computation methods have proven their power in many demanding real-
world optimization tasks. In many fields there exists a deterministic hard computing-
based procedure to obtain optimal or near-optimal methods quite conveniently. If such 
a solution scheme exists for a particular problem, then such a method should 
definitely be used, for computationally they usually perform very efficiently. 
Sometimes, for the reasons described earlier, traditional methods are insufficient, and 
maybe then EC methods alone or EC methods implemented together with traditional 
hard computing methods can offer a competitive solution.  
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Wolpert and Macready stated in their seminal paper [Wol97] that there are no free 
lunches. The well-known no free lunch (NFL) theorem stated simply that all the 
imaginable optimization algorithms perform equally well on the average if all the 
world’s optimization problems are considered. The NFL theorem has had a 
remarkable impact on the EC community, and thus readers are advised to read the 
literature published before the introduction of the NFL theorem cautiously. The reader 
may ask what the sense is of developing optimization algorithms if they all perform 
equally well in general. An optimization algorithm for all the world’s optimization 
problems is naturally desirable, but eventually practitioners are only interested in 
algorithms that reliably produce good results for their specific problem or class of 
problems. This, in fact, is another way to understand the NFL theorem: it is certainly 
possible to create algorithms that perform better than others for some problem or 
problems.  
 
There exist applications in which SC or HC methods excel alone. However, the fusion 
of the two offers a wide variety of methodologies from which powerful and robust 
optimization methods can be created. Kamiya gives an illustrative example of such a 
system in [Kam04], in which a general model for a control system for a large-scale 
plant, such as a chemical or electric power plant, is considered. The control system of 
such a plant can be divided into forecasting, scheduling, supervisory control, and local 
control. Scheduling is critical for the plant’s efficient operation. Scheduling can be 
organized using traditional HC methods fused with SC. As an example, the user can 
describe the goals of the operation using fuzzy logic, and HC-assisted GA can be used 
to find satisfactory parameter settings to meet these goals. The main purpose of fusing 
HC and SC in such applications is to combine the advantages of the individual 
methods to compensate for their different weaknesses. 
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3. Evolutionary Computation Techniques in 
Optimization 
 
Chapter 2 described briefly the primary elements of evolutionary computation, i.e., 
variation and selection. In this chapter, these and other important evolutionary 
computation-related concepts are discussed in more detail. Additionally, some 
prevailing evolutionary computation techniques, i.e., genetic algorithms, evolution 
strategies, evolutionary programming, and artificial immune systems are discussed. 
 
Good and comprehensive introductions and lists of references in the field of 
evolutionary computation are given in [Fog94] [Bäc96a] [Whi01] [Jin05]. All these 
journal papers contain many seminal references and serve as a compact starting point 
for a reader interested in the area, [Jin05] concentrating in optimization in uncertain 
environments. Additionally, D. B. Fogel has collected some early papers from the 
field in [Fog98], and this edited volume offers interesting readings for anyone 
fascinated by the origins of evolutionary computation. 
 
Genetic algorithms, created independently by Fraser [Fra57], Bremermann [Bre62], 
and Holland [Hol75], are clearly described and discussed in [Mit96] [Hau98]. Those 
books offer an introduction to GAs and their applications in a simple and easily 
readable form. The second edition of [Hau98], [Hau04], offers a revised introduction 
to the topic and also illustrates the latest cutting-edge technology. David Goldberg’s 
book [Gol89] is one of the most cited publications in the area of evolutionary 
computation, and especially GAs, and also offers a convenient introduction to GAs 
and their basic operators. Although this book is famous, it is also rather old, and many 
new aspects, such as the no free lunch theorem, have been raised since its publication, 
something any reader should bear in mind. 
 
Both [Bäc96b] and [Fog00] discuss all branches of evolutionary computation 
algorithms. However, [Fog00] could be considered as the next step from Goldberg’s 
book, offering more insight in addition to the basic theory. Then, [Bäc96b] takes this a 
little further in terms of theory and foundations, but it is not the easiest book to start 
with.  
 
Although all evolutionary computation algorithms rely roughly on the same principles 
of natural evolution, they are occasionally divided into two sub-categories: genotypic 
algorithms and phenotypic algorithms. Genetic algorithms are considered to be 
genotypic algorithms, i.e. in simulated evolution the genes, or the parameters of a 
solution candidate, are transferred through reproduction from generation to 
generation. Evolution strategies and evolutionary programming, on the other hand, are 
considered to be phenotypic algorithms. Evolutionary programming mimics the 
behavior of species and evolution strategies deal with individuals. This means that 
instead of the actual genes, or parameter values, the traits of the previous generation 
are passed to the offspring generation without mating.  
 
Artificial Immune Systems [Cas02a] are a more recent approach to using nature as an 
example for an optimization algorithm. Instead of mimicking evolution, AIS imitates 
the mammalian immune system. In addition, apart from optimization, this bio-inspired 
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algorithm can be used for various tasks, such as pattern recognition. The AIS concept 
as a whole is dealt with comprehensively in [Cas02a], whereas the optimization aspect 
of AIS, known as the Clonal Selection Principle (CSP) is more thoroughly explained 
in [Cas02b]. Other nature-inspired optimization schemes are discussed in Section 3.9.   
 
The field of evolutionary computation is constantly developing. The latest information 
can be found published at the two main conferences in the field: the Genetic and 
Evolutionary Computation Conference (GECCO) [Gec06] and the IEEE Congress on 
Evolutionary Computation (CEC) [Cec06]. These conferences are among the best 
places to find out how natural systems are currently mimicked to construct innovative 
computational optimization schemes. 
 

3.1 Generic Evolutionary Computation Algorithm 
 
Biologically inspired algorithms vary remarkably in the way data are presented or 
which operators are used and how they work. However, eventually they all conform to 
the theory of Darwin, i.e. the algorithms search for the optimum, using variation and 
selection as the main operators. Thus, a generic biologically inspired optimization 
algorithm could be described as follows: 
 

1. Generate an initial population of nI individual solutions to the optimization 
problem. 

2. Evaluate the objective function value to find out how good each solution is. 
3.   Introduce variation into the population. 
4. Select solutions for the next generation on the basis of their objective function 

value so that better solutions have a higher probability of being selected. 
5. Go to 2 if solution or run time requirements have not been met. Otherwise exit. 
 

A single stage including everything from evaluating the solutions to selection is 
usually called a generation. There exist countless ways to introduce variation and 
carry out selection and new approaches can be tailored to conform to the requirements 
of a specific problem. In the following sections some key issues are discussed in 
relation to operators used in biologically inspired computation.  
 

3.2 Solution Presentation 
 
In most EC implementations every individual is a solution, better or worse, to the 
problem at hand and EC algorithm operators directly manipulate the structure of these 
candidate solutions. In [Ber00], however, a coevolutionary scheme is presented in 
which a population of solutions and a population of test cases are evolved in parallel. 
In that paper, the test case population evolves increasingly difficult test cases for the 
solution population as the algorithm proceeds. The study concluded that using this 
kind of method, better generalization of the results was achieved in a robot navigation 
problem. There are no restrictions on the format of the solutions, so the algorithm can 
easily be adapted to conform to a particular problem. Probably the most common 
form of solution presentation is the array presentation. Figure 3 shows example 
solutions to a generic problem. The objective function might have, e.g., 10 variables. 
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Then, each solution is an array of 10 variables, as in Fig. 3. Now the symbols in the 
solution array can be numbers, discrete or continuous, characters, symbols or almost 
anything, as long as we can somehow express how well it solves the problem to be 
optimized on the basis of the information contained in the solution. This type of 
solution presentation is most commonly used with genetic algorithms, evolution 
strategies, evolutionary programming, and the clonal selection principle. 
 

0 1 1 0 1 0 1 0 0 1 
 

h i f k b c z o s o 
 

1.23 –4.34 5.51 2.10 –9.10 7.62 –8.32 6.65 –2.55 1.00 
 
Fig. 3. Three different types of solution presentation. At the top is a binary array and in the middle is a 

character array. The bottom array is of a continuous type. 
 
Another commonly used solution presentation format is the tree-like structure shown 
in Fig. 4. However, this format can also be transformed into an array. This type of 
individual presentation is most common in conjunction with genetic programming 
(GP) [Koz99] [Koz06], a subset of genetic algorithms. In genetic programming, the 
individual solutions are computer programs that are evolved using the principles of 
simulated evolution. Additionally, in evolutionary programming the solutions can be 
state machines that can be presented as trees. 
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used in conjunction with evolutionary computation algorithms. Different variables in 
the genetic algorithm solutions are called genes. Other EC algorithms have adopted 
terms such as variable value or trait value. The genes can have different values, 
alleles. For example, the values 5 and 10 could be different alleles for a gene. A 
collection of individuals on which the EC algorithm operates is usually called a 
population, solution pool, or selection pool. 

Gene (GA) 
Variable (GA, ES, EP, AIS) 
Trait (ES, EP) 
Receptor (AIS) 

9.52 7.62 –1.34 2.95 2.20 7.62 –8.23 0.12 
 
5.54 1.14 9.11 1.12 –8.00 3.12 –5.25 1.11 

 
6.67 4.34 5.51 0.10 –2.10 2.62 –8.23 0.12 

 
0.21 5.55 5.91 –2.90 1.10 –7.33 2.23 –1.12 

 
1.23 3.31 6.51 4.10 0.00 5.62 –8.20 0.12 

Allele (GA) 
Variable value (GA, ES, EP, AIS) 
Trait value (ES, EP) 

1.23 4.34 5.51 2.10 –9.10 7.62 –8.23 0.12 

Population (GA, ES, EP, AIS) 
Solution pool (GA, ES, EP, AIS) 

Chromosome (GA) 
Candidate (GA, ES, EP, AIS) 
Individual (GA, ES, EP, AIS) 
Solution (GA, ES, EP, AIS) 
Antibody (AIS) 
Cell (AIS) 

 
Fig. 5. Frequently used terms in evolutionary computation. 

 

3.3 Initial Population 
 
Generating the initial population is a process of creating nI solutions for the EC 
algorithm to start working with. Solutions are usually created by assigning a random 
variable value to each parameter in each candidate solution. It is important that the 
mechanism creating random values is capable of covering the whole search space, and 
that it is not biased if no a priori information concerning a good solution is available. 
If there is some kind of information concerning particularly appropriate solutions, this 
information can be taken into account when creating the initial population. These 
kinds of mechanisms are called seeding [Gre87]. 
 
The size of the initial population is directly reflected in the run time of the algorithm, 
assuming that the population size stays constant throughout the run time of the 
algorithm. This is simply because the objective function usually has to be evaluated 
using each solution during each generation, so that the larger the population is, the 
more objective function evaluations there are, and thus the more time is required. A 
large number of solutions may give the population more diversity, a term discussed in 
more detail in Chapter 5. Wide diversity may help the algorithm to find better 
solutions, but then again, the cost lies in a longer execution time for the algorithm.  
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3.4 Operators of Evolutionary Computation Algorithms  
 
This section discusses the operators used in evolutionary algorithms. The task of the 
operator is primarily to introduce variation into the solution population and to conduct 
selection. The section starts with discussion related to evaluating the objective 
function value. 
 

3.4.1 Evaluating the Objective Function Value 
 
Evolutionary computation algorithms, like many other optimization algorithms, do not 
need to know anything about the problem they are optimizing. The only requirement 
is that for each solution there has to be a way to determine how good it is. This 
evaluation is performed by calculating the objective function value using the variable 
values of the current solution. This objective function is the function that is being 
optimized. Depending on whether the objective function is minimized or maximized, 
it is called a cost function or fitness function, respectively. The terms cost function and 
fitness function are commonly used in context with GA, ES, and EP. For AIS 
optimization the value of the object function is called affinity value. Regardless of 
whether the task is to maximize or minimize, good solutions have high affinity and 
less fit solutions have low affinity. Despite the different names, all the values of the 
objective functions should be presented in numbers, or another directly comparable 
format.  
 
Objective functions can basically be constrained or unconstrained, and continuous or 
discrete. If the objective function is constrained, then the parameter values lie at some 
specific interval, e.g. –5 < x < 5. In unconstrained problems such restrictions do not 
exist. A continuous objective function can basically produce any values, e.g. –3 < y < 
3, whereas a discrete objective function can only produce certain values, e.g. y ∈ {-2, 
-1, 0, 1, 2}. 
 
Additionally, the objective function can be dynamic, i.e. it changes as a function of 
time [Psa88]. In [Eng06] dynamic environments are divided into three types. In the 
first type the location of the optimum changes over time. In the second type, the 
optimum remains the same, but the value of the optimum changes. Finally, in the third 
type both the location and the value of the optimum are subject to change. The 
dynamic objective function can, for example, simulate a real-world situation in which 
the cheapest route by plane must be found in an environment where flight ticket prices 
change as a function of time.  
 
