
PUBLICATION P1

Ilmonen, Tommi and Kontkanen, Janne. Software Architecture for Multimodal
User Input – FLUID. In Universal Access. Theoretical Perspectives, Practice, and
Experience: 7th ERCIM International Workshop on User Interfaces for All, Lecture
Notes in Computer Science 2615, pages 319–338, Springer Berlin / Heidelberg, 2003.

© 2003 Springer Science+Business Media 
 
With kind permission of Springer Science and Business Media.



319

Software Architecture for Multimodal User Input –
FLUID

Tommi Ilmonen and Janne Kontkanen

Helsinki University of Technology
Telecommunications Software and Multimedia Laboratory

Konemiehentie 2, Espoo, Finland
{Tommi.Ilmonen,Janne.Kontkanen}@hut.fi

Abstract. Traditional ways to handle user input in software are uncomfortable
when an application wishes to use novel input devices. This is especially the case
in gesture based user interfaces. In this paper we describe these problems and as a
solution we present an architecture and an implementation of a user input toolkit.
We show that the higher level processing of user input such as gesture recognition
requires a whole new kind of paradigm. The system we designed and implemented
- FLexible User Input Design (FLUID) - is a lightweight library that can be used
in different kinds of software. The potential application areas include all system
where novel input devices are in use: virtual reality, entertainment systems and
embedded systems.

1 Introduction

Input devices used by most of the computer software are a mouse and a keyboard.
Still there are many applications and platforms in which using these standard devices
is awkward or impossible. Currently, interest in alternative input methods is increasing,
because lots of new kinds of devices that cannot use the conventional input methods are
emerging into the market. These devices include information appliances such as mobile
phones and hand-held computers as well as embedded systems. Embedded systems, such
as those in modern washing machines, have been around for long, but their programming
is still done on relatively low level without sophisticated toolkits for user interaction.

This paper introduces a new paradigm and a toolkit for managing input devices.
This architecture is suitable for any application where novel input devices are in use.
The system is scalable from embedded systems to ordinary computers. The design takes
into account the needs of higher-level application development – support for input data
processing (gesture detectors etc.) and ease of programming. While the system is generic
in nature we have developed and used it primarily in virtual reality (VR) applications.

The novelty of our approach is in the new architecture to handle multimodal user
input. While our approach shares common features with some previous systems, the
overall structure is unique. Also it seems that the FLUID architecture is the first to
emphasize the need to design the low-level input API and data processing layers at
the same time. In addition to restructuring ideas from previous research our system
introduces the concept of device-specific history buffer. This paper focuses on presenting

N. Carbonell, C. Stephanidis (Eds.): User Interfaces for All, LNCS 2615, pp. 319–338, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



320 T. Ilmonen and J. Kontkanen

the architecture, but also introduces our implementation of the architecture and examples
of how we have used it.

When designing the architecture we have taken into account the need to collect data
from various devices and the need to further process the data. It also enables efficient
sharing of input processors (gesture detectors etc.) between possibly very different ap-
plications. The architecture is composed of two layers: the input layer and the data
processing layer (figure 1). The input layer handles the devices and maintains a buffer
of history data for each device. The data processing layer is used to process the data –
detect gestures, generate events and calculate features. The purpose of these layers is to
offer a simple and universal method for application developers to access the devices and
to refine the data.

Data streamEvents

Application

Data streamData stream

Data processor collection

Input device collection

Fig. 1. Overview of the FLUID architecture.

The architecture we designed satisfies the following requirements:

– Manage arbitrary input devices for any kind of application
– Offer a good infrastructure for data processing
– Offer a way to share data processing elements (gesture detectors etc.) between

applications
– Specify a simple architecture for these tasks

In the end we hope to make multi-modal input management easy for the application
developer. In the ideal case a developer would select the desired input devices and
data processing modules (gestures detectors, signal converters etc.), add the necessary
callbacks to pass the event and signal information from the input toolkit to the application
and then concentrate on the application development.

