
TKK Dissertations 55
Espoo 2006

METHODS FOR IMPROVING RELIABILITY OF
EVOLUTIONARY COMPUTATION ALGORITHMS
AND ACCELERATING PROBLEM SOLVING
Doctoral Dissertation

Helsinki University of Technology
Department of Electrical and Communications Engineering
Power Electronics Laboratory

Jarno Martikainen

TKK Dissertations 55
Espoo 2006

Jarno Martikainen

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission
of the Department of Electrical and Communications Engineering for public examination and debate
in Auditorium S3 at Helsinki University of Technology (Espoo, Finland) on the 8th of December,
2006, at 12 noon.

Helsinki University of Technology
Department of Electrical and Communications Engineering
Power Electronics Laboratory

Teknillinen korkeakoulu
Sähkö- ja tietoliikennetekniikan osasto
Tehoelektroniikan laboratorio

METHODS FOR IMPROVING RELIABILITY OF
EVOLUTIONARY COMPUTATION ALGORITHMS
AND ACCELERATING PROBLEM SOLVING
Doctoral Dissertation

Distribution:
Helsinki University of Technology
Department of Electrical and Communications Engineering
Power Electronics Laboratory
P.O. Box 3000
FI - 02015 TKK
FINLAND
URL: http://powerelectronics.tkk.fi/
Tel. +358-9-451 2431
Fax. +358-9-451 2432
E-mail: martikainen@iki.fi

© 2006 Jarno Martikainen

ISBN-13 978-951-22-8523-5
ISBN-10 951-22-8523-1
ISBN-13 978-951-22-8524-2 (PDF)
ISBN-10 951-22-8524-X (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)
URL: http://lib.tkk.fi/Diss/2006/isbn951228524X/

TKK-DISS-2227

Otamedia Oy
Espoo 2006

AB

HELSINKI UNIVERSITY OF TECHNOLOGY
P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

ABSTRACT OF DOCTORAL DISSERTATION

Author Jarno Martikainen

Name of the dissertation
Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

Date of manuscript Date of the dissertation 12/08/2006

 Monograph Article dissertation (summary + original articles)

Department Department of Electrical and Communications Engineering
Laboratory Power Electronics Laboratory
Field of research Electrical Engineering
Opponent(s) Dr. Jonathan Timmis
Supervisor Prof. Seppo J. Ovaska
(Instructor)

Abstract
This dissertation deals with improving the reliability of evolutionary computation algorithms and accelerating problem-
solving in optimization problems. Evolutionary algorithms have proven their value in difficult optimization problems
that are not usually solvable in decent time using conventional optimization methods. However, evolutionary
computation methods still suffer from problems related especially to premature convergence and the lengthy run times
of the algorithms. In addition, the field of evolutionary computation does not commonly use the widely accepted
practices for the comprehensive statistical comparison of two different evolutionary algorithms.

This dissertation aims at improving the process of using evolutionary computation in complex optimization problems
from three perspectives. First, new algorithms are proposed for demanding optimization tasks. These algorithms rely on
two perspectives, using a new multipopulation approach to enable appropriate conditions for candidate solutions to
evolve and fusing evolutionary algorithms with other soft computing technologies, such as fuzzy logic, in a new way.
Second, this dissertation discusses a method for reducing the computational time taken to evaluate a computationally
demanding objective function value using neural network-based approximations. Third, a statistical method for
comparing the results produced by two different evolutionary algorithms is illustrated. This method, relying on
bootstrap resampling-based multiple hypothesis testing, is known outside the field of evolutionary computation, but has
not been used within the evolutionary computing community. This dissertation illustrates the use of the statistical
scheme and studies the parameters affecting the interpretation of its results.

The improvements to evolutionary algorithms this dissertation proposes have been proven to be beneficial by extensive
testing. The proposed algorithms and the means to reduce the time required by the objective function evaluation have
shown an increase in performance when compared to the reference algorithms. This dissertation also aims at awakening
discussion related to the proper use of statistics in the field of evolutionary computation.

Keywords Evolutionary computation, hybrid algorithm, optimization, statistical comparison.

ISBN (printed) 951-22-8523-1 ISSN (printed) 1795-2239

ISBN (pdf) 951-22-8524-X ISSN (pdf) 1795-4584

ISBN (others) Number of pages 82 p. + app. 67 p.

Publisher Otamedia Oy

Print distribution Power Electronics Laboratory

 The dissertation can be read at http://lib.tkk.fi/Diss/2006/isbn951228524X/

AB

TEKNILLINEN KORKEAKOULU
PL 1000, 02015 TKK
http://www.tkk.fi

VÄITÖSKIRJAN TIIVISTELMÄ

Tekijä Jarno Martikainen

Väitöskirjan nimi
Menetelmiä evoluutioalgoritmien luotettavuuden parantamiseksi ja ongelmanratkaisun nopeuttamiseksi

Käsikirjoituksen jättämispäivämäärä Väitöstilaisuuden ajankohta 8.12.2006

 Monografia Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)

Osasto Sähkö- ja tietoliikennetekniikan osasto
Laboratorio Tehoelektroniikan laboratorio
Tutkimusala Sähkötekniikka
Vastaväittäjä(t) Dr. Jonathan Timmis
Työn valvoja Prof. Seppo J. Ovaska
(Työn ohjaaja)

Tiivistelmä
Tämä väitöskirja käsittelee evoluutioalgoritmien luotettavuuden parantamista ja ongelmanratkaisun nopeuttamista
optimointiongelmissa. Evoluutioalgoritmeja on käytetty menestyksekkäästi vaikeissa optimointiongelmissa, joita ei
yleensä pystytä ratkaisemaan perinteisillä menetelmillä kohtuullisessa ajassa. Evoluutioalgoritmeilla on kuitenkin
heikkouksia liittyen erityisesti ennenaikaiseen konvergoitumiseen ja algoritmien pitkiin suoritusaikoihin. Lisäksi
evoluutiolaskennan alalla ei juurikaan käytetä yleisesti hyväksyttyjä menetelmiä kahden evoluutioalgoritmin
perusteelliseen tilastolliseen vertailuun.

Tässä väitöskirjassa esitetään parannuksia evoluutioalgoritmien käyttämiseen vaikeissa optimointiongelmissa kolmesta
eri näkökulmasta. Ensiksi, työssä esitellään uusia algoritmeja, joissa monen populaation avulla järjestetään
ratkaisuehdokkaille sopivat olosuhteet kehittyä ja joissa evoluutiolaskentaan sulautetaan uudella tavalla eri pehmeän
laskennan tekniikoita, kuten sumeaa logiikkaa. Toiseksi, tässä työssä esitetään menetelmä, jolla voidaan lyhentää
laskennallisesti vaativan kustannusfunktion arvon laskemisen vaatimaa aikaa approksimoimalla kustannusfunktion osia
neuroverkoilla. Kolmanneksi, väitöskirjassa esitellään tilastollinen menetelmä kahden evoluutioalgoritmin
vertailemiseksi. Tämä bootstrap-näytteistämiseen perustuva usean hypoteesin testaamisen menetelmä on tunnettu
monilla muilla tieteen aloilla, mutta sitä ei ole käytetty evoluutiolaskennan piirissä. Tässä työssä tutkitaan myös
kyseisen tilastollisen menetelmän parametrien arvojen vaikutusta tulosten tulkittavuuteen.

Väitöskirjassa esitetyt parannukset on todettu hyödyllisiksi perinpohjaisella testaamisella. Sekä esitellyt algoritmit että
kustannusfunktion laskemisen nopeuttamiseksi kehitetty menetelmä parantavat osoitetusti perusalgoritmien
suorituskykyä. Tämän työn tarkoituksena on myös herättää keskustelua luotettavien tilastollisten menetelmien käytöstä
evoluutiolaskennan piirissä.

Asiasanat Evoluutiolaskenta, hybridialgoritmi, optimointi, tilastollinen vertailu.

ISBN (painettu) 951-22-8523-1 ISSN (painettu) 1795-2239

ISBN (pdf) 951-22-8524-X ISSN (pdf) 1795-4584

ISBN (muut) Sivumäärä 82 s. + liit. 67 s.

Julkaisija Otamedia Oy

Painetun väitöskirjan jakelu Tehoelektroniikan laboratorio

 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2006/isbn951228524X/

I

Preface

The process of learning how to write a Ph.D. dissertation (nothing more, nothing less) has
been a spine-tingling experience for me. During this joyous journey, I’ve been fortunate
enough to be accompanied by amazing people, to whom I here wish to express my deepest
gratitude.

My supervisor, Prof. Seppo Ovaska, has shown enormous patience and dedication towards
my work. During these first and, at times, heavily trembling steps in the academic
community, Seppo has always offered his professional and supportive advice while
simultaneously giving me quite a bit of freedom with the everyday routines. Seppo, it has
truly been a pleasure and a privilege to work with you; thank you.

The staff of the Power Electronics Laboratory have created a pleasant atmosphere for me to
work in. I’d like to thank Prof. Jorma Kyyrä and Prof. Jorma Luomi for their support and for
giving me the opportunity to work there in the first place. Docent Xiao-Zhi Gao and secretary
Anja Meuronen have always answered my tricky questions and saved my day more than a
dozen times. I’d like to thank David Shilane from the University of California, Berkeley, for
our excellent collaboration and wish him all the best for the future.

The phenomenal crew of the Signal Processing Laboratory (HUT) have shown me how to
take a scientific approach to everything and have loads of fun in the meantime. I can only
wish all of you the best of luck with your future projects!

Juho, Kalle, Maza, Sage, Tommi, Tuomo, and others; well, that’s probably the finest mix of
diversity, dynamics, and zenitism (if there is such a word) I’ve ever seen. Kiitos ja anteeksi.

Ilan, Jakke, Juha, Jussi, Late, Mauri, Sirén, Tirkkonen, and Ässät; thanks for the countless
moments of glorious victories and bitter defeats.

My dear parents, my sister Nakke, and my grandparents have taught me the most important
things in life. A heartfelt “thank you” for everything; I could not possibly have asked or
hoped for anything more.

Niina, this work, among other more important things, would never have happened without
your endless love and support.

I’m deeply grateful for the highly professional and insightful feedback from the pre-
examiners of this work, Dr. David B. Fogel and Dr. Randy L. Haupt. Their valuable
comments and constructive criticism helped to improve this work enormously.

I gratefully acknowledge the financial support of the Ulla Tuominen Foundation, Academy of
Finland (Grant 214144), and Tekniikan edistämissäätiö. Ruth Wilmi and Simon Gill did a
great job proofreading this work.

“And so castles made of sand fall into the sea, eventually…”

Jimi Hendrix
Otaniemi, December, 2006

Jarno Martikainen

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

 II

Contents

PREFACE I

CONTENTS II

LIST OF ABBREVIATIONS V

LIST OF SYMBOLS VI

LIST OF PUBLICATIONS VII

1. INTRODUCTION 1

2. SOFT COMPUTING METHODS IN OPTIMIZATION 5

 2.1 Soft Computing vs. Hard Computing 5

 2.2 Soft Computing-Based Optimization: Nature as a Role Model 7

 2.3 Capabilities of Evolutionary Computation 9

3. EVOLUTIONARY COMPUTATION TECHNIQUES IN OPTIMIZATION 11

 3.1 Generic Evolutionary Computation Algorithm 12

 3.2 Solution Presentation 12

 3.3 Initial Population 14

3.4 Operators of Evolutionary Computation Algorithms 15

 3.4.1 Evaluating the Objective Function Value 15

 3.4.2 Introducing Variation into the Solution Population 16

 3.4.3 Selection 20

3.5 Genetic Algorithms 22

3.6 Evolution Strategies 23

3.7 Evolutionary Programming 24

3.8 Artificial Immune Systems 25

3.9 Other Biologically Inspired Optimization Schemes 26

3.10 About Nature-Inspired Optimization Schemes 27

4. IMPROVING THE PERFORMANCE OF EVOLUTIONARY ALGORITHMS 29

 4.1 Behavior of Evolutionary Algorithms 29

4.2 Means to Improve the Performance of Evolutionary Algorithms 31

4.3 Multiple-Population Evolutionary Algorithms 32

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

III

 4.3.1 Parallel Processing and Evolutionary Algorithms 32

 4.3.2 Multipopulation Approach 33

 4.3.3 Problem Decomposition 34

4.4 Modifying Operators in Evolutionary Algorithms 35

4.5 Hybrid Algorithms 37

 4.5.1 Fuzzy Logic and Evolutionary Algorithms 37

 4.5.2 Neural Networks and Evolutionary Algorithms 39

 4.5.3 Hard Computing Methods and Evolutionary Algorithms 40

4.6 Aging in Evolutionary Algorithms 41

5. STATISTICAL COMPARISON OF EVOLUTIONARY ALGORITHMS 42

 5.1 Methods for Comparing Evolutionary Algorithms 43

 5.2 Bootstrap Resampling-Based Multiple Hypothesis Testing 44

 5.3 About Statistical Comparison of Evolutionary Algorithms 47

6. SUMMARY OF THE PUBLICATIONS 48

 6.1 [P1] 48

6.2 [P2] 48

6.3 [P3] 49

6.4 [P4] 50

6.5 [P5] 50

6.6 [P6] 51

6.7 [P7] 51

6.8 [P8] 52

7. CONCLUSION 53

 7.1 Main Results 53

 7.2 Scientific Importance of Author’s Work 54

 7.3 Topics for Future Research and Development 55

REFERENCES 56

ERRATA IN THE PUBLICATIONS 69

PUBLICATION P1

PUBLICATION P2

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

 IV

PUBLICATION P3

PUBLICATION P4

PUBLICATION P5

PUBLICATION P6

PUBLICATION P7

PUBLICATION P8

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

V

List of Abbreviations

2PGA Two-population genetic algorithm
2PES Two-population evolution strategy
ACO Ant colony optimization
AIS Artificial immune system
cEC Cellular evolutionary computation
CEC IEEE Congress on Evolutionary Computation
CPU Central processing unit
CSP Clonal selection principle
DE Differential evolution
dEC Distributed evolutionary computation
EC Evolutionary computation
EP Evolutionary programming
ES Evolution strategy
FIR Finite impulse response
FL Fuzzy logic
GA Genetic algorithm
GECCO Genetic and Evolutionary Computation Conference
GP Genetic programming
HC Hard computing
IEC Interactive evolutionary computation
IEEE Institute of Electrical and Electronics Engineers
LCS Learning classifier system
MGP Multiplicative general parameter
MLP Multilayer perceptron
MPGA Multipopulation genetic algorithm
NFL No free lunch theorem
NN Neural network
PEC Parallel evolutionary computation
PSO Particle swarm optimization
RNG Random number generator
SC Soft computing
TSP Traveling salesman problem

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

 VI

List of Symbols

β Blending crossover weighting factor
B Number of bootstrap resamplings
b Bias term in a neural network
δ Weighting factor in gradient descent method
fa Activation function in a neural network
fo,ave(g) Average objective function value of individuals
fo,max(g) Maximum objective function value of individuals
fo,min(g) Minimum objective function value of individuals
fo Objective function
g Generation

2
iσ Variance of the data set Si

 Variance of the resampled data set Si
* 2*

iσ
θ̂ Test statistic calculated from the actual data

*θ̂ Test statistic calculated from the resampled data
H0 Null hypothesis
k Sample set size
mS12 Common mean of data sets S1 and S2
n Dimension of a problem
ni Number of individuals selected for the next generation
nI Number of individuals in the initial population
ntournament Number of individuals selected for a single tournament
nrank Number of individuals selected for the next generation (rank selection)
pboot Bootstrap-based estimate of the p-value
pi Linguistic definition in fuzzy logic
pm Mutation probability
pr Reproduction probability
Si Data set i

iS Mean of data set i
Si,adj Data set Si with adjusted mean
Si

* Resampled data set Si
Vi Variable in fuzzy logic
wi Weight of input i in a neural network
xi Solution vector i
xnn,i Input i of a neural network
ynn,i Output of neuron i in a neural network
ynn Output of a neural network

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

VII

List of Publications

This dissertation consists of a summary and the following eight publications, which
are referred to as [P1]-[P8] in the text:

[P1] J. Martikainen and S. J. Ovaska, “Designing multiplicative general parameter

filters using adaptive genetic algorithms,” in Proc. of the Genetic and
Evolutionary Computation Conference, Seattle, WA, 2004, pp. 1162-1167.

[P2] J. Martikainen and S. J. Ovaska, “Designing multiplicative general parameter

filters using multipopulation genetic algorithms,” in Proc. of the 6th Nordic
Signal Processing Symposium, Espoo, Finland, 2004, pp. 25-28.

[P3] J. Martikainen and S. J. Ovaska, “Fitness function approximation by neural

networks in the optimization of MGP-FIR filters,” in Proc. of the IEEE
Mountain Workshop on Adaptive and Learning Systems, Logan, UT, 2006, pp.
231-236.

[P4] J. Martikainen and S. J. Ovaska, “Hierarchical two-population genetic

algorithm,” International Journal of Computational Intelligence Research,
vol. 2, no. 4, 2006, in press.

[P5] J. Martikainen and S. J. Ovaska, “Optimizing dynamical fuzzy systems using

aging evolution strategies,” in Proc. of the 9th IASTED International
Conference on Artificial Intelligence and Soft Computing, Benidorm, Spain,
2005, pp. 5-10.

[P6] J. Martikainen and S. J. Ovaska, “Using fuzzy evolutionary programming to

solve traveling salesman problems,” in Proc. of the 9th IASTED International
Conference on Artificial Intelligence and Soft Computing, Benidorm, Spain,
2005, pp. 49-54.

[P7] D. Shilane, J. Martikainen, S. Dudoit, and S. J. Ovaska, “A general framework

for statistical performance comparison of evolutionary computation
algorithms,” in Proc. of the IASTED International Conference on Artificial
Intelligence and Applications, Innsbruck, Austria, 2006, pp. 7-12.

[P8] J. Martikainen and S. J. Ovaska, “Comparison of a fuzzy EP algorithm and an

AIS in dynamic optimization tasks,” in Proc. of the IEEE Mountain Workshop
on Adaptive and Learning Systems, Logan, UT, 2006, pp. 7-12.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

1

1. Introduction

This dissertation tackles some of the most challenging aspects of using evolutionary
computation (EC) algorithms in solving complex application-specific optimization
problems, namely, increasing the reliability of the algorithms and accelerating
problem-solving. Reliability here refers to the algorithms’ capability to produce
competitive results despite the varying attributes of the optimization process.
Evolutionary computation algorithms, a class of nature-inspired optimization
methods, have been studied extensively during the last five decades. But using these
algorithms for optimization is a multifaceted process, and a lot of research still
remains to be done. First, the optimization problem at hand has to be mapped to the
EC algorithm so that the optimization algorithm can tackle it effectively. Second, the
optimization algorithm usually has to be tailored specifically to match the
requirements of the present task to produce the required performance. Third, in many
cases multiple techniques have to be compared before a decision is made as to which
method is eventually used. The need for ever more powerful, i.e. more application-
specific, optimization algorithms is clear when we consider the increasingly
complicated optimization tasks the modern world offers us. In effect, this dissertation
does not have a single purpose; rather, it aims in a versatile way at elaborating the
process of using evolutionary computation algorithms for complex optimization
problems.

The contribution of the work presented here consists of eight publications, [P1]-[P8],
divided into three separate branches of research, as shown in Fig. 1: the modeling of
an optimization problem in a computationally efficient form, the development of
application-specific evolutionary algorithms, and the use of a comprehensive
statistical scheme for evaluating the differences between two separate algorithms.

Evolution or biologically
inspired algorithm

Results from multiple runs

Evaluation of the
algorithm’s performance

1. How to model the
problem efficiently and

accurately?

2. How to construct a
reliable and fast algorithm

to solve the problem?

3. How to evaluate the
algorithm based on the

achieved results?

Challenging optimization
problem not solvable using

conventional methods

Fig. 1. The three branches of EC research studied in this dissertation.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

2

The efficient modeling of a system to be optimized is studied in [P3]. Especially in
applications where single optimization runs can last for days, tailoring a high-
performance algorithm to meet the requirements of that particular problem is highly
desirable. However, even the best algorithms cannot alleviate the burden imposed by
a computationally exhaustive objective function. The method proposed in this
dissertation aims at reducing the time required by the objective function evaluation
using neural network-based approximations. The problem of modeling an objective
function efficiently can be interpreted as process identification, as, e.g., in [Kau67]. In
that early paper a simple evolutionary scheme based on variation and selection was
used to evolve a model for a single-input-single-output plant. The evolutionary
scheme was able to choose a number of predefined transfer function blocks that were
then concatenated to create the overall model of the plant. Computational complexity
and the computing power available at that time (1967) made the proposed scheme
slow, but the general concept of evolving models for system identification was found
beneficial. Later, e.g. in [Wil03], Willmes et al. studied the use of neural networks
(NN) to approximate the fitness function values of benchmark functions. That work
consisted of trials in which a neural network was trained off-line and used for
approximating the fitness function, or trained off-line and updated on-line. The paper
concluded that updating the neural network on-line is capable of producing better
solutions than is the case with its off-line counterpart. However, severe reliability
issues were reported and additional research was called for. In [P3] a neural network
is used to approximate certain components of a fitness function when designing a
digital filter and the results show that the computational burden can be halved using
this approach. Our work differs considerably from previous studies. First of all, the
scheme introduced in [P3] uses a neural network for the multiple-input-multiple-
output approximation of an objective function and the network is not trained off-line;
rather, only the network topology is decided beforehand, but the training is done
completely on-line. Clearly, the network in [P3] can freely evolve in a desired
direction without the need to make the best of any pre-defined blocks. Publication
[P3] concludes that the proposed method is capable of accelerating considerably the
fitness function calculations in this application and, thus, adding to the performance of
the entire method.