Traditionally, objective functions have been functions evaluated by computers, but 
another very different and interesting approach has been proposed, in which the 
fitness of an individual is determined by a human [Tak01]. In other words, a human 
assigns a solution an objective function value depending on how it matches the 
characteristics of the solution that specific user is looking for. This kind of EC 
involving human-based fitness or cost function evaluation is called Interactive EC 
(IEC). Additionally, in most cases the objective function value of an individual is 
expressed as a numerical value, but other approaches also exist, such as the use of 
fuzzy logic to determine the quality of a candidate solution [Cha02].  
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3.4.2 Introducing Variation into the Solution Population 
 
Introducing variation into the solution population is of crucial importance: without 
variation the evolution would stop, since no improvement in the candidate material 
would take place. There are multiple ways to introduce variation, and usually these 
methods are classified under the headings mutation and reproduction. These methods 
can be used separately or together. Furthermore, the variation operators can use one or 
two individuals or the whole population to produce individuals for the next 
generation. These kinds of methods are called asexual, sexual, or panmictic operators, 
respectively. Next, some variation schemes commonly used in evolutionary 
computation are discussed. 
 

Reproduction 
 
The basic principle of reproduction is that from one or more parent solutions the 
variation operator creates one or more new individuals. The characteristics of these 
new individuals are a combination of the parents’ characteristics or an additional 
random variation on the parents’ characteristics. 
 
A popular form of reproduction is crossover, discussed e.g. in [Hau98], and this 
operator is used especially frequently in genetic algorithms. In Fig. 6, the principle of 
a simple single-point crossover between two parent solutions is shown. In this case 
two parents produce two offspring. First, a crossover point is randomly chosen. From 
this point, the chromosomes are separated and recombined using a part from the other 
parent. Although a single-point crossover is presented, the method can be 
implemented simultaneously at multiple points. This type of crossover efficiently 
passes on the characteristics of the parent solutions to the offspring. On the other 
hand, this type of reproduction operator is not able to produce new genetic or trait 
material unless the candidate solution is coded so that the crossover point can split a 
gene or trait variable. This can happen, for example, when the mantissa and the 
exponent of a variable are coded in consecutive genes and the crossover point is 
located between them. Various different types of crossover operators have been 
studied in the literature, depending on the problem that the specific algorithm is trying 
to solve. For example, Grefenstette proposed a crossover operator for traveling 
salesman problems in [Gre85]. The proposed operator avoids creating offspring that 
contain closed subpaths in the tour connecting the given cities. This is important, 
since the solutions to a TSP cannot contain closed subpaths, since such solutions 
violate the constraint stating that each city must be visited only once. However, Fogel 
points out in [Fog90] that a crossover operator performs poorly in TSP problems in 
general, whereas [Nag04] gives detailed instructions for designing efficient crossover 
operators for TSPs. Therefore, it is important to experiment with different operators 
when tuning an optimization algorithm for a specific problem.  
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       Crossover point   

Parent 1 0 1 1 0 1 0 1 0 0 1 
           

Parent 2 1 1 1 0 0 0 1 0 1 0 
           

Offspring 1 0 1 1 0 1 0 1 0 1 0 
           

Offspring 2 1 1 1 0 0 0 1 0 0 1 
 

Fig. 6. Producing two offspring from two parents using a single-point crossover. 
 
Blending crossover, described e.g. in [Hau98], is a convenient operator with integer 
and continuous parameter solutions in genetic algorithms. A random number, β, is 
first selected, and on the basis of this an offspring can be created, as shown in Fig. 7. 
β is a weighting factor that determines how much emphasis is given to each parent. If 
β is 0.5, then the offspring produced is the average of the parents. 
 

   β = 0.4 
Offspring = β · Parent 1  +  ( 1 – β ) · Parent 2 
 

Parent 1 –4.0 6.0 8.0 –6.0 0.0 
      

Parent 2 8.0 0.0 8.0 0.0 6.0 
  
  
   

Offspring  3.2 2.4 8.0 –2.4 3.6 

Fig. 7. Producing a single offspring from two parents using blending crossover. 
 
A single parent can also produce new individuals. In this case, a random variable with 
known mean and standard deviation can be added to the parent solution to create a 
new solution, as shown in Fig 8. This type of reproduction is usually used with 
evolution strategies and evolutionary programming. This type of creation of offspring 
constantly evolves new material, but, at the same time, is unable to maintain the 
existing individual characteristics intact. This phenomenon can be fought to some 
extent using elitism, a feature discussed later in this section. 
 
 Parent 3.0 5.0 –4.0 1.0 8.0 

      
Random number 0.1 –0.2 0.0 0.1 –0.2 

      
Offspring 3.1 4.8 –4.0 1.1 7.8 

 
 
 
 
 

Fig. 8. Producing a single offspring from a single parent using a random variable. 
 
The creation of new individuals does not need to happen every time. pr is the 
probability of reproduction happening. For example, if reproduction happens, 
offspring are created according to the rules explained above. If reproduction does not 
happen, the offspring can be exact copies of the parents without any mixing of the 
characteristic values. The value of pr is very problem-dependent and can usually be 
found only through trial and error by experimenting with different values and 
choosing the most suitable. In some applications it is enough to have the reproduction 
probability roughly in some region instead of a specific value. This is because the 
performance of the algorithm is not necessarily so strongly influenced by pr, i.e. the 
algorithm behaves quite similarly, regardless of whether pr is, e.g., either 0.80 or 0.85. 
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Genetic programming uses primarily a tree-like representation to describe the 
structure of a computer program and the dependencies of its different variables. To 
create offspring, a crossover between two or more trees can take place. In such a 
crossover the trees exchange sub-trees at random locations.  
 
This section discussed some of the most commonly used operators for creating new 
individuals from existing ones. Some other operators also exist, both general-purpose 
and application-specific operators. There are few restrictions on the characteristics of 
the reproduction operator: the offspring can be created from the parents using many 
sorts of means. To select the parents, selection mechanisms similar to those used in 
selecting individuals for the next generation can be used. These methods are discussed 
in Section 3.4.3. 
 

Mutation 
 
Mutation is another way of producing variation in the solution pool, in addition to that 
offered by reproduction operators. Mutation operators essentially add a random 
change or changes to variables of a solution. The mutation operator should be able to 
produce any parameter value within the search space. Usually, the same kind of 
mechanism can be used to mutate solutions as is used to create parameter values in the 
initial population. 
 
When dealing with binary solutions, the easiest and most commonly used mutation 
operator is the so-called bit flip operator. As shown in Fig 9, a single bit can be 
reversed to create variable diversity in the solution pool.  
 

 Mutation  
    point  

Before mutation 0 1 1 0 1 
      

After mutation 0 1 1 1 1 

 
 
 
 
 

Fig. 9. Single point mutation flipping a bit. 
 
A mutation operator can also be created by substituting a random parameter value for 
a single one, just as when creating an initial population. This procedure is shown in 
Fig. 10. Similarly, for example, a random variable can be subtracted or added to a 
parameter value in order to mutate it. 
 

Random number: 2.56 Mutation 
     Point 

Before mutation 1.23 –4.34 5.51 2.10 –9.10 
      

After mutation 1.23 –4.34 5.51 2.10 2.56 

 
 
 
 
 

Fig. 10. Single point mutation using a random number. 
 
Mutation can drastically change the fitness of an individual, regardless of whether the 
individual was fit or less fit before the mutation. This means that the best current 
solution can in some cases be so badly degenerated that the selection operator 
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excludes it from the next generation. This kind of phenomenon can hinder or slow 
down the convergence of the evolutionary algorithm. To compensate this problem, 
elitism can be applied. Elitism can mean that what is currently the best solution is 
never mutated so that its fitness value would decrease.  
 
Genetic programming primarily uses a mutation method similar to that shown in Fig 
11. In mutation the tree-like structure encounters a variation at some node. At this 
node a random sub-tree is created. Other types of variations may include the addition 
of a node or sub-tree, removal of a node or sub-tree, or modification of a single 
variable-value character.  
 
                         Parent                                 Offspring 

 
 

 
5 + ( 8 – 6 ) 5 + ( 

+ +

– –

Variation 
8 

 
Fig. 11. Popular mutation method for tree-lik

 
Just like reproduction, mutation does not necessa
mutation probability, describes the probability tha
variable of a solution is mutated. If mutation sh
proceeds as stated above; if not, the solution is left 
can also be determined experimentally. 
 
In artificial immune systems mutation is used w
However, the parent solution is not mutated direct
clones are created from the parent, and each clone un
a collection of modified individuals related to the par
 

Discussion Concerning Variation 
 
The significance of mutation operators has been 
states in [Gol89] that mutation is only a secondary 
meaning that the role of mutation is considerab
reproduction. On the other hand, Fogel explains in [
acting as the driving force of evolutionary algorith
least as important as reproduction. In most cases, c

_______________________________________________________________
J. Martikainen, Methods for Improving Reliability of Evolutionary Computation
5
5
  
( 1 + 2 

+ 

1 

e solution structures

rily happen ever
t a single solut
ould take place

as it is. The muta

idely as a var
ly; rather, a num
dergoes a mutati
ent.  

discussed extens
operator in the pa
ly less importa
Fog00] the natur
ms, meaning tha
rossover does no

_____________________
 Algorithms and Accelera
6
6
22
 

) – 6 ) 

. 

y time. pm, the 
ion or a single 
, the algorithm 
tion probability 

iation operator. 
ber of identical 

on, thus creating 

ively. Goldberg 
th of evolution, 

nt than that of 
e of mutation as 
t mutation is at 
t introduce new 

___________________ 
ting Problem Solving 



20 
_____________________________________________________________________ 
 
parameter values to the selection pool, unless the coding structure allows the 
crossover point to be located within a single variable. Then again, mutation is able to 
produce new material within the existing parameter values and, if it is applied 
appropriately, it is able to produce any possible solution combination within the 
search space. In this sense, crossover is just a special case of mutation and in most 
cases the mutation operator is capable of producing more diversity in the solution pool 
than crossover. Evolutionary algorithms have been proven to converge to a global 
optimum if the variation operator is capable of transforming a solution from any state 
to any other and an elitist selection method is applied (see [Fog06] for details). In 
most cases crossover does not fulfill this condition, but mutation does, and thus 
mutation should not be considered as a secondary operator, but rather a crucial one. 
Nevertheless, the no free lunch theorem still applies to all algorithms and operators, 
and so, eventually, the usability of any operator depends on the problem. 
  
Mutation and reproduction can occasionally use similar methods, such as adding a 
random variable to a trait value. However, the fundamental difference between these 
two operators is that a reproduction operator produces one or more new individuals 
from an existing solution, whereas mutation only alters an already-existing solution. 
 
It is clear that crossover alone is usually not capable of evolving indefinitely, but that 
it sooner or later faces stagnation. Then again, using a mere mutation operator 
promotes evolution, although the pace may be slow. The combination of these two 
operators may produce better results than using either one alone, since by using the 
operators side-by-side, the capability of the crossover to connect good combinations 
of parameter values and the capability of mutation to introduce new variations to the 
solution pool creates a potentially efficient algorithm. Still, according to the NFL 
theorem the individual and combined performance of the operators is the same over 
all possible problems. 
   
The AIS optimization method, the clonal selection principle, is a straightforward way 
of adding variation to the solution pool. A small number of the worst individuals are 
replaced by randomly created new individuals. Such a simple method is powerful in 
exploring new areas of the search space.  
 

3.4.3 Selection 
 
A selection operator selects the individuals from the current generation to proceed to 
the next generation. A selection operator is also crucial to the operation of any 
evolution algorithm, since without selection the solution population would not be 
guided in any direction and would perform like a purely random search. Selection 
operators usually favor good individuals, thus directing the evolution of the 
population towards a better average value of the objective function. 
 
Depending on the implementation, the selection can be carried out among offspring or 
parents and offspring, or whatever combination of solutions exists in the previous 
generations. The main idea in selection is that the better the objective function value 
of an individual, the better its chance of proceeding to the next generation. Usually, 
the size of the solution population is kept constant in order to keep the execution time 
for each generation the same. However, it is possible to increase or reduce the 
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population sizes as the evolution proceeds, a procedure that directly affects the 
execution time of the algorithm. This kind of approach aims mainly at performing 
global searches with fewer individuals and using a larger population to refine the local 
search. The effect of variable population size is studied in [Kou06], where the 
population size is reduced by the selection operator and periodically increased by the 
addition of random individuals.  
 
Numerous selection mechanisms exist, and some of the most widely used methods 
include rank-based, roulette wheel, and tournament selection, discussed, e.g., in 
[Hau98]. A rank-based selection mechanism simply selects the nrank first solutions 
ordered according to their fitness values in descending order. nrank equals nI, the initial 
population size, if the population size is kept constant throughout the execution of the 
algorithm.  
 