Our test-bed for these experiments is a virtual reality system. Since normal input
devices – mouse and keyboard – function badly in VR applications we must employ
novel devices and combine data from those. The FLUID project was started to enable
faster and more cost-effective application development in VR environments. At the same



Software Architecture for Multimodal User Input – FLUID 321

time we wanted to create a system that is not VR-centric. Instead these new tools should
be re-usable in other contexts – desktop computing, entertainment systems and even in
embedded (or ubiquitous) systems.

This paper first describes the FLUID architecture and toolkit for collecting and
refining input data. We then introduce a way in which it can be used in virtual reality
software and give examples of applications that we have built with FLUID.

FLUID is an attempt to create a framework that fits to the needs of applications
that need user input and that need to process that data. It’s design supports any number
of concurrent input devices and fulfills the needs of data processing algorithms. It is
easy to extend – a programmer can add new device drivers, device types and data pro-
cessing algorithms. FLUID offers a design framework that enables developers to avoid
application-specific custom-solutions. Thus FLUID promotes software re-usability.

This work is heavily influenced by our earlier work on full-body gesture recog-
nition and gesture-based user interfaces [1][2]. These earlier systems were not VR-
driven, instead they were built for musical goals. As we have kept working with mul-
timodal gesture-based interfaces it became clear that working with various kinds of
non-conventional input devices is anything but straightforward. We think that it is nec-
essary to try to attack this problem and try to make the application development for
multimodal environments easier in this aspect. During our previous research we cre-
ated highly customized pieces of software for collecting and processing the input data.
Unfortunately it is difficult to reuse these components in any other application due to
lack of well designed standard framework. We would like to avoid this situation in the
future. FLUID project was started since we could not find toolkits or architectures that
would offer the features that were needed. The FLUID toolkit will be released under an
open-source license.

2 Multimodal Interaction

As long as people are forced to interact with computers using mice and keyboards
important elements of human communication are lost. One cannot use gestures, speech
or body motion with such clumsy devices. Instead we are forced to express ourselves
with key-presses and mouse.

Our research is inspired by the needs for different interaction modalities. This need is
caused by the fact that mouse and keyboard do not offer the best interaction method for all
applications. Embedded applications (phones, PDAs) as well as immersive applications
(virtual and augmented reality) cannot rely on the same interaction modalities as normal
desktop computers.

We believe that the interaction style has direct impact on how people perceive tech-
nology. There is a difference between entering text by handwriting, typing and talking.
Even tough people seldom use computers just for the sake of interacting with them the
method of interaction needs to be considered carefully. For this reason we believe that
it is necessary to offer alternative interaction modalities when appropriate.

Having alternative interaction methods is also a way to find new target groups for
technology. For example children or illiterate people cannot use text-based communi-
cation with a computer. By enabling multimodal interaction we can make information



322 T. Ilmonen and J. Kontkanen

technology more accessible for these people thus leading to more universal access of
computers. Since FLUID can be used to enable different input strategies for a single
application it is a useful tool for building applications with universal access in mind.

In this part we share view with Cohen who argues that voice/gesture -interaction can
offer significant advantages over classical interaction modalities[3]. Cohen also gives
examples of how a multimodal interface has been found to make applications more
productive. Although Cohen is primarily concerned with immersive applications we
feel that multimodal interaction is important in other environments as well.

An interesting view to human-computer interaction is given by Schoemaker et al.
who have studied the levels of observation[4]. Their work classifies four levels of ob-
servation – physical/physiological, information theoretical, cognitive and intentional.
Many user input toolkits work on the information theoretical level of this model – they
are only concerned with raw input data or simple manipulation of the input data. For
real applications the cognitive level is usually more important since this is where the
data gets its meaning.

The word “multimodal” is widely used to describe interaction systems. Unfortunately
it is a word with many meanings. Term multimodal can be used to describe a system
with multiple communication devices (mice, keyboards, cameras). The term can also be
used to mean communication that uses different modalities (writing, drawing, gesturing,
talking). The first definition is device-centric while the second is more human-centric.