Publications [P1], [P2], [P4], [P5], and [P6] are studies on reliable evolutionary
algorithms tailored for specific applications. Publication [P1] studies the effects of
using adaptive parameters within a genetic algorithm. As a test case [P1] features a
demanding digital filter design problem. Digital filters have been designed using
evolutionary computation in numerous studies and various schemes have been
proposed. Among others, in [Rao96] the coefficients of the filter could be selected
freely from a discrete set, and in addition, no crossover operators were used to modify
the candidate solutions. In [Dex95] digital filters are designed using a standard GA,
but using parallel hardware. The research on filter design is usually focused on the
application, and the evolutionary computation methods used for that task are rather
simple and straightforward. More advanced schemes, such as using adaptive variation
probabilities, as studied in [P1], are less common. In [P2] a multipopulation genetic
algorithm (GA) is used to solve the same filter design problem as in [P1]. Using a GA
consisting of multiple solution populations is the first step of this study towards
controlling the whole solution population adaptively instead of adapting each solution
separately. In general, many evolutionary computation methods try to enhance a

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

3

single solution by adjusting its control parameters adaptively, e.g. the variation
probabilities, but the approach proposed in this dissertation concentrates on entire
populations. In other words, by adjusting the characteristics of the whole population
instead of a single solution, advantageous conditions for creating competitive
candidate solutions can be created. Publication [P4] is a study focused on the effect of
the various parameters existing in the multipopulation genetic algorithm scheme
proposed in [P3]. Publications [P5] and [P6] are studies of fusing together fuzzy logic
(FL) and evolutionary algorithms. In [P5] and [P6] the parameters of a dynamic fuzzy
system and a demanding combinatorial problem are solved using adaptive evolution
strategies and evolutionary programming, respectively. The approach of using fuzzy
logic to control the remaining lifetime of solutions in [P5] and the repetitive
partitioning of a comprehensive problem into subproblems in [P6] are new.

Publications [P7] and [P8] discuss a methodology for a proper statistical comparison
of two different evolutionary algorithms. In the field of evolutionary computation the
widely accepted methods for statistical comparison are not commonly applied. This is
not due to the scientists’ lack of knowledge regarding such statistical methods; rather,
the field of evolutionary computation has simply not placed enough stress on the need
for proper statistical verification of results. This issue is, however, especially
important, since most results reported in the EC community are based on empirical
research rather than theoretical analysis. The work presented here illustrates a
comprehensive scheme to compare statistically the performance of two candidate
algorithms and hopes to awaken discussion on the matter. Publication [P7] explains a
statistical scheme based on bootstrap resampling and multiple hypothesis testing for
comparing two data-generating algorithms. Publication [P8] is an empirical study
concerning the sensitivity of the parameters of the scheme in [P7], and [P8] also offers
a comparison of evolutionary programming and artificial immune systems in a
dynamic environment.

The methods proposed in this dissertation, among others, can be studied either
theoretically, empirically, or both. Theoretical proof outpowers empirical results and
it is naturally desirable, but such comprehensive theoretical results may occasionally
be hard, if not impossible, to derive. Evolutionary algorithms are complex stochastic
procedures, and often simplifications are required to make theoretical inspection of
evolutionary algorithms feasible. Then again, the problem follows of how much the
theoretical results achieved using simplifications correspond to reality. Through
carefully designed experiments and objectively analyzing the results using proper
statistical methods it is possible to draw valuable conclusions regarding the outcome
of the research under certain conditions. However, one must be careful when
generalizing such results, since empirical results only tell us about the exact process
under study. The work presented in this dissertation concentrates mainly on empirical
results. The methods proposed in this dissertation cannot be theoretically proven to be
generally superior to other methods. However, the same applies to all optimization
methods; important results achieved more than a decade ago, discussed in Chapter 2
of this work, state that no optimization algorithm is better than another over all the
optimization problems. The methods proposed in this dissertation are not intended to
yield a superior performance over a large collection of problems; rather, they offer
increased performance over a specific problem or subset of problems. Thus, carefully
planned and properly conducted empiricism and appropriate statistical analyses
validates the results in this dissertation.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

4

 The rest of the dissertation is organized as follows. Chapter 2 discusses the role of
soft computing and hard computing methods in optimization in general. Section 3 is a
description of evolutionary computation methods for optimization and the operators
related to them. Chapter 4 concentrates on some of the most popular methods used to
improve the reliability and performance of evolutionary computation algorithms.
Chapter 5 describes the process of statistically comparing the performance of
evolutionary algorithms. In Chapter 6, the main results of the publications [P1]-[P8]
and the contributions of the author are summarized. Finally, Chapter 7 contains
conclusions, evaluates the dissertation’s scientific value, and makes suggestions for
future research and development.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

5

2. Soft Computing Methods in Optimization

Optimization is a part of our everyday life. For most everyday problems, and many
engineering ones, convenient deterministic solutions have been created. The current
problem parameters are manipulated by a well-defined method, and we obtain an
optimal or competitive solution. For example, when designing a digital filter we need
to define the passband and stopband characteristics, and there exist various methods
for solving the filter parameters in such a way that the design criteria are met [Ife93].
However, in many complex cases there are no methods to determine whether a certain
solution is a global extremum unless all the possible solutions are evaluated. In fact, it
may even be difficult to know whether a problem is difficult or not in the first place.
The global extrema solutions of problems, although theoretically interesting, are
usually not required for a practical system to produce satisfactory or even competitive
results.

This chapter discusses the role of conventional optimization, as well as the emerging
natural evolution-based optimization methods used in modern-day engineering
problems. Both are definitely needed, but when should these new methods be used
and why do the traditional methods not always perform as desired?

2.1 Soft Computing vs. Hard Computing

Optimization methods can generally be divided into conventional computing methods,
hard computing (HC), and nature-inspired soft computing (SC) methods. HC methods
are based on theoretically well-defined practices. Examples of popular hard
computing methods in optimization are the steepest gradient approach, linear
programming, and Newton’s method. Then again, SC methods, such as evolutionary
computation, are considered as a group of methods designed on the basis of the
principles of natural phenomena, and HC methods are the opposite of this, namely,
methods not directly mimicking natural models.

Traditional HC methods of optimization usually rely on derivative information, if
such information exists, obtained from the fitness landscape. This term describes the
value of different solutions in the solution space. Figures 2a and 2b illustrate two very
different fitness landscapes. In Fig. 2a, a simple derivative method, such as Newton’s
method, is guaranteed to find the global maximum every time, regardless of the
starting point. However, when considering the fitness landscape in Fig. 2b, it is by no
means clear where the algorithm will end. The optimum that is found clearly depends
on the starting point.

There is a vast reservoir of traditional optimization methods around and these can be
summarized into three classes: calculus-based methods, enumeration methods, and
random methods. Goldberg [Gol89] describes these classes as follows. Calculus-based
methods have been studied extensively and they have been proven to work in a
variety of practical problems. Calculus-based methods can be divided into indirect
and direct methods. Indirect methods usually solve a set of nonlinear equations that
result from the gradient of the objective function being set to zero. An extremum

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

6

found using this method is usually local. Direct search methods, on the other hand,
move towards the local gradient at a certain point. However, both of these methods
lack robustness. Robustness in this case means the ability to find competitive
solutions despite the difficulty, i.e., multimodality, of the fitness function. Unless
some sort of random restart mechanism is added, the calculus-based methods get
stuck at the first extremum they find, whether it is global or local. Another severe
limitation of calculus-based methods is the fact that they require the objective
function to be continuous and that there exists a first, or sometimes also a second,
derivative at each point. In many challenging modern-day problems this is usually not
the case. For example, when the setup of an electronic circuit is being optimized, there
is only a discrete set of components available. Thus, no continuous domain exists and
therefore neither does derivative information.

 Fig. 2a. A simple fitness landscape. Fig. 2b. A complex fitness landscape.

Enumerative search is a so-called brute force method. This means that the algorithm
calculates the objective function values at every point within the search space.
Needless to say, this method is very convenient for very small search spaces, but for
many problems it rapidly becomes extremely inefficient and basically useless as the
dimensions of the problem increase. This is clear when a traveling salesman problem
(TSP) is considered, for example. In short, a TSP is solved when the shortest path
connecting a given number of cities is found. The problem is easy when the number
of cities is small, e.g. of the order of 10. All the solutions can easily be evaluated and
the shortest path can be selected. However, even with a moderately large number of
cities, say 100, the evaluation process of all the paths becomes very time-consuming.
The number of possible solutions is in this case 99!/2. Random search methods take
random walks through the search space and they can save the best objective function
value encountered. More information on some of the elementary HC-based
optimization methods is found in [Rao78]. Additionally, HC-based optimization is an
active research area, and new research results are frequently introduced at conferences
and in journals.

The number of difficult optimization problems is increasing all the time in our
everyday life, especially in the engineering sciences. During the last five decades the
field of evolutionary computation has pursued the goal of offering nature-inspired
solutions to ever more complex optimization tasks that are not reasonably solvable
using conventional methods. Evolutionary computation methods are among the
fundamental soft computing techniques, and, as Zadeh has pointed out in [Zad97],
SC, also well justified theoretically, differs from HC in that, unlike HC, it is tolerant

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

7

of imprecision, uncertainty, partial truth, and approximation. In addition, the
capability of SC methods to produce impressive results in difficult optimization tasks
is due to the flexibility of these methods in conforming to the current problem.
Popular soft computing methods include, in addition to EC, fuzzy logic and neural
networks. These methods, although all emerging from nature, have different purposes:
NN is used for learning and approximation, FL for approximate reasoning, and EC as
a systematic random search.

An illustrative example of HC and SC methods’ fundamentally different approaches
to solving real-world control problems is given in [Sic98]. In that paper three different
approaches were taken to a control problem. The HC- and SC-based methods were all
capable of performing the task, but the SC methods were acknowledged for their
flexibility towards varying circumstances, whereas the HC methods performed the
given task computationally efficiently.

2.2 Soft Computing-Based Optimization: Nature as a Role Model

It is common for biological entities to consciously or unconsciously make the things
they do better in order to cope with the requirements of the surrounding environment.
In other words, they optimize their performance with respect to some measurable or
immeasurable characteristics in order to survive or to succeed in some other way.
After an optimization process, these optimized biological entities, or any systems in
general, are improved in terms of speed, stamina, pleasure, or some other measure that
is appropriate for those specific circumstances. In 1859 Charles Darwin described the
evolution of species as an optimization process, the primary tools of which are
variation and selection [Dar59]. Many of Darwin’s findings have been elaborated by
the achievements of modern-day science, such as genetics, and Steve Jones, a
Professor of Genetics at University College, London, rewrites the work of Darwin in
the light of early 21st-century knowledge in [Jon00].

The basic principles of evolution are easily explained using an example. An animal
population evolves over time and reproduces, creating individuals ever better suited to
meeting the demands of the environment. In this case the demands of the surrounding
environment constitute the objective function, i.e. the value of the objective function
tells us how well each animal survives in the current conditions. Good characteristics
of an individual could be, for example, the ability to find food and shelter easily.

Good individuals may live longer and get a greater chance of creating offspring and
thus passing their characteristics on to new generations. This phenomenon of the
survival of the fittest can be described as a process of selection. Reproduction, or
passing one’s genes on to the next generation, can be carried out by means of mating,
in which both the parents contribute to the genetic or trait characteristics of the
offspring, or by means of asexual reproduction. In asexual reproduction descendants
are created from a single parent and this kind of reproduction scheme is common, e.g.,
among plants and fungi. Variation is introduced to the animal population by mixing
individuals’ genetic codes in reproduction and, in addition, by a mutation that can
randomly alter the genetic code of an individual. Variation is essential for evolution,
for if no new genetic material or combinations are introduced into the population, the

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

8

evolution of the population stops. This mechanism of variation and selection has
shaped, e.g., animals from scratch to what they are today.

Natural evolution can be translated into a computational optimization technique, as
follows. First, a population of random solutions is created. The population here refers
to an animal species in the previous example, where a single solution corresponds to
an individual animal. There also needs to be a way to calculate a value of the
objective function, i.e. the function that is being optimized, for each and every
individual. In nature, individuals struggle or survive, or both, and in EC methods we
get an output produced by the objective function that can be arranged into an ordered
list describing how good a solution this specific individual is. Reproduction is carried
out in EC methods in such a way that a single solution is modified or multiple
solutions are combined to create offspring solutions, the characteristics of which are a
combination of the characteristics of a single parent or more parents. Additionally,
some or all characteristics of the solution can be mutated so as to induce further
variation in the solution population. Finally, those solutions that produce the best
objective function values have the best chances in probabilistic terms of making it to
the next generation to reproduce. This is how variation and selection are implemented
in EC methods. The details of the operators used in evolutionary computation
algorithms are discussed in Chapter 3.

Computational methods based on natural evolution can, for now, only be a pale
shadow of what nature is implementing every day. Still, taking the basic elements of
evolution, namely variation and selection, it has been shown that robust and powerful
optimization methods can be created. In the context of using natural phenomena as
models for optimization, novel paradigms are proposed and accepted, not necessarily
for being faithful to their sources of inspiration, but for being useful and feasible. At
this point it is necessary to bear in mind that evolutionary computation methods only
model evolution and natural behavior from the genetic or trait point of view. The
phenotype, the final outcome of an individual in nature, is an extremely complex
combination of genetics and environment that is very difficult, if not impossible, to
understand and model on the basis of current knowledge. Therefore, evolutionary
computation in most cases neglects the effect of environmental factors.

The field of evolutionary computation is not fragmenting: rather, it is uniting from
fragments based on different aspects and implementations of variation and selection.
The main paths that should finally lead to a unified evolutionary computation field are
genetic algorithms (GA), evolution strategies (ES), and evolutionary programming
(EP). Additionally, other biologically inspired methods, such as artificial immune
systems (AIS), are nowadays considered as a sub-group of evolutionary computation.
Evolutionary computation has established its place in the fields of science and
engineering, and an impressive but by no means complete list of recent application
areas where evolutionary computation has been successfully applied is given below:

• Acoustics [Sat02]
• Aerospace engineering [Oba00]
• Astronomy and astrophysics [Cha95]
• Arts [Hau00]
• Chemistry [Ass98]

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

9

• Digital signal processing [Bri01]
• Electrical engineering [Dav97]
• Financial markets [Mah96]
• Gaming [Fog01]
• Geophysics [Sam93]
• Healthcare [Ji06]
• Materials engineering [Gir02]
• Mathematics and algorithms [Hau98]
• Medical engineering [Yon02]
• Military and law enforcement [Kew02]
• Molecular biology [Koz99]
• Music [Une03]
• Pattern recognition and data mining [Au03]
• Routing and scheduling [Bur99]
• Sports [Sch00]
• Systems engineering [Ben02]

An important moment for the EC community was the year 1997, when the Institute of
Electrical and Electronics Engineers (IEEE) started publishing the IEEE Transactions
on Evolutionary Computation [Tec06]. Each acclaimed research area within the
electrical and electronics engineering community has its own publication in this
series. Together with conferences, this publication is one of the most respected
sources of research reporting in the field today. Among others, Evolutionary
Computation [Evo06], a journal published by the MIT Press, is also a recognized
publication in its field.

Although evolutionary computation algorithms have proven to be powerful
optimization tools, there is still a great deal to be done in terms of the reliability and
robustness of the algorithms and accelerating-problem solving. It has been shown, e.g.
in [Fog06], that if the operators of the evolutionary algorithm fulfill certain
requirements, the evolutionary algorithm is guaranteed to achieve the global optimum.
The requirements are an elitist selection operator and the capability of a variation
operator to transform a solution from any state to any other state (see Chapter 3 for
details). Unfortunately, there are no guarantees regarding the time it takes the
algorithm to arrive at such an optimum. Nowadays there is often no time to run an
optimization algorithm dozens of times to get a satisfactory result: instead,
competitive results should be achieved using as few runs as possible.

2.3 Capabilities of Evolutionary Computation

Evolutionary computation methods have proven their power in many demanding real-
world optimization tasks. In many fields there exists a deterministic hard computing-
based procedure to obtain optimal or near-optimal methods quite conveniently. If such
a solution scheme exists for a particular problem, then such a method should
definitely be used, for computationally they usually perform very efficiently.
Sometimes, for the reasons described earlier, traditional methods are insufficient, and
maybe then EC methods alone or EC methods implemented together with traditional
hard computing methods can offer a competitive solution.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

10

Wolpert and Macready stated in their seminal paper [Wol97] that there are no free
lunches. The well-known no free lunch (NFL) theorem stated simply that all the
imaginable optimization algorithms perform equally well on the average if all the
world’s optimization problems are considered. The NFL theorem has had a
remarkable impact on the EC community, and thus readers are advised to read the
literature published before the introduction of the NFL theorem cautiously. The reader
may ask what the sense is of developing optimization algorithms if they all perform
equally well in general. An optimization algorithm for all the world’s optimization
problems is naturally desirable, but eventually practitioners are only interested in
algorithms that reliably produce good results for their specific problem or class of
problems. This, in fact, is another way to understand the NFL theorem: it is certainly
possible to create algorithms that perform better than others for some problem or
problems.

There exist applications in which SC or HC methods excel alone. However, the fusion
of the two offers a wide variety of methodologies from which powerful and robust
optimization methods can be created. Kamiya gives an illustrative example of such a
system in [Kam04], in which a general model for a control system for a large-scale
plant, such as a chemical or electric power plant, is considered. The control system of
such a plant can be divided into forecasting, scheduling, supervisory control, and local
control. Scheduling is critical for the plant’s efficient operation. Scheduling can be
organized using traditional HC methods fused with SC. As an example, the user can
describe the goals of the operation using fuzzy logic, and HC-assisted GA can be used
to find satisfactory parameter settings to meet these goals. The main purpose of fusing
HC and SC in such applications is to combine the advantages of the individual
methods to compensate for their different weaknesses.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

11

3. Evolutionary Computation Techniques in
Optimization

Chapter 2 described briefly the primary elements of evolutionary computation, i.e.,
variation and selection. In this chapter, these and other important evolutionary
computation-related concepts are discussed in more detail. Additionally, some
prevailing evolutionary computation techniques, i.e., genetic algorithms, evolution
strategies, evolutionary programming, and artificial immune systems are discussed.

Good and comprehensive introductions and lists of references in the field of
evolutionary computation are given in [Fog94] [Bäc96a] [Whi01] [Jin05]. All these
journal papers contain many seminal references and serve as a compact starting point
for a reader interested in the area, [Jin05] concentrating in optimization in uncertain
environments. Additionally, D. B. Fogel has collected some early papers from the
field in [Fog98], and this edited volume offers interesting readings for anyone
fascinated by the origins of evolutionary computation.

Genetic algorithms, created independently by Fraser [Fra57], Bremermann [Bre62],
and Holland [Hol75], are clearly described and discussed in [Mit96] [Hau98]. Those
books offer an introduction to GAs and their applications in a simple and easily
readable form. The second edition of [Hau98], [Hau04], offers a revised introduction
to the topic and also illustrates the latest cutting-edge technology. David Goldberg’s
book [Gol89] is one of the most cited publications in the area of evolutionary
computation, and especially GAs, and also offers a convenient introduction to GAs
and their basic operators. Although this book is famous, it is also rather old, and many
new aspects, such as the no free lunch theorem, have been raised since its publication,
something any reader should bear in mind.

Both [Bäc96b] and [Fog00] discuss all branches of evolutionary computation
algorithms. However, [Fog00] could be considered as the next step from Goldberg’s
book, offering more insight in addition to the basic theory. Then, [Bäc96b] takes this a
little further in terms of theory and foundations, but it is not the easiest book to start
with.

Although all evolutionary computation algorithms rely roughly on the same principles
of natural evolution, they are occasionally divided into two sub-categories: genotypic
algorithms and phenotypic algorithms. Genetic algorithms are considered to be
genotypic algorithms, i.e. in simulated evolution the genes, or the parameters of a
solution candidate, are transferred through reproduction from generation to
generation. Evolution strategies and evolutionary programming, on the other hand, are
considered to be phenotypic algorithms. Evolutionary programming mimics the
behavior of species and evolution strategies deal with individuals. This means that
instead of the actual genes, or parameter values, the traits of the previous generation
are passed to the offspring generation without mating.

Artificial Immune Systems [Cas02a] are a more recent approach to using nature as an
example for an optimization algorithm. Instead of mimicking evolution, AIS imitates
the mammalian immune system. In addition, apart from optimization, this bio-inspired

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

12

algorithm can be used for various tasks, such as pattern recognition. The AIS concept
as a whole is dealt with comprehensively in [Cas02a], whereas the optimization aspect
of AIS, known as the Clonal Selection Principle (CSP) is more thoroughly explained
in [Cas02b]. Other nature-inspired optimization schemes are discussed in Section 3.9.

The field of evolutionary computation is constantly developing. The latest information
can be found published at the two main conferences in the field: the Genetic and
Evolutionary Computation Conference (GECCO) [Gec06] and the IEEE Congress on
Evolutionary Computation (CEC) [Cec06]. These conferences are among the best
places to find out how natural systems are currently mimicked to construct innovative
computational optimization schemes.

3.1 Generic Evolutionary Computation Algorithm

Biologically inspired algorithms vary remarkably in the way data are presented or
which operators are used and how they work. However, eventually they all conform to
the theory of Darwin, i.e. the algorithms search for the optimum, using variation and
selection as the main operators. Thus, a generic biologically inspired optimization
algorithm could be described as follows:

1. Generate an initial population of nI individual solutions to the optimization
problem.

2. Evaluate the objective function value to find out how good each solution is.
3. Introduce variation into the population.
4. Select solutions for the next generation on the basis of their objective function

value so that better solutions have a higher probability of being selected.
5. Go to 2 if solution or run time requirements have not been met. Otherwise exit.

A single stage including everything from evaluating the solutions to selection is
usually called a generation. There exist countless ways to introduce variation and
carry out selection and new approaches can be tailored to conform to the requirements
of a specific problem. In the following sections some key issues are discussed in
relation to operators used in biologically inspired computation.