Rank-based selection is a somewhat deterministic selection method in the sense that 
the fit solutions are always selected and the less fit are not. This drives the EC 
algorithm relatively quickly towards an optimum, regardless of whether it is global or 
local. Less fit solutions can contain good ingredients when considering the global 
optimum, but especially in early generations of an EC algorithm local optima can 
distract the search and lead to a premature convergence of the algorithm. Premature 
convergence is a state in which the population of the EC is homogeneous. This 
condition can occur in local optima or at any other point within the search space. 
When using rank-based selection one should pay special attention to variation 
methods, i.e. reproduction and mutation, to ensure diversity within the solution 
population. 
 
Roulette wheel selection, illustrated in Fig. 12, selects the individuals that will survive 
to the next generation on the basis of their proportional fitness. The selection 
simulates a roulette wheel, where each individual in the population has a selection 
sector proportional to its fitness. The better the individual is, the greater its chances of 
continuing to the next round. Roulette wheel selection makes it possible for each and 
every individual to make it to the next generation, regardless of its fitness. This may 
slow down or hinder the convergence of the EC algorithm, since the selection 
operator may disqualify good solutions. On the other hand, though, good ingredients 
within less fit individuals have a chance of being selected. 
 
 

Solution Fitness Fitness % of total 
A 200 52.63 
B 100 26.32 
C 50 13.16 
D 25 6.58 
E 5 1.32  

A
B
C
D
E

 
Fig. 12. The principle of the roulette wheel selection mechanism. 

 
Figure 13 shows the general principle of a generic tournament selection operator. 
ntournament solutions are selected either randomly or using some kind of a selection 
operator for a tournament and each tournament produces a winner, just as in a sports 
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competition. Solutions compete against each other and the best one, i.e. the one with 
the highest fitness value, moves on to the next round. This method can be 
implemented by assigning each individual an equal probability of getting selected for 
a tournament or the probabilities can be biased, as in roulette wheel selection. This 
method does not guarantee the survival of the fittest, which may lead to problems 
similar to those discussed with roulette wheel selection. This is the case when the 
fittest individual is not selected to compete in any of the tournaments. On the other 
hand, tournament selection allows each individual a chance to proceed to the next 
generation, thus preserving a possibly greater diversity of variable values in the 
selection pool than the rank-based selection method. 

 
500    

 500   
450    

  550  
550    

 550   
300    

   555 (Winner, selected) 
220    

 555   
555    

  555  
125    

 300   
300    

 
Fig. 13. The principle of the tournament selection method. The value describes the fitness function 

value of an individual in a maximization problem. 
 

In the following sections, the evolutionary computation methods dealt with in this 
dissertation are discussed.  
 

3.5 Genetic Algorithms 
 
Genetic algorithms are probably the best known of all the evolutionary algorithms. 
GAs were invented independently at least three times by Fraser [Fra57], Bremermann 
[Bre62], and Holland [Hol75]. Fraser was a biologist who wanted to simulate 
evolution in order to get greater insight into the biological process and using the 
algorithms he developed for optimization was not his primary purpose. Then again, 
Bremermann and Holland clearly developed their algorithms for optimization 
purposes. The basics of simulated evolution based on genetics are compactly 
summarized in [Gol89]. Fogel describes the stages of plain GA in [Fog00] as follows: 
 

1. The problem at hand is defined as an objective function. 
 

2. A population of candidate solutions is initialized as vectors. 
 

3. Each solution in the population is decoded into an appropriate form for 
objective function evaluation. 

 
4. Each solution is assigned a probability of reproduction. 
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5. Reproduction is carried out according to the assigned probabilities. In 
addition, mutation can be applied to selected individuals on the basis of the 
assigned probabilities. 

 
6. The process is stopped if a suitable solution is found or when run time 

requirements have been met. 
 
GAs are suitable for many types of optimization tasks and they are widely used. For 
this reason, they have been widely studied and a variety of performance-tuning 
methods exists. Genetic algorithms could be described as the standard evolutionary 
algorithms. Genetic programming is a subset of GA. In genetic programming, the 
individuals are computer programs that are evolved to solve a specific problem. One 
type of problem in which GP is often used is where there are specific inputs and a 
desired target, and the problem is to find a program to use the input to achieve the 
target. The target can be, for example, to control a system based on input sensory 
values. In genetic programming the structure of the program can change drastically 
during evolution. Publications [P1]-[P4] and [P7] in this dissertation employ genetic 
algorithms. 
 

3.6 Evolution Strategies 
 
The concept of evolution strategies was created by Rechenberg and Schefel in 1964. 
Early papers that describe the first attempts to optimize practical problems using a 
crude predecessor of modern-day evolution strategies are [Sch65] and [Rec65]. In 
those papers, very simple evolution strategies (including only a few individuals) are 
outlined and implemented, mainly because of the insufficient computing power, 
computers becoming available for these scientists only a couple of years after the 
introduction of the original concept of the algorithm. Evolution strategies differ from 
genetic algorithms in that each individual, in addition to the parameter values, 
contains a set of strategy parameters, which were later introduced to the concept.  
These strategy parameters help to optimize the optimization process itself, as the 
strategy parameters are subject to crossover and mutation in a similar manner to the 
actual solution variables. Since ES individuals suffer mutation according to Gaussian 
distribution, a strategy parameter could contain the standard deviation of the 
distribution. So, this mutation-determining parameter evolves as the algorithm 
proceeds. The stages of ES as they are typically used at present are described in 
[Bäc96b] [Fog00] [Eng06], as follows: 
 

1. The problem is defined as finding a real valued n-dimensional vector x that is 
associated with the extremum of the objective function. 

 
2. An initial population of parent vectors, xi, i=1, …, nI, is selected randomly 

from the feasible search space. 
 

3. An offspring vector is created from two or more parents by crossover. The 
crossover also includes the crossing over of the strategy parameters. 
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4. Mutation is introduced by adding a random variable with a zero mean and the 
standard deviation pointed in the individual’s strategy parameter to each 
component of x. 

 
5. Selection determines which of these vectors (parent and offspring) are 

maintained by ranking the objective function values. The ni best vectors act as 
parents for the next generation. 

 
6. The process is continued until a satisfactory solution is reached or run time 

requirements have been met. 
 
Evolution strategies are implemented in [P5] as a part of this dissertation. 
 

3.7 Evolutionary Programming 
 
The foundations for the EP research to come were laid in the early 1960s by L. J. 
Fogel in [Fog62]. Evolutionary programming is similar to evolution strategies in the 
sense that the mutation is controlled by a strategy parameter, i.e. a standard deviation 
value is conjugated to each individual. Mutation is usually the only operator used with 
EP; however, the possibility of multiparent recombination of the best solutions over 
various generations has also been considered in [Fog66]. D. B. Fogel describes the 
main phases of EP in [Fog00] as follows: 
 

1. A population of individuals is created. These individuals can be presented, for 
example, as arrays. 

 
2. The objective function value for each individual is evaluated. 

 
3. Offspring individuals are created by mutating the parent individuals on the 

basis of the standard deviation parameter given in the strategy parameters. 
 

4. The best individuals are selected to act as parents for the next generation. 
 

5. The process continues until satisfactory results have been achieved or run time 
requirements have been met. 

 
GP and EP share many similarities, the most significant difference being the use of 
crossover as an important variation operator in GP. EP relies more on a mutation 
operator. Genetic programming is able to modify the number of states through a 
crossover operator, whereas the number of states in evolutionary programming can be 
altered by the mutation operator. 
 
In evolutionary programming, the individuals can be finite state machines, as 
described in the early experiments. Nowadays, however, the solution structure arises 
naturally from the problem specifications. In this dissertation, publications [P6] and 
[P8] employs evolutionary programming as a part of it. 
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3.8. Artificial Immune Systems 
 
Artificial immune systems stand out as more recent contenders in the field of 
evolutionary computation when compared to GA, EP, and ES. AIS and its 
optimization scheme, the clonal selection principle (CSP) or the clonal selection 
theorem, are widely credited to, among others, de Castro and Timmis [Cas02a], dating 
back to the mid-’90s. Instead of mimicking natural evolution, CSP simplifies the 
mammalian immune system for optimization purposes. The major difference between 
the traditional EC methods, GA, ES, and EP, and CSP is that, instead of a single 
optimum, the basic configuration CSP is capable of finding multiple, and separate, 
good solutions. For GAs, ESs, and EPs, finding multiple good solutions is possible, 
but this requires the algorithms to be specifically designed that way. A common 
method for finding multiple good solutions is niching, discussed in more detail in 
Chapter 4. 
 
In brief, the mammalian immune system operates as follows [Cas02b]. When an 
animal is exposed to an antigen, something that is normally not part of the animal’s 
system, the bone marrow-derived B lymphocyte cells respond by producing 
antibodies. Antibodies are attached to the surface of the lymphocytes and they 
recognize and bind to antigens that match their structure. By binding to the antigens, 
and with the help of additional signals from the so-called T cells, the antigen 
stimulates the B cell to proliferate and mature into plasma cells or memory cells that 
can circulate for a long time within the animal. The whole scheme is naturally 
considerably more complicated, but the main aspects used in the optimization are 
quite straightforward. The objective function is the antigen. Antibodies are candidate 
solutions trying to maximize their affinity with respect to the objective function, i.e. 
the antigen. The candidate solutions are cloned proportionately to how good their 
affinities are. Thus the best matching candidate solutions are cloned in greater 
numbers. The optimization procedure using CSP, an algorithm called CLONALG, is 
explained in [Cas02b] as follows:   
 

1. Create an initial population of nI antibodies. 
 

2. Determine the affinities of each individual in the solution pool. 
 
3. Select m highest affinity antibodies for cloning. 
 
4. The m selected antibodies are cloned independently and proportionately to 

their affinities: the higher the affinity, the higher number of clones created for 
each of the m selected antibodies. 

 
5. The clones are mutated proportionately to their affinity: the better the affinity, 

the smaller the mutation rate. This stage is called affinity maturation. 
 
6. The affinity of the clones is calculated. 
 
7. If one of the clones has a higher affinity than its parent, then replace the parent 

with this higher-affinity mutated clone. 
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8. Replace the w worst individuals with random new antibodies. 
 
9. The process is continued until a satisfactory solution is reached or run time 

requirements have been met. 
 

CSP contains many of the operators of the traditional EC methods, such as variation 
and selection. CSP was studied in [P8] as a part of this dissertation. 

 

3.9 Other Biologically Inspired Optimization Schemes 
 
Nature and society are constantly being studied for new ideas to be refined as 
optimization algorithms. Some of the most popular biologically inspired optimization 
methods, apart from GA, ES, EP, and AIS, are discussed in the following section.  
These methods are not considered in publications [P1]-[P8], but they are introduced 
here to show the wide variety of different aspects used today to develop nature-
inspired optimization methods.  
 
Swarm intelligence takes advantage of the behavior of groups, i.e. a collection of 
individuals working for a common goal. As examples, nature provides an ants’ nest or 
a flock of flying birds. Two forms of swarm intelligence, Ant Colony Optimization 
(ACO) and Particle Swarm Optimization (PSO), are briefly discussed below.  
 
Ant colony optimization mimics the behavior of ants [Eng06][Hec01]. Ants lay down 
pheromones to signal the locations of food to other ants. Pheromones attract other ants 
to the same region, but they evaporate as time goes by. This notion is translated into a 
generic optimization scheme using artificial ants that lay artificial pheromones 
proportional to the objective function value at a visited point. Different pheromone 
levels at different points guide the artificial ants to change their direction towards the 
most promising areas. Thus, ACO optimization is constantly guided towards the 
current best solution. Common applications of ACO optimization include different 
routing problems, such as the traveling salesman problem [Dor97]. Additionally, other 
kinds of problems, such as data mining [Par02] and finding a charging pattern for 
lithium-ion batteries [Liu05] have been successfully solved using ACO.  
 
Particle swarm optimization [Ken95] [Eng06] [Rey06] takes advantage of e.g. birds 
and fish, more generally a group of individuals moving collectively as a large group. 
The best location of food or protection is rapidly communicated through a group, and 
all the individuals seem to act nearly as one. As an optimization scheme these 
artificial individuals adjust their speed and direction in relation to the overall best 
solution, perhaps also influenced by the best solution in the surrounding 
neighborhood. PSO has been used to solve a wide variety of problems successfully. 
These include, among others, optimizing the design of a PID controller [Gai04] and 
the design of a microwave filter [Wan05]. 
 
Learning Classifier Systems (LCS) [Kov01] are a machine learning system suitable 
for optimization, among others. LCS uses a population of IF-THEN rules to make 
decisions. The rules are modified by another evolutionary computation technique, like 
genetic algorithms. The best rules are selected for the next generation, whereas the 
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less-fit rules are discarded. LCSs have been implemented in various applications, such 
as studying the UK electricity market [Bag05].  
 
