
Koponen, S., Pulliainen, J., Kallio, K., Vepsäläinen, J., Pyhälahti, T., and Hallikainen,
M., Water quality classification of  lakes using 250­m MODIS data.  IEEE Geoscience
and Remote Sensing Letters, vol. 1, no. 4, pp. 287­291, 2004.

© 2004 IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does  not  in  any  way  imply  IEEE  endorsement  of  any  of  Helsinki  University  of
Technology's products or services. Internal or personal use of this material is permitted.
However,  permission  to  reprint/republish  this  material  for  advertising  or  promotional
purposes  or  for  creating  new  collective  works  for  resale  or  redistribution  must  be
obtained from the IEEE by writing to pubs­permissions@ieee.org.

By choosing  to view  this document, you agree  to all provisions of  the copyright  laws
protecting it.

mailto:pubs-permissions@ieee.org


IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 4, OCTOBER 2004 287

Water Quality Classification of Lakes
Using 250-m MODIS Data

Sampsa Koponen, Kari Kallio, Jouni Pulliainen, Senior Member, IEEE, Jenni Vepsäläinen, Timo Pyhälahti, and
Martti Hallikainen, Fellow, IEEE

Abstract—The traditional method used in the water quality
classification of Finnish lakes includes the collection of water
samples from lakes and their analysis in laboratory conditions.
The classification is based on statistical analysis of water quality
parameter values and on expert opinion. It is possible to acquire
similar information by using radiance values measured with
the Earth Observing System Terra/Aqua Moderate Resolution
Imaging Spectroradiometer (MODIS). In this letter, the classifica-
tion accuracy with MODIS data is about 80%. Only about 0.2%
of the 20 391 pixels were misclassified by two or more classes, as a
four-class classification system is used.

Index Terms—Moderate Resolution Imaging Spectroradiometer
(MODIS), remote sensing, water quality.

I. INTRODUCTION

THE QUALITY of water in Finnish lakes is monitored at
several thousand monitoring stations each year (about

3400 stations during 1999). The monitoring is based on the
traditional ground truth measurements, i.e., it is a combination
of onsite measurements and water sample collection for labo-
ratory analysis. The measured water quality parameters include
chlorophyll-a (chl-a), nutrients, Secchi depth, turbidity, oxygen
content, and various heavy metal toxins [1], [2].

From time to time, the collected data are used for classi-
fying lakes into five quality classes ranging from excellent to
poor. One advantage of this classification is that the data be-
come easier to understand by people who are not water quality
experts. Also, the amount of data is reduced into an easily man-
ageable size and format, and it is easier to monitor the long-term
changes and trends in water quality. The latest classification was
completed in 1999, and it used data from 1994 to 1997. The
analysis for the classification took about two years to complete,
and it included over 2.5 million measurements. The next classi-
fication will be completed early 2005 (using data from 2000 to
2003).

In many ways, the traditional classification system can ben-
efit from satellite-based information. For example, since Finland
has over 56 000 lakes surface area km , only a small
numerical portion of the lakes is covered by the monitoring sta-
tions. Furthermore, many lakes have only one monitoring sta-
tion; hence, the variability of water quality within those lakes is
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not known. Also, some monitoring stations are visited only once
during the open water season. Hence, the temporal coverage of
the monitoring is not good.

The only cost-efficient way to improve the spatial and tem-
poral coverage of lake monitoring is spaceborne remote sensing.
With remote sensing techniques, it is possible to first retrieve the
values of some water quality parameters (e.g., chl-a, turbidity,
total suspended solids (TSS), Secchi depth [3]–[5]) and then use
those values to classify lakes based on the classification limits
[6]. In this letter, a more direct approach is used. The quality
class of a lake is assumed to be directly proportional to the ra-
diance value detected over the lake with the Moderate Resolu-
tion Imaging Spectrometer (MODIS) sensor onboard the Terra
satellite [7]. The assumption is tested using ground truth data
and simulations with a biooptical reflectance model.

The atmosphere is often the most significant source of error
for remote sensing measurements. In this letter, the effects of
these errors on the classification method are analyzed by simu-
lating typical atmospheric conditions with an atmospheric cor-
rection model.

II. INSTRUMENTS AND DATA

The study area is the region surrounding Lake Päijänne
in southern Finland (latitude to N, longitude

to E; the surface area is 14 500 km , of which about
19% are lakes according to the lake water quality classification
data; the area of classified lakes is 2430 km , and the area of
unclassified lakes is 350 km ). The area was selected because
it has lakes and subbasins belonging to a broad range of water
quality classes (Excellent to Fair).