To be able to utilize different communication modalities computers must also have
different input devices. This is where our research is targeted. In this paper we use term
“multimodal input” to refer to systems with multiple novel input devices. Of course any
multimodal application is likely to have multiple output devices as well.

2.1 Software for Multimodal Input

Multimodal software is difficult to create. There are several obstacles – novel input and
output devices and the need for diverse special software (rendering, animation, audio
processing). In our own work we have found that there are few if any toolkits that would
make it easier to handle multimodal user input.

The first task for an application is to collect the input data. This is a difficult task
when one considers all the possible goals that should be satisfied. The system should not
consume excessive amount of resources, it should be portable, it should accommodate
different versions of the same device class (devices from different manufacturers), it
should be extendible and it must fulfill the needs of the data processing algorithms.

An application seldom uses the input data directly. Instead of using raw input data
an application needs refined data – information about what the user is doing. To bridge
this gap we utilize gesture detectors and feature extractors. These algorithms turn the
low-level numeric signals into more descriptive form, often compressing a multichannel
signal to just a few events. An algorithm can be very simple – for example it is easy
to create ad-hoc algorithms to detect hand claps, provided that the user has tracker
sensors attached to both hands. A more complex algorithm might be used to interpret
sign language.

All the data processor algorithms have one thing in common; they need data that
is precisely in specific form. Most time-based gesture analysis algorithms work best



Software Architecture for Multimodal User Input – FLUID 323

with constant-rate signals. That is, the input device generates samples at fixed intervals
and the analysis algorithm is designed to work with such constant frequency signal. For
example all digital filtering algorithms rely on constant sampling rate (see for example
the algorithms in common DSP books[5]). The same is true for artificial neural networks
that use the time-delay approach.

These considerations lead us to set the following requirements for the input layer:

– Data should be collected at constant sampling rate
– The system should know when a given sample was sampled
– It must be possible to utilize signals of different sampling rates
– The application must be allowed to access the input devices at arbitrary rate
– The user may instantiate several devices of the same type

The data processor layer in turn must have the following properties:

– Ability to turn input data into events – for example motion signal can be used to
detect gestures

– Ability to transform signals to other kinds of signals – we might be only interested
in the velocity of a sensor, or the mean velocity of a sensor

– Support re-use of data processors – we want to re-use the analysis tools in many
applications

3 Related Interaction Research

In interactions research our topic is the design of input toolkits. While there are several
competing toolkits for graphical 2D user interfaces (GUI) we have not been able to find
general-purpose toolkits that would be designed to manage multiple novel input devices
and support the input data processing.

The other trends in interactions research are not directly related to this work. For
example Nigay’s and others’ work on the design spaces is directed towards the classi-
fication of different interaction modes and modalities[6]. The authors also propose an
architecture for complex multimodal systems, but their architecture is more concerned
with application logic and application interaction design. Thus it has little to say about
how the user input is collected and processed. While our work is not directly connected
to their’s it is worth noting that these approaches are not conflicting.

Salber et al. have published a “The Context Toolkit” for sensing the presence of the
user acting upon that information[7]. Their approach is to gather data from environmental
sensors and create widgets and turn the information into events. The context toolkit has
been used in another project by Mankoff where it was combined with speech recognition
engine to collect and process ambiguous user input data[8]. FLUID differs from the
context toolkit by being aimed at a wider audience – while the context toolkit is targeted
at sensing the presence of the user FLUID is intended for any kind of work. The example
applications described by Salber and Mankoff do not apparently stress low latency, high
performance or quality of the input data or the easy programming interface that are the
basic requirements of the FLUID architecture. The context toolkit could be implemented
with FLUID by creating the desired device drivers and coding the processor objects that



324 T. Ilmonen and J. Kontkanen

correspond to the widgets in the context toolkit. The ambiguity management described by
Mankoff has no direct equivalence in FLUID although it seems it could be implemented
on top of the generic FLUID framework.