Cultural evolutionary algorithms use human social evolution as their metaphor for 
optimization. In these algorithms culture is seen as a guidance system directing 
individuals towards a specific direction, determined by the best individuals in the 
population. According to [Cor05], a cultural evolutionary algorithm proceeds as 
follows. Candidate solutions are first evaluated and an acceptance function determines 
which individuals in the current population can make a difference to the current 
beliefs. The fitness, i.e. the experience, of these individuals is used to adjust the belief 
space. These group beliefs are then used to guide the evolution in a certain direction. 
In numerical optimization this would mean, for example, that the fittest individuals 
could be used to control the domain constraints, that is, the search intervals. 
Furthermore, only a certain percentage of the fittest individuals would be preserved 
for the next generation and thus act as parents for offspring.  
 
Differential Evolution (DE) [Cor05] is a simple population-based optimization tool. A 
basic DE algorithm may proceed as follows. Select an individual from a created 
population. After this, select two other individuals and calculate their difference using 
subtraction. To this result, add a third randomly chosen individual. Then use crossover 
to combine the first selected individual and the individual built using the three other 
individuals. If the product of the crossover has a better fitness than the first selected 
individual, select the offspring for the next generation. Otherwise, use the individual 
selected first. 
 
Memetic algorithms [Cor05] are population-based search methods that use the 
available knowledge about the problem. This knowledge is exploited using, for 
example, approximation algorithms, local search methods, or specialized operators 
tailored to meet the requirements of a specific problem. 
 
Tabu search [Eng06] is an optimization technique concentrating on an iterative 
neighborhood search in which the neighborhood changes dynamically. Tabu search 
maintains a memory structure of points the search algorithm has visited previously 
and excludes these points from future searches. 
 

3.10 About Nature-Inspired Optimization Schemes 
 
In this chapter, some of the most commonly used evolutionary algorithms have been 
discussed. It is clear that all the algorithms take advantage of the two key operators to 
complete their task: variation and selection. In the previous years the field of 
evolutionary computation was more fragmented, and the algorithms were classified, 
for example, on the basis of the presentation of the data or the type of operators used 
or simply on different opinions of scientists. Fogel has remarked in [Fog06] that it is 
no longer possible to identify a certain approach as a genetic algorithm, evolution 
strategy, or evolutionary programming, simply by examining the representation 
chosen, the selection method, or the use of self-adaptation, recombination, or any 
other factor. At present, there are no implementational restrictions on what operators 
can be used with what operators and how to present data. All nature-inspired 
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optimization algorithms are ultimately imaginative interpretations of variation and 
natural selection.  
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4. Improving the Performance of Evolutionary 
Algorithms  
 
Evolutionary algorithms have proved their efficiency in complex optimization tasks, 
but their rudimentary versions usually suffer from severe problems that may prevent 
the algorithm from reaching optimal solutions in reasonable time. These problems are 
known as stagnation or premature convergence [Bäc96] [Fog00], but lengthy run 
times of the algorithms may also be an issue for the users. These problematic 
phenomena are important and interesting challenges for researchers and the possible 
competitive solutions are applied by practitioners working with complex optimization 
tasks. This chapter discusses some methods proposed to resolve these problems. 
 

4.1 Behavior of Evolutionary Algorithms 
 
Evolutionary algorithms operate on a population of individuals, improving the 
objective function value, fo, of these individuals within the population gradually or in 
jumps. This development towards the final result is called convergence. The 
maximum, fo,max(g), average, fo,ave(g), and minimum objective function values, fo,min(g), 
are variables that describe the progress of an evolutionary algorithm. fo,max(g) and 
fo,min(g) describe the best and the worst solutions within a specific generation, whereas 
fo,ave(g) gives the average objective function value of all the solutions in the solution 
pool within a specific generation. This text discusses fitness values, i.e. maximization 
problems, without the loss of generality; all the concepts also apply to minimization 
problems, i.e. cost functions.  
 
Figure 14 depicts the typical convergence characteristics of a generic EC algorithm. In 
the early generations of evolution, the dynamic range of the fitness values in a 
population is usually large. The dynamic range of a solution population is used to 
describe the difference between the fitness values of the best and the worst individual 
solutions, i.e. (fo,max(g) – fo,min(g)). Later on, as the solutions evolve, the average and 
minimum fitness values approach the maximum fitness value and the solution 
population converges.  
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Fig. 14. Typical convergence behavior of an evolutionary algorithm. 
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At the beginning, there is usually significant variable value diversity within the 
solution pool, meaning that there may exist a large number of different values for a 
specific trait or a gene. The variable value diversity can be expressed, for example, as 
the difference between the minimum and maximum values of a single variable in the 
solution pool or using the variance of the values a variable has. Towards the end, this 
diversity tends to shrink and finally the evolutionary computation algorithm may end 
up with a solution pool consisting merely of a single solution or a few solutions. 
Problems with EC are usually related to a decrease in parameter value diversity 
occurring before the algorithm has found a competitive solution, if such a solution 
exists. It is easy to see that if the solutions in the solution pool are very similar, not 
much improvement or even variation can usually be achieved by the use of crossover-
based reproduction operators. In this situation a mutation operator may be able to 
produce material with good new parameters. 
 
The dynamic range of the fitness values and the diversity of the variable values are 
two different things and they should not be confused. The dynamic range of the 
fitness values describes the variety in the fitness values of the solutions in the current 
population, and the diversity of the variable values describes the variety of different 
values each variable of a solution has in the solution population. Both of these terms, 
alone or combined, tell us something about the population. For example, an algorithm 
may be close to convergence or stagnation if the diversity is low; however, the 
dynamics can still be large. This is because even a minor variation in a variable value 
can result in a drastic change in the fitness value. Then again, a small dynamic range 
of fitness implies that there is no considerable difference in the fitness values of the 
individuals, although the variable value diversity may be large, indicating the 
existence of multiple good solutions. Using this type of information, among others, it 
may be possible to design operators for evolutionary algorithms to overcome the 
obstacles in the optimization process, such as premature convergence.  
 
Convergence and the decrease in the parameter value diversity are nothing to be 
alarmed about if the algorithm is centered on a global optimum or a good enough 
solution. This is basically what the algorithm is supposed to do. If, instead, the 
algorithm gets stuck around a local optimum or any other point, then there is a 
problem, either stagnation or premature convergence. This problem can be alleviated 
by using an appropriately devised variation operator that is able to break the algorithm 
free from such local optima, since there is usually no way of knowing whether a 
certain point is a local optimum, global optimum, or some other point. 
 
The question arises of how one should choose the parameter values for operators in an 
EC algorithm. In fact, this is problematic, since the operator parameters are very 
application-specific and no guarantees can be given that some parameters will work 
for some specific problems. Another problem related to all optimization techniques is 
the sometimes very costly evaluation of the fitness function. The objective function 
can be a low-dimensional function or it can be a complicated simulation procedure for 
an application-specific digital filter. 
   
The problems of evolutionary algorithms are thus related to the reliability and 
execution speed of the algorithm. Nowadays, the research and development cycles of 
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products are so intensive that practicing engineers usually have no time to run a time-
consuming optimization algorithm several times in the hope of getting a solution.  
 

4.2 Means to Improve the Performance of Evolutionary Algorithms 
 
Various methods to improve EC performance have been discussed, starting from the 
very first algorithms proposed. These modifications aim to tackle the bottlenecks of 
EC-based optimization processes and thus add to the performance of an algorithm. 
The performance of an algorithm is not an unambiguous concept, but, rather, it 
depends on the application and implementation. However, there are some 
characteristics that can describe the capabilities of an algorithm. The convergence rate 
of an algorithm describes how fast the algorithm is capable of finding the best 
attainable solution for that specific algorithm. So, the greater the convergence rate, the 
faster the algorithm is. The reliability of an algorithm to produce good results is also 
an important factor. An algorithm can be considered reliable if the variance of the 
results it produces is sufficiently small and there is no considerable number of outlier 
samples. The magnitude of variance and the number of outliers cannot be defined 
unambiguously; rather, these characteristics are problem-dependent. One of the most 
interesting measures of performance is the fitness of the solutions produced. 
Sometimes a single outstanding value produced by an algorithm after multiple runs is 
desirable, but it is more common to develop an algorithm that produces good results 
on the average. Additionally, sometimes multiple competitive solutions instead of just 
one are desirable. So, a high-performance EC algorithm should be able to produce 
quality solutions reliably in a short time. At times, designers have to decide on trade-
offs between reliability, quality, and speed.  
 
For complex problems, the addition of more computational power may improve the 
performance of the algorithm. The effect is twofold: with more computational 
resources to spare, an algorithm can run more generations in the same time. Then 
again, an algorithm with more computational power can have a larger solution 
population, and thus a more thorough search of the search space, than its counterpart 
with less computing power. Parallel computing architectures have been studied 
extensively in the context of EC. This is mainly due to the parallel nature of EC 
algorithms, i.e. the search for multiple solutions in parallel. Despite this inherent 
parallelism in evolution and evolutionary computation, many EC algorithms are serial 
in nature. This means that although evolutionary algorithms virtually evaluate 
multiple solutions in parallel, the actual execution of the program instructions is 
usually serial. It has also been noted that the mere existence of parallel populations 
adds to the performance of an EC, although no actual parallel hardware is available. 
Other schemes related to speed include the modification of operators to make them 
more efficient, thus making the operation of the whole algorithm faster. 
 
Other than speed, modifications concentrate on the structure of the population and the 
EC operators. The main aim of such modifications is to avoid premature convergence, 
i.e. the stagnation of an algorithm, and to find new competitive solutions. Operators 
can be made adaptive, so that their characteristics change during the run time of an 
algorithm to compensate for the changes taking place in the solution population. This 
can mean, for example, that the operators produce more variation in the solution 
population when the solution population starts to lose variable diversity. 
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An important aspect of modifying EC algorithms is the fusion of evolutionary 
algorithms with other types of methods. These hybrid algorithms combine the 
strengths of multiple methods, most commonly evolutionary algorithms, neural 
networks, fuzzy logic, and conventional hard computing methods. A single algorithm 
can be superior alone in some cases, but a combination of techniques and their 
respective advantages can produce competitive algorithms for complex problems. In 
the following section, some modification techniques aimed at improving EC 
performance are discussed in detail. 
 

4.3 Multiple-Population Evolutionary Algorithms 
 
An evolutionary algorithm with multiple populations is a scheme in which, instead of 
a single solution population, multiple and separate but possibly interacting 
subpopulations are maintained and evolved in parallel. In the following, different 
approaches to multipopulation EC algorithms are discussed. 
 

4.3.1 Parallel Processing and Evolutionary Algorithms 
 
The use of parallel processing environments has been a traditional way of speeding up 
demanding computational experiments. Parallel hardware environments contain two 
or more processing units that can, theoretically, divide the execution time by the 
number of processing units. In practice, however, this is rarely the case, although 
significant speedup can usually be achieved [Cul99] [Cod93].  
 
Because of the inherent parallelism in evolutionary algorithms, parallel 
implementations of evolutionary algorithms have been studied thoroughly. The 
advantages of using parallel processing in EC are listed in [Alb02] as follows: 
 

• The ability to search for alternative solutions to the same problem in parallel 
• Easy parallelization as island or neighborhood models (see below) 
• Speedup resulting from the use of multiple central processing units (CPUs) 

 
Early implementations of parallel EC algorithms (PEC) were carried out by, e.g., 
Grefenstette in the early 1980s [Gre81]. A comprehensive survey of parallel EC 
algorithms and parallel hardware environments, as well as the parallel programming 
tools used in parallel EC algorithms, is given in [Alb02]. In that paper PEC algorithms 
are divided into subsets. In the panmictic approach the solution population is dealt 
with as one, with all the operators affecting each individual: that is, in panmictic EC 
algorithms only the computational burden is divided using multiple processors. On the 
other hand, structured PEC algorithms take advantage of multiple subpopulations 
residing in different CPUs. Structured PEC algorithms can be further divided into 
distributed EC algorithms (dEC) [Bel95] and cellular EC algorithms (cEC) [Bal93]. 
The dEC approach is also known as the island model. In dEC, the population is 
divided into subpopulations: the exchange of individuals takes place on the basis of 
predetermined rules, and subpopulations reproduce among themselves. In cEC 
algorithms, a single individual usually has its own CPU, and it can reproduce only 
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with the neighboring individuals in the processor architecture. In both the dEC and 
cEC schemes the operators acting on the populations are the same, i.e. the algorithms 
are uniform. In nonuniform structured PEC algorithms, the operators acting on 
different subpopulations may be different. This kind of approach was studied in 
[Tan87]. 
 