A. Surface Observations

The ground truth classification is based on a statistical anal-
ysis of the collected water quality parameter data [2]. A com-
puter program calculates the average, minimum, maximum, and
other statistical values for the parameters, which are then used
to determine the initial classes of lakes according to the de-
fined classification limits. Then other information (e.g., the oc-
currence of algal blooms) is used for refining the classification.
This step is done by water quality experts. The end result is
a map (Fig. 1) that shows the lakes classified into one of the
five quality classes called Excellent, Good, Satisfactory, Fair,
and Poor (numbered from 1 to 5, respectively). The number of
classes used in this study is four, since lakes with class 5 (Poor)
water quality were not present in the study area.
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Fig. 1. Quality of water in the Lake Päijänne region (based on ground truth
data from 1994 to 1997). White areas are lakes that are not classified. The width
of the area is 100 km.

B. MODIS Data

MODIS data were selected for this study because they are
readily available free of charge and have a good temporal and re-
gional coverage. The two MODIS instruments observe Finland
every day, while the repeat cycle of instruments with better
resolution is much longer (e.g., 16 days for Landsat Thematic
Mapper). This means that the amount of available images is very
large with MODIS, even though the resolution sets a limit to the
size of lakes that can be monitored. Since cloud cover is often
present in Finland, the amount of imaging opportunities is very
important as an instrument with a long repeat cycle might not
be able to get good data at all.

The MODIS data used in this analysis were acquired on
August 27, 2000 at 10:00 GMT (solar zenith angle 52 ,
sensor zenith angle 3 ). The two channels in the 250-m image
(channel 1 covers the wavelength range 620–670 nm, and
channel 2 covers 841–876 nm) were converted into radiance
values and rectified into a national coordinate system by using
the conversion coefficients and the geolocation data given in
the level-1B dataset. The 250-m resolution data were selected
because Finnish lakes are usually small, irregular in shape, and
have islands and peninsulas that disturb measurements with
low-resolution (e.g., 1 km) data. Land pixels were removed
from the data by using channel 2 radiances. Land pixels are
bright in channel 2, while water is almost black. By selecting a
suitable threshold value, pixels can, with a high confidence, be
classified as land or water. It is also possible to use a land mask
based on other data. However, those may not take into account
the variations in water level and the effects of shore vegetation
on the measured radiance. The resulting channel 1 radiance is
shown in Fig. 2.

Fig. 2. Modis channel 1 radiance (watts per square meter per micrometer per
steradian) on August 27, 2000.

Then, the lake classification data of 1994 to 1997 were over-
laid on the MODIS image, and the pixels, where both MODIS
radiance and water quality class information is available, were
extracted for pixel-by-pixel comparison. The number of such
pixels is 20 391, and the area covered with these pixels is
1270 km . Hence, by using MODIS data, it is possible to
classify about half of the lake area within the target region. The
number of pixels, where MODIS radiance is available but the
ground truth-based classification is not, is 116 (7.3 km ).

C. Biooptical Reflectance Model

The underwater irradiance reflectance spectrum was simu-
lated with a biooptical reflectance (BOR) model developed for
Finnish lakes [8]. The calculation of irradiance reflectance just
beneath the water surface is based on [9]

(1)

where is the total backscattering coefficient, and
is the total absorption coefficient. depends on the

illumination and the viewing geometry. and
are obtained by summing up the absorption and the backscat-
tering coefficients of the optically active substances in the
water. We assumed three optically active components in the
model: phytoplankton, tripton, and colored dissolved organic
matter (CDOM). Total backscattering was calculated without
considering phytoplankton and tripton backscattering sepa-
rately. The model simulates the reflectance in the 400–750-nm
range with a 2-nm step.

The model was parameterized for the July–August conditions
using the optical data of 11 lakes. The lake type ranged from
oligotrophic to eutrophic and included humic lakes as well.
The specific scattering coefficient of TSS was calculated from
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absorption/attenuation meter measurements, and backscattering
probability of TSS was estimated by minimizing the difference
between modeled and measured reflectance spectrum (mea-
sured with Li1800UW spectrometer). The estimation of the
slope factor of CDOM absorption and the specific absorption
coefficient of phytoplankton and tripton were based on the
spectrophotometric measurements in laboratory.

The water quality parameters used in the BOR model are not
exactly the same as those used in the lake classification system.
The model uses chl-a, TSS, and the absorption of CDOM at
400 nm (a400 in 1/m), while the classification is based on chl-a,
turbidity, total phosphorous, and water color (among others).
Fortunately, water color correlates with a400 and turbidity with
TSS. Thus, it is possible to generate new limits for the classifi-
cation from parameters used in the BOR model.