The need to extract higher-level information from low-level data is shared between
many kinds of applications. Often such applications separate the information retrieval (or
gesture detection) to separate layer. This is the case with applications that use computer
vision for user input and gesture-based interaction systems. For example Landay has
used such approach in creating the SILK-library for handling 2D-sketches[9]. While
this approach resembles the way FLUID is structured it does not implement some of the
key features that a multimodal input system needs: inclusion of arbitrary input devices
and accommodation of devices with different sampling rate.

4 Related Virtual Reality Research

In VR applications one is always confronted by non-conventional input hardware. As a
result VR toolkits usually offer a way to access novel input devices. A practical example
of such a system is the VR Juggler[10]. VR Juggler offers an abstraction for a few input
device types – motion trackers, data gloves and analog inputs. It also includes a few
utilities that can process the data further. VR Juggler includes simple finger gesture
detector code and coordinate transformation code for the motion trackers. Also the older
CAVELib[tm] toolkit can manage motion trackers[11].

There are also VR toolkits for input device management. OpenTracker is an example
of such an approach [12]. It is a toolkit that is aimed at making motion tracker manage-
ment and configuration easy and flexible. The VRPN (virtual reality peripheral network)
system is another toolkit for managing input devices[13]. While OpenTracker is an effort
at high-quality tracker management VRPN is a more general-purpose system – it can be
easily extended to handle any kind of input devices. The VRPN shares many features
with FLUID. The main difference is that FLUID includes an architecture for processing
the input data.

Cohen has created a QuickSet -system for multimodal interaction with distributed
immersive application[3]. QuickSet is directed towards commanding 2D and 3D envi-
ronments and it supports gesture and voice interaction. It covers all areas of multimodal
application development – input, application logic and output. It is created with dis-
tributed processing in mind. Our approach differs in that FLUID architecture is more
simple, it is not targeted only at detecting commands and it is does not address the distri-
bution of processing elements. FLUID is also intended to be a small component that can
be added to any application – not an application framework that would require specific
programming approach.

Bimber has published a multi-layered architecture for sketch-based interaction within
virtual environments[14]. Although that work is directed at sketching applications the
software architecture could probably be used for other purposes as well.



Software Architecture for Multimodal User Input – FLUID 325

5 The Fluid Architecture

At present there is no common way to handle the novel input devices. If one builds
a 2D GUI then there are several toolkits available. All of these toolkits include similar
structure – a collection of graphical elements and user input via call-back functions. This
contrasts the way one handles non-standard devices. Each application has its own special
way of handling input devices and -data. For this reason we propose a new architecture
for handling multi-modal user input.

The FLUID architecture contains 1) input layer, 2) data processor layer and 3) ap-
plication (see figure 1). The application executes in its own main loop and refreshes the
FLUID layers frequently. All the input devices are managed by a central object – the
input device collection. The application may use one or more data processor collections
to refine the input data into more usable form.

The main purpose of the input layer is to collect data from various devices and present
it to the application and data processors with a simple, monolithic API. Although this
process is simple there are still pitfalls that must be taken care of. If we think about
multimodal interaction this layer corresponds to the device-oriented definition – it is
responsible for handling multiple different devices.

The data processor layer refines the input data in a way that application can better
utilize it. The purpose of this layer is to extract semantic information from the raw input
data. If we follow Schoemaker’s terminology then we can say that this layer tries to
obtain cognitive information from the user input.

If necessary the processor layer can be used to hide the input devices from the appli-
cation. This way the input devices can be changed with minimal changes to application
structure. For example hand claps can be detected with different input devices – camera,
microphone or motion tracker. If the application only wants know that the user clapped
his hands together then it does not make difference how this information is obtained.