PEC has been used, for obvious reasons, to tackle computationally very challenging 
problems. These include, among others, demanding TSP in combinatorial 
optimization [Müh92], frequency assignment problems in telecommunications 
network design [Meu00], and trading models in the area of financial applications 
[Cho00]. Recently, parallel EC algorithms have been implemented in areas of 
increasing scientific interest, e.g., bioinformatics [Wie05] on the application side and 
peer-to-peer networks [Mel05] on the implementation side. 
 
Parallel processing does not improve the robustness and reliability of an EC as such. 
When using parallel processing environments, the computational task at hand can be 
divided between all the processors. Evolutionary computation algorithms consist of a 
number of objective function evaluations per generation, and this is where parallel 
processing can speed up the EC. Since the objective function evaluations are separate 
computational tasks not requiring information from each other, the tasks can be spread 
across several processors. For example, if the EC algorithm contains 100 objective 
function evaluations per generation and there exists a parallel environment with five 
processing units, theoretically, each processor could conduct 20 objective function 
evaluations per generation instead of a single processor doing all the work. This 
means that an algorithm using parallel hardware would be five times faster than an 
application using only a single processing unit.  
 
However, communication between the processing units takes time. The inter-
processor communication time should be small in comparison to the time required by 
the objective function evaluation. If the evaluation of the objective function takes only 
a short time, then it could be that in fact the parallel implementation of EC is slower 
than that using only a single processing unit.  
 

4.3.2 Multipopulation Approach 
 
Improving the performance of EC algorithms with parallel hardware is beyond the 
scope of this dissertation. However, some parallel implementations of dEC algorithms 
use an interesting approach: in addition to distributing the computational load between 
separate processing units, each processing unit contains a separate EC algorithm that 
operates on its own population. These separate EC algorithms can exchange solutions 
with each other from time to time, and thus improve the performance of a standard 
EC. In [Gor93] the authors have proposed in their study that the mere existence of 
multiple populations without actual parallel hardware may add to the performance of 
an EC. These kinds of implementations take advantage of multiple subpopulations 
and different operators for different subpopulations, as well as different subpopulation 
characteristics. These kinds of multiple population algorithms are studied, for 
example, in [Sla99]. Kamiya and Makino [Kam05] have proposed that a 
multipopulation scheme can be used to improve the performance of an EC in dynamic 
environments, that is, when the objective function changes over time. In addition, all 
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the approaches used in actual parallel hardware implementations of parallel EC 
algorithms are also applicable to single CPU EC algorithms. 
 
Niching [Gol89] [Dar97], also known as speciation, is a popular multipopulation 
scheme in evolutionary computation. In nature, niches are subspaces of the 
environment that can support different kinds of life, i.e. different species, and, of 
course, different species cannot have offspring together. In addition, each niche has 
only a limited amount of resources, which have to be divided between the inhabitants 
of that particular niche, i.e., even a vast reservoir of resources cannot nurture an 
indefinite number of individuals. Then again, a niche with fewer resources can easily 
satisfy the needs of a couple of individuals. This metaphor turns into an optimization 
scheme quite conveniently. The main principle is to sustain diversity, not letting too 
many individuals search the same region of promising fitness. Furthermore, candidate 
solutions from two separate good regions cannot be combined to avoid the creation of 
inferior solutions. The two main mechanisms for niching are fitness sharing and 
crowding [Sar98]. A fitness sharing scheme divides the fitness of a region for all the 
individuals residing at that location, thus making it less attractive for masses of 
individuals. Crowding methods, on the other hand, insert new elements into the 
population, simultaneously replacing similar solutions.     
 
Coevolution, as the name implies, is the evolution of multiple interactive populations 
in parallel. A coevolutionary scheme could include, for example, the solution 
population and a population of test cases [Wer00]. The fitness function can be a 
combination of different test cases. In this scheme, the desired property of the test 
case population is to gradually evolve into more challenging but appropriate test 
cases, thus enabling the solution population to be able to solve ever harder problems 
as the algorithm proceeds. In [Han97a], an optimization scheme in which two genetic 
algorithms work with the same population is discussed. The coevolution scheme can 
be either co-operative, in which the multiple components work on the same side, or a 
predator-prey scheme, in which the components fight against each other, as in 
[Ari96]. 
 

4.3.3 Problem Decomposition 
 
Humans intuitively try to solve extensive problems by dividing the problem into 
smaller pieces, rather than trying to solve the whole problem at once. This method of 
slicing problems down into sub-problems, solving them, and recombining the partial 
solutions is referred to as a problem decomposition or divide-and-conquer approach. 
In [Val95] a TSP was divided into sub-problems and the combined solutions to the 
sub-problems constituted the solution to the overall problem. The partitioning of a 
TSP is a very illustrative example of the divide-and-conquer approach: the whole 
route connecting all the given cities can be optimized by optimizing separately 
optimized and then connected sub-paths. In [Jua05], another type of approach is 
selected, in which a recurrent fuzzy system is structurally divided into separate parts 
and these parts are optimized separately. In addition, a separate optimization process 
deals with the whole network. 
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4.4 Modifying Operators in Evolutionary Algorithms  
 
The behavior of an EC algorithm during run time is mainly controlled by the variation 
probabilities. Of course, selection and other possible operators also play an important 
role in the course of the evolution of a solution population, but variation operators can 
essentially make the algorithm excel or stagnate. Selecting the appropriate values for 
reproduction and mutation probabilities is a problem-dependent task and it is usually 
carried out by means of trial and error through extensive testing of different control 
parameter values. As explained before, the variable value diversity of the solutions 
usually diminishes as the evolution of an EC algorithm proceeds. The location of the 
solution population changes stochastically during the evolution process and this 
basically means that fixed reproduction and mutation probability values may not 
produce the desired performance throughout the whole run time of an algorithm. To 
overcome this problem, adaptive parameters are used. Adaptive parameters adapt the 
EC control parameters, such as mutation and reproduction probabilities, to the 
changes in the population dynamics in the hope of improving the performance of the 
algorithm.   
 
In [Hin97] and [Smi97] a compact survey of adaptation in evolutionary computation 
is offered, while [Eib99] is a more thorough presentation of the same topic. In [Hin97] 
EC is divided into static and dynamic EC. In static EC no adaptation takes place. In 
dynamic EC environments, populations, or individuals can be adapted. Dynamic 
adaptation is further divided into subcategories, including deterministic, adaptive, and 
self-adaptive methods. In deterministic adaptation the parameter is adapted according 
to some deterministic rule without feedback from the EC algorithm. For example, in 
[Fog89] the mutation probability was altered as a function of the number of 
generations the EC algorithm had run. In adaptive EC there is feedback from the 
algorithm, and this is used to control the parameters. In [Jul95], the ratio between 
mutation and crossover, based on their performance, was studied. In self-adaptation 
the control parameter to be adapted is placed within each individual and is thus 
subjected to mutation and reproduction. For example, in [Smi96] the mutation rates of 
individuals were controlled using self-adaptation. 
 
A popular adaptive scheme for adaptively controlling the reproduction and mutation 
probabilities was proposed by Srinivas and Patnaik in [Sri94]. More recently, the use 
of adaptive fitness functions in the form of altering a penalty function has been 
studied in [Far03]. Theoretical considerations concerning the features of self-
adaptation in EC algorithms are offered in [Bey01]. That publication offers guidance 
for selecting strategies to be used in self-adaptation. Operators for an EC algorithm 
are selected adaptively in [Mag00], i.e. different operators are used for the same 
purpose at different stages of the run time of the algorithm. Premature convergence is 
a common deficiency in EC, and it may result from poor selection of parameter 
values. Premature convergence, or stagnation, stops the evolution of the solutions and 
the algorithm is usually only able to output a non-satisfactory result. By modifying the 
control parameters of the algorithm, e.g. the mutation probability, adaptively, it is 
possible to overcome stagnation and continue the optimization process further.  
 
The main purpose of the variation operators is to search for improvements, but at the 
same time they also introduce diversity within the population. How the operators 
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should work depends on the state of the underlying population characteristics. Figure 
15 shows how a generic EC algorithm could behave. Conventionally, the solution 
pool of an evolutionary algorithm starts with multiple candidates and potentially wide 
diversity of genetic or trait material. At the beginning the algorithm evaluates multiple 
promising solutions, instead of concentrating on what is currently the best solution. 
During the following generations, the solution variable diversity in the population 
tends to decrease and the individuals in the population may start increasingly to 
resemble one another. Usually, the variation probabilities are high at the beginning in 
order to allow new promising areas of search space to be searched through. Towards 
the end the population settles in an area in the search space through selection, and 
mutation is used to make minor local searches in the vicinity of the candidate solution. 
From this it follows that a variation operator is commonly used, so that the population 
starts with a high mutation probability and this probability is decreased as the 
algorithm proceeds towards its end. Figure 15 illustrates the behavior of the generic 
adaptive variation probability as a generic EC algorithm proceeds. 
 
One must bear in mind that the situation described above is different when other types 
of operators or algorithms are used. For example, the clonal selection principle 
eventually produces multiple distinct good solutions instead of just the one the usually 
produced by other evolutionary algorithms. 
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Fig. 15. The behavior of adaptive variation probability in evolutionary algorithms. 

 
 

_______________________________________________________________________________________________________ 
J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving 



 
_____________________________________________________________________ 

37

 
4.5 Hybrid Algorithms 
 
Hybrid algorithms are a combination of two or more different techniques. 
Evolutionary algorithms have been successfully hybridized with other soft computing 
methods, such as fuzzy logic and neural networks. The combination of traditional 
hard computing methods and evolutionary algorithms is also common. The main 
reason for using these kinds of hybrid algorithms is to combine the strengths of 
different approaches in order to overcome the weaknesses of an individual method. 
Some hybridization schemes are discussed below. 
 

4.5.1 Fuzzy Logic and Evolutionary Algorithms 
 
One of the best-known areas of soft computing is fuzzy logic (FL) [Wan96a]. 
Developed in the 1960s by Lofti A. Zadeh [Zad02], FL has gained acceptance as an 
efficient way of transforming human knowledge into machine-understandable form. 
What is significant in FL is that it is very persistent with all kinds of uncertainties and 
lacks of information. Furthermore, it does not need very specific measurements to 
give good results. These kinds of properties are useful in adjusting the control 
parameters of EC. For instance, if we want to tune the mutation probability of a GA, 
we need to make decisions as to whether to increase or decrease the mutation 
probability on the basis of some population statistics, such as average fitness or the 
improvement of the maximum fitness over previous generations. There are no strict 
boundaries regarding our knowing when and how to manipulate the mutation 
probability. 
 
In this dissertation, the emphasis is on applying fuzzy logic in order to improve the 
performance of evolutionary computation algorithms. However, on the other hand, 
evolutionary computation can also be used to improve the performance of fuzzy logic 
systems. A survey of EC enhancement of the performance of FL is presented in 
[Yuh99] and an application in the field of classification systems in [Mur95]. In 
[Mor05] EC is used to tune the if-then rules of a fuzzy function approximation 
system, and in general, it seems that the main focus of the research is on fusing EC 
and FL so that EC is used to enhance FL at present. 
 
Takagi proposed a genetic algorithm employing FL to control population size, 
crossover probability, and mutation probability in [Tag93]. Wang describes in 
[Wan96b] the use of FL-tuned EC in a power economic dispatching problem in such a 
way that FL is used to control both the mutation and crossover probabilities. 
McClintock [Mcc97] implemented Takagi’s scheme in the area of star pattern 
recognition to aid spacecraft navigation. In [Sub03] it is concluded that if FL is used 
to control EC control parameters, the variance of multiple search runs can be 
decreased in some cases. 
 
Recently, FL has been used to boost EC performance in [Ahk04], in which a GA was 
used to configure an optimal electrical distribution network. In that paper FL controls 
both the mutation and crossover probabilities of the genetic algorithm and as inputs it 
uses the fitness averages of the two previous generations. In [Pyt04] a genetic 
algorithm is also modified, using an FL system, so that the selection probabilities, as 
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well as the mutation and reproduction probabilities, are controlled by FL. As inputs 
that paper uses the relative fitness of individuals, as well as the fitness improvement 
over previous generations.  
 
Figure 16 demonstrates the basic procedure of a Mandani-type fuzzy logic system. 
The core of such a fuzzy logic system is a fuzzy rule base, which defines the behavior 
of the fuzzy system. The fuzzy rule base contains the characteristics of the fuzzy 
system, and it is usually compiled by an expert in a particular application area. The 
fuzzy rules can be expressed as follows. 
 
If V1 is p1 and V2 is p2, then V3 is p3. 
 