3.2 Solution Presentation

In most EC implementations every individual is a solution, better or worse, to the
problem at hand and EC algorithm operators directly manipulate the structure of these
candidate solutions. In [Ber00], however, a coevolutionary scheme is presented in
which a population of solutions and a population of test cases are evolved in parallel.
In that paper, the test case population evolves increasingly difficult test cases for the
solution population as the algorithm proceeds. The study concluded that using this
kind of method, better generalization of the results was achieved in a robot navigation
problem. There are no restrictions on the format of the solutions, so the algorithm can
easily be adapted to conform to a particular problem. Probably the most common
form of solution presentation is the array presentation. Figure 3 shows example
solutions to a generic problem. The objective function might have, e.g., 10 variables.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

13

Then, each solution is an array of 10 variables, as in Fig. 3. Now the symbols in the
solution array can be numbers, discrete or continuous, characters, symbols or almost
anything, as long as we can somehow express how well it solves the problem to be
optimized on the basis of the information contained in the solution. This type of
solution presentation is most commonly used with genetic algorithms, evolution
strategies, evolutionary programming, and the clonal selection principle.

0 1 1 0 1 0 1 0 0 1

h i f k b c z o s o

1.23 –4.34 5.51 2.10 –9.10 7.62 –8.32 6.65 –2.55 1.00

Fig. 3. Three different types of solution presentation. At the top is a binary array and in the middle is a

character array. The bottom array is of a continuous type.

Another commonly used solution presentation format is the tree-like structure shown
in Fig. 4. However, this format can also be transformed into an array. This type of
individual presentation is most common in conjunction with genetic programming
(GP) [Koz99] [Koz06], a subset of genetic algorithms. In genetic programming, the
individual solutions are computer programs that are evolved using the principles of
simulated evolution. Additionally, in evolutionary programming the solutions can be
state machines that can be presented as trees.

Fig. 4. A solution pr

Naturally, the form of the solutio
types and presentations to solve t

The question easily arises as to
or integer presentation be used?
integer presentation in some pro
single or multi-point crossover,
presentation as the task at hand n
binary solutions in a certain appl
to some other format in the hope

Solutions of evolutionary compu
chromosomes, referring to their
especially used with genetic algo

5 +

+

5

__
J. Martikainen, Methods for Improving Reliability
esented as bo

n is not res
he problem

how the sol
 Binary pre
blems usin
and vice v
aturally exh
ication, the
of a superio

tation algor
 biological
rithms. Figu

(8

8

 of Evolutionary
–

th a tree structure and an array.

tricted, so one can combine different data
 at hand in the best possible way.

ution should be formatted. Should binary
sentation might have an advantage over
g certain evolutionary operators, such as
ersa. A good guideline is to use such a
ibits. In other words, if it is natural to use

n there is no need to convert the solutions
r EC algorithm performance.

ithms are sometimes called individuals, or
 counterparts. The term chromosome is
re 5 explains a few of the terms regularly

– 6)

6

__
Computation Algorithms and Accelerating Problem Solving

14

used in conjunction with evolutionary computation algorithms. Different variables in
the genetic algorithm solutions are called genes. Other EC algorithms have adopted
terms such as variable value or trait value. The genes can have different values,
alleles. For example, the values 5 and 10 could be different alleles for a gene. A
collection of individuals on which the EC algorithm operates is usually called a
population, solution pool, or selection pool.

Gene (GA)
Variable (GA, ES, EP, AIS)
Trait (ES, EP)
Receptor (AIS)

9.52 7.62 –1.34 2.95 2.20 7.62 –8.23 0.12

5.54 1.14 9.11 1.12 –8.00 3.12 –5.25 1.11

6.67 4.34 5.51 0.10 –2.10 2.62 –8.23 0.12

0.21 5.55 5.91 –2.90 1.10 –7.33 2.23 –1.12

1.23 3.31 6.51 4.10 0.00 5.62 –8.20 0.12

Allele (GA)
Variable value (GA, ES, EP, AIS)
Trait value (ES, EP)

1.23 4.34 5.51 2.10 –9.10 7.62 –8.23 0.12

Population (GA, ES, EP, AIS)
Solution pool (GA, ES, EP, AIS)

Chromosome (GA)
Candidate (GA, ES, EP, AIS)
Individual (GA, ES, EP, AIS)
Solution (GA, ES, EP, AIS)
Antibody (AIS)
Cell (AIS)

Fig. 5. Frequently used terms in evolutionary computation.

3.3 Initial Population

Generating the initial population is a process of creating nI solutions for the EC
algorithm to start working with. Solutions are usually created by assigning a random
variable value to each parameter in each candidate solution. It is important that the
mechanism creating random values is capable of covering the whole search space, and
that it is not biased if no a priori information concerning a good solution is available.
If there is some kind of information concerning particularly appropriate solutions, this
information can be taken into account when creating the initial population. These
kinds of mechanisms are called seeding [Gre87].

The size of the initial population is directly reflected in the run time of the algorithm,
assuming that the population size stays constant throughout the run time of the
algorithm. This is simply because the objective function usually has to be evaluated
using each solution during each generation, so that the larger the population is, the
more objective function evaluations there are, and thus the more time is required. A
large number of solutions may give the population more diversity, a term discussed in
more detail in Chapter 5. Wide diversity may help the algorithm to find better
solutions, but then again, the cost lies in a longer execution time for the algorithm.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

15

3.4 Operators of Evolutionary Computation Algorithms

This section discusses the operators used in evolutionary algorithms. The task of the
operator is primarily to introduce variation into the solution population and to conduct
selection. The section starts with discussion related to evaluating the objective
function value.

3.4.1 Evaluating the Objective Function Value

Evolutionary computation algorithms, like many other optimization algorithms, do not
need to know anything about the problem they are optimizing. The only requirement
is that for each solution there has to be a way to determine how good it is. This
evaluation is performed by calculating the objective function value using the variable
values of the current solution. This objective function is the function that is being
optimized. Depending on whether the objective function is minimized or maximized,
it is called a cost function or fitness function, respectively. The terms cost function and
fitness function are commonly used in context with GA, ES, and EP. For AIS
optimization the value of the object function is called affinity value. Regardless of
whether the task is to maximize or minimize, good solutions have high affinity and
less fit solutions have low affinity. Despite the different names, all the values of the
objective functions should be presented in numbers, or another directly comparable
format.

Objective functions can basically be constrained or unconstrained, and continuous or
discrete. If the objective function is constrained, then the parameter values lie at some
specific interval, e.g. –5 < x < 5. In unconstrained problems such restrictions do not
exist. A continuous objective function can basically produce any values, e.g. –3 < y <
3, whereas a discrete objective function can only produce certain values, e.g. y ∈ {-2,
-1, 0, 1, 2}.

Additionally, the objective function can be dynamic, i.e. it changes as a function of
time [Psa88]. In [Eng06] dynamic environments are divided into three types. In the
first type the location of the optimum changes over time. In the second type, the
optimum remains the same, but the value of the optimum changes. Finally, in the third
type both the location and the value of the optimum are subject to change. The
dynamic objective function can, for example, simulate a real-world situation in which
the cheapest route by plane must be found in an environment where flight ticket prices
change as a function of time.

Traditionally, objective functions have been functions evaluated by computers, but
another very different and interesting approach has been proposed, in which the
fitness of an individual is determined by a human [Tak01]. In other words, a human
assigns a solution an objective function value depending on how it matches the
characteristics of the solution that specific user is looking for. This kind of EC
involving human-based fitness or cost function evaluation is called Interactive EC
(IEC). Additionally, in most cases the objective function value of an individual is
expressed as a numerical value, but other approaches also exist, such as the use of
fuzzy logic to determine the quality of a candidate solution [Cha02].

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

16

3.4.2 Introducing Variation into the Solution Population

Introducing variation into the solution population is of crucial importance: without
variation the evolution would stop, since no improvement in the candidate material
would take place. There are multiple ways to introduce variation, and usually these
methods are classified under the headings mutation and reproduction. These methods
can be used separately or together. Furthermore, the variation operators can use one or
two individuals or the whole population to produce individuals for the next
generation. These kinds of methods are called asexual, sexual, or panmictic operators,
respectively. Next, some variation schemes commonly used in evolutionary
computation are discussed.

Reproduction

The basic principle of reproduction is that from one or more parent solutions the
variation operator creates one or more new individuals. The characteristics of these
new individuals are a combination of the parents’ characteristics or an additional
random variation on the parents’ characteristics.

A popular form of reproduction is crossover, discussed e.g. in [Hau98], and this
operator is used especially frequently in genetic algorithms. In Fig. 6, the principle of
a simple single-point crossover between two parent solutions is shown. In this case
two parents produce two offspring. First, a crossover point is randomly chosen. From
this point, the chromosomes are separated and recombined using a part from the other
parent. Although a single-point crossover is presented, the method can be
implemented simultaneously at multiple points. This type of crossover efficiently
passes on the characteristics of the parent solutions to the offspring. On the other
hand, this type of reproduction operator is not able to produce new genetic or trait
material unless the candidate solution is coded so that the crossover point can split a
gene or trait variable. This can happen, for example, when the mantissa and the
exponent of a variable are coded in consecutive genes and the crossover point is
located between them. Various different types of crossover operators have been
studied in the literature, depending on the problem that the specific algorithm is trying
to solve. For example, Grefenstette proposed a crossover operator for traveling
salesman problems in [Gre85]. The proposed operator avoids creating offspring that
contain closed subpaths in the tour connecting the given cities. This is important,
since the solutions to a TSP cannot contain closed subpaths, since such solutions
violate the constraint stating that each city must be visited only once. However, Fogel
points out in [Fog90] that a crossover operator performs poorly in TSP problems in
general, whereas [Nag04] gives detailed instructions for designing efficient crossover
operators for TSPs. Therefore, it is important to experiment with different operators
when tuning an optimization algorithm for a specific problem.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

17

 Crossover point

Parent 1 0 1 1 0 1 0 1 0 0 1

Parent 2 1 1 1 0 0 0 1 0 1 0

Offspring 1 0 1 1 0 1 0 1 0 1 0

Offspring 2 1 1 1 0 0 0 1 0 0 1

Fig. 6. Producing two offspring from two parents using a single-point crossover.

Blending crossover, described e.g. in [Hau98], is a convenient operator with integer
and continuous parameter solutions in genetic algorithms. A random number, β, is
first selected, and on the basis of this an offspring can be created, as shown in Fig. 7.
β is a weighting factor that determines how much emphasis is given to each parent. If
β is 0.5, then the offspring produced is the average of the parents.

 β = 0.4
Offspring = β · Parent 1 + (1 – β) · Parent 2

Parent 1 –4.0 6.0 8.0 –6.0 0.0

Parent 2 8.0 0.0 8.0 0.0 6.0

Offspring 3.2 2.4 8.0 –2.4 3.6

Fig. 7. Producing a single offspring from two parents using blending crossover.

A single parent can also produce new individuals. In this case, a random variable with
known mean and standard deviation can be added to the parent solution to create a
new solution, as shown in Fig 8. This type of reproduction is usually used with
evolution strategies and evolutionary programming. This type of creation of offspring
constantly evolves new material, but, at the same time, is unable to maintain the
existing individual characteristics intact. This phenomenon can be fought to some
extent using elitism, a feature discussed later in this section.

 Parent 3.0 5.0 –4.0 1.0 8.0

Random number 0.1 –0.2 0.0 0.1 –0.2

Offspring 3.1 4.8 –4.0 1.1 7.8

Fig. 8. Producing a single offspring from a single parent using a random variable.

The creation of new individuals does not need to happen every time. pr is the
probability of reproduction happening. For example, if reproduction happens,
offspring are created according to the rules explained above. If reproduction does not
happen, the offspring can be exact copies of the parents without any mixing of the
characteristic values. The value of pr is very problem-dependent and can usually be
found only through trial and error by experimenting with different values and
choosing the most suitable. In some applications it is enough to have the reproduction
probability roughly in some region instead of a specific value. This is because the
performance of the algorithm is not necessarily so strongly influenced by pr, i.e. the
algorithm behaves quite similarly, regardless of whether pr is, e.g., either 0.80 or 0.85.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

18

Genetic programming uses primarily a tree-like representation to describe the
structure of a computer program and the dependencies of its different variables. To
create offspring, a crossover between two or more trees can take place. In such a
crossover the trees exchange sub-trees at random locations.

This section discussed some of the most commonly used operators for creating new
individuals from existing ones. Some other operators also exist, both general-purpose
and application-specific operators. There are few restrictions on the characteristics of
the reproduction operator: the offspring can be created from the parents using many
sorts of means. To select the parents, selection mechanisms similar to those used in
selecting individuals for the next generation can be used. These methods are discussed
in Section 3.4.3.

Mutation

Mutation is another way of producing variation in the solution pool, in addition to that
offered by reproduction operators. Mutation operators essentially add a random
change or changes to variables of a solution. The mutation operator should be able to
produce any parameter value within the search space. Usually, the same kind of
mechanism can be used to mutate solutions as is used to create parameter values in the
initial population.

When dealing with binary solutions, the easiest and most commonly used mutation
operator is the so-called bit flip operator. As shown in Fig 9, a single bit can be
reversed to create variable diversity in the solution pool.

 Mutation
 point

Before mutation 0 1 1 0 1

After mutation 0 1 1 1 1

Fig. 9. Single point mutation flipping a bit.

A mutation operator can also be created by substituting a random parameter value for
a single one, just as when creating an initial population. This procedure is shown in
Fig. 10. Similarly, for example, a random variable can be subtracted or added to a
parameter value in order to mutate it.

Random number: 2.56 Mutation
 Point

Before mutation 1.23 –4.34 5.51 2.10 –9.10

After mutation 1.23 –4.34 5.51 2.10 2.56

Fig. 10. Single point mutation using a random number.

Mutation can drastically change the fitness of an individual, regardless of whether the
individual was fit or less fit before the mutation. This means that the best current
solution can in some cases be so badly degenerated that the selection operator

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

19

excludes it from the next generation. This kind of phenomenon can hinder or slow
down the convergence of the evolutionary algorithm. To compensate this problem,
elitism can be applied. Elitism can mean that what is currently the best solution is
never mutated so that its fitness value would decrease.

Genetic programming primarily uses a mutation method similar to that shown in Fig
11. In mutation the tree-like structure encounters a variation at some node. At this
node a random sub-tree is created. Other types of variations may include the addition
of a node or sub-tree, removal of a node or sub-tree, or modification of a single
variable-value character.

 Parent Offspring

5 + (8 – 6) 5 + (

+ +

– –

Variation
8

Fig. 11. Popular mutation method for tree-lik

Just like reproduction, mutation does not necessa
mutation probability, describes the probability tha
variable of a solution is mutated. If mutation sh
proceeds as stated above; if not, the solution is left
can also be determined experimentally.

In artificial immune systems mutation is used w
However, the parent solution is not mutated direct
clones are created from the parent, and each clone un
a collection of modified individuals related to the par

Discussion Concerning Variation

The significance of mutation operators has been
states in [Gol89] that mutation is only a secondary
meaning that the role of mutation is considerab
reproduction. On the other hand, Fogel explains in [
acting as the driving force of evolutionary algorith
least as important as reproduction. In most cases, c

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation
5
5

(1 + 2

+

1

e solution structures

rily happen ever
t a single solut
ould take place

as it is. The muta

idely as a var
ly; rather, a num
dergoes a mutati
ent.

discussed extens
operator in the pa
ly less importa
Fog00] the natur
ms, meaning tha
rossover does no

 Algorithms and Accelera
6
6
22

) – 6)

.

y time. pm, the
ion or a single
, the algorithm
tion probability

iation operator.
ber of identical

on, thus creating

ively. Goldberg
th of evolution,

nt than that of
e of mutation as
t mutation is at
t introduce new

ting Problem Solving

20

parameter values to the selection pool, unless the coding structure allows the
crossover point to be located within a single variable. Then again, mutation is able to
produce new material within the existing parameter values and, if it is applied
appropriately, it is able to produce any possible solution combination within the
search space. In this sense, crossover is just a special case of mutation and in most
cases the mutation operator is capable of producing more diversity in the solution pool
than crossover. Evolutionary algorithms have been proven to converge to a global
optimum if the variation operator is capable of transforming a solution from any state
to any other and an elitist selection method is applied (see [Fog06] for details). In
most cases crossover does not fulfill this condition, but mutation does, and thus
mutation should not be considered as a secondary operator, but rather a crucial one.
Nevertheless, the no free lunch theorem still applies to all algorithms and operators,
and so, eventually, the usability of any operator depends on the problem.

Mutation and reproduction can occasionally use similar methods, such as adding a
random variable to a trait value. However, the fundamental difference between these
two operators is that a reproduction operator produces one or more new individuals
from an existing solution, whereas mutation only alters an already-existing solution.

It is clear that crossover alone is usually not capable of evolving indefinitely, but that
it sooner or later faces stagnation. Then again, using a mere mutation operator
promotes evolution, although the pace may be slow. The combination of these two
operators may produce better results than using either one alone, since by using the
operators side-by-side, the capability of the crossover to connect good combinations
of parameter values and the capability of mutation to introduce new variations to the
solution pool creates a potentially efficient algorithm. Still, according to the NFL
theorem the individual and combined performance of the operators is the same over
all possible problems.

The AIS optimization method, the clonal selection principle, is a straightforward way
of adding variation to the solution pool. A small number of the worst individuals are
replaced by randomly created new individuals. Such a simple method is powerful in
exploring new areas of the search space.

3.4.3 Selection

A selection operator selects the individuals from the current generation to proceed to
the next generation. A selection operator is also crucial to the operation of any
evolution algorithm, since without selection the solution population would not be
guided in any direction and would perform like a purely random search. Selection
operators usually favor good individuals, thus directing the evolution of the
population towards a better average value of the objective function.

Depending on the implementation, the selection can be carried out among offspring or
parents and offspring, or whatever combination of solutions exists in the previous
generations. The main idea in selection is that the better the objective function value
of an individual, the better its chance of proceeding to the next generation. Usually,
the size of the solution population is kept constant in order to keep the execution time
for each generation the same. However, it is possible to increase or reduce the

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

21

population sizes as the evolution proceeds, a procedure that directly affects the
execution time of the algorithm. This kind of approach aims mainly at performing
global searches with fewer individuals and using a larger population to refine the local
search. The effect of variable population size is studied in [Kou06], where the
population size is reduced by the selection operator and periodically increased by the
addition of random individuals.

Numerous selection mechanisms exist, and some of the most widely used methods
include rank-based, roulette wheel, and tournament selection, discussed, e.g., in
[Hau98]. A rank-based selection mechanism simply selects the nrank first solutions
ordered according to their fitness values in descending order. nrank equals nI, the initial
population size, if the population size is kept constant throughout the execution of the
algorithm.

Rank-based selection is a somewhat deterministic selection method in the sense that
the fit solutions are always selected and the less fit are not. This drives the EC
algorithm relatively quickly towards an optimum, regardless of whether it is global or
local. Less fit solutions can contain good ingredients when considering the global
optimum, but especially in early generations of an EC algorithm local optima can
distract the search and lead to a premature convergence of the algorithm. Premature
convergence is a state in which the population of the EC is homogeneous. This
condition can occur in local optima or at any other point within the search space.
When using rank-based selection one should pay special attention to variation
methods, i.e. reproduction and mutation, to ensure diversity within the solution
population.

Roulette wheel selection, illustrated in Fig. 12, selects the individuals that will survive
to the next generation on the basis of their proportional fitness. The selection
simulates a roulette wheel, where each individual in the population has a selection
sector proportional to its fitness. The better the individual is, the greater its chances of
continuing to the next round. Roulette wheel selection makes it possible for each and
every individual to make it to the next generation, regardless of its fitness. This may
slow down or hinder the convergence of the EC algorithm, since the selection
operator may disqualify good solutions. On the other hand, though, good ingredients
within less fit individuals have a chance of being selected.

Solution Fitness Fitness % of total
A 200 52.63
B 100 26.32
C 50 13.16
D 25 6.58
E 5 1.32

A
B
C
D
E

Fig. 12. The principle of the roulette wheel selection mechanism.

Figure 13 shows the general principle of a generic tournament selection operator.
ntournament solutions are selected either randomly or using some kind of a selection
operator for a tournament and each tournament produces a winner, just as in a sports

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

22

competition. Solutions compete against each other and the best one, i.e. the one with
the highest fitness value, moves on to the next round. This method can be
implemented by assigning each individual an equal probability of getting selected for
a tournament or the probabilities can be biased, as in roulette wheel selection. This
method does not guarantee the survival of the fittest, which may lead to problems
similar to those discussed with roulette wheel selection. This is the case when the
fittest individual is not selected to compete in any of the tournaments. On the other
hand, tournament selection allows each individual a chance to proceed to the next
generation, thus preserving a possibly greater diversity of variable values in the
selection pool than the rank-based selection method.

500

 500
450

 550
550

 550
300

 555 (Winner, selected)
220

 555
555

 555
125

 300
300

Fig. 13. The principle of the tournament selection method. The value describes the fitness function

value of an individual in a maximization problem.

In the following sections, the evolutionary computation methods dealt with in this
dissertation are discussed.

3.5 Genetic Algorithms

Genetic algorithms are probably the best known of all the evolutionary algorithms.
GAs were invented independently at least three times by Fraser [Fra57], Bremermann
[Bre62], and Holland [Hol75]. Fraser was a biologist who wanted to simulate
evolution in order to get greater insight into the biological process and using the
algorithms he developed for optimization was not his primary purpose. Then again,
Bremermann and Holland clearly developed their algorithms for optimization
purposes. The basics of simulated evolution based on genetics are compactly
summarized in [Gol89]. Fogel describes the stages of plain GA in [Fog00] as follows:

1. The problem at hand is defined as an objective function.

2. A population of candidate solutions is initialized as vectors.

3. Each solution in the population is decoded into an appropriate form for
objective function evaluation.

4. Each solution is assigned a probability of reproduction.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

23

5. Reproduction is carried out according to the assigned probabilities. In
addition, mutation can be applied to selected individuals on the basis of the
assigned probabilities.

6. The process is stopped if a suitable solution is found or when run time

requirements have been met.

GAs are suitable for many types of optimization tasks and they are widely used. For
this reason, they have been widely studied and a variety of performance-tuning
methods exists. Genetic algorithms could be described as the standard evolutionary
algorithms. Genetic programming is a subset of GA. In genetic programming, the
individuals are computer programs that are evolved to solve a specific problem. One
type of problem in which GP is often used is where there are specific inputs and a
desired target, and the problem is to find a program to use the input to achieve the
target. The target can be, for example, to control a system based on input sensory
values. In genetic programming the structure of the program can change drastically
during evolution. Publications [P1]-[P4] and [P7] in this dissertation employ genetic
algorithms.