6 Input Layer

All the input devices share the same abstract base class. To create a device type one
needs to inherit this base class and add the device-specific data structures to the new
class. This new class is effectively an API for that device. The FLUID library contains
definitions for a limited number of input device types, but users can add new device types
without modifying the core library. In practice all device APIs should be defined in the
base library. If they are not, then people may create different and conflicting APIs for the
same device types. At any rate we feel that is it necessary to offer users the possibility
to add device types of their own.

The type of the data that is stored into the buffers depends on the type of the device.
Thus motion tracker samples are stored as an array of rotation matrices and location
vectors, data glove samples are stored as an array of finger joint angles etc.. Each data
element is timestamped with its measurement time. The time-stamping is necessary since
the higher-level components may need to fuse signals of different sampling rates together
(for example magnetic tracker at 68 Hz and data glove at 50 Hz). Without timestamping
there would be no way to tell which samples coming from different sources took place
simultaneously.



326 T. Ilmonen and J. Kontkanen

Application

Temporary storage buffer

Input device object

History buffer

Input device threadApplication thread

Input device driver
FLUID

Data processors

Fig. 2. The input thread, buffers, and data transfer paths

6.1 Threading and Buffering

The input layer contains objects that take care of all the input devices. Figure 2 outlines the
way input devices work. Input objects are threaded – they collect data in the background
and move the data to a temporary buffer. This means that each device object contains an
internal thread that reads the input from the device’s native API. The data is then moved
to a history buffer when requested. This makes the data available for the application.

Double buffering is necessary since it is the only way to guarantee that every input
sample becomes available to the application and data processors. If this was not done
then the application would have to update the input devices at such a rate that no sample
can escape. In practice this is a difficult requirement – the application main loop would
have to check the devices at fixed sampling rate. With our approach the application
simply needs to re-size the history buffer and temporary buffer to be large enough to
contain the necessary amount of data. While the size of the history buffer determines
how much history data is available for higher level analysis the temporary buffer sets
the upper limit for the input layer update interval. In any case the history buffer needs
to be at least as large as the temporary buffer.

As a result the application can run its main loop in variable frame rate and update
the input layer only when necessary. Even tough the input layer is updated at random
intervals it will read the input data at fixed rate and store the data in the internal buffers.
This threading approach is similar to the approach used by VRPN[13].

We chose to store the data to buffers since this makes the history data directly
accessible to the processor layer. Thus if a processor in the higher level needs to access
the history data (as gesture detectors frequently do) then the data is available with no
extra cost. A gesture detector may require several seconds of input data. It is natural to
use the input data buffer to store this data so that the gesture detectors do not need to
keep separate input history buffers. In the general case the input device object cannot
know how much history is required by high level analysis. For this purpose the processor
objects request the input device to enlarge its buffer to be large enough for the needs of
the processor. This leads to minimal memory consumption as all data is buffered only
once (in the input device object).



Software Architecture for Multimodal User Input – FLUID 327

The buffering can also increase performance: If the samples were handed out one at
a time (via call-back as in VRPN) then each new sample would have to be separately
handled. This is not a problem with devices with low sampling rate, but if we consider
audio input at 44.1 kHz then this approach takes lots of computational resources. In
these cases the most efficient approach is to handle the data as a buffer of samples and
process many samples whenever the application main loop executes.

The buffering approach is also useful when different kinds of data are used together.
If there is one object receiving data from several sources it is usually best to update
this object once all the source devices have been updated. Then the receiver can process
all the new data at once. If we used call-back functions to deliver each new sample to
the high-level processors then a processor might need to first wait until it gets all the
necessary data from various sources via the call-backs, store the data internally and
eventually process the data.

6.2 Device Management

Even tough the input layer is highly threaded, this is invisible to the application program-
mer; the history buffers are guaranteed to change only when they are explicitly updated.
Thus the application programmer does not need to take threading issues into account.

The input device drivers are hidden from the application. This is necessary since
they are used to abstract the exact device brand and model from the user. The drivers are
designed to be very simple – they simply output one sample at a time.