V1, V2, and V3 are variable names, e.g. maximum fitness, minimum fitness, and 
mutation probability, and p1, p2, and p3 define the variables literally. These linguistic 
definitions can be, e.g. low, medium, high etc. In Fig. 16 each rule in the rule base 
defines an area, and all the areas defined by individual rules are combined together. 
From the combination of areas the final output of the fuzzy system is defuzzified using 
one of the various existing methods. For example, the Center of Area method 
defuzzifies the output by calculating the center of gravity of the composite area and 
the result is a crisp value. 
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Fig. 16. The basic principle of a Mandani-type fuzzy logic system.  
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There exist several ways to perform the various stages of a fuzzy system and these 
stages are more thoroughly explained, for example, in [Wan96]. Fuzzy logic- 
controlled adaptive parameters were implemented in publications [P5] and [P6] in this 
dissertation. 
 

4.5.2 Neural Networks and Evolutionary Algorithms 
 
A neural network, also known as an artificial neural network, is a computational 
paradigm exhibiting a low-level resemblance to the human brain [Hay98]. Neural 
networks consist of units capable of learning, neurons. A single neuron is capable of 
performing only very limited tasks, but an interconnected network of multiple neurons 
is capable of handling difficult and complicated assignments, such as universal 
function approximation. Neural networks, like other soft computing techniques, are 
robust and tolerant towards errors in the input data. The structure of a neuron is 
depicted in Fig. 17.   
 awi

b 

fa(a)Σ ynn,ixnn,i 
 
 
 

Fig. 17. A single neuron. 
 

The neuron receives an input xnn,i through weight wi. The weighted input is summed 
with a bias term b and this sum is the fed to an activation function fa. The overall 
output of the neuron, ynn,i, is thus 
 
ynn,i = fa (wi ·xnn,i+b)         (1) 
 
The weights wi of the neural network are first trained using a training set of samples. 
There are various methods for training the neural network [Hay98]. After the training, 
the neural network can be used to approximate a function determined by the training 
set with new data. 
 
There exist multiple types of neural networks, and the multi-layer perceptron (MLP) 
is one of the most commonly used. The single neuron shown in Fig. 17 is shown in 
simplified form in Fig. 18a. In Fig. 18b this model is used to display an MLP network 
with three input neurons and a single output neuron. 
 
 
 
 
 
 
 
 
 
   Fig

x 

x

 

_____
J. Ma
. 18a. A simplified illustration of a neuron.                Fig. 18b. A generic MLP network. 
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Evolutionary algorithms and neural networks can be fused together in two main ways: 
either EC is used to improve NN performance, or vice versa. Kampfner et al. [Kam83] 
use an evolution-based computational method to evolve neural networks. In [Tsa06] a 
specific genetic algorithm is used to find the optimal parameter values and structure 
for a neural network. Similarly, in [Lam04] a genetic algorithm is used to devise the 
parameters of a neural network designed for digit and command interpretation for an 
electronics book. In this dissertation, however, the emphasis is on neural networks 
aiding evolutionary computation as in [P3]. In [Han97b] Han et al. discuss a method 
to produce silicone oxide films for integrated circuit fabrication using genetic 
algorithms with a neural network-based fitness function. In that paper, the calculation 
of fitness is a very complex task and a neural network is set up on the basis of sample 
data and this network is then used to evaluate the fitness of the solutions produced by 
the genetic algorithm. In [Pet98] a method whereby a neural network is used to 
produce the selection probabilities for individuals in a solution pool operated by a GA 
is discussed. That fusion of NN and GA is used to estimate the parameters of a model. 
In [Geo01] NN is used to calculate the fitness of the individuals in a GA in a 
transformer manufacturing problem. In [Miz00] Mizutani et al. discuss a fusion 
method involving NN, FL, and GA in the context of evolving color recipes. That 
paper uses both fuzzy logic and neural networks to produce the initial population for 
the genetic algorithm. Additionally, a neural network evaluates the fitness function of 
the genetic algorithm. 
 

4.5.3 Hard Computing Methods and Evolutionary Algorithms 
 
Hybrid algorithms fusing hard and soft computing methods are not dealt with in 
publications [P1]-[P8] in this dissertation, but they are widely used to improve the 
performance of evolutionary algorithms. These methods commonly take advantage of 
the good global search capabilities of evolutionary algorithms and the local search 
power of traditional methods. EC algorithms usually find the area of good fitness 
quite easily, but finding the final peak within that area may be time-consuming. 
 
Lamarckian and Baldwinian strategies [Mag00] are often mentioned when these 
hybrid algorithms are being discussed. The Lamarckian approach means that an 
individual is subjected to HC-based local optimization at some stage of its evolution, 
and after this local search it is put back into the EC solution pool. If the HC 
optimization has resulted in a better fitness value, the structure of this individual is 
made to correspond to the new fitness value. Otherwise the individual is left intact. In 
the Baldwinian approach the structure of the individual is not changed, even though a 
better fitness may be achieved using HC, but only the fitness value is upgraded to the 
better one. As an example, evolutionary algorithms and gradient search in general are 
discussed in [Sal98]. In that paper an evolutionary optimization algorithm is executed 
conventionally for a specified interval of generations. At the end of the interval, 
solutions are subjected to a local search procedure, implemented using a gradient-
based method. This kind of gradient descent approach relies on calculating the 
derivative for each parameter separately and adjusting the solution variable values 
accordingly. After the HC-based optimization procedure, the SC-based optimization 
methods resume.  
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It has been observed that using both hard computing methods and soft computing 
methods, including evolutionary computation, often result in more competitive 
solutions than using SC or HC alone. This fusion of hard and soft computing is 
discussed in detail in [Ova04] and applications implementing such techniques are 
surveyed in [Ova99]. 
 

4.6 Aging in Evolutionary Algorithms  
 
Aging is a natural phenomenon for all animal species. The process of aging has been 
implemented in EC algorithms using many different approaches. [Gho98] presents the 
scheme of effective fitness. In that approach the age of an individual affects the fitness 
of the individual, younger and older individuals being less valuable than middle-aged 
individuals. In [Hub98] the age of an individual is used to direct the search of the 
algorithm. Each individual’s age is expressed in terms of the number of generations it 
has managed to survive. Old individuals indicate good areas to search from, since it 
has been difficult for the selection operator to reject these individuals. In this scheme 
new individuals are generated through mutation from the best individuals. In [Iwa02] 
individuals’ ages are used to control which operators are applied to any specific 
individual. For example, young individuals undergo only reproduction but no 
mutation. The main idea in aging in general is the prevention of stagnation, so that 
one average solution cannot dominate the population for too long a time. Aging is 
considered in [P5] in this dissertation. 
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5. Statistical Comparison of Evolutionary Algorithms 
 
Evolutionary algorithms are simplifications of the phenomena of the surrounding 
natural systems. Natural and social environments offer an endless reservoir of ideas to 
be used in evolutionary computation. Clearly, not all natural phenomena can be 
transformed into an efficient optimization algorithm, if they can reasonably be 
modeled at all. Even if we could model all the phenomena of nature, for most of them 
we could only guess whether a particular occurrence is really pushing evolution 
forward or if it is just another blind alley of evolution that will die away after the next 
hundred generations. Usually, the value of an idea can only be measured through 
extensive testing. This leads us to an important question: when can one algorithm be 
considered to perform better than another in a certain optimization task?  
 
To make a decision whether an algorithm performs well, the performance of the 
proposed algorithm needs to be compared to that of a reference algorithm or a 
reference performance value. In EC algorithms this means that the reference 
algorithm and the proposed algorithm differ only in the proposed new modification. 
For example, if we want to determine the effect of aging in a GA, GAs with and 
without aging need to be compared. Other parameters, such as population sizes, initial 
populations, and variation probabilities need to be the same. In particular, the number 
of objective function evaluations needs to be (at least roughly) the same in both the 
algorithms. If one algorithm has more opportunities to explore the search space than 
another, then it is probable that this algorithm will find a better solution than the other.  
 
In general, the computational load presented by two algorithms under comparison 
should be roughly the same. Naturally, some control mechanisms of EC algorithms 
might take somewhat longer to execute than others, but the total run times should be 
approximately the same. If one algorithm uses far more computational resources, then 
it is probably likely to find better solutions than an algorithm employing less 
computation. In other words, both the algorithms may perform equally well if they are 
given an equal amount of iterations/generations. The insight the experiment brings 
depends on the settings of the experiment. This means, for example, that not lot of 
knowledge may be gained from an experiment in which the algorithms are given a 
different amount of computational time or resources, i.e. it is likely that one of the 
algorithms performs better because of the experimental setup.  
 
A common reason for the comparison between two algorithms being less insightful is 
the extensive elaboration of the proposed algorithm and the negligible tuning of the 
reference algorithm. It is very likely that any modified EC algorithm will probably 
outperform a scratch-built EC algorithm without any parameter tuning. More insight 
is achievable only if the reference algorithm too is as good as it can be. Naturally, this 
is difficult to confirm in practice, but it is emphasized to say that a serious effort 
should be put into tuning the reference algorithm too. 
 
EC-based optimization methods are stochastic by nature, so we cannot be absolutely 
sure how the algorithm is going to behave. Running two algorithms for a certain 
number of generations and comparing the final maximum objective function values 
tells us very little about the differences in the algorithms’ performance. In general, as 
many runs as possible should be run for all the algorithms, and on the basis of the 
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maximum fitness averages and variances some assumptions can be made as to 
whether one algorithm is better than another in a certain optimization problem. 
Suggestions on using proper statistics in EC are given in [Chr04]. In [Eib02] Eiben et 
al. discuss the experimental research methodology used in EC. That paper focuses on 
the most common mistakes made in EC research when considering common scientific 
research standards and it adds to the knowledge of most of the less experienced 
researchers working in the field of EC. 
 
Statistical methods are not always properly used in SC-related papers. Flexer 
expresses his frustration towards inadequate statistics in neural network-related papers 
in [Fle96]. In particular, the documentation of the statistical methods used leaves a lot 
of things unexplained. That paper offers various important principles that are also 
applicable to the field of evolutionary computation. 
 

5.1 Methods for Comparing Evolutionary Algorithms 
 
Evolutionary optimization algorithms are stochastic in nature. This means that the 
results they produce are, in a sense, random and uncertain. This randomness follows 
from the use of a random number generator (RNG) as a part of most of the operators, 
e.g. an RNG can be used to decide the crossover point of two individuals, the location 
of a mutation, or the individuals to be selected for the next generation. Thus, runs of 
evolutionary algorithms with exact parameter settings produce different results if the 
RNG is not reset. Since evolutionary algorithms behave differently each time, the 
only acceptable way to compare the results of different algorithms is to use data 
collected over several runs. Below, some very basic tools for statistical comparison 
are discussed [Mil90]. 
 
The average of result samples is a commonly used measure for the performance of 
evolutionary algorithms. The average has the problem of letting so-called outliers 
affect the result; that is, a few exceptionally good or bad results can distort the 
average, especially if small sample sets are used. A median operator, similar to the 
average, conveniently reduces the effect of outliers.  
 
However, comparing the average and median values alone is insufficient, for these do 
not explain the distribution of the data. Variance, then, is used to describe how much a 
single value usually differs from the expected value. The expected value, in this case, 
can be expressed as either an average or the median. Variance also tells us something 
about the reliability of an algorithm: the smaller the variance, the more reliably the 
algorithm produces results around the expected value. Then again, large variance 
denotes that the results of an algorithm can vary significantly from the expected value. 
 
A convenient and illustrative tool for comparing two data sets is the box plot, also 
known as the box-and-whisker diagram. A box plot for the two data sets, A and B, 
shown in Table 1 is shown in Fig. 19. 
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Fig. 19. A box plot for data sets A and B. 

Table 1. Data sets A and B 
A B 

0.4493 
0.2088 
0.9641 
0.0765 
2.1234 
0.0015 
0.2609 
0.3469 
0.9105 
0.1164 
0.5779 
0.4946 
0.0736 
0.9285 
0.4436 
0.3281 
0.8889 
0.4931 
0.9509 
0.6566 

1.8953 
0.8462 
1.3599 
1.0444 
1.5413 
0.0486 
1.9685 
0.0905 
1.5831 
1.2426 
0.5689 
1.3714 
1.3818 
0.0093 
1.7458 
1.2561 
0.6411 
0.0724 
0.7127 
1.6466  

Va
lu

e 

 
The box in the box plot consists of three horizontal lines: the lower quartile, the 
median, and the upper quartile, from bottom to top. The lower quartile cuts off the 
lowest 25% of the data, whereas the median and upper quartile cut off 50% and 75% 
of the data, respectively. The whiskers are the lines extending from each end of the 
box denoting the whole scope of the observations, i.e. the lowest line indicates the 
smallest sample value and the highest line denotes the highest observed value. A “+” 
sign denotes an outlier that is not considered a part of the sample set. For example, the 
value 2.1234 is considered as an outlier in sample set A. In Fig. 20 the boxes have 
notches on both sides. These notches represent a robust estimate of the uncertainty of 
the medians when a box is compared with another box. In Fig. 19, data set B has a 
greater median value and the notches of the sets do not overlap. In this light, it is 
relatively safe to state that set B has a higher median value than set A. Averages, 
medians, variances, and box plots are standard tools for statistical comparison and 
these routines are automated in many of the sophisticated mathematical software 
packages available, such as Matlab [Mat06a].  
   