3.6 Evolution Strategies

The concept of evolution strategies was created by Rechenberg and Schefel in 1964.
Early papers that describe the first attempts to optimize practical problems using a
crude predecessor of modern-day evolution strategies are [Sch65] and [Rec65]. In
those papers, very simple evolution strategies (including only a few individuals) are
outlined and implemented, mainly because of the insufficient computing power,
computers becoming available for these scientists only a couple of years after the
introduction of the original concept of the algorithm. Evolution strategies differ from
genetic algorithms in that each individual, in addition to the parameter values,
contains a set of strategy parameters, which were later introduced to the concept.
These strategy parameters help to optimize the optimization process itself, as the
strategy parameters are subject to crossover and mutation in a similar manner to the
actual solution variables. Since ES individuals suffer mutation according to Gaussian
distribution, a strategy parameter could contain the standard deviation of the
distribution. So, this mutation-determining parameter evolves as the algorithm
proceeds. The stages of ES as they are typically used at present are described in
[Bäc96b] [Fog00] [Eng06], as follows:

1. The problem is defined as finding a real valued n-dimensional vector x that is
associated with the extremum of the objective function.

2. An initial population of parent vectors, xi, i=1, …, nI, is selected randomly

from the feasible search space.

3. An offspring vector is created from two or more parents by crossover. The
crossover also includes the crossing over of the strategy parameters.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

24

4. Mutation is introduced by adding a random variable with a zero mean and the
standard deviation pointed in the individual’s strategy parameter to each
component of x.

5. Selection determines which of these vectors (parent and offspring) are

maintained by ranking the objective function values. The ni best vectors act as
parents for the next generation.

6. The process is continued until a satisfactory solution is reached or run time

requirements have been met.

Evolution strategies are implemented in [P5] as a part of this dissertation.

3.7 Evolutionary Programming

The foundations for the EP research to come were laid in the early 1960s by L. J.
Fogel in [Fog62]. Evolutionary programming is similar to evolution strategies in the
sense that the mutation is controlled by a strategy parameter, i.e. a standard deviation
value is conjugated to each individual. Mutation is usually the only operator used with
EP; however, the possibility of multiparent recombination of the best solutions over
various generations has also been considered in [Fog66]. D. B. Fogel describes the
main phases of EP in [Fog00] as follows:

1. A population of individuals is created. These individuals can be presented, for
example, as arrays.

2. The objective function value for each individual is evaluated.

3. Offspring individuals are created by mutating the parent individuals on the

basis of the standard deviation parameter given in the strategy parameters.

4. The best individuals are selected to act as parents for the next generation.

5. The process continues until satisfactory results have been achieved or run time
requirements have been met.

GP and EP share many similarities, the most significant difference being the use of
crossover as an important variation operator in GP. EP relies more on a mutation
operator. Genetic programming is able to modify the number of states through a
crossover operator, whereas the number of states in evolutionary programming can be
altered by the mutation operator.

In evolutionary programming, the individuals can be finite state machines, as
described in the early experiments. Nowadays, however, the solution structure arises
naturally from the problem specifications. In this dissertation, publications [P6] and
[P8] employs evolutionary programming as a part of it.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

25

3.8. Artificial Immune Systems

Artificial immune systems stand out as more recent contenders in the field of
evolutionary computation when compared to GA, EP, and ES. AIS and its
optimization scheme, the clonal selection principle (CSP) or the clonal selection
theorem, are widely credited to, among others, de Castro and Timmis [Cas02a], dating
back to the mid-’90s. Instead of mimicking natural evolution, CSP simplifies the
mammalian immune system for optimization purposes. The major difference between
the traditional EC methods, GA, ES, and EP, and CSP is that, instead of a single
optimum, the basic configuration CSP is capable of finding multiple, and separate,
good solutions. For GAs, ESs, and EPs, finding multiple good solutions is possible,
but this requires the algorithms to be specifically designed that way. A common
method for finding multiple good solutions is niching, discussed in more detail in
Chapter 4.

In brief, the mammalian immune system operates as follows [Cas02b]. When an
animal is exposed to an antigen, something that is normally not part of the animal’s
system, the bone marrow-derived B lymphocyte cells respond by producing
antibodies. Antibodies are attached to the surface of the lymphocytes and they
recognize and bind to antigens that match their structure. By binding to the antigens,
and with the help of additional signals from the so-called T cells, the antigen
stimulates the B cell to proliferate and mature into plasma cells or memory cells that
can circulate for a long time within the animal. The whole scheme is naturally
considerably more complicated, but the main aspects used in the optimization are
quite straightforward. The objective function is the antigen. Antibodies are candidate
solutions trying to maximize their affinity with respect to the objective function, i.e.
the antigen. The candidate solutions are cloned proportionately to how good their
affinities are. Thus the best matching candidate solutions are cloned in greater
numbers. The optimization procedure using CSP, an algorithm called CLONALG, is
explained in [Cas02b] as follows:

1. Create an initial population of nI antibodies.

2. Determine the affinities of each individual in the solution pool.

3. Select m highest affinity antibodies for cloning.

4. The m selected antibodies are cloned independently and proportionately to

their affinities: the higher the affinity, the higher number of clones created for
each of the m selected antibodies.

5. The clones are mutated proportionately to their affinity: the better the affinity,

the smaller the mutation rate. This stage is called affinity maturation.

6. The affinity of the clones is calculated.

7. If one of the clones has a higher affinity than its parent, then replace the parent

with this higher-affinity mutated clone.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

26

8. Replace the w worst individuals with random new antibodies.

9. The process is continued until a satisfactory solution is reached or run time

requirements have been met.

CSP contains many of the operators of the traditional EC methods, such as variation
and selection. CSP was studied in [P8] as a part of this dissertation.

3.9 Other Biologically Inspired Optimization Schemes

Nature and society are constantly being studied for new ideas to be refined as
optimization algorithms. Some of the most popular biologically inspired optimization
methods, apart from GA, ES, EP, and AIS, are discussed in the following section.
These methods are not considered in publications [P1]-[P8], but they are introduced
here to show the wide variety of different aspects used today to develop nature-
inspired optimization methods.

Swarm intelligence takes advantage of the behavior of groups, i.e. a collection of
individuals working for a common goal. As examples, nature provides an ants’ nest or
a flock of flying birds. Two forms of swarm intelligence, Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO), are briefly discussed below.

Ant colony optimization mimics the behavior of ants [Eng06][Hec01]. Ants lay down
pheromones to signal the locations of food to other ants. Pheromones attract other ants
to the same region, but they evaporate as time goes by. This notion is translated into a
generic optimization scheme using artificial ants that lay artificial pheromones
proportional to the objective function value at a visited point. Different pheromone
levels at different points guide the artificial ants to change their direction towards the
most promising areas. Thus, ACO optimization is constantly guided towards the
current best solution. Common applications of ACO optimization include different
routing problems, such as the traveling salesman problem [Dor97]. Additionally, other
kinds of problems, such as data mining [Par02] and finding a charging pattern for
lithium-ion batteries [Liu05] have been successfully solved using ACO.

Particle swarm optimization [Ken95] [Eng06] [Rey06] takes advantage of e.g. birds
and fish, more generally a group of individuals moving collectively as a large group.
The best location of food or protection is rapidly communicated through a group, and
all the individuals seem to act nearly as one. As an optimization scheme these
artificial individuals adjust their speed and direction in relation to the overall best
solution, perhaps also influenced by the best solution in the surrounding
neighborhood. PSO has been used to solve a wide variety of problems successfully.
These include, among others, optimizing the design of a PID controller [Gai04] and
the design of a microwave filter [Wan05].

Learning Classifier Systems (LCS) [Kov01] are a machine learning system suitable
for optimization, among others. LCS uses a population of IF-THEN rules to make
decisions. The rules are modified by another evolutionary computation technique, like
genetic algorithms. The best rules are selected for the next generation, whereas the

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

27

less-fit rules are discarded. LCSs have been implemented in various applications, such
as studying the UK electricity market [Bag05].

Cultural evolutionary algorithms use human social evolution as their metaphor for
optimization. In these algorithms culture is seen as a guidance system directing
individuals towards a specific direction, determined by the best individuals in the
population. According to [Cor05], a cultural evolutionary algorithm proceeds as
follows. Candidate solutions are first evaluated and an acceptance function determines
which individuals in the current population can make a difference to the current
beliefs. The fitness, i.e. the experience, of these individuals is used to adjust the belief
space. These group beliefs are then used to guide the evolution in a certain direction.
In numerical optimization this would mean, for example, that the fittest individuals
could be used to control the domain constraints, that is, the search intervals.
Furthermore, only a certain percentage of the fittest individuals would be preserved
for the next generation and thus act as parents for offspring.

Differential Evolution (DE) [Cor05] is a simple population-based optimization tool. A
basic DE algorithm may proceed as follows. Select an individual from a created
population. After this, select two other individuals and calculate their difference using
subtraction. To this result, add a third randomly chosen individual. Then use crossover
to combine the first selected individual and the individual built using the three other
individuals. If the product of the crossover has a better fitness than the first selected
individual, select the offspring for the next generation. Otherwise, use the individual
selected first.

Memetic algorithms [Cor05] are population-based search methods that use the
available knowledge about the problem. This knowledge is exploited using, for
example, approximation algorithms, local search methods, or specialized operators
tailored to meet the requirements of a specific problem.

Tabu search [Eng06] is an optimization technique concentrating on an iterative
neighborhood search in which the neighborhood changes dynamically. Tabu search
maintains a memory structure of points the search algorithm has visited previously
and excludes these points from future searches.

3.10 About Nature-Inspired Optimization Schemes

In this chapter, some of the most commonly used evolutionary algorithms have been
discussed. It is clear that all the algorithms take advantage of the two key operators to
complete their task: variation and selection. In the previous years the field of
evolutionary computation was more fragmented, and the algorithms were classified,
for example, on the basis of the presentation of the data or the type of operators used
or simply on different opinions of scientists. Fogel has remarked in [Fog06] that it is
no longer possible to identify a certain approach as a genetic algorithm, evolution
strategy, or evolutionary programming, simply by examining the representation
chosen, the selection method, or the use of self-adaptation, recombination, or any
other factor. At present, there are no implementational restrictions on what operators
can be used with what operators and how to present data. All nature-inspired

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

28

optimization algorithms are ultimately imaginative interpretations of variation and
natural selection.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

29

4. Improving the Performance of Evolutionary
Algorithms

Evolutionary algorithms have proved their efficiency in complex optimization tasks,
but their rudimentary versions usually suffer from severe problems that may prevent
the algorithm from reaching optimal solutions in reasonable time. These problems are
known as stagnation or premature convergence [Bäc96] [Fog00], but lengthy run
times of the algorithms may also be an issue for the users. These problematic
phenomena are important and interesting challenges for researchers and the possible
competitive solutions are applied by practitioners working with complex optimization
tasks. This chapter discusses some methods proposed to resolve these problems.

4.1 Behavior of Evolutionary Algorithms

Evolutionary algorithms operate on a population of individuals, improving the
objective function value, fo, of these individuals within the population gradually or in
jumps. This development towards the final result is called convergence. The
maximum, fo,max(g), average, fo,ave(g), and minimum objective function values, fo,min(g),
are variables that describe the progress of an evolutionary algorithm. fo,max(g) and
fo,min(g) describe the best and the worst solutions within a specific generation, whereas
fo,ave(g) gives the average objective function value of all the solutions in the solution
pool within a specific generation. This text discusses fitness values, i.e. maximization
problems, without the loss of generality; all the concepts also apply to minimization
problems, i.e. cost functions.

Figure 14 depicts the typical convergence characteristics of a generic EC algorithm. In
the early generations of evolution, the dynamic range of the fitness values in a
population is usually large. The dynamic range of a solution population is used to
describe the difference between the fitness values of the best and the worst individual
solutions, i.e. (fo,max(g) – fo,min(g)). Later on, as the solutions evolve, the average and
minimum fitness values approach the maximum fitness value and the solution
population converges.

Generations

Maximum fitness
Average fitness
Minimum fitness

0
0

ng

fo

g0.5 n

Fig. 14. Typical convergence behavior of an evolutionary algorithm.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

30

At the beginning, there is usually significant variable value diversity within the
solution pool, meaning that there may exist a large number of different values for a
specific trait or a gene. The variable value diversity can be expressed, for example, as
the difference between the minimum and maximum values of a single variable in the
solution pool or using the variance of the values a variable has. Towards the end, this
diversity tends to shrink and finally the evolutionary computation algorithm may end
up with a solution pool consisting merely of a single solution or a few solutions.
Problems with EC are usually related to a decrease in parameter value diversity
occurring before the algorithm has found a competitive solution, if such a solution
exists. It is easy to see that if the solutions in the solution pool are very similar, not
much improvement or even variation can usually be achieved by the use of crossover-
based reproduction operators. In this situation a mutation operator may be able to
produce material with good new parameters.

The dynamic range of the fitness values and the diversity of the variable values are
two different things and they should not be confused. The dynamic range of the
fitness values describes the variety in the fitness values of the solutions in the current
population, and the diversity of the variable values describes the variety of different
values each variable of a solution has in the solution population. Both of these terms,
alone or combined, tell us something about the population. For example, an algorithm
may be close to convergence or stagnation if the diversity is low; however, the
dynamics can still be large. This is because even a minor variation in a variable value
can result in a drastic change in the fitness value. Then again, a small dynamic range
of fitness implies that there is no considerable difference in the fitness values of the
individuals, although the variable value diversity may be large, indicating the
existence of multiple good solutions. Using this type of information, among others, it
may be possible to design operators for evolutionary algorithms to overcome the
obstacles in the optimization process, such as premature convergence.

Convergence and the decrease in the parameter value diversity are nothing to be
alarmed about if the algorithm is centered on a global optimum or a good enough
solution. This is basically what the algorithm is supposed to do. If, instead, the
algorithm gets stuck around a local optimum or any other point, then there is a
problem, either stagnation or premature convergence. This problem can be alleviated
by using an appropriately devised variation operator that is able to break the algorithm
free from such local optima, since there is usually no way of knowing whether a
certain point is a local optimum, global optimum, or some other point.

The question arises of how one should choose the parameter values for operators in an
EC algorithm. In fact, this is problematic, since the operator parameters are very
application-specific and no guarantees can be given that some parameters will work
for some specific problems. Another problem related to all optimization techniques is
the sometimes very costly evaluation of the fitness function. The objective function
can be a low-dimensional function or it can be a complicated simulation procedure for
an application-specific digital filter.

The problems of evolutionary algorithms are thus related to the reliability and
execution speed of the algorithm. Nowadays, the research and development cycles of

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

31

products are so intensive that practicing engineers usually have no time to run a time-
consuming optimization algorithm several times in the hope of getting a solution.

4.2 Means to Improve the Performance of Evolutionary Algorithms

Various methods to improve EC performance have been discussed, starting from the
very first algorithms proposed. These modifications aim to tackle the bottlenecks of
EC-based optimization processes and thus add to the performance of an algorithm.
The performance of an algorithm is not an unambiguous concept, but, rather, it
depends on the application and implementation. However, there are some
characteristics that can describe the capabilities of an algorithm. The convergence rate
of an algorithm describes how fast the algorithm is capable of finding the best
attainable solution for that specific algorithm. So, the greater the convergence rate, the
faster the algorithm is. The reliability of an algorithm to produce good results is also
an important factor. An algorithm can be considered reliable if the variance of the
results it produces is sufficiently small and there is no considerable number of outlier
samples. The magnitude of variance and the number of outliers cannot be defined
unambiguously; rather, these characteristics are problem-dependent. One of the most
interesting measures of performance is the fitness of the solutions produced.
Sometimes a single outstanding value produced by an algorithm after multiple runs is
desirable, but it is more common to develop an algorithm that produces good results
on the average. Additionally, sometimes multiple competitive solutions instead of just
one are desirable. So, a high-performance EC algorithm should be able to produce
quality solutions reliably in a short time. At times, designers have to decide on trade-
offs between reliability, quality, and speed.

For complex problems, the addition of more computational power may improve the
performance of the algorithm. The effect is twofold: with more computational
resources to spare, an algorithm can run more generations in the same time. Then
again, an algorithm with more computational power can have a larger solution
population, and thus a more thorough search of the search space, than its counterpart
with less computing power. Parallel computing architectures have been studied
extensively in the context of EC. This is mainly due to the parallel nature of EC
algorithms, i.e. the search for multiple solutions in parallel. Despite this inherent
parallelism in evolution and evolutionary computation, many EC algorithms are serial
in nature. This means that although evolutionary algorithms virtually evaluate
multiple solutions in parallel, the actual execution of the program instructions is
usually serial. It has also been noted that the mere existence of parallel populations
adds to the performance of an EC, although no actual parallel hardware is available.
Other schemes related to speed include the modification of operators to make them
more efficient, thus making the operation of the whole algorithm faster.

Other than speed, modifications concentrate on the structure of the population and the
EC operators. The main aim of such modifications is to avoid premature convergence,
i.e. the stagnation of an algorithm, and to find new competitive solutions. Operators
can be made adaptive, so that their characteristics change during the run time of an
algorithm to compensate for the changes taking place in the solution population. This
can mean, for example, that the operators produce more variation in the solution
population when the solution population starts to lose variable diversity.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

32

An important aspect of modifying EC algorithms is the fusion of evolutionary
algorithms with other types of methods. These hybrid algorithms combine the
strengths of multiple methods, most commonly evolutionary algorithms, neural
networks, fuzzy logic, and conventional hard computing methods. A single algorithm
can be superior alone in some cases, but a combination of techniques and their
respective advantages can produce competitive algorithms for complex problems. In
the following section, some modification techniques aimed at improving EC
performance are discussed in detail.

4.3 Multiple-Population Evolutionary Algorithms

An evolutionary algorithm with multiple populations is a scheme in which, instead of
a single solution population, multiple and separate but possibly interacting
subpopulations are maintained and evolved in parallel. In the following, different
approaches to multipopulation EC algorithms are discussed.

4.3.1 Parallel Processing and Evolutionary Algorithms

The use of parallel processing environments has been a traditional way of speeding up
demanding computational experiments. Parallel hardware environments contain two
or more processing units that can, theoretically, divide the execution time by the
number of processing units. In practice, however, this is rarely the case, although
significant speedup can usually be achieved [Cul99] [Cod93].

Because of the inherent parallelism in evolutionary algorithms, parallel
implementations of evolutionary algorithms have been studied thoroughly. The
advantages of using parallel processing in EC are listed in [Alb02] as follows:

• The ability to search for alternative solutions to the same problem in parallel
• Easy parallelization as island or neighborhood models (see below)
• Speedup resulting from the use of multiple central processing units (CPUs)

Early implementations of parallel EC algorithms (PEC) were carried out by, e.g.,
Grefenstette in the early 1980s [Gre81]. A comprehensive survey of parallel EC
algorithms and parallel hardware environments, as well as the parallel programming
tools used in parallel EC algorithms, is given in [Alb02]. In that paper PEC algorithms
are divided into subsets. In the panmictic approach the solution population is dealt
with as one, with all the operators affecting each individual: that is, in panmictic EC
algorithms only the computational burden is divided using multiple processors. On the
other hand, structured PEC algorithms take advantage of multiple subpopulations
residing in different CPUs. Structured PEC algorithms can be further divided into
distributed EC algorithms (dEC) [Bel95] and cellular EC algorithms (cEC) [Bal93].
The dEC approach is also known as the island model. In dEC, the population is
divided into subpopulations: the exchange of individuals takes place on the basis of
predetermined rules, and subpopulations reproduce among themselves. In cEC
algorithms, a single individual usually has its own CPU, and it can reproduce only

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

33

with the neighboring individuals in the processor architecture. In both the dEC and
cEC schemes the operators acting on the populations are the same, i.e. the algorithms
are uniform. In nonuniform structured PEC algorithms, the operators acting on
different subpopulations may be different. This kind of approach was studied in
[Tan87].

PEC has been used, for obvious reasons, to tackle computationally very challenging
problems. These include, among others, demanding TSP in combinatorial
optimization [Müh92], frequency assignment problems in telecommunications
network design [Meu00], and trading models in the area of financial applications
[Cho00]. Recently, parallel EC algorithms have been implemented in areas of
increasing scientific interest, e.g., bioinformatics [Wie05] on the application side and
peer-to-peer networks [Mel05] on the implementation side.

Parallel processing does not improve the robustness and reliability of an EC as such.
When using parallel processing environments, the computational task at hand can be
divided between all the processors. Evolutionary computation algorithms consist of a
number of objective function evaluations per generation, and this is where parallel
processing can speed up the EC. Since the objective function evaluations are separate
computational tasks not requiring information from each other, the tasks can be spread
across several processors. For example, if the EC algorithm contains 100 objective
function evaluations per generation and there exists a parallel environment with five
processing units, theoretically, each processor could conduct 20 objective function
evaluations per generation instead of a single processor doing all the work. This
means that an algorithm using parallel hardware would be five times faster than an
application using only a single processing unit.

However, communication between the processing units takes time. The inter-
processor communication time should be small in comparison to the time required by
the objective function evaluation. If the evaluation of the objective function takes only
a short time, then it could be that in fact the parallel implementation of EC is slower
than that using only a single processing unit.

4.3.2 Multipopulation Approach

Improving the performance of EC algorithms with parallel hardware is beyond the
scope of this dissertation. However, some parallel implementations of dEC algorithms
use an interesting approach: in addition to distributing the computational load between
separate processing units, each processing unit contains a separate EC algorithm that
operates on its own population. These separate EC algorithms can exchange solutions
with each other from time to time, and thus improve the performance of a standard
EC. In [Gor93] the authors have proposed in their study that the mere existence of
multiple populations without actual parallel hardware may add to the performance of
an EC. These kinds of implementations take advantage of multiple subpopulations
and different operators for different subpopulations, as well as different subpopulation
characteristics. These kinds of multiple population algorithms are studied, for
example, in [Sla99]. Kamiya and Makino [Kam05] have proposed that a
multipopulation scheme can be used to improve the performance of an EC in dynamic
environments, that is, when the objective function changes over time. In addition, all

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

34

the approaches used in actual parallel hardware implementations of parallel EC
algorithms are also applicable to single CPU EC algorithms.