Before describing how the new limits are generated, it is nec-
essary to explain what the terms turbidity and water color stand
for in this study. Turbidity is a measure of optical scattering. It
is affected by the type and the amount of particles suspended
in water. The particles can be organic (such as phytoplankton)
or inorganic (such as clay). Therefore, turbidity is partly cor-
related with chl-a (chl-a is a measure of the amount of phyto-
plankton in water). Since the limits for TSS are derived from
turbidity, the TSS limits in the simulation are affected by chl-a
as well. Here, turbidity was measured with the nephelometric
method (unit NTU), which is based on the measurement of light
(860 nm) scattered within a 90 angle from the beam directed
at the water sample.

Water color is a measure of humic compounds in water. It
is not to be confused with the term “ocean color.” Water color
(milligrams of platinum per liter) was determined by compar-
ison with standard cobalt chloride disk [10].

The limits for TSS (milligrams per liter) were generated by
using turbidity (Tur) limits presented in [6], which, in turn, are
derived from total phosphorous (TotP in micrograms per liter)
limits used in the ground-based classification [1], [2]. The equa-
tions are (based on our data)

TSS Tur Tur TotP (2)

The limits for a400 were derived from water color limits with

a Water Color (3)

The final classification limits used in this study are presented
in Table I.

D. Atmospheric Model

Next, the underwater reflectance values simulated with the
BOR model are transformed into top-of-atmosphere (TOA) ra-
diances by using an atmospheric correction model developed in
[11]. The model uses principal component analysis to reduce the
variability of the atmosphere into one scalar variable . In our
simulations, we used values 1.5, 0, and 1.5, which corre-
spond to atmospheric visibility values of approximately 25, 40,
and 60 km. Those values cover the most common atmospheric
conditions.

TABLE I
WATER QUALITY CLASS LIMITS FOR EACH VARIABLE

(AND THE MIDDLE POINT VALUES USED IN FIG. 3)

Fig. 3. Simulated TOA-radiance using the minimum and maximum values of
water quality parameter within each class from Table I (visibility 40 km): the
simulated radiance with atmospheric variation (visibility 25 and 60 km), the
combined effect of class limits and the atmosphere, and the measured mean
radiance (� standard deviation) of MODIS pixels as a function of the ground
truth water quality class.

III. METHODS AND RESULTS

A. Model Simulations

The combined BOR and atmospheric model was used to sim-
ulate the TOA radiances that lakes with different water quality
classes would have at MODIS channel 1 wavelengths. Fig. 3
shows the simulated radiance when the middle point values of
water quality parameters for each class (from Table I) are used
as input values for the model. The results show that as the class
number increases (the water quality worsens), the amount of ra-
diation reflected from the lakes grows linearly.

Fig. 3 also shows the radiance values when the water quality
parameters have the maximum and minimum values within each
class, the effect that different atmospheric visibilities have on
the radiance, and the combined effect of the class limits and the
atmosphere.

B. MODIS and Lake Classification

In addition to the simulated results, Fig. 3 shows the mean
of observed MODIS channel 1 radiances for each water quality
class as a function of the ground truth class number. The class
versus mean radiance curve behaves like the simulated data: the
amount of radiance grows as the class number grows. There are
differences between the two curves though. The simulated radi-
ances are lower than the measured ones. However, the difference
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Fig. 4. Normalized histograms of MODIS radiances (August 27, 2000) found
within each ground truth water quality class (data from 1994 to 1997).

is not very large and can in most part be explained with the at-
mospheric variations. Only with class 1 lakes do the radiance
ranges not overlap.

Fig. 4 shows the histogram of the MODIS radiances found
within each ground truth water quality class. The radiance
histograms of each class are quite well defined with a single
peak, except the histogram of class 3, which also has a peak in
the class 2 radiance range. That peak is caused by the class 3
(according to the ground truth data) water near the center of
Fig. 1 (the yellow area), which is classified as class 2 water
with MODIS data. The experts who make the classification
decided to classify the area as class 3 due to industrial waste
water and agricultural loading, although the values of the water
quality parameters are usually within the class 2 limits [12].
Also, water quality in the area has been improving during the
past years. If the area is removed from the analysis, the extra
peak in the histogram disappears.

Next, the classification limits were selected by locating the
radiance values where the histogram curves of classes 1 and
2; 2 and 3; and 3 and 4 cross. These points are also shown
in Fig. 4. The MODIS image was then classified using these
limits, and the result is shown in Fig. 5. The MODIS classifi-
cation was compared with the ground truth classification, and
these results are shown in Table II. The overall classification ac-
curacy is 80.2%, and only 0.22% of the data were misclassified
by two classes. None of the data points were misclassified by
three classes.