The Student’s t-test [Chr04] is occasionally used to compare the outputs of two data 
sets produced by evolutionary algorithms. The t-test is a convenient tool, but using it 
correctly requires the data set to be normally distributed. This is difficult, if not 
impossible, to show in practice in the context of EC and thus one should be very 
careful when using the t-test to compare the results of two different evolutionary 
algorithms. Using the t-test when the requirement for the normal distribution of the 
input data sets is not met may lead to erroneous results. However, the reliability of the 
t-test depends on a few things, such as sample size and the degree of normality. 
 

5.2 Bootstrap Resampling-Based Multiple Hypothesis Testing  
 
The problem of comparing two data sets for equality or difference in a parameter of 
interest is a common problem encountered in many fields of science. Thus, alternative 
statistical methods for comparing parameters, other than averages and standard 
deviations, have been developed. One interesting approach to this problem of 
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comparison is the use of bootstrap resampling-based multiple hypothesis testing, 
discussed in [Efr98]. This approach allows the user to compare the performance of the 
two algorithms and it requires no distributional assumptions. This makes resampling-
based multiple hypothesis testing an attractive tool for comparing the results produced 
by evolutionary algorithms. The resampling-based multiple hypothesis testing 
framework is explained in [Efr98] as follows. 
 
To start with, there are two sets of data, S1 and S2, generated by, for example, two 
different evolutionary algorithms and they are possibly from two different probability 
distributions, F and G.  We will consider the mean of the data distribution to be a 
suitable parameter of interest to estimate as a measure of the algorithm’s 
performance. The task is to determine whether the two distributions have equal means 
or one of the two algorithms performs better in this particular problem. A null 
hypothesis, H0, of no difference between the means of F and G is created. 
 

210 : SSH =            (2) 
 
This null hypothesis states that the means of both the data sets are equal. If we cannot 
reject the null hypothesis then there is insufficient evidence to conclude that they are 
unequal; otherwise, there exists a difference between them, and this is the alternative 
hypothesis, 21 SS ≠ , to the null hypothesis. The null hypothesis and the alternative 
hypothesis may be defined as complements of each other, so that eventually one of 
them is true. Since the initial population may have an effect on the performance of the 
algorithm, in this comparison scenario multiple initial populations are created and 
both the algorithms are run a number of times using the same initial population. From 
this it follows that there is a null hypothesis for each initial population created and that 
altogether there are as many null hypotheses as there are initial populations created. 
Conclusions on the performance differences can be drawn on the basis of the ratio 
between the rejected null hypothesis and the number of initial populations. 
 
A hypothesis test begins with a selection of test statistics, , and in this case it is 
convenient to choose the Studentized mean difference as the test statistics. So, 
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1σ  and 2

2σ  represent the variances of each point the original data sets 1 and 2, 
respectively. k1 and k2 denote the sample sizes of S1 an S2, respectively. 
 
Having the data sets S1 and S2, the achieved significance level, the p-value, is defined 
as the probability of observing at least that large a value when the null hypothesis is 
true. 
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The smaller the p-value, the stronger the evidence against the null hypothesis is.  is 
calculated directly from the data sets S

θ̂
1 and S2 sized k1 and k2 data points, 

respectively,  and *θ̂  is the test statistic calculated from the resampled data. 
 
Finally, the approximation for the bootp , the bootstrap-based estimate for the p-value, 
is calculated as follows: 
 

1. Modify both the data sets S1 and S2 by subtracting the set mean and adding the 
common mean, mS12 of S1 and S2: 

 
1, 1 1 12

2, 2 2 12

adj s

adj s

S S S m

S S S m

= − +

= − +
         (5) 

 
2. Draw B (e.g. B>10000) samples of size k1+k2 with replacement from a pool 

containing all the individual samples of the sets S1,adj and S2,adj. The probability 
for sampling a single observation is 1/(k1+k2). The first k1 resampled values 
are denoted by S1

* and the last k2 values are called S2
*, the asterisk indicating 

resampled values rather than observed ones. 
  
3. The test statistic for each of the B sampled sets is calculated as    
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4. Finally, we have an estimate for the p-value as 

 

{ }*
boot

ˆ ˆp # ( ) / ,      1 2 .b B b , ,...,Bθ θ= ≥ =                 (8)  

 
where  is the observed value of the test statistic. Equation 10 means that pθ̂ boot equals 
the number of resampled sets that have a larger test statistic value (in magnitude) than 
the observed value and this number is then divided by B to get an approximation for 
the achieved significance level. There are no strict guidelines as to the values of p 
showing when to reject the null hypothesis and support the alternative hypothesis, but 
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the p-value is usually selected before the test; Efron et al. [Efr98] suggest the 
conventions shown in Table 2. 
 

Table 2. Rough guidelines for selecting the p-value [Erf98]. 
p-value Evidence against Ho
< 0.10 Borderline 
< 0.05 Reasonably strong 
< 0.025 Strong 
< 0.01 Very strong 

 
The field of soft computing does not generally use the commonly accepted procedure 
for comparing the data sets produced by two different algorithms. Resampling-based 
multiple hypothesis testing is an interesting option that should be seriously 
considered. The entire procedure is explained in [Efr98] and more recent results 
concerning multiple hypothesis testing can be found in [Pol05]. 
 
The resampling-based multiple hypothesis testing method for statistical comparison is 
a non-parametric test, meaning that it does not require assumptions regarding the 
underlying distribution of the sample sets. Parametric tests, then, rely on some 
assumptions regarding the distribution of the data.  
 

5.3 About Statistical Comparison of Evolutionary Algorithms 
 
When developing evolutionary algorithms, similar attention must be paid to the 
evaluation of the results as to the development process itself. Evolutionary algorithms 
produce stochastic results, and therefore as much data as possible should be collected 
before the algorithm is evaluated. The amount of data to be collected is usually 
determined by the available time and computational resources and the computational 
requirements of the algorithm under study. Additionally, attention must be paid to the 
reference algorithms. It is comparatively easy to produce an algorithm that 
outperforms, e.g., the basic genetic algorithm. The comparison of two algorithms is 
only insightful if a serious effort is made to elaborate both the reference and the 
proposed algorithm. Preferably, if we are studying a particular modification to an 
existing algorithm, the reference and the proposed algorithm should only differ in 
respect of the modification being studied. Thus, it is possible to conclude if the new 
mechanism adds to the performance of the algorithm. Each algorithm under 
comparison should be given an equal amount of computational resources or time in 
order to ensure an insightful comparison. In addition, initial populations may 
introduce bias to the results, so the use of the same initial populations for the 
algorithms being studied is preferable. 
 
Averages and medians give some indication of the performance of the algorithm. 
However, a minimum requirement is to report the standard deviation of these results, 
since average and median values alone are poor estimates of the reliability of the 
results. More sophisticated comparison methods, such as the use of resampling-based 
multiple hypothesis testing, are strongly encouraged. The field of evolutionary 
computation does not commonly use the accepted methods for statistical evaluation. 
This dissertation hopes to raise discussion related to this important matter.  
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6. Summary of the Publications 
 
This dissertation is divided into three parts. Publications [P1], [P2], and [P4]-[P6] 
discuss the use of enhanced evolutionary algorithms for complex optimization 
problems. Publication [P3] concentrates on reducing the computational requirements 
imposed by the objective function evaluation by means of neural networks. Finally, 
publications [P7] and [P8] illustrate the use of a comprehensive statistical scheme for 
comparing two different evolutionary algorithms. In the following sections, the main 
results of the publications and the contribution of the author are discussed.    
 
 
6.1 [P1]  J. Martikainen and S. J. Ovaska, “Designing multiplicative general 

parameter filters using adaptive genetic algorithms,” in Proc. of the 
Genetic and Evolutionary Computation Conference, Seattle, WA, 
2004, pp. 1162-1167. 

 
In [P1] an adaptive genetic algorithm is used to optimize a Multiplicative General 
Parameter (MGP) basis filter, a Finite Impulse Response (FIR) filter design problem. 
MGP-FIRs have been designed before using evolutionary computation, but this paper 
introduces an effective adaptive GA-based approach to produce competitive design 
performance. Additionally, an applicable structure for the solutions was discovered 
and seeding the initial population with this structure was found to accelerate the 
convergence of the algorithm. 
 
The main result of this paper is the successful implementation of the adaptive 
variation probabilities of the EC algorithm. Modifying the original adaptive 
probabilities of [Sri94], the results showed better performance in terms of increased 
average fitness when compared to a reference algorithm without adaptive parameters 
and the original adaptive parameters in [Sri94]. Other important results include the 
optimization of the adaptation gain factor of the MGP-FIR and the proper structure for 
seeding the initial population. Altogether, this paper proposed the most powerful 
design method for MGP-FIR basis filters that existed at the time of its publication.  
 
The author was responsible for implementing and modifying the adaptive scheme 
used in this paper. S. J. Ovaska introduced the problem to the author and suggested 
the use of genetic algorithms as the optimization tool. 
 

6.2 [P2]  J. Martikainen and S. J. Ovaska, “Designing multiplicative general 
parameter filters using multipopulation genetic algorithms,” in Proc. of 
the 6th Nordic Signal Processing Symposium, Espoo, Finland, 2004, pp. 
25-28. 

 
In [P2], the work already started in [P1] is continued, namely, the efficient 
optimization of MGP-FIR basis filters. In this study, a two-population GA (2PGA) 
scheme is introduced, in which a large plain population conducts a global search 
while a small elite population searches through local optima. The two populations are 
allowed to exchange solutions under predefined rules. The proposed two-population 
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GA is straightforward to implement and, apart from adding to the performance of its 
single-population counterpart, it does not add much to the complexity of the basic 
algorithm. 
 
The main result of the paper is the introduction of a straightforward two-population 
genetic algorithm. Multiple-population EC algorithms have been studied extensively 
before, but the proposed approach, contrary to the common trend, uses only a single 
CPU instead of actual parallel hardware. Similar idea to this scheme have also been 
studied before, but what makes this implementation stand out is the fact that the 
individuals are placed and maintained in subpopulations on the basis of their fitness 
characteristics, whereas allocating individuals to subpopulations has been more or less 
a random process in the past. 
 
This proposed algorithm is convenient to implement and it can be applied with every 
EC algorithm, thus making it a very general-purpose enhancement. The computational 
overhead resulting from the multipopulation extension is negligible. The results in the 
paper clearly show that the proposed scheme improves even further the design process 
of the MGP-FIR basis filter.   
 
The author implemented and tuned the proposed 2PGA scheme and was also 
responsible for conducting the experiments. S. J. Ovaska proposed the idea of 
hierarchical populations, a concept which was later refined in cooperation with the 
author. 
 
 
6.3 [P3]  J. Martikainen and S. J. Ovaska, “Fitness function approximation by 

neural networks in the optimization of MGP-FIR filters,” in Proc. of 
the IEEE Mountain Workshop on Adaptive and Learning Systems, 
Logan, UT, 2006, pp. 231-236. 

 
Previous work in [P1] and [P2] developed efficient algorithms for the MGP-FIR basis 
filter optimization problem. Still, the evaluation of the MGP-FIR objective function 
was time-consuming, regardless of the efficient optimization algorithms. This study 
concentrated on reducing the time required for the evaluation of the objective function 
by means of neural network approximation. 
 
The main result of the paper is the fusion of neural networks and genetic algorithms to 
improve the optimization process of MGP-FIR basis filters. An appropriate structure 
for neural networks is defined and the training of the neural network is embedded in 
the on-line optimization process. Furthermore, the fitness function was redefined so as 
to conform better to the requirements of the application. The proposed scheme is 
capable of reducing significantly the computational effort required by the fitness 
function evaluations and this also includes the time required to train the network. An 
important notion was that it was difficult to approximate the different parameters of 
the objective function accurately with separate neural networks. Instead, using a 
single network seems to bind the approximations together, so that the results are more 
accurate than those obtained using separate networks.  
 
S. J. Ovaska proposed the use of neural networks as part of the fitness function. The 
author and S. J. Ovaska reformulated the fitness function together. The author was 
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responsible for elaborating and tuning the NN-assisted fitness function, as well as the 
general optimization scheme. 
 
 
6.4 [P4] J. Martikainen and S. J. Ovaska, “Hierarchical two-population genetic 

algorithm,” International Journal of Computational Intelligence 
Research, vol. 2, no. 4, 2006, in press.  

 
Publication [P4] is a comprehensive study that concentrates on the two-population 
genetic algorithm proposed in [P2]. The 2PGA scheme proposed in [P2] contains 
many tunable parameters and the purpose of this work was to understand the effect of 
these parameters on the optimization process. This work is important, since the tuning 
of any algorithms’ parameters can be a time-consuming process.  
 