Niching [Gol89] [Dar97], also known as speciation, is a popular multipopulation
scheme in evolutionary computation. In nature, niches are subspaces of the
environment that can support different kinds of life, i.e. different species, and, of
course, different species cannot have offspring together. In addition, each niche has
only a limited amount of resources, which have to be divided between the inhabitants
of that particular niche, i.e., even a vast reservoir of resources cannot nurture an
indefinite number of individuals. Then again, a niche with fewer resources can easily
satisfy the needs of a couple of individuals. This metaphor turns into an optimization
scheme quite conveniently. The main principle is to sustain diversity, not letting too
many individuals search the same region of promising fitness. Furthermore, candidate
solutions from two separate good regions cannot be combined to avoid the creation of
inferior solutions. The two main mechanisms for niching are fitness sharing and
crowding [Sar98]. A fitness sharing scheme divides the fitness of a region for all the
individuals residing at that location, thus making it less attractive for masses of
individuals. Crowding methods, on the other hand, insert new elements into the
population, simultaneously replacing similar solutions.

Coevolution, as the name implies, is the evolution of multiple interactive populations
in parallel. A coevolutionary scheme could include, for example, the solution
population and a population of test cases [Wer00]. The fitness function can be a
combination of different test cases. In this scheme, the desired property of the test
case population is to gradually evolve into more challenging but appropriate test
cases, thus enabling the solution population to be able to solve ever harder problems
as the algorithm proceeds. In [Han97a], an optimization scheme in which two genetic
algorithms work with the same population is discussed. The coevolution scheme can
be either co-operative, in which the multiple components work on the same side, or a
predator-prey scheme, in which the components fight against each other, as in
[Ari96].

4.3.3 Problem Decomposition

Humans intuitively try to solve extensive problems by dividing the problem into
smaller pieces, rather than trying to solve the whole problem at once. This method of
slicing problems down into sub-problems, solving them, and recombining the partial
solutions is referred to as a problem decomposition or divide-and-conquer approach.
In [Val95] a TSP was divided into sub-problems and the combined solutions to the
sub-problems constituted the solution to the overall problem. The partitioning of a
TSP is a very illustrative example of the divide-and-conquer approach: the whole
route connecting all the given cities can be optimized by optimizing separately
optimized and then connected sub-paths. In [Jua05], another type of approach is
selected, in which a recurrent fuzzy system is structurally divided into separate parts
and these parts are optimized separately. In addition, a separate optimization process
deals with the whole network.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

35

4.4 Modifying Operators in Evolutionary Algorithms

The behavior of an EC algorithm during run time is mainly controlled by the variation
probabilities. Of course, selection and other possible operators also play an important
role in the course of the evolution of a solution population, but variation operators can
essentially make the algorithm excel or stagnate. Selecting the appropriate values for
reproduction and mutation probabilities is a problem-dependent task and it is usually
carried out by means of trial and error through extensive testing of different control
parameter values. As explained before, the variable value diversity of the solutions
usually diminishes as the evolution of an EC algorithm proceeds. The location of the
solution population changes stochastically during the evolution process and this
basically means that fixed reproduction and mutation probability values may not
produce the desired performance throughout the whole run time of an algorithm. To
overcome this problem, adaptive parameters are used. Adaptive parameters adapt the
EC control parameters, such as mutation and reproduction probabilities, to the
changes in the population dynamics in the hope of improving the performance of the
algorithm.

In [Hin97] and [Smi97] a compact survey of adaptation in evolutionary computation
is offered, while [Eib99] is a more thorough presentation of the same topic. In [Hin97]
EC is divided into static and dynamic EC. In static EC no adaptation takes place. In
dynamic EC environments, populations, or individuals can be adapted. Dynamic
adaptation is further divided into subcategories, including deterministic, adaptive, and
self-adaptive methods. In deterministic adaptation the parameter is adapted according
to some deterministic rule without feedback from the EC algorithm. For example, in
[Fog89] the mutation probability was altered as a function of the number of
generations the EC algorithm had run. In adaptive EC there is feedback from the
algorithm, and this is used to control the parameters. In [Jul95], the ratio between
mutation and crossover, based on their performance, was studied. In self-adaptation
the control parameter to be adapted is placed within each individual and is thus
subjected to mutation and reproduction. For example, in [Smi96] the mutation rates of
individuals were controlled using self-adaptation.

A popular adaptive scheme for adaptively controlling the reproduction and mutation
probabilities was proposed by Srinivas and Patnaik in [Sri94]. More recently, the use
of adaptive fitness functions in the form of altering a penalty function has been
studied in [Far03]. Theoretical considerations concerning the features of self-
adaptation in EC algorithms are offered in [Bey01]. That publication offers guidance
for selecting strategies to be used in self-adaptation. Operators for an EC algorithm
are selected adaptively in [Mag00], i.e. different operators are used for the same
purpose at different stages of the run time of the algorithm. Premature convergence is
a common deficiency in EC, and it may result from poor selection of parameter
values. Premature convergence, or stagnation, stops the evolution of the solutions and
the algorithm is usually only able to output a non-satisfactory result. By modifying the
control parameters of the algorithm, e.g. the mutation probability, adaptively, it is
possible to overcome stagnation and continue the optimization process further.

The main purpose of the variation operators is to search for improvements, but at the
same time they also introduce diversity within the population. How the operators

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

36

should work depends on the state of the underlying population characteristics. Figure
15 shows how a generic EC algorithm could behave. Conventionally, the solution
pool of an evolutionary algorithm starts with multiple candidates and potentially wide
diversity of genetic or trait material. At the beginning the algorithm evaluates multiple
promising solutions, instead of concentrating on what is currently the best solution.
During the following generations, the solution variable diversity in the population
tends to decrease and the individuals in the population may start increasingly to
resemble one another. Usually, the variation probabilities are high at the beginning in
order to allow new promising areas of search space to be searched through. Towards
the end the population settles in an area in the search space through selection, and
mutation is used to make minor local searches in the vicinity of the candidate solution.
From this it follows that a variation operator is commonly used, so that the population
starts with a high mutation probability and this probability is decreased as the
algorithm proceeds towards its end. Figure 15 illustrates the behavior of the generic
adaptive variation probability as a generic EC algorithm proceeds.

One must bear in mind that the situation described above is different when other types
of operators or algorithms are used. For example, the clonal selection principle
eventually produces multiple distinct good solutions instead of just the one the usually
produced by other evolutionary algorithms.

Generations

Maximum fitness
Average fitness
Minimum fitness

0
0

ng

fo

Generations

Generations

Pr
o

b
a

b
il it

y

Low

High

High

Low
0

0

ng

ng

Med

Med

gn0.5

gn0.5

gn0.5

Va
ria

tio
n

Fig. 15. The behavior of adaptive variation probability in evolutionary algorithms.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

37

4.5 Hybrid Algorithms

Hybrid algorithms are a combination of two or more different techniques.
Evolutionary algorithms have been successfully hybridized with other soft computing
methods, such as fuzzy logic and neural networks. The combination of traditional
hard computing methods and evolutionary algorithms is also common. The main
reason for using these kinds of hybrid algorithms is to combine the strengths of
different approaches in order to overcome the weaknesses of an individual method.
Some hybridization schemes are discussed below.

4.5.1 Fuzzy Logic and Evolutionary Algorithms

One of the best-known areas of soft computing is fuzzy logic (FL) [Wan96a].
Developed in the 1960s by Lofti A. Zadeh [Zad02], FL has gained acceptance as an
efficient way of transforming human knowledge into machine-understandable form.
What is significant in FL is that it is very persistent with all kinds of uncertainties and
lacks of information. Furthermore, it does not need very specific measurements to
give good results. These kinds of properties are useful in adjusting the control
parameters of EC. For instance, if we want to tune the mutation probability of a GA,
we need to make decisions as to whether to increase or decrease the mutation
probability on the basis of some population statistics, such as average fitness or the
improvement of the maximum fitness over previous generations. There are no strict
boundaries regarding our knowing when and how to manipulate the mutation
probability.

In this dissertation, the emphasis is on applying fuzzy logic in order to improve the
performance of evolutionary computation algorithms. However, on the other hand,
evolutionary computation can also be used to improve the performance of fuzzy logic
systems. A survey of EC enhancement of the performance of FL is presented in
[Yuh99] and an application in the field of classification systems in [Mur95]. In
[Mor05] EC is used to tune the if-then rules of a fuzzy function approximation
system, and in general, it seems that the main focus of the research is on fusing EC
and FL so that EC is used to enhance FL at present.

Takagi proposed a genetic algorithm employing FL to control population size,
crossover probability, and mutation probability in [Tag93]. Wang describes in
[Wan96b] the use of FL-tuned EC in a power economic dispatching problem in such a
way that FL is used to control both the mutation and crossover probabilities.
McClintock [Mcc97] implemented Takagi’s scheme in the area of star pattern
recognition to aid spacecraft navigation. In [Sub03] it is concluded that if FL is used
to control EC control parameters, the variance of multiple search runs can be
decreased in some cases.

Recently, FL has been used to boost EC performance in [Ahk04], in which a GA was
used to configure an optimal electrical distribution network. In that paper FL controls
both the mutation and crossover probabilities of the genetic algorithm and as inputs it
uses the fitness averages of the two previous generations. In [Pyt04] a genetic
algorithm is also modified, using an FL system, so that the selection probabilities, as

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

38

well as the mutation and reproduction probabilities, are controlled by FL. As inputs
that paper uses the relative fitness of individuals, as well as the fitness improvement
over previous generations.

Figure 16 demonstrates the basic procedure of a Mandani-type fuzzy logic system.
The core of such a fuzzy logic system is a fuzzy rule base, which defines the behavior
of the fuzzy system. The fuzzy rule base contains the characteristics of the fuzzy
system, and it is usually compiled by an expert in a particular application area. The
fuzzy rules can be expressed as follows.

If V1 is p1 and V2 is p2, then V3 is p3.

V1, V2, and V3 are variable names, e.g. maximum fitness, minimum fitness, and
mutation probability, and p1, p2, and p3 define the variables literally. These linguistic
definitions can be, e.g. low, medium, high etc. In Fig. 16 each rule in the rule base
defines an area, and all the areas defined by individual rules are combined together.
From the combination of areas the final output of the fuzzy system is defuzzified using
one of the various existing methods. For example, the Center of Area method
defuzzifies the output by calculating the center of gravity of the composite area and
the result is a crisp value.

Low Medium High Low Medium High Low Medium High

Low Medium High Low Medium High Low Medium High

Low Medium High

A B

A B

C

C

C

If A is Low and B is High then C is Medium

If A is Medium and B is Medium then C is High

Center of Area

+

MAX

High

Med

Low

High

Med

Low

High

Med

Low

High

Med

Low

High

Med

Low

High

Med

Low

High

Med

Low

Fig. 16. The basic principle of a Mandani-type fuzzy logic system.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

39

There exist several ways to perform the various stages of a fuzzy system and these
stages are more thoroughly explained, for example, in [Wan96]. Fuzzy logic-
controlled adaptive parameters were implemented in publications [P5] and [P6] in this
dissertation.

4.5.2 Neural Networks and Evolutionary Algorithms

A neural network, also known as an artificial neural network, is a computational
paradigm exhibiting a low-level resemblance to the human brain [Hay98]. Neural
networks consist of units capable of learning, neurons. A single neuron is capable of
performing only very limited tasks, but an interconnected network of multiple neurons
is capable of handling difficult and complicated assignments, such as universal
function approximation. Neural networks, like other soft computing techniques, are
robust and tolerant towards errors in the input data. The structure of a neuron is
depicted in Fig. 17.
 awi

b

fa(a)Σ ynn,ixnn,i

Fig. 17. A single neuron.

The neuron receives an input xnn,i through weight wi. The weighted input is summed
with a bias term b and this sum is the fed to an activation function fa. The overall
output of the neuron, ynn,i, is thus

ynn,i = fa (wi ·xnn,i+b) (1)

The weights wi of the neural network are first trained using a training set of samples.
There are various methods for training the neural network [Hay98]. After the training,
the neural network can be used to approximate a function determined by the training
set with new data.

There exist multiple types of neural networks, and the multi-layer perceptron (MLP)
is one of the most commonly used. The single neuron shown in Fig. 17 is shown in
simplified form in Fig. 18a. In Fig. 18b this model is used to display an MLP network
with three input neurons and a single output neuron.

 Fig

x

x

J. Ma
. 18a. A simplified illustration of a neuron. Fig. 18b. A generic MLP network.

xnn,3

xnn,2

nn,1

ynnnn,1 ynn,1

__
rtikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

40

Evolutionary algorithms and neural networks can be fused together in two main ways:
either EC is used to improve NN performance, or vice versa. Kampfner et al. [Kam83]
use an evolution-based computational method to evolve neural networks. In [Tsa06] a
specific genetic algorithm is used to find the optimal parameter values and structure
for a neural network. Similarly, in [Lam04] a genetic algorithm is used to devise the
parameters of a neural network designed for digit and command interpretation for an
electronics book. In this dissertation, however, the emphasis is on neural networks
aiding evolutionary computation as in [P3]. In [Han97b] Han et al. discuss a method
to produce silicone oxide films for integrated circuit fabrication using genetic
algorithms with a neural network-based fitness function. In that paper, the calculation
of fitness is a very complex task and a neural network is set up on the basis of sample
data and this network is then used to evaluate the fitness of the solutions produced by
the genetic algorithm. In [Pet98] a method whereby a neural network is used to
produce the selection probabilities for individuals in a solution pool operated by a GA
is discussed. That fusion of NN and GA is used to estimate the parameters of a model.
In [Geo01] NN is used to calculate the fitness of the individuals in a GA in a
transformer manufacturing problem. In [Miz00] Mizutani et al. discuss a fusion
method involving NN, FL, and GA in the context of evolving color recipes. That
paper uses both fuzzy logic and neural networks to produce the initial population for
the genetic algorithm. Additionally, a neural network evaluates the fitness function of
the genetic algorithm.

4.5.3 Hard Computing Methods and Evolutionary Algorithms

Hybrid algorithms fusing hard and soft computing methods are not dealt with in
publications [P1]-[P8] in this dissertation, but they are widely used to improve the
performance of evolutionary algorithms. These methods commonly take advantage of
the good global search capabilities of evolutionary algorithms and the local search
power of traditional methods. EC algorithms usually find the area of good fitness
quite easily, but finding the final peak within that area may be time-consuming.

Lamarckian and Baldwinian strategies [Mag00] are often mentioned when these
hybrid algorithms are being discussed. The Lamarckian approach means that an
individual is subjected to HC-based local optimization at some stage of its evolution,
and after this local search it is put back into the EC solution pool. If the HC
optimization has resulted in a better fitness value, the structure of this individual is
made to correspond to the new fitness value. Otherwise the individual is left intact. In
the Baldwinian approach the structure of the individual is not changed, even though a
better fitness may be achieved using HC, but only the fitness value is upgraded to the
better one. As an example, evolutionary algorithms and gradient search in general are
discussed in [Sal98]. In that paper an evolutionary optimization algorithm is executed
conventionally for a specified interval of generations. At the end of the interval,
solutions are subjected to a local search procedure, implemented using a gradient-
based method. This kind of gradient descent approach relies on calculating the
derivative for each parameter separately and adjusting the solution variable values
accordingly. After the HC-based optimization procedure, the SC-based optimization
methods resume.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

41

It has been observed that using both hard computing methods and soft computing
methods, including evolutionary computation, often result in more competitive
solutions than using SC or HC alone. This fusion of hard and soft computing is
discussed in detail in [Ova04] and applications implementing such techniques are
surveyed in [Ova99].

4.6 Aging in Evolutionary Algorithms

Aging is a natural phenomenon for all animal species. The process of aging has been
implemented in EC algorithms using many different approaches. [Gho98] presents the
scheme of effective fitness. In that approach the age of an individual affects the fitness
of the individual, younger and older individuals being less valuable than middle-aged
individuals. In [Hub98] the age of an individual is used to direct the search of the
algorithm. Each individual’s age is expressed in terms of the number of generations it
has managed to survive. Old individuals indicate good areas to search from, since it
has been difficult for the selection operator to reject these individuals. In this scheme
new individuals are generated through mutation from the best individuals. In [Iwa02]
individuals’ ages are used to control which operators are applied to any specific
individual. For example, young individuals undergo only reproduction but no
mutation. The main idea in aging in general is the prevention of stagnation, so that
one average solution cannot dominate the population for too long a time. Aging is
considered in [P5] in this dissertation.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

42

5. Statistical Comparison of Evolutionary Algorithms

Evolutionary algorithms are simplifications of the phenomena of the surrounding
natural systems. Natural and social environments offer an endless reservoir of ideas to
be used in evolutionary computation. Clearly, not all natural phenomena can be
transformed into an efficient optimization algorithm, if they can reasonably be
modeled at all. Even if we could model all the phenomena of nature, for most of them
we could only guess whether a particular occurrence is really pushing evolution
forward or if it is just another blind alley of evolution that will die away after the next
hundred generations. Usually, the value of an idea can only be measured through
extensive testing. This leads us to an important question: when can one algorithm be
considered to perform better than another in a certain optimization task?

To make a decision whether an algorithm performs well, the performance of the
proposed algorithm needs to be compared to that of a reference algorithm or a
reference performance value. In EC algorithms this means that the reference
algorithm and the proposed algorithm differ only in the proposed new modification.
For example, if we want to determine the effect of aging in a GA, GAs with and
without aging need to be compared. Other parameters, such as population sizes, initial
populations, and variation probabilities need to be the same. In particular, the number
of objective function evaluations needs to be (at least roughly) the same in both the
algorithms. If one algorithm has more opportunities to explore the search space than
another, then it is probable that this algorithm will find a better solution than the other.

In general, the computational load presented by two algorithms under comparison
should be roughly the same. Naturally, some control mechanisms of EC algorithms
might take somewhat longer to execute than others, but the total run times should be
approximately the same. If one algorithm uses far more computational resources, then
it is probably likely to find better solutions than an algorithm employing less
computation. In other words, both the algorithms may perform equally well if they are
given an equal amount of iterations/generations. The insight the experiment brings
depends on the settings of the experiment. This means, for example, that not lot of
knowledge may be gained from an experiment in which the algorithms are given a
different amount of computational time or resources, i.e. it is likely that one of the
algorithms performs better because of the experimental setup.

A common reason for the comparison between two algorithms being less insightful is
the extensive elaboration of the proposed algorithm and the negligible tuning of the
reference algorithm. It is very likely that any modified EC algorithm will probably
outperform a scratch-built EC algorithm without any parameter tuning. More insight
is achievable only if the reference algorithm too is as good as it can be. Naturally, this
is difficult to confirm in practice, but it is emphasized to say that a serious effort
should be put into tuning the reference algorithm too.

EC-based optimization methods are stochastic by nature, so we cannot be absolutely
sure how the algorithm is going to behave. Running two algorithms for a certain
number of generations and comparing the final maximum objective function values
tells us very little about the differences in the algorithms’ performance. In general, as
many runs as possible should be run for all the algorithms, and on the basis of the

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

43

maximum fitness averages and variances some assumptions can be made as to
whether one algorithm is better than another in a certain optimization problem.
Suggestions on using proper statistics in EC are given in [Chr04]. In [Eib02] Eiben et
al. discuss the experimental research methodology used in EC. That paper focuses on
the most common mistakes made in EC research when considering common scientific
research standards and it adds to the knowledge of most of the less experienced
researchers working in the field of EC.

Statistical methods are not always properly used in SC-related papers. Flexer
expresses his frustration towards inadequate statistics in neural network-related papers
in [Fle96]. In particular, the documentation of the statistical methods used leaves a lot
of things unexplained. That paper offers various important principles that are also
applicable to the field of evolutionary computation.

5.1 Methods for Comparing Evolutionary Algorithms

Evolutionary optimization algorithms are stochastic in nature. This means that the
results they produce are, in a sense, random and uncertain. This randomness follows
from the use of a random number generator (RNG) as a part of most of the operators,
e.g. an RNG can be used to decide the crossover point of two individuals, the location
of a mutation, or the individuals to be selected for the next generation. Thus, runs of
evolutionary algorithms with exact parameter settings produce different results if the
RNG is not reset. Since evolutionary algorithms behave differently each time, the
only acceptable way to compare the results of different algorithms is to use data
collected over several runs. Below, some very basic tools for statistical comparison
are discussed [Mil90].

The average of result samples is a commonly used measure for the performance of
evolutionary algorithms. The average has the problem of letting so-called outliers
affect the result; that is, a few exceptionally good or bad results can distort the
average, especially if small sample sets are used. A median operator, similar to the
average, conveniently reduces the effect of outliers.

However, comparing the average and median values alone is insufficient, for these do
not explain the distribution of the data. Variance, then, is used to describe how much a
single value usually differs from the expected value. The expected value, in this case,
can be expressed as either an average or the median. Variance also tells us something
about the reliability of an algorithm: the smaller the variance, the more reliably the
algorithm produces results around the expected value. Then again, large variance
denotes that the results of an algorithm can vary significantly from the expected value.

A convenient and illustrative tool for comparing two data sets is the box plot, also
known as the box-and-whisker diagram. A box plot for the two data sets, A and B,
shown in Table 1 is shown in Fig. 19.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

44

Data set A Data set B

0

0.5

1

1.5

2

V
lu
e
a

Fig. 19. A box plot for data sets A and B.