The distribution of the classification error is not even. In cases
where the MODIS classification is wrong, it is more likely that
the remotely sensed data suggests a lower water quality class
than the class based on ground measurements than the other way
around. So, the MODIS-data-based method seems to give more
pessimistic estimates on water quality.

IV. DISCUSSION

The overall classification accuracy is good considering the
simplicity of the classification method. Some amount of clas-

Fig. 5. Lake classification with MODIS data (August 27, 2000). The colors of
the classes are the same as in Fig. 1. The width of the area is 100 km.

TABLE II
ERROR MATRIX (NUMBER OF PIXELS). TOTAL CLASSIFICATION ERROR: 19.8%;

CLASSIFICATION ACCURACY: 80.2%; ERROR MORE THAN ONE CLASS: 45
PIXELS (0.22% OF ALL PIXELS). THE TOTALS COLUMN AND ROW ARE

THE TOTAL NUMBER OF PIXELS BELONGING TO EACH CLASS (THE

COLUMN IS FOR THE MODIS DATA, AND THE ROW IS

FOR THE GROUND TRUTH DATA)

sification error is inevitable when a parameter with continuous
values is classified, as even a small change in the radiance value
can change the class into which the pixel belongs. One impor-
tant result in this study is that very few pixels (about 0.22%)
were misclassified by more than one class.

There is a time difference of three to six years between the
ground truth data collection and MODIS data acquisition. It is
possible that the water quality class of some lakes has changed
during this time (based on data collected from 1985 to 1993, the
portions of good and excellent quality lakes are growing slowly
[2]). That may explain some of the errors in the MODIS classi-
fication (e.g., the peak in the class 3 histogram). The other likely
source of errors is the atmosphere. According to the simulations,
the atmosphere can have a large effect on the radiance and can,
therefore, disturb the classification. Local variations in the at-
mosphere (e.g., thin clouds) can increase the radiance detected
over a lake, and this will cause the remotely sensed class to be
worse than the real class actually is. One method to remove or
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minimize these kinds of errors is to use, for example, median ra-
diance values or maximum-likelihood classification for several
images.

For a limited area, the effects of the atmosphere (and the
viewing geometry) can usually be assumed to be homogenous
(aside from the effects discussed above), and if ground truth data
are available, it is not necessary to perform atmospheric cor-
rection. However, when images acquired on different dates are
compared with each other, some kind of correction is usually
necessary. One possible method for reducing the errors caused
by the atmosphere on the classification method used here is to
use supervised classification.

The radiances obtained with model simulations follow the
same behavior as the measured data. This supports the initial
assumption and confirms the results obtained with ground truth
data even though there still are differences between the mea-
sured and simulated radiance curves shown in Fig. 3.

The main difference is that MODIS radiance levels are
slightly higher. One reason for these differences may be the
direct reflectance from water surface, which is not currently
included in the BOR/atmospheric model. The adjacency effect
(radiation from bright nearby pixels) can also be a contributing
factor to the difference.

In this study, it was possible to classify about half of the lake
area using MODIS data. The rest were masked by the infrared-
land mask. The masked pixels are water pixels (or partial land
pixels) so close to the shore that the signal from them is likely
to be contaminated by land and therefore unusable. The smaller
a lake is, the more difficult it is to get a good measurement from
it. The buffer zone at the shore is roughly one to two pixels, so
a lake has to be about 1 km in diameter before it can be reliably
measured with MODIS.

Remote sensing techniques are not able to retrieve all water
quality parameters that are used in the ground-truth-based clas-
sification. Those include, for example, different heavy metal
concentrations, oxygen depletion, and defects in the taste of
fish. Also, the ground truth classification is based on expert
opinion, which does not always follow the exact class limits.
Therefore, remote sensing data alone cannot be used for the
final classification of lakes, and ground-truth-based monitoring
is still required. However, if the data provided with the methods
presented here are used together with ground-based data, more
detailed classifications can be made more often and with better
spatial coverage than with ground-based data alone.

V. CONCLUSION

The results of this study indicate that a direct classification of
lakes based on the radiance detected at MODIS channel 1 wave-

length is feasible. The accuracy of the classification is approx-
imately 80%. The factors that contribute to the error include:
1) the time difference between remote sensing and ground truth
data; 2) the atmosphere; 3) the classification of a continuous
variable into discrete classes; and 4) the use of water quality
parameters that cannot be measured using remote sensing tech-
niques in the ground-truth-based classification.
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