The main result of this paper is the instructions that could be given concerning 2PGA 
parameter settings. On the basis of the paper, a user can implement the 2PGA scheme 
and start searching for suitable parameter values for a particular application from 
reasonable initial values. The proposed 2PGA scheme is intended to improve a basic 
population-based optimization scheme and cannot replace more sophisticated 
methods. However, this enhanced basic algorithm too can benefit from any 
advantageous modification applicable to evolutionary computation.     
 
The author was fully responsible for carrying out the research concerning the affect of 
different parameter settings in the 2PGA scheme. S. J. Ovaska originally proposed the 
idea of investigating the effect of different parameter settings. 
 
 
6.5 [P5] J. Martikainen and S. J. Ovaska, “Optimizing dynamical fuzzy systems 

using aging evolution strategies,” in Proc. of the 9th IASTED 
International Conference on Artificial Intelligence and Soft 
Computing, Benidorm, Spain, 2005, pp. 5-10.  

 
In [P5], the 2PGA scheme proposed in [P2] is implemented using evolution strategies 
(2PES). Apart from this, an adaptive aging parameter is introduced in order to further 
improve the algorithms’ performance. The aging parameter controls the remaining 
lifetime of each solution on the basis of the value of the offspring they have produced. 
Different aspects of aging have been implemented before in EC, but in this study the 
remaining lifetime of an individual is controlled by fuzzy logic based on the offspring 
the individuals produce, as well as the population dynamics. Such an approach 
(combining multiple populations and a fuzzy aging parameter) has not been used 
before. As a test case, this paper uses a very demanding optimization task dealing 
with the parameters of a dynamical fuzzy system with linguistic information 
feedback.  
 
The main result of this paper is the successful implementation of the 2PGA scheme 
with evolution strategies. Additionally, the proposed fuzzy logic-controlled aging 
parameter was found to add to the performance of the 2PGA scheme used for 
comparison.  
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S. J. Ovaska proposed the use of aging as a part of the MPGA scheme. The author 
designed and implemented the fuzzy logic-controlled aging parameter.  
 
 
6.6 [P6] J. Martikainen and S. J. Ovaska, “Using fuzzy evolutionary 

programming to solve traveling salesman problems,” in Proc. of the 9th 
IASTED International Conference on Artificial Intelligence and Soft 
Computing, Benidorm, Spain, 2005, pp. 49-54. 

 
Publication [P6] introduces a new way to implement problem decomposition to 
improve evolutionary programming performance. As a demanding test case, a 500-
city Traveling Salesman Problem (TSP) was used. It was found that the best way to 
decompose a problem varies as the algorithm proceeds. Studying the behavior of the 
algorithm with different parameter settings, we were able to present fuzzy adaptive 
control for partitioning the problem as the algorithm is executed. These divide-and-
conquer-type approaches have been used before, but no fuzzy control for this kind of 
partitioning seems to be available. In particular, in the proposed method the 
partitioning of the problem into sub-problems takes place repetitively instead of just 
once.  
 
The main result of this paper was the design and implementation of the fuzzy logic-
controlled problem repetitive decomposition scheme. The proposed adaptive 
partitioning scheme was able to outperform the static approach used as a reference.  
 
S. J. Ovaska proposed the idea of divide-and-conquer for large-scale optimization 
problems and the author designed and implemented the fuzzy logic-controlled divide-
and-conquer scheme used to partition the TSP.  
 
 
6.7 [P7]  D. Shilane, J. Martikainen, S. Dudoit, and S. J. Ovaska, “A general 

framework for statistical performance comparison of evolutionary 
computation algorithms,” in Proc. of the IASTED International 
Conference on Artificial Intelligence and Applications, Innsbruck, 
Austria, 2006, pp. 7-12. 

 
The field of evolutionary computation does not commonly take advantage of the 
accepted procedures for sound statistical comparison of two algorithms. Publication 
[P7] illustrates the use of such a statistical comparison scheme based on bootstrap 
resampling and multiple hypothesis testing.  
 
The proposed statistical scheme is explained thoroughly in [P7] and the scheme is also 
shown to work in a case involving two generic genetic algorithms. This publication 
should enable all practitioners of evolutionary algorithms to implement these methods 
in their studies for improved statistical analysis. 
 
The problem of not applying the unified standards for statistical comparison within 
the EC field was recognized by S. J. Ovaska and the author. The actual problem of 
properly comparing two data sets produced by different evolutionary algorithms was 
formulated by D. Shilane, the author, and S. J. Ovaska. D. Shilane proposed the 
statistical scheme, including bootstrap resampling-based multiple hypothesis testing. 
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The author was responsible for implementing the evolutionary algorithms and D. 
Shilane implemented the statistical testing procedure. The publication was a joint 
effort by the author and D. Shilane. S. J. Ovaska and S. Dudoit offered advice and 
comments during the research process. 
 
   
6.8 [P8]  J. Martikainen and S. J. Ovaska, “Comparison of a fuzzy EP algorithm 

and an AIS in dynamic optimization tasks,” in Proc. of the IEEE 
Mountain Workshop on Adaptive and Learning Systems, Logan, UT, 
2006, pp. 7-12. 

 
New optimization methods making use of natural phenomena are frequently 
introduced. Recently, artificial immune systems have been one such approach. 
Publication [P8] studies the optimization scheme of AIS, the clonal selection 
principle, in a dynamic environment. This study was conducted in order to survey the 
capabilities of a standard CSP and a specialized EC algorithm in a dynamic 
environment. CSP is known to be capable of finding multiple good solutions, whereas 
evolutionary algorithms usually find only a single optimum.  
 
The main result of this publication is the notion of CSP outperforming the 
evolutionary algorithm in the studied dynamic environments. The evolutionary 
algorithm that was implemented does well in a static problem, but, because of the 
preserved diversity, the CSP does better when the objective function varies in time. 
Publication [P8] uses the statistical scheme proposed in [P7] to study the actual 
difference of the algorithms. The statistical comparison scheme has some adjustable 
parameters and [P8] studies the effects of some of them. The conclusion regarding the 
parameter setting indicates that too few bootstrap resamplings may cause erroneous 
interpretations of the results of the statistical comparison. 
 
The author and S. J. Ovaska jointly proposed the evaluation of AIS and an 
evolutionary algorithm in a dynamic environment. The comparison of the effect of 
different parameter values was proposed by the author. All the implementation and 
analysis was done by the author. 
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7. Conclusion 
 
This dissertation proposes methods aimed at improving the reliability of evolutionary 
algorithms in complex optimization tasks and accelerating problem-solving. The 
dissertation takes three distinct viewpoints on evolutionary computation-based 
optimization and offers improved methods for tackling these commonly agreed 
demerits. These key areas for additional improvement are the reliability of the 
algorithms, reducing the time required to evaluate the complicated objective function, 
and the use of a commonly agreed framework for the comprehensive statistical 
comparison of evolutionary algorithms.   
 

7.1 Main Results 
 
The main results of this dissertation can be divided into three main categories as 
defined by the goals of the work. This work proposes new algorithms to increase the 
reliability of evolutionary computation in complex optimization problems. The 2PGA 
scheme discussed in publications [P2] and [P4] is a new approach to conducting a 
local and global search in parallel, using only genetic algorithms and with negligible 
additional computational costs. The 2PGA scheme is not intended to replace more 
sophisticated algorithms, such as hybrid methods with evolutionary algorithms and 
hard computing-based local search mechanisms. Rather, the proposed scheme is 
intended to act as a powerful basic platform that can be enhanced using the same 
means as any other population-based optimization scheme. The 2PGA has multiple 
tunable parameters and their effect is studied in [P4], a work that also suggests a 
reasonable parameter set from which to start the search for a competitive parameter 
set for a specific application. 
 
In addition to the 2PGA scheme, fuzzy logic is used to improve the reliability of 
evolutionary algorithms. Publications [P5] and [P6] use fuzzy logic to adapt the 
parameters of evolutionary algorithms on the basis of the changing characteristics of 
the solution population. Publication [P5] introduces a fuzzy aging strategy that 
determines the remaining lifetime of an individual on the basis of the offspring it 
produces. In [P6] fuzzy logic is used to repeatedly partition a traveling salesman 
problem into smaller sub-problems as the algorithm proceeds.  
 
Publication [P3] studies a scheme in which a part of an objective function of an 
evolutionary algorithm is approximated using neural networks. The proposed scheme 
approximately halved the computational time required to evaluate the objective 
function under study. The trade-off for faster computation is the approximation error. 
However, the proposed method succeeds in minimizing the approximation error so 
that the proposed method eventually outperforms the reference algorithm. The study 
of the NN approximated fitness function of the MGP-FIR basis filter suggested that it 
is possible to model complex systems accurately enough to speed up the calculation of 
the fitness function. An important notion resulting from extensive experimenting was 
that seemingly unconnected variables could be approximated using only a single 
network rather than an individual network for each variable. This phenomenon is 
caused by the fact that a single neural network binds the approximated variables 
together, not allowing for large errors for individual components. Then again, when 
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using an individual network for each component, separate networks have no way to 
relate to each other and the approximation of the overall fitness function performs 
poorly. 
  
Finally, publications [P7] and [P8] discuss a proper statistical framework suitable for 
comparing two evolutionary algorithms. These publications offer instructions for 
implementing the scheme and give advice on the respective parameter selection.  
 
The proposed modifications to evolutionary algorithms are applicable to many 
evolutionary computation schemes. According to the no free lunch theorem, the 
average performance of all optimization algorithms is similar over all possible 
optimization problems. Thus, the usefulness of the proposed schemes depends on the 
application. In addition, all the proposed techniques could be combined into a single 
algorithm, but then again, the addition to the performance of the algorithm would 
depend on the problem.   
 

7.2 Scientific Importance of Author’s Work 
 
The scientific importance of the work proposed in this dissertation is threefold. First, 
the methods intended for improving the reliability of evolutionary algorithms take a 
different viewpoint to evolutionary algorithms from that which common in the field in 
general. The proposed 2PGA scheme does not try to optimize a single solution; rather, 
it creates a good environment for both fit and less fit solutions to evolve in. The 
proposed scheme bears similarities to niching and coevolution, but, unlike niching 
schemes, it does not require excessive additional computation and the solutions can 
migrate from one niche to another. This kind of low-cost improvement of the basic 
algorithm has not been studied before. Additionally, when compared to coevolution 
frameworks, in the proposed scheme the individuals are placed in populations on the 
basis of their fitness characteristics rather than randomly. The fusion of evolutionary 
algorithms and fuzzy logic has been studied extensively before. However, the fuzzy 
aging parameter that controls the remaining lifetime of solutions on the basis of the 
offspring it produces is unique. Similarly, the repetitive partitioning procedure 
controlled by fuzzy logic has not been studied previously. 
 
The concept of using a neural network to approximate the MGP-FIR basis filter is 
completely new and has never been studied before. The proposed method sets new 
standards for optimizing the MGP-FIR basis filter, since the time required to evaluate 
a candidate filter is nearly halved. 
 
The field of evolutionary computation usually neglects the commonly accepted 
procedure for statistical comparison. The work presented in this dissertation sets an 
example and raises discussion of the important topic of the comprehensive statistical 
comparison of evolutionary algorithms. 
 
To conclude, the methods proposed in this dissertation will enable increasingly 
challenging applications to be tackled more reliably and efficiently by means of 
evolutionary computation. 
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7.3 Topics for Future Research and Development 
 
Topics for future research could include the process of adapting the 2PGA parameters 
on-line using fuzzy logic. Static parameter values are usually not optimal throughout 
the run time of the algorithm, so adaptation could further increase the performance of 
the 2PGA scheme. In addition, the concept of using more than two hierarchical 
populations at the same time should be studied more extensively. 
 
The approximation of the objective function using neural networks could be studied 
further. In particular, the repeated training of the network as the algorithm proceeds 
should be studied more extensively. At present, the approximation error increases 
towards the end, but it is possible to reduce this error by retraining the network again 
during the run time of the algorithm.  
 
To further speed up time-consuming optimization tasks, the feasibility of assigning 
probabilities on the basis of the individual’s fitness values for objective function 
evaluations should be studied. In addition, an effort should be made to see if it is 
possible to gain more insight into the proposed algorithms through theoretical 
examination. In particular, this would mean that accurate models of individual 
operators, such as aging or fuzzy logic-controlled variation operators, should be 
constructed and subjected to theoretical studies. These theoretical inspections could 
bring more insight, e.g., into the operators’ capabilities of maintaining diversity within 
a solution population.  
 
The proposed twofold statistical comparison scheme could be built into a Matlab 
toolbox to offer ready-made easy-to-use functions for practitioners of evolutionary 
computation. Additionally, a comparison procedure for more than two evolutionary 
algorithms simultaneously could be explored.  
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