Table 1. Data sets A and B
A B

0.4493
0.2088
0.9641
0.0765
2.1234
0.0015
0.2609
0.3469
0.9105
0.1164
0.5779
0.4946
0.0736
0.9285
0.4436
0.3281
0.8889
0.4931
0.9509
0.6566

1.8953
0.8462
1.3599
1.0444
1.5413
0.0486
1.9685
0.0905
1.5831
1.2426
0.5689
1.3714
1.3818
0.0093
1.7458
1.2561
0.6411
0.0724
0.7127
1.6466

Va
lu

e

The box in the box plot consists of three horizontal lines: the lower quartile, the
median, and the upper quartile, from bottom to top. The lower quartile cuts off the
lowest 25% of the data, whereas the median and upper quartile cut off 50% and 75%
of the data, respectively. The whiskers are the lines extending from each end of the
box denoting the whole scope of the observations, i.e. the lowest line indicates the
smallest sample value and the highest line denotes the highest observed value. A “+”
sign denotes an outlier that is not considered a part of the sample set. For example, the
value 2.1234 is considered as an outlier in sample set A. In Fig. 20 the boxes have
notches on both sides. These notches represent a robust estimate of the uncertainty of
the medians when a box is compared with another box. In Fig. 19, data set B has a
greater median value and the notches of the sets do not overlap. In this light, it is
relatively safe to state that set B has a higher median value than set A. Averages,
medians, variances, and box plots are standard tools for statistical comparison and
these routines are automated in many of the sophisticated mathematical software
packages available, such as Matlab [Mat06a].

The Student’s t-test [Chr04] is occasionally used to compare the outputs of two data
sets produced by evolutionary algorithms. The t-test is a convenient tool, but using it
correctly requires the data set to be normally distributed. This is difficult, if not
impossible, to show in practice in the context of EC and thus one should be very
careful when using the t-test to compare the results of two different evolutionary
algorithms. Using the t-test when the requirement for the normal distribution of the
input data sets is not met may lead to erroneous results. However, the reliability of the
t-test depends on a few things, such as sample size and the degree of normality.

5.2 Bootstrap Resampling-Based Multiple Hypothesis Testing

The problem of comparing two data sets for equality or difference in a parameter of
interest is a common problem encountered in many fields of science. Thus, alternative
statistical methods for comparing parameters, other than averages and standard
deviations, have been developed. One interesting approach to this problem of

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

45

comparison is the use of bootstrap resampling-based multiple hypothesis testing,
discussed in [Efr98]. This approach allows the user to compare the performance of the
two algorithms and it requires no distributional assumptions. This makes resampling-
based multiple hypothesis testing an attractive tool for comparing the results produced
by evolutionary algorithms. The resampling-based multiple hypothesis testing
framework is explained in [Efr98] as follows.

To start with, there are two sets of data, S1 and S2, generated by, for example, two
different evolutionary algorithms and they are possibly from two different probability
distributions, F and G. We will consider the mean of the data distribution to be a
suitable parameter of interest to estimate as a measure of the algorithm’s
performance. The task is to determine whether the two distributions have equal means
or one of the two algorithms performs better in this particular problem. A null
hypothesis, H0, of no difference between the means of F and G is created.

210 : SSH = (2)

This null hypothesis states that the means of both the data sets are equal. If we cannot
reject the null hypothesis then there is insufficient evidence to conclude that they are
unequal; otherwise, there exists a difference between them, and this is the alternative
hypothesis, 21 SS ≠ , to the null hypothesis. The null hypothesis and the alternative
hypothesis may be defined as complements of each other, so that eventually one of
them is true. Since the initial population may have an effect on the performance of the
algorithm, in this comparison scenario multiple initial populations are created and
both the algorithms are run a number of times using the same initial population. From
this it follows that there is a null hypothesis for each initial population created and that
altogether there are as many null hypotheses as there are initial populations created.
Conclusions on the performance differences can be drawn on the basis of the ratio
between the rejected null hypothesis and the number of initial populations.

A hypothesis test begins with a selection of test statistics, , and in this case it is
convenient to choose the Studentized mean difference as the test statistics. So,

θ̂

(3)
2

2
21

2
1

21

//
ˆ

kk

SS

σσ
θ

+

−
=

2
1σ and 2

2σ represent the variances of each point the original data sets 1 and 2,
respectively. k1 and k2 denote the sample sizes of S1 an S2, respectively.

Having the data sets S1 and S2, the achieved significance level, the p-value, is defined
as the probability of observing at least that large a value when the null hypothesis is
true.

{ }*
0

ˆ ˆp probH θ θ= ≥ (4)

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

46

The smaller the p-value, the stronger the evidence against the null hypothesis is. is
calculated directly from the data sets S

θ̂
1 and S2 sized k1 and k2 data points,

respectively, and *θ̂ is the test statistic calculated from the resampled data.

Finally, the approximation for the bootp , the bootstrap-based estimate for the p-value,
is calculated as follows:

1. Modify both the data sets S1 and S2 by subtracting the set mean and adding the
common mean, mS12 of S1 and S2:

1, 1 1 12

2, 2 2 12

adj s

adj s

S S S m

S S S m

= − +

= − +
 (5)

2. Draw B (e.g. B>10000) samples of size k1+k2 with replacement from a pool

containing all the individual samples of the sets S1,adj and S2,adj. The probability
for sampling a single observation is 1/(k1+k2). The first k1 resampled values
are denoted by S1

* and the last k2 values are called S2
*, the asterisk indicating

resampled values rather than observed ones.

3. The test statistic for each of the B sampled sets is calculated as

Bb
kk

SSb ,...,2,1 ,
//

)(ˆ
2

*2
21

*2
1

*
2

*
1* =

+

−
=

σσ
θ (6)

and

2

1

2*
2

*
,2

*2
2

1

1

2*
1

*
,1

*2
1

)(

)(

k

SS

k

SS

k

i
i

k

i
i

∑

∑

=

=

−
=

−
=

σ

σ

 (7)

4. Finally, we have an estimate for the p-value as

{ }*
boot

ˆ ˆp # () / , 1 2 .b B b , ,...,Bθ θ= ≥ = (8)

where is the observed value of the test statistic. Equation 10 means that pθ̂ boot equals
the number of resampled sets that have a larger test statistic value (in magnitude) than
the observed value and this number is then divided by B to get an approximation for
the achieved significance level. There are no strict guidelines as to the values of p
showing when to reject the null hypothesis and support the alternative hypothesis, but

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

47

the p-value is usually selected before the test; Efron et al. [Efr98] suggest the
conventions shown in Table 2.

Table 2. Rough guidelines for selecting the p-value [Erf98].
p-value Evidence against Ho
< 0.10 Borderline
< 0.05 Reasonably strong
< 0.025 Strong
< 0.01 Very strong

The field of soft computing does not generally use the commonly accepted procedure
for comparing the data sets produced by two different algorithms. Resampling-based
multiple hypothesis testing is an interesting option that should be seriously
considered. The entire procedure is explained in [Efr98] and more recent results
concerning multiple hypothesis testing can be found in [Pol05].

The resampling-based multiple hypothesis testing method for statistical comparison is
a non-parametric test, meaning that it does not require assumptions regarding the
underlying distribution of the sample sets. Parametric tests, then, rely on some
assumptions regarding the distribution of the data.

5.3 About Statistical Comparison of Evolutionary Algorithms

When developing evolutionary algorithms, similar attention must be paid to the
evaluation of the results as to the development process itself. Evolutionary algorithms
produce stochastic results, and therefore as much data as possible should be collected
before the algorithm is evaluated. The amount of data to be collected is usually
determined by the available time and computational resources and the computational
requirements of the algorithm under study. Additionally, attention must be paid to the
reference algorithms. It is comparatively easy to produce an algorithm that
outperforms, e.g., the basic genetic algorithm. The comparison of two algorithms is
only insightful if a serious effort is made to elaborate both the reference and the
proposed algorithm. Preferably, if we are studying a particular modification to an
existing algorithm, the reference and the proposed algorithm should only differ in
respect of the modification being studied. Thus, it is possible to conclude if the new
mechanism adds to the performance of the algorithm. Each algorithm under
comparison should be given an equal amount of computational resources or time in
order to ensure an insightful comparison. In addition, initial populations may
introduce bias to the results, so the use of the same initial populations for the
algorithms being studied is preferable.

Averages and medians give some indication of the performance of the algorithm.
However, a minimum requirement is to report the standard deviation of these results,
since average and median values alone are poor estimates of the reliability of the
results. More sophisticated comparison methods, such as the use of resampling-based
multiple hypothesis testing, are strongly encouraged. The field of evolutionary
computation does not commonly use the accepted methods for statistical evaluation.
This dissertation hopes to raise discussion related to this important matter.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

48

6. Summary of the Publications

This dissertation is divided into three parts. Publications [P1], [P2], and [P4]-[P6]
discuss the use of enhanced evolutionary algorithms for complex optimization
problems. Publication [P3] concentrates on reducing the computational requirements
imposed by the objective function evaluation by means of neural networks. Finally,
publications [P7] and [P8] illustrate the use of a comprehensive statistical scheme for
comparing two different evolutionary algorithms. In the following sections, the main
results of the publications and the contribution of the author are discussed.

6.1 [P1] J. Martikainen and S. J. Ovaska, “Designing multiplicative general

parameter filters using adaptive genetic algorithms,” in Proc. of the
Genetic and Evolutionary Computation Conference, Seattle, WA,
2004, pp. 1162-1167.

In [P1] an adaptive genetic algorithm is used to optimize a Multiplicative General
Parameter (MGP) basis filter, a Finite Impulse Response (FIR) filter design problem.
MGP-FIRs have been designed before using evolutionary computation, but this paper
introduces an effective adaptive GA-based approach to produce competitive design
performance. Additionally, an applicable structure for the solutions was discovered
and seeding the initial population with this structure was found to accelerate the
convergence of the algorithm.

The main result of this paper is the successful implementation of the adaptive
variation probabilities of the EC algorithm. Modifying the original adaptive
probabilities of [Sri94], the results showed better performance in terms of increased
average fitness when compared to a reference algorithm without adaptive parameters
and the original adaptive parameters in [Sri94]. Other important results include the
optimization of the adaptation gain factor of the MGP-FIR and the proper structure for
seeding the initial population. Altogether, this paper proposed the most powerful
design method for MGP-FIR basis filters that existed at the time of its publication.

The author was responsible for implementing and modifying the adaptive scheme
used in this paper. S. J. Ovaska introduced the problem to the author and suggested
the use of genetic algorithms as the optimization tool.

6.2 [P2] J. Martikainen and S. J. Ovaska, “Designing multiplicative general
parameter filters using multipopulation genetic algorithms,” in Proc. of
the 6th Nordic Signal Processing Symposium, Espoo, Finland, 2004, pp.
25-28.

In [P2], the work already started in [P1] is continued, namely, the efficient
optimization of MGP-FIR basis filters. In this study, a two-population GA (2PGA)
scheme is introduced, in which a large plain population conducts a global search
while a small elite population searches through local optima. The two populations are
allowed to exchange solutions under predefined rules. The proposed two-population

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

49

GA is straightforward to implement and, apart from adding to the performance of its
single-population counterpart, it does not add much to the complexity of the basic
algorithm.

The main result of the paper is the introduction of a straightforward two-population
genetic algorithm. Multiple-population EC algorithms have been studied extensively
before, but the proposed approach, contrary to the common trend, uses only a single
CPU instead of actual parallel hardware. Similar idea to this scheme have also been
studied before, but what makes this implementation stand out is the fact that the
individuals are placed and maintained in subpopulations on the basis of their fitness
characteristics, whereas allocating individuals to subpopulations has been more or less
a random process in the past.

This proposed algorithm is convenient to implement and it can be applied with every
EC algorithm, thus making it a very general-purpose enhancement. The computational
overhead resulting from the multipopulation extension is negligible. The results in the
paper clearly show that the proposed scheme improves even further the design process
of the MGP-FIR basis filter.

The author implemented and tuned the proposed 2PGA scheme and was also
responsible for conducting the experiments. S. J. Ovaska proposed the idea of
hierarchical populations, a concept which was later refined in cooperation with the
author.

6.3 [P3] J. Martikainen and S. J. Ovaska, “Fitness function approximation by

neural networks in the optimization of MGP-FIR filters,” in Proc. of
the IEEE Mountain Workshop on Adaptive and Learning Systems,
Logan, UT, 2006, pp. 231-236.

Previous work in [P1] and [P2] developed efficient algorithms for the MGP-FIR basis
filter optimization problem. Still, the evaluation of the MGP-FIR objective function
was time-consuming, regardless of the efficient optimization algorithms. This study
concentrated on reducing the time required for the evaluation of the objective function
by means of neural network approximation.

The main result of the paper is the fusion of neural networks and genetic algorithms to
improve the optimization process of MGP-FIR basis filters. An appropriate structure
for neural networks is defined and the training of the neural network is embedded in
the on-line optimization process. Furthermore, the fitness function was redefined so as
to conform better to the requirements of the application. The proposed scheme is
capable of reducing significantly the computational effort required by the fitness
function evaluations and this also includes the time required to train the network. An
important notion was that it was difficult to approximate the different parameters of
the objective function accurately with separate neural networks. Instead, using a
single network seems to bind the approximations together, so that the results are more
accurate than those obtained using separate networks.

S. J. Ovaska proposed the use of neural networks as part of the fitness function. The
author and S. J. Ovaska reformulated the fitness function together. The author was

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

50

responsible for elaborating and tuning the NN-assisted fitness function, as well as the
general optimization scheme.

6.4 [P4] J. Martikainen and S. J. Ovaska, “Hierarchical two-population genetic

algorithm,” International Journal of Computational Intelligence
Research, vol. 2, no. 4, 2006, in press.

Publication [P4] is a comprehensive study that concentrates on the two-population
genetic algorithm proposed in [P2]. The 2PGA scheme proposed in [P2] contains
many tunable parameters and the purpose of this work was to understand the effect of
these parameters on the optimization process. This work is important, since the tuning
of any algorithms’ parameters can be a time-consuming process.

The main result of this paper is the instructions that could be given concerning 2PGA
parameter settings. On the basis of the paper, a user can implement the 2PGA scheme
and start searching for suitable parameter values for a particular application from
reasonable initial values. The proposed 2PGA scheme is intended to improve a basic
population-based optimization scheme and cannot replace more sophisticated
methods. However, this enhanced basic algorithm too can benefit from any
advantageous modification applicable to evolutionary computation.

The author was fully responsible for carrying out the research concerning the affect of
different parameter settings in the 2PGA scheme. S. J. Ovaska originally proposed the
idea of investigating the effect of different parameter settings.

6.5 [P5] J. Martikainen and S. J. Ovaska, “Optimizing dynamical fuzzy systems

using aging evolution strategies,” in Proc. of the 9th IASTED
International Conference on Artificial Intelligence and Soft
Computing, Benidorm, Spain, 2005, pp. 5-10.

In [P5], the 2PGA scheme proposed in [P2] is implemented using evolution strategies
(2PES). Apart from this, an adaptive aging parameter is introduced in order to further
improve the algorithms’ performance. The aging parameter controls the remaining
lifetime of each solution on the basis of the value of the offspring they have produced.
Different aspects of aging have been implemented before in EC, but in this study the
remaining lifetime of an individual is controlled by fuzzy logic based on the offspring
the individuals produce, as well as the population dynamics. Such an approach
(combining multiple populations and a fuzzy aging parameter) has not been used
before. As a test case, this paper uses a very demanding optimization task dealing
with the parameters of a dynamical fuzzy system with linguistic information
feedback.

The main result of this paper is the successful implementation of the 2PGA scheme
with evolution strategies. Additionally, the proposed fuzzy logic-controlled aging
parameter was found to add to the performance of the 2PGA scheme used for
comparison.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

51

S. J. Ovaska proposed the use of aging as a part of the MPGA scheme. The author
designed and implemented the fuzzy logic-controlled aging parameter.

6.6 [P6] J. Martikainen and S. J. Ovaska, “Using fuzzy evolutionary

programming to solve traveling salesman problems,” in Proc. of the 9th
IASTED International Conference on Artificial Intelligence and Soft
Computing, Benidorm, Spain, 2005, pp. 49-54.

Publication [P6] introduces a new way to implement problem decomposition to
improve evolutionary programming performance. As a demanding test case, a 500-
city Traveling Salesman Problem (TSP) was used. It was found that the best way to
decompose a problem varies as the algorithm proceeds. Studying the behavior of the
algorithm with different parameter settings, we were able to present fuzzy adaptive
control for partitioning the problem as the algorithm is executed. These divide-and-
conquer-type approaches have been used before, but no fuzzy control for this kind of
partitioning seems to be available. In particular, in the proposed method the
partitioning of the problem into sub-problems takes place repetitively instead of just
once.

The main result of this paper was the design and implementation of the fuzzy logic-
controlled problem repetitive decomposition scheme. The proposed adaptive
partitioning scheme was able to outperform the static approach used as a reference.

S. J. Ovaska proposed the idea of divide-and-conquer for large-scale optimization
problems and the author designed and implemented the fuzzy logic-controlled divide-
and-conquer scheme used to partition the TSP.

6.7 [P7] D. Shilane, J. Martikainen, S. Dudoit, and S. J. Ovaska, “A general

framework for statistical performance comparison of evolutionary
computation algorithms,” in Proc. of the IASTED International
Conference on Artificial Intelligence and Applications, Innsbruck,
Austria, 2006, pp. 7-12.

The field of evolutionary computation does not commonly take advantage of the
accepted procedures for sound statistical comparison of two algorithms. Publication
[P7] illustrates the use of such a statistical comparison scheme based on bootstrap
resampling and multiple hypothesis testing.

The proposed statistical scheme is explained thoroughly in [P7] and the scheme is also
shown to work in a case involving two generic genetic algorithms. This publication
should enable all practitioners of evolutionary algorithms to implement these methods
in their studies for improved statistical analysis.

The problem of not applying the unified standards for statistical comparison within
the EC field was recognized by S. J. Ovaska and the author. The actual problem of
properly comparing two data sets produced by different evolutionary algorithms was
formulated by D. Shilane, the author, and S. J. Ovaska. D. Shilane proposed the
statistical scheme, including bootstrap resampling-based multiple hypothesis testing.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

52

The author was responsible for implementing the evolutionary algorithms and D.
Shilane implemented the statistical testing procedure. The publication was a joint
effort by the author and D. Shilane. S. J. Ovaska and S. Dudoit offered advice and
comments during the research process.

6.8 [P8] J. Martikainen and S. J. Ovaska, “Comparison of a fuzzy EP algorithm

and an AIS in dynamic optimization tasks,” in Proc. of the IEEE
Mountain Workshop on Adaptive and Learning Systems, Logan, UT,
2006, pp. 7-12.

New optimization methods making use of natural phenomena are frequently
introduced. Recently, artificial immune systems have been one such approach.
Publication [P8] studies the optimization scheme of AIS, the clonal selection
principle, in a dynamic environment. This study was conducted in order to survey the
capabilities of a standard CSP and a specialized EC algorithm in a dynamic
environment. CSP is known to be capable of finding multiple good solutions, whereas
evolutionary algorithms usually find only a single optimum.

The main result of this publication is the notion of CSP outperforming the
evolutionary algorithm in the studied dynamic environments. The evolutionary
algorithm that was implemented does well in a static problem, but, because of the
preserved diversity, the CSP does better when the objective function varies in time.
Publication [P8] uses the statistical scheme proposed in [P7] to study the actual
difference of the algorithms. The statistical comparison scheme has some adjustable
parameters and [P8] studies the effects of some of them. The conclusion regarding the
parameter setting indicates that too few bootstrap resamplings may cause erroneous
interpretations of the results of the statistical comparison.

The author and S. J. Ovaska jointly proposed the evaluation of AIS and an
evolutionary algorithm in a dynamic environment. The comparison of the effect of
different parameter values was proposed by the author. All the implementation and
analysis was done by the author.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

53

7. Conclusion

This dissertation proposes methods aimed at improving the reliability of evolutionary
algorithms in complex optimization tasks and accelerating problem-solving. The
dissertation takes three distinct viewpoints on evolutionary computation-based
optimization and offers improved methods for tackling these commonly agreed
demerits. These key areas for additional improvement are the reliability of the
algorithms, reducing the time required to evaluate the complicated objective function,
and the use of a commonly agreed framework for the comprehensive statistical
comparison of evolutionary algorithms.

7.1 Main Results

The main results of this dissertation can be divided into three main categories as
defined by the goals of the work. This work proposes new algorithms to increase the
reliability of evolutionary computation in complex optimization problems. The 2PGA
scheme discussed in publications [P2] and [P4] is a new approach to conducting a
local and global search in parallel, using only genetic algorithms and with negligible
additional computational costs. The 2PGA scheme is not intended to replace more
sophisticated algorithms, such as hybrid methods with evolutionary algorithms and
hard computing-based local search mechanisms. Rather, the proposed scheme is
intended to act as a powerful basic platform that can be enhanced using the same
means as any other population-based optimization scheme. The 2PGA has multiple
tunable parameters and their effect is studied in [P4], a work that also suggests a
reasonable parameter set from which to start the search for a competitive parameter
set for a specific application.

In addition to the 2PGA scheme, fuzzy logic is used to improve the reliability of
evolutionary algorithms. Publications [P5] and [P6] use fuzzy logic to adapt the
parameters of evolutionary algorithms on the basis of the changing characteristics of
the solution population. Publication [P5] introduces a fuzzy aging strategy that
determines the remaining lifetime of an individual on the basis of the offspring it
produces. In [P6] fuzzy logic is used to repeatedly partition a traveling salesman
problem into smaller sub-problems as the algorithm proceeds.

Publication [P3] studies a scheme in which a part of an objective function of an
evolutionary algorithm is approximated using neural networks. The proposed scheme
approximately halved the computational time required to evaluate the objective
function under study. The trade-off for faster computation is the approximation error.
However, the proposed method succeeds in minimizing the approximation error so
that the proposed method eventually outperforms the reference algorithm. The study
of the NN approximated fitness function of the MGP-FIR basis filter suggested that it
is possible to model complex systems accurately enough to speed up the calculation of
the fitness function. An important notion resulting from extensive experimenting was
that seemingly unconnected variables could be approximated using only a single
network rather than an individual network for each variable. This phenomenon is
caused by the fact that a single neural network binds the approximated variables
together, not allowing for large errors for individual components. Then again, when

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

54

using an individual network for each component, separate networks have no way to
relate to each other and the approximation of the overall fitness function performs
poorly.

Finally, publications [P7] and [P8] discuss a proper statistical framework suitable for
comparing two evolutionary algorithms. These publications offer instructions for
implementing the scheme and give advice on the respective parameter selection.

The proposed modifications to evolutionary algorithms are applicable to many
evolutionary computation schemes. According to the no free lunch theorem, the
average performance of all optimization algorithms is similar over all possible
optimization problems. Thus, the usefulness of the proposed schemes depends on the
application. In addition, all the proposed techniques could be combined into a single
algorithm, but then again, the addition to the performance of the algorithm would
depend on the problem.

7.2 Scientific Importance of Author’s Work

The scientific importance of the work proposed in this dissertation is threefold. First,
the methods intended for improving the reliability of evolutionary algorithms take a
different viewpoint to evolutionary algorithms from that which common in the field in
general. The proposed 2PGA scheme does not try to optimize a single solution; rather,
it creates a good environment for both fit and less fit solutions to evolve in. The
proposed scheme bears similarities to niching and coevolution, but, unlike niching
schemes, it does not require excessive additional computation and the solutions can
migrate from one niche to another. This kind of low-cost improvement of the basic
algorithm has not been studied before. Additionally, when compared to coevolution
frameworks, in the proposed scheme the individuals are placed in populations on the
basis of their fitness characteristics rather than randomly. The fusion of evolutionary
algorithms and fuzzy logic has been studied extensively before. However, the fuzzy
aging parameter that controls the remaining lifetime of solutions on the basis of the
offspring it produces is unique. Similarly, the repetitive partitioning procedure
controlled by fuzzy logic has not been studied previously.

The concept of using a neural network to approximate the MGP-FIR basis filter is
completely new and has never been studied before. The proposed method sets new
standards for optimizing the MGP-FIR basis filter, since the time required to evaluate
a candidate filter is nearly halved.

The field of evolutionary computation usually neglects the commonly accepted
procedure for statistical comparison. The work presented in this dissertation sets an
example and raises discussion of the important topic of the comprehensive statistical
comparison of evolutionary algorithms.

To conclude, the methods proposed in this dissertation will enable increasingly
challenging applications to be tackled more reliably and efficiently by means of
evolutionary computation.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

55

7.3 Topics for Future Research and Development

Topics for future research could include the process of adapting the 2PGA parameters
on-line using fuzzy logic. Static parameter values are usually not optimal throughout
the run time of the algorithm, so adaptation could further increase the performance of
the 2PGA scheme. In addition, the concept of using more than two hierarchical
populations at the same time should be studied more extensively.

The approximation of the objective function using neural networks could be studied
further. In particular, the repeated training of the network as the algorithm proceeds
should be studied more extensively. At present, the approximation error increases
towards the end, but it is possible to reduce this error by retraining the network again
during the run time of the algorithm.

To further speed up time-consuming optimization tasks, the feasibility of assigning
probabilities on the basis of the individual’s fitness values for objective function
evaluations should be studied. In addition, an effort should be made to see if it is
possible to gain more insight into the proposed algorithms through theoretical
examination. In particular, this would mean that accurate models of individual
operators, such as aging or fuzzy logic-controlled variation operators, should be
constructed and subjected to theoretical studies. These theoretical inspections could
bring more insight, e.g., into the operators’ capabilities of maintaining diversity within
a solution population.

The proposed twofold statistical comparison scheme could be built into a Matlab
toolbox to offer ready-made easy-to-use functions for practitioners of evolutionary
computation. Additionally, a comparison procedure for more than two evolutionary
algorithms simultaneously could be explored.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

56

References

[Ahk04] R. T. F. Ah King, B. Radha, and H. C. S. Rughooputh, “A fuzzy logic

controlled genetic algorithm for optimal electrical distribution network
reconfiguration,” in Proc. of the IEEE International Conference on
Networking, Sensing, and Control, vol. 1, Taipei, Taiwan, 2004, pp.
577-528.

[Alb02] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”

IEEE Transactions on Evolutionary Computation, vol. 6, no. 5, 2002,
pp. 443-462.

[Ari96] T. Arita and A. Ojika, “Generation of color patterns based on the

interactions between predators and prey,” in Proc. of the IEEE
International Conference on Evolutionary Computation, Nagoya,
Japan, 1996, pp. 291-294.

[Ass98] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried,

M. Strehle, and G. Gerber, “Control of chemical reactions by
feedback-optimized phase-shaped femtosecond laser pulses,” Science,
vol. 282, 1998, pp. 919-922.

[Au03] W.-H. Au, K. Chan, and X. Yao, “A novel evolutionary data mining

algorithm with applications to churn prediction,” IEEE Transactions
on Evolutionary Computation, vol. 7, no. 6, 2003, pp. 532-545.

[Bag05] A. J. Bagnall and G. D. Smith, “A multiagent model of the UK market

 in electricity generation,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 5, 2005, pp. 522-536.

[Bal93] S. Baluja, “Structure and performance of fine-grain parallelism in

genetic search,” in Proc. of the 5th International Conference on Genetic
Algorithms, Urbana-Champaign, IL, 1993, pp. 155-162.

[Bel95] T. C. Belding, “The distributed genetic algorithm revisited,” in Proc. of

the 6th International Conference of Genetic Algorithms, Pittsburg, PA,
1995, pp. 114-121.

[Ben02] E. Benini and A. Toffolo, “Optimal design of horizontal-axis wind

turbines using blade-element theory and evolutionary computation,”
Journal of Solar Energy Engineering, vol. 124, no. 4, 2002, pp. 357-
363.

[Ber00] A. Berlanga, P. Isasi, A. Sanchis, and J. R. Molina, “Coevolutive

adaptation of fitness landscape for solving the testing problem,” in
Proc. of the IEEE International Conference on Systems, Man, and
Cybernetics, vol. 5, Nashville, TN, 2000, pp. 3846-3851.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

57

[Bey01] H.-G. Beyer and K. Deb, “On self-adaptive features in real-parameter

evolutionary algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 5, no. 3, 2001, pp. 250-270.

[Bre62] H. J. Bremermann, “Optimization through Evolution and

Recombination,” in Self-Organizing Systems, M. C. Yovits, G. T.
Jacobi, and G. D. Goldstine (eds.). Washington, DC: Spartan Books,
1962, pp. 93-106.

[Bri01] M. S. Bright and T. Arslan, “Synthesis of low-power DSP systems

using a genetic algorithm,” IEEE Transactions on Evolutionary
Computation, vol. 5, no. 1, 2001, pp. 27-40.

[Bur99] E. K. Burke and J. P. Newall, “A multistage evolutionary algorithm for

the timetable problem,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 1, 1999, pp. 63-74.

[Bäc96a] T. Bäck and H.-P. Schwefel, “Evolutionary computation: an

overview,” in Proc. of IEEE International Conference on Evolutionary
Computation, Nagoya, Japan, 1996, pp. 20-29.

[Bäc96b] T. Bäck, Evolutionary Algorithms in Theory and Practice, Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. New
York, NY: Oxford University Press, 1996.

[Bäc97] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:

comments on the history and current state,” IEEE Transactions on
Evolutionary Computation, vol. 1, no. 1, 1997, pp. 3-17.

[Can02] E. Cantú-Paz, “Markov chain models of parallel genetic algorithms,”

IEEE Transactions on Evolutionary Computation, vol. 4, no 3, 2000,
pp. 216-226.

[Cas02a] L. N. de Castro and J. Timmis, Artificial Immune Systems: A New

Computational Intelligence Approach. London, UK: Springer Verlag,
2002.

[Cas02b] L. N. de Castro and F. J. Von Zuben, “Learning and optimization using

the clonal selection principle,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 3, 2002, pp. 239-251.

[Cec06] 2006 IEEE World Congress on Computational Intelligence, [WWW

page]. [cited 20 June 2006]. Available at <http://www.wcci2006.org/>.

[Cha95] P. Charbonneau, “Genetic algorithms in astronomy and astrophysics,”

The Astrophysical Journal Supplement Series, vol. 101, 1995, pp. 309-
334.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

58

[Cha02] B. Chackraborty, “Genetic algorithm with fuzzy fitness function for

feature selection,” in Proc. of the IEEE International Symposium on
Industrial Electronics, L’Aguila, Italy, 2002, pp. 315-319.

[Cho00] B. Chopard, O. Pictet, and M. Tomassini, “Parallel and distributed

evolutionary computation for financial applications,” Parallel
Algorithms Applications, vol. 15, 2000, pp. 15-36.

[Chr04] S. Christensen and M. Wineberg, “Using appropriate statistics –

statistics for artificial intelligence,” in Tutorial Program of the Genetic
and Evolutionary Computation Conference, Seattle, WA, 2004, pp.
544-564.

[Cod93] B. Codenotti and M. Leoncini, Introduction to Parallel Processing.

Pisa, Italy: Addison-Wesley, 1993.

[Cor05] D. Corne, M. Dorigo, and F. Glover (eds.), New Ideas in Optimization.
Maidenhead, Berkshire: McGraw-Hill, 1999.

[Cul99] D. E. Culler and J. P. Singh, Parallel Processing Architecture: a

Hardware/Software Approach. San Francisco, CA: Morgan Kaufmann,
1999.

[Dar59] C. Darwin, On the Origin of Species by Means of Natural Selection or

the Preservations of Favored Races in the Struggle for Life. London,
UK: John Murray, 1859.

[Dar97] P. J. Darwen and X. Yao, “Speciation as automatic categorical

modularization,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 2, 1997, pp. 101-108.

[Dav97] C. Davidson, “Creatures from primordial silicon,” New Scientist, vol.

156, no. 2108, 1997, pp. 30-35.

[Dor97] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative

 learning approach to the traveling salesman problem,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, 1997, pp. 53-
66.

[Eib99] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in

evolutionary algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 2, 1999, pp. 124-141.

[Eib02] A. Eiben and M. Jelasity, “A critical note on experimental research

methodology in EC,” in Proc. of the Congress on Evolutionary
Computation, Honolulu, HI, 2002, pp. 582-587.

[Eng06] A. P. Engelbrecht, Fundamentals of Computational Swarm

Intelligence. West Sussex, UK: John Wiley & Sons, 2006.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

59

[Evo06] Evolutionary Computation, [WWW-page]. [cited 21 June 2006].

Available at < http://www.mitpressjournals.org/loi/evco>.

[Far03] R. Farmani and J. A. Wright, “Self adaptive formulation for

constrained optimization,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 5, 2003, pp. 445-455.

[Fog62] L. J. Fogel, “Autonomous automata,” Industrial Research, no. 4, 1962,

pp. 14-19.

[Fog66] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence
 Through Simulated Evolution. New York, NY: John Wiley, 1966.

[Fog89] T. Fogarty, “Varying the probability of mutation in the genetic

algorithm,” in J. D. Schaffer (ed.), Proc. of the 3rd International
Conference on Genetic Algorithms, Morgan Kaufmann, 1989, pp. 104-
109.

[Fog90] D. B. Fogel, “Simulated evolution: a 30-year perspective,” in Proc. of

24th Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, 1990, vol. 2, pp. 1009-1014.

[Fog94] D. B. Fogel, “An introduction to simulated evolutionary optimization,”

IEEE Transactions on Neural Networks, vol. 5, no. 1, 1994, pp. 3-14.

[Fog98] D. B. Fogel (ed.), Evolutionary Computation: The Fossil Record.

Piscataway, NJ: IEEE Press, 1998.

[Fog00] D. B. Fogel, Evolutionary Computation – Toward a New Philosophy of

Machine Intelligence. 2nd edition. Piscataway, NJ: IEEE Press, 2000.

[Fog01] D. B. Fogel, Blondie24: Playing at the Edge of AI. San Francisco, CA:

Morgan Kaufmann, 2001.

[Fog06] D. B. Fogel, Evolutionary Computation – Toward a New Philosophy of

Machine Intelligence. 3rd edition, Hoboken, NJ: Wiley - IEEE Press,
2006.

[Fra57] A. S. Fraser, “Simulation of genetic systems by automatic digital

computers. I. Introduction,” Australian Journal of Biological Sciences,
vol. 10, 1957, pp. 484-491.

[Gai04] Z.-L. Gaing, “A particle swarm optimization approach for optimum

design of PID controller in AVR system,” IEEE Transactions on
Energy Conversion, vol. 19, no. 2, 2004, pp. 384-391.

[Gec06] International Society for Genetic and Evolutionary Computation,

[WWW page]. [cited 20 June 2006]. Available at <http://isgec.org/>.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

60

[Geo01] P. S. Georgilakis, N. D. Doulamis, A. D. Doulamis, N. D.

Hatziargyriou, and S. D. Kollias, “A novel iron loss reduction
technique for distribution transformers based on a combined genetic
algorithm - neural network approach,” IEEE Transactions on Systems,
Man, and Cybernetics – Part C: Applications and Reviews, vol. 31, no.
1, 2001, pp. 16-34.

[Gho98] A. Ghosh, S. Tsutsui, and H. Tanaka, “Function optimization in

nonstationary environment using steady state genetic algorithms with
aging of individuals,” in Proc. of the IEEE International Conference on
Evolutionary Computation, Anchorage, AK, 1998, pp. 666-671.

[Gir02] R. Giro, M. Cyrillo, and D. S. Galvão, “Designing conducting

polymers using genetic algorithms,” Chemical Physics Letters, vol.
366, no. 1-2, 2002, pp. 170-175.

[Gol89] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. Boston, MA: Kluwer Academic Publishers, 1989.

[Gor93] V. S. Gordon and D. Whitley, “Serial and parallel genetic algorithms

as function optimizers,” in Proc. of the 5th International Conference on
Genetic Algorithms, San Mateo, CA, 1993, pp. 177-183.

[Gre81] J. J. Grefenstette, “Parallel adaptive algorithms for function

optimization,” Technical report CS-81-19, Vanderbilt University,
Nashville, TN, 1981.

[Gre85] J. J. Grefenstette, R. Gopal, R. Rosmaita, and D. Gucht, “Genetic

algorithms for the traveling salesman problem,” in Proc. of the 2nd
International Conference on Genetic Algorithms, Lawrence Eribaum
Associates, Mahwah, NJ, 1985, pp. 160-168.

[Gre87] J. J. Grefenstette, “Incorporating problem-specific knowledge into

genetic algorithms,” in L. D. Davis (ed.), Genetic Algorithms and
Simulated Annealing, London, UK: Pitman, 1987, pp. 42-60.

[Han97a] H. Handa, N. Baba, O. Katai, T. Sawaragi, and T. Horiuchi, “Genetic

algorithm involving coevolution mechanism to search for effective
genetic information,” in Proc. of the IEEE International Conference on
Evolutionary Computation, Indianapolis, IN, 1997, pp. 709-714.

[Han97b] S.-S. Han and G. S. May, “Using neural network process models to

perform PECVD silicon dioxide recipe synthesis via genetic
algorithms,” IEEE Transactions on Semiconductor Manufacturing, vol.
10, no. 2, 1997, pp. 279-287.

[Hau98] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms. New York,
NY: John Wiley & Sons, 1998.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

61

[Hau00] R. L. Haupt and S. E. Haupt, “The creative use of genetic algorithms.

Computers evolve into the artistic realm,” IEEE Potentials, vol. 19, no.
2, 2000, pp. 26-29.

[Hau04] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms. 2nd edition.

New York, NY: John Wiley & Sons, 2004.

[Hay98] S. Haykin, Neural Networks: A Comprehensive Foundation. 2nd

edition. Upper Saddle River, NJ: Prentice Hall, 1998.

[Hec01] P. S. Heck and S. Ghosh, “A study of synthetic creativity through

behavior modeling and simulation of an ant colony,” in Proc. of the 5th
International Symposium on Autonomous Decentralized Systems,
Dallas, TX, 2001, pp. 391-397.

[Her00] F. Herrera and M. Lozano, “Gradual distributed real-coded genetic

algorithms,” IEEE Transactions on Evolutionary Computation, vol. 4,
no. 1, 2000, pp. 43-63.

[Hin97] R. Hinterding, Z. Michalewicz, and A. E. Eiben, “Adaptation in

evolutionary computation: a survey,” in Proc. of the 4th International
Conference on Evolutionary Computation, Indianapolis, IN, 1997, pp.
65-69.

[Hol75] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann

Arbor, MI: The University of Michigan Press, 1975.

[Hub98] A. Huber and D. A. Mlynski, “An age-controlled evolutionary

algorithm for optimization problems in physical layout,” in Proc. of
1998 IEEE International Symposium on Circuits and Systems, vol. 6,
1998, pp. 262-265.

[Ife93] E. C. Ifeacor and B. W. Jervis, Digital Signal Processing – a Practical

Approach. Boston, MA: Addison–Wesley Publishers, 1993.

[Iwa02] M. Iwashita and H. Iba, “Island model GP with immigrants aging and

depth-dependent crossover,” in Proc. of the Congress on Evolutionary
Computation, vol. 1, Hawaii, HI, 2002, pp. 267-272.

[Jin05] Y. Jin and J. Branke, “Evolutionary optimization in uncertain

environments – a survey,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 3, 2005, pp. 303-317.

[Ji06] Z. Ji, D. Dasgupta, Z. Yang, and H. Teng, “Analysis of dental images
using artificial immune systems,” in Proc. of the IEEE Congress on
Evolutionary Computation, Vancouver, BC, 2006, pp. 1635-1642.

[Jon00] S. Jones, Almost Like a Whale. London, UK: Anchor, 2000.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

62

[Jua05] C.-F. Juang, “Genetic recurrent fuzzy system by coevolutionary

computation with divide-and-conquer techniques,” IEEE Transactions
on Systems, Man, and Cybernetics – Part C: Applications and Reviews,
vol. 35, no. 2, 2005, pp. 249-254.

[Jul95] B. A. Julstrom, “What have you done for me lately? Adapting operator

probabilities in a steady-state genetic algorithm,” in Proc. of the 6th
International conference on Genetic Algorithms, Pittsburgh, PA, 1995,
pp. 81-87.

[Kam83] R. R. Kampfner and M. Conrad, “Computational modeling of

evolutionary learning process in the brain,” Bulletin of Mathematical
Biology, vol. 45, no. 6, 1983, pp. 931-968.

[Kam04] A. Kamiya, “General model for a large-scale plant application,” in S. J.

Ovaska (ed.), Computationally Intelligent Hybrid Systems: The Fusion
of Soft Computing and Hard Computing. Hoboken, NJ: Wiley-IEEE
Press, 2004, pp. 35-51.

[Kam05] A. Kamiya, F. Makino, and S. Kobayashi, “Worker ants’ rule-based

genetic algorithms dealing with changing environments,” in Proc. of
the IEEE Midnight-Sun Workshop on Soft Computing in Industrial
Applications, Espoo, Finland, 2005, pp. 117-121.

[Kau67] H. Kaufman, “An experimental investigation of process identification

by competitive evolution,” IEEE Transactions on Systems Science and
Cybernetics, vol. SSC-3, no. 1, 1967, pp. 11-16.

[Ken95] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of

the IEEE International Conference on Neural Networks, Perth,
Australia, vol. 4, 1995, pp. 1942-1948.

[Kew02] R. H. Kewley and M. J. Embrechts, “Computational military tactical

planning system,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C – Applications and Reviews, vol. 32, no. 2, 2002,
pp. 161-171.

[Kou06] V. K. Koumousis, C. P. Katsaras, “A saw-tooth genetic algorithm

combining the effects of variable population size and reinitialization to
enhance performance,” IEEE Transactions on Evolutionary
Computation, vol. 10, no. 1, 2006, pp. 19-28.

[Kov01] T. Kovacs, “What should a classifier system learn?,” in Proc. of the
 Congress on Evolutionary Computation, vol. 2, Seoul, Korea, 2001,
 pp. 775-782.

[Koz99] J. Koza, F. Bennett, D. Andre, and M. Keane, Genetic Programming

III: Darwinian Invention and Problem Solving. San Francisco, CA:
Morgan Kaufmann Publishers, 1999.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

63

[Koz06] Genetic Programming Inc, [WWW page]. Maint. J. R. Koza, [cited 21

June 2006]. Available at <http://www.genetic-programming.com/>.

[Lam04] H. K. Lam and F. H. F. Leung, “Digit and command interpretation for
 electronic book using neural network and genetic algorithm,” IEEE
 Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics,
 vol. 34, no. 6, 2004, pp. 2273-2283.

[Leu03] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, “Tuning of

the structure and parameters of a neural network using an improved
 genetic algorithm,” IEEE Transactions on Neural Networks, vol. 14,
no. 1, 2003, pp. 79-88.

[Liu05] Y.-H. Liu, J.-H. Teng, and Y.-C. Lin, “Search for an optimal rapid

charging pattern for lithium-ion batteries using ant colony system
algorithm,” IEEE Transactions on Industrial Electronics, vol. 52, no.
5, 2005, pp. 1328-1336.

[Mag00] G. Magyar, M. Johansson, and O. Nevalainen, “An adaptive hybrid

genetic algorithm for the three-matching problem,” IEEE Transactions
on Evolutionary Computation, vol. 4, no. 2, 2000, pp. 135-146.

[Mah96] S. Mahfoud and G. Mani, “Financial forecasting using genetic

algorithms,” Applied Artificial Intelligence, vol. 10, no. 6, 1996, pp.
543-565.

[Mat06a] Mathworks Inc., “The homepage of Matlab® Software,” [WWW page].

[cited 20 June 2006]. Available at <http://www.matlab.com/>.

[Mcc97] S. McClintock, T. Lunney, and A. Hashim, “A fuzzy logic controlled

genetic algorithm environment,” in Proc. of the IEEE International
Conference on Systems, Man, and Cybernetics, vol. 3, Orlando, FL,
1997, pp. 2181-2186.

[Mel05] N. Melab, M. Mezmaz, and E.-G. Talbi, “Parallel hybrid multi-

objective island model in peer-to-peer environment,” in Proc. of the
19th IEEE International Parallel and Distributed Processing
Symposium, Denver, CO, 2005, pp. 1-9.

[Mil90] J. S. Milton and J. C. Arnold, Introduction to Probability and

Statistics: Principles and Applications for Engineering and the
Computing Science. New York, NY: McGraw-Hill, 1990.

[Meu00] H. Meunier, E. G. Talbi, and P. Reininger, “A multiobjective genetic

algorithm for radio network optimization,” in Proc. of the IEEE
Congress on Evolutionary Computation, San Diego, CA, 2000, pp.
317-324.

[Mic96] Z. Michalewicz, Datastructures + Genetic Algorithms = Evolution

Programs. Berlin: Springer, 1996.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

64

[Mit96] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:

MIT Press, 1996.

[Miz00] E. Mizutani, H. Takagi, D. M. Auslander, and J.-S. R. Jang, “Evolving

color recipes,” IEEE Transactions on Systems, Man, and Cybernetics –
Part C: Applications and Reviews, vol. 30, no. 4, 2000, pp. 537-550.

[Mor95] C. Moraga and R. Salas, “A new aspect for the optimization of fuzzy

if-then rules,” in Proc. of the 35th International Symposium on
Multiple-Valued Logic, Galgary, Canada, 2005, pp. 160-165.

[Mur95] T. Murata and H. Ishibuchi, “Adjusting membership functions of fuzzy

classification rules by genetic algorithms,” in Proc. of the International
Joint Conference of the 4th IEEE International Conference on Fuzzy
Systems and the 2nd International Fuzzy Engineering Symposium, vol.
4, Yokohama, Japan, 1995, pp. 1819-1824.

[Müh92] H. Mühlenbein, “Parallel genetic algorithms in combinatorial

optimization,” Computer Science and Operations Research, O. Balchi,
R. Sharda, and S. Zenios (eds.), New York, NY: Pergamon, 1992, pp.
441-456.

[Nag04] Y. Nagata, “Criteria for designing crossovers for TSP,” in Proc. of the

Congress on Evolutionary Computation, vol. 2, Portland, OR, 2004,
pp. 1465-1472.

[Oba00] S. Obayashi, D. Sasaki, Y. Takeguchi, and N. Hirose, “Multiobjective

evolutionary computation for supersonic wing-shape optimization,”
IEEE Transactions on Evolutionary Computation, vol. 4, no. 2, 2000,
pp. 182-187.

[Ong04] Y. S. Ong and A. J. Keane, “Meta-Lamarckian learning in memetic

algorithms,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 2, 2004.

[Ova99] S. J. Ovaska, Y. Dote, T. Furuhashi, A. Kamiya, and H. F.

VanLandingham, “Fusion of soft computing and hard computing
techniques: a review of applications,” in Proc. of the IEEE
International Conference on Systems, Man, and Cybernetics, vol. 1,
Tokyo, Japan, 1999, pp. 370-375.

[Ova04] S. J. Ovaska (ed.), Computationally Intelligent Hybrid Systems: The

Fusion of Soft Computing and Hard Computing. Hoboken, NJ: Wiley-
IEEE Press, 2004.

[Par02] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an

 ant colony optimization algorithm,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 4, 2002, pp. 321-332.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

65

[Pet98] V. Petridis, E. Paterakis, and A. Kehagias, “A hybrid neural-genetic

multimodel parameter estimation algorithm,” IEEE Transactions on
Neural Networks, vol. 9, no. 5, 1998, pp. 862-876.

[Pol05] K. S. Pollard, S. Dudoit, and M. J. van der Laan, “Multiple testing

procedures: The Multtest package and applications to genomics,” in
Bioinformatics and Computational Biology Solutions Using R and
Bioconductor, R. C. Gentleman, V. J. Carey, W. Huber, R. Irizarry, and
S. Duduoit (eds.), Springer-Verlag, New York, NY, 2005, pp. 249-271.

[Psa88] H. N. Psaraftis, “Dynamic vehicle routing problems,” in Vehicle

Routing: Methods and Studies, B. L. Golden and A. A. Assad (eds.),
Elsevier Science Publishers, Amsterdam, Holland, 1988, pp. 223-248.

[Pyt04] K. Pytel, G. Kluka, and A. Szymonik, “Fuzzy methods of driving genetic

algorithms,” in Proc. of the 4th International Workshop on Robot Motion
and Control, Puszczykowo, Poland, 2004, pp. 339-343.

[Rao78] S. S. Rao, Optimization Theory and Applications. New Delhi, India:

Wiley Eastern Limited, 1978.

[Rao96] S. S. Rao and K. Chellapilla, “Design of discrete coefficient FIR filters

 using fast simulated evolutionary optimization,” in Proc. of the
 International Conference on Neural Networks, vol. 2, Washington,
 DC, 1996, pp. 1185-1190.

[Rec65] I. Rechenberg, “Cybernetic solution path of an experimental problem,”

Royal Aircraft Establishment, Library translation no. 1122,
Farnborough Hants, UK, 1965.

[Rey06] M. Reyes-Sierra and C. A. Coello, “Multi-objective particle swarm

optimizers: a survey of the state-of-the-art,” International Journal of
Computational Intelligence Research, vol. 2, no. 3, 2006, pp. 287-308.

[Sal98] R. Salomon, “Evolutionary Algorithms and Gradient search:

Similarities and Differences,” IEEE Transactions on Evolutionary
Computation, vol. 2, no. 2, 1998, pp. 45-55.

[Sam93] M. Sambridge and K. Gallagher, “Earthquake hypocenter location

using genetic algorithms,” Bulletin of the Seismological Society of
America, vol. 83, no. 5, 1993, pp. 1467-1491.

[Sar98] B. Sareni and L. Krahenbuhl, “Fitness sharing and niching methods

revisited,” IEEE Transactions on Evolutionary Computation, vol. 2,
no. 2, 1998, pp. 97-106.

[Sat00] S. Sato, K. Otori, A. Takizawa, H. Sakai, Y. Ando, and H. Kawamura,

“Applying genetic algorithms to the optimum design of a concert hall,”
Journal of Sound and Vibration, vol. 258, no. 3, 2002 pp. 517-526.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

66

[Sch65] H.-P. Schwefel, “Evolutionsstrategie und numerische Optimierung,”

dissertation, Technische Universität Berlin, Germany, 1975.

[Sch00] J. Schonberger, D. C. Mattfeld, and H. Kopfer, “Automated timetable

generation for rounds of a table-tennis league,” in Proc. of the 2000
Congress on Evolutionary Computation, vol. 1, Vancouver, BC, 2000,
pp. 277-284.

[Sic98] B. Sick, M. Keidl, M. Ramsauer, and S. Seltzsam, “A comparison of

traditional and soft-computing methods in a real-time control
application,” in Proc. of the 8th International Conference on Artificial
Neural Networks, 1998, Skövde, Sweden, pp. 725-730.

[Sla99] V. Slavov and N. Nikolaev, “Genetic algorithms, sublandscapes and

subpopulations,” in W. Banzhaf and C. Reeves (eds.), Foundations of
Genetic Algorithms 5, Morgan Kaufmann, San Francisco, CA, 1999.

[Smi96] J. Smith and T. Fogarty, “Self-adaptation of mutation rates in a steady-

state genetic algorithm,” in Proc. of the 3rd IEEE International
Conference on Evolutionary Computation, 1996, pp. 318-323.

[Smi97] J. Smith and T. Fogarty, “Operator and parameter adaptation in genetic

algorithms,” Soft Computing, vol. 1, no. 2, 1997, pp. 81-87.

[Sri94] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover

and mutation in genetic algorithms,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 24, no. 4, 1994, pp. 656-667.

[Sub03] R. Subbu and P. P. Bonissone, “A retrospective view of fuzzy control

of evolutionary algorithm resources,” in Proc. of the 12th IEEE
International Conference on Fuzzy Systems, vol. 1, St. Louis, MO,
2003, pp. 143-148.

[Tak93] H. Takagi, “Fusion techniques of fuzzy systems and neural networks,

and fuzzy systems and genetic algorithms,” in Proc. of the SPIE’s
International Symposium on Optical Tools for Manufacturing and
Advanced Automation, vol. 2061, Boston, MA, 1993, pp. 402-413.

[Tak01] H. Takagi, “Interactive evolutionary computation: fusion of the

capabilities of EC optimization and human evaluation,” in Proc. of the
IEEE, vol. 89, no. 9, 2001, pp. 1275-1296.

[Tan87] R. Tanese, “Parallel genetic algorithms for a hypercube,” in Proc. of

the 2nd International Conference on Genetic Algorithms, Cambridge,
MA, 1987, pp. 177-183.

[Tec06] IEEE Computational Intelligence Society, “IEEE Transactions on

Evolutionary Computation,” [WWW page]. [cited 20 June 2006].
Available at <http://www.ieee-nns.org/pubs/tec/>.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

67

[Tsa06] J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Tuning the structure and

parameters of a neural network by using hybrid Taguchi-genetic
algorithm,” IEEE Transactions on Neural Networks, vol. 17, no. 1,
2006, pp. 69-80.

[Une03] M. Unehara and T. Onisawa, “Music composition system based on

subjective evaluation,” in Proc. of the IEEE International Conference
on Systems, Man, and Cybernetics, vol. 1, Washington, DC, 2003, pp.
980-986.

[Val95] C. L. Valenzuela and A. J. Jones, “A parallel implementation of

evolutionary divide and conquer for the TSP,” in Proc. of the 1st
International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, Sheffield, UK, 1995, pp. 499-
504.

[Wan96a] L.-X. Wang, A Course in Fuzzy Systems and Control. Upper Saddle

River, NJ: Prentice-Hall, 1996.

[Wan96b] P. Y. Wang, G. S. Wang, Y. H. Song, and A. T. Johns, “Fuzzy logic

controlled genetic algorithms,” in Proc. of the 5th IEEE International
Conference on Fuzzy Systems, vol. 2, New Orleans, LA, 1996, pp. 972-
979.

[Wan03] W.-Y. Wang and Y.-H. Li, “Evolutionary learning of BMF fuzzy-

neural networks using a reduced-form genetic algorithm,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B, vol. 33, no. 6,
2003, pp. 966-976.

[Wan05] W. Wang, L. Yilong, J. S. Fu, and Y. Z. Xiong, “Particle swarm

optimization and finite-element based approach for microwave filter
design,” IEEE Transactions on Magnetics, vol. 41, no. 5, 2005, pp.
1800-1803.

[Wer00] J. Werfel, M. Mitchell, and J. P. Crutchfield, “Resource sharing and

coevolution in evolving cellular automata,” IEEE Transactions on
Evolutionary Computation, vol. 4, no. 4, 2000, pp. 388-393.

[Wil03] L. Willmes, T. Bäck, J. Yaochu, and B. Sendhoff, “Comparing neural

networks and Kringing for fitness approximation in evolutionary
optimization,” in Proc. of the Congress on Evolutionary Computation,
vol. 1, Canberra, Australia, 2003, pp. 663-670.

[Whi01] D. Whitley, “An overview of evolutionary algorithms: practical issues

and common pitfalls,” Information and Software Technology, vol. 43,
2001, pp. 817-831.

[Wie05] K. C. Wiese, A. Hendriks, A. Deschenes, and B. B. Youssef, “P-

RnaPredict-a parallel evolutionary algorithm for RNA folding: effects

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

68

of pseudorandom number quality,” IEEE Transactions on
NanoBioscience, vol. 4, no. 3, 2005, pp. 219-227.

[Wol97] D. H. Wolpert and W. G. Macready, “No free lunch theorems for

optimization,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, 1997, pp. 67-82.

[Yon02] F. Yong, J. Tianzi, and D. J. Evans, “Volumetric segmentation of brain

images using parallel genetic algorithms,” IEEE Transactions on
Medical Imaging, vol. 21, no. 8, 2002, pp. 904-909.

[Yuh99] S. Yuhui, “Combinations of evolutionary algorithms and fuzzy

systems: a survey,” in Proc. of the 18th International Conference of the
North American Fuzzy Information Processing Society, 1999, New
York, NY, pp. 610-614.

[Zad97] L. A. Zadeh, “What is soft computing?,” Soft Computing, vol. 1, no. 1,

1997, pp. 1.

[Zad02] L. A. Zadeh, “From computing with numbers to computing with

words: from manipulation of measurements to manipulation of
perceptions,” in International Journal of Applied Mathematics and
Computer Science, vol. 12, no. 3, 2002, pp. 307-324.

J. Martikainen, Methods for Improving Reliability of Evolutionary Computation Algorithms and Accelerating Problem Solving

ISBN-13 978-951-22-8523-5
ISBN-10 951-22-8523-1
ISBN-13 978-951-22-8524-2 (PDF)
ISBN-10 951-22-8524-X (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)

	jm_phd2.pdf
	P1
	Publication P1

	P2
	Publication P2

	P3
	Publication P3

	P4
	Publication P4

	P5
	Publication P5

	P6
	Publication P6

	P7
	Publication P7

	P8
	Publication P8

	[5]phd_text.pdf
	1. Introduction
	2. Soft Computing Methods in Optimization
	2.1 Soft Computing vs. Hard Computing
	2.2 Soft Computing-Based Optimization: Nature as a Role Mode
	2.3 Capabilities of Evolutionary Computation

	3. Evolutionary Computation Techniques in Optimization
	3.1 Generic Evolutionary Computation Algorithm
	3.2 Solution Presentation
	3.3 Initial Population
	3.4 Operators of Evolutionary Computation Algorithms
	3.4.1 Evaluating the Objective Function Value
	3.4.2 Introducing Variation into the Solution Population
	Reproduction
	Mutation
	Discussion Concerning Variation
	3.4.3 Selection
	3.5 Genetic Algorithms
	3.6 Evolution Strategies
	3.7 Evolutionary Programming

	3.8. Artificial Immune Systems
	3.9 Other Biologically Inspired Optimization Schemes
	3.10 About Nature-Inspired Optimization Schemes

	4. Improving the Performance of Evolutionary Algorithms
	4.1 Behavior of Evolutionary Algorithms
	4.2 Means to Improve the Performance of Evolutionary Algorit
	4.3 Multiple-Population Evolutionary Algorithms
	4.3.1 Parallel Processing and Evolutionary Algorithms
	4.3.2 Multipopulation Approach
	4.3.3 Problem Decomposition
	4.4 Modifying Operators in Evolutionary Algorithms
	4.5 Hybrid Algorithms
	4.5.1 Fuzzy Logic and Evolutionary Algorithms
	4.5.2 Neural Networks and Evolutionary Algorithms
	4.5.3 Hard Computing Methods and Evolutionary Algorithms
	4.6 Aging in Evolutionary Algorithms

	5. Statistical Comparison of Evolutionary Algorithms
	5.1 Methods for Comparing Evolutionary Algorithms
	5.2 Bootstrap Resampling-Based Multiple Hypothesis Testing
	5.3 About Statistical Comparison of Evolutionary Algorithms

	6. Summary of the Publications
	6.2 [P2] J. Martikainen and S. J. Ovaska, “Designing multip
	7.1 Main Results
	7.2 Scientific Importance of Author’s Work
	7.3 Topics for Future Research and Development

	References
	[Ji06] Z. Ji, D. Dasgupta, Z. Yang, and H. Teng, “Analysis o
	[Jon00] S. Jones, Almost Like a Whale. London, UK: Anchor, 2
	Errata in the Publications

	[4]phd_intro.pdf
	Preface
	Contents
	List of Abbreviations
	List of Symbols
	List of Publications

	[P2]norsig1.pdf
	INTRODUCTION
	MULTIPLICATIVE GENERAL PARAMETER
	GENETIC ALGORITHMS
	3.1 Single Population Genetic Algorithm

	MULTIPOPULATION GENETIC ALGORITHM
	RESULTS
	DISCUSSION AND CONCLUDING REMARKS
	REFERENCES

	[P3]smcals_neural_fitness.pdf
	Abstract—In this paper we introduce a neural network based m

	[P4]ijcir_final.pdf
	Abstract: This paper proposes a new hierarchical two-populat
	I. Introduction
	II. Hierarchical 2PGA
	III. The Reference Genetic Algorithm
	References

	[P5]ASC_aging.pdf
	ABSTRACT

	[P7]aia_stats.pdf
	A GENERAL FRAMEWORK FOR STATISTICAL PERFORMANCE COMPARISON O
	ABSTRACT
	KEY WORDS

	[P8]smcals_ep_vs_ais.pdf
	Abstract—In this paper we compare a specific evolutionary pr

	[4]phd_intro.pdf
	Preface
	Contents
	List of Abbreviations
	List of Symbols
	List of Publications

	[5]phd_text.pdf
	1. Introduction
	2. Soft Computing Methods in Optimization
	2.1 Soft Computing vs. Hard Computing
	2.2 Soft Computing-Based Optimization: Nature as a Role Mode
	2.3 Capabilities of Evolutionary Computation

	3. Evolutionary Computation Techniques in Optimization
	3.1 Generic Evolutionary Computation Algorithm
	3.2 Solution Presentation
	3.3 Initial Population
	3.4 Operators of Evolutionary Computation Algorithms
	3.4.1 Evaluating the Objective Function Value
	3.4.2 Introducing Variation into the Solution Population
	Reproduction
	Mutation
	Discussion Concerning Variation
	3.4.3 Selection
	3.5 Genetic Algorithms
	3.6 Evolution Strategies
	3.7 Evolutionary Programming

	3.8. Artificial Immune Systems
	3.9 Other Biologically Inspired Optimization Schemes
	3.10 About Nature-Inspired Optimization Schemes

	4. Improving the Performance of Evolutionary Algorithms
	4.1 Behavior of Evolutionary Algorithms
	4.2 Means to Improve the Performance of Evolutionary Algorit
	4.3 Multiple-Population Evolutionary Algorithms
	4.3.1 Parallel Processing and Evolutionary Algorithms
	4.3.2 Multipopulation Approach
	4.3.3 Problem Decomposition
	4.4 Modifying Operators in Evolutionary Algorithms
	4.5 Hybrid Algorithms
	4.5.1 Fuzzy Logic and Evolutionary Algorithms
	4.5.2 Neural Networks and Evolutionary Algorithms
	4.5.3 Hard Computing Methods and Evolutionary Algorithms
	4.6 Aging in Evolutionary Algorithms

	5. Statistical Comparison of Evolutionary Algorithms
	5.1 Methods for Comparing Evolutionary Algorithms
	5.2 Bootstrap Resampling-Based Multiple Hypothesis Testing
	5.3 About Statistical Comparison of Evolutionary Algorithms

	6. Summary of the Publications
	6.2 [P2] J. Martikainen and S. J. Ovaska, “Designing multip
	7.1 Main Results
	7.2 Scientific Importance of Author’s Work
	7.3 Topics for Future Research and Development

	References
	[Ji06] Z. Ji, D. Dasgupta, Z. Yang, and H. Teng, “Analysis o
	[Jon00] S. Jones, Almost Like a Whale. London, UK: Anchor, 2
	Errata in the Publications

	publications_final.pdf
	P1
	Publication P1

	P2
	Publication P2

	P3
	Publication P3

	P4
	Publication P4

	P5
	Publication P5

	P6
	Publication P6

	P7
	Publication P7

	P8
	Publication P8

	[P4]ijcir_final.pdf
	Abstract: This paper proposes a new hierarchical two-populat
	I. Introduction
	II. Hierarchical 2PGA
	III. The Reference Genetic Algorithm
	References

	p7_stats.pdf
	A GENERAL FRAMEWORK FOR STATISTICAL PERFORMANCE COMPARISON OF EVOLUTIONARY COMPUTATION ALGORITHMS
	ABSTRACT
	KEY WORDS

	[4]phd_intro.pdf
	Preface
	Contents
	List of Abbreviations
	List of Symbols
	List of Publications

	[4]phd_intro.pdf
	Preface
	Contents
	List of Abbreviations
	List of Symbols
	List of Publications

	[5]phd_text.pdf
	1. Introduction
	2. Soft Computing Methods in Optimization
	2.1 Soft Computing vs. Hard Computing
	2.2 Soft Computing-Based Optimization: Nature as a Role Mode
	2.3 Capabilities of Evolutionary Computation

	3. Evolutionary Computation Techniques in Optimization
	3.1 Generic Evolutionary Computation Algorithm
	3.2 Solution Presentation
	3.3 Initial Population
	3.4 Operators of Evolutionary Computation Algorithms
	3.4.1 Evaluating the Objective Function Value
	3.4.2 Introducing Variation into the Solution Population
	Reproduction
	Mutation
	Discussion Concerning Variation
	3.4.3 Selection
	3.5 Genetic Algorithms
	3.6 Evolution Strategies
	3.7 Evolutionary Programming

	3.8. Artificial Immune Systems
	3.9 Other Biologically Inspired Optimization Schemes
	3.10 About Nature-Inspired Optimization Schemes

	4. Improving the Performance of Evolutionary Algorithms
	4.1 Behavior of Evolutionary Algorithms
	4.2 Means to Improve the Performance of Evolutionary Algorit
	4.3 Multiple-Population Evolutionary Algorithms
	4.3.1 Parallel Processing and Evolutionary Algorithms
	4.3.2 Multipopulation Approach
	4.3.3 Problem Decomposition
	4.4 Modifying Operators in Evolutionary Algorithms
	4.5 Hybrid Algorithms
	4.5.1 Fuzzy Logic and Evolutionary Algorithms
	4.5.2 Neural Networks and Evolutionary Algorithms
	4.5.3 Hard Computing Methods and Evolutionary Algorithms
	4.6 Aging in Evolutionary Algorithms

	5. Statistical Comparison of Evolutionary Algorithms
	5.1 Methods for Comparing Evolutionary Algorithms
	5.2 Bootstrap Resampling-Based Multiple Hypothesis Testing
	5.3 About Statistical Comparison of Evolutionary Algorithms

	6. Summary of the Publications
	6.2 [P2] J. Martikainen and S. J. Ovaska, “Designing multip
	7.1 Main Results
	7.2 Scientific Importance of Author’s Work
	7.3 Topics for Future Research and Development

	References
	[Ji06] Z. Ji, D. Dasgupta, Z. Yang, and H. Teng, “Analysis o
	[Jon00] S. Jones, Almost Like a Whale. London, UK: Anchor, 2
	Errata in the Publications