The driver can be used in one computer, its data is sent over the network to the
application running FLUID and received by the corresponding network driver. This
distribution of device drivers over a network is necessary since VR installations often
have several computers with one computer handling one physical input device. For
example in our installation we have an SGI computer for graphics, but the data glove is
connected to a Linux PC. The speech recognition software also runs on the Linux PC.
The only way to cope with such complex hardware/software dependencies is to run the
device-specific servers in the machines that can run them and transfer the data to the
computer that is running the actual application (like VRPN).

6.3 Input Device Collection

The input devices are managed by a central input device collection -object. This is a
singleton object that is globally accessible[15]. The device drivers are plug-ins that are
loaded into the application as the input device layer is initialized. The user can configure
the devices via a text file. Thus there is no need to recompile the application to get access
to new devices or to change the devices.

When an application needs a particular device it requests the device from the input
device collection. If the device is already initialized it is returned, but if not, the system
tries to initialize it and then returns it. This allows applications the ease to ask for any
device at any time. Since the input collection keeps track of devices the programmer
does not need to worry about how to start or shut down the devices.

If the application needs to do complex operations on the input devices then this
approach may not fit the needs. The most problematic part is a case where an application



328 T. Ilmonen and J. Kontkanen

would like to reconfigure the input devices after they have been initialized. As this is a
rare case we have not created very elaborate system for these cases. In these cases the
application can how-ever stop the desired device, reconfigure it and restart the device.

7 Data Processor Layer

Typically applications cannot use the input data directly. Instead the input data needs to
be refined to be useful. For this purpose FLUID has a data processor layer. The objects
in the data processing layer transform the data into a form that is more usable for the
application.

It is possible for the application to transfer parts of the application logic to the
processor objects. Although we make clear distinction between input data processing
and application it should be noted that these are not at all independent components. This
separation is only intended to serve as borderline between reusable software components
and application-specific code. A developer can freely use minimal data processor layer
and keep the application monolithic. An extreme alternative is to put as many application
components as possible to the data processor layer.

One reason why one might put application logic into the data processing layer is that
it can be used as an abstraction layer between the input devices and and the application.
For example an application might be able to operate with mouse or camera input. If
the camera- and mouse-specific parts of the application can be isolated to the processor
layer, then the application logic does not need to know how the input data was collected.

Another element further confuses the separation of input processing and application:
Situation-specific tuning of the data processors. This means that the behaviour of the
data processors may need to be adjusted to match the current program state. For example
we might need to instruct some gesture detector that some of the potential gestures are
not accepted when the application is in some state. This has already been the case in our
previous research where the gesture detectors and semantic analyzers formed feedback-
cycles[16]. With FLUID this is possible, but one must build the data processors to offer
the necessary application-specific functionality.

7.1 Processor Collections

The data processing layer is a collection of data-processing objects. Each object performs
some operation on either the input data or data coming from other processor objects. The
processor objects fall into roughly two categories: gesture detectors and data converters.
The gesture detectors serve the application by detecting gestures (or events) as they take
place. Data converters do some operations on the input data, but do not try to detect
explicit gestures. In some cases high-bandwidth signals can be compressed into simple
events. In some others the processor objects simply change the representations of the
data – for example from 3D location data to 3D acceleration data. Figure 3 shows how
data might flow from the input devices to the application.

In the data processing layer we have adopted a design principle that algorithms
are broken down into parts when possible. The advantages of this approach are that
processor objects can rely on other objects to perform some routine calculations. This



Software Architecture for Multimodal User Input – FLUID 329

Input devices

Sign detector

Gesture detectorRunning average

Data processors

Sensor selector

Application

Data−stream EventsEventsData−stream

Fourier transform

Acceleration calculator

Velocity calculator

Data gloveMotion tracker

Fig. 3. An example of how data can flow from input devices to the application.

enables different processor algorithms to share parts, resulting in less coding work due
to code re-use.

This approach can also result in better computing performance. The reason for this
is that if two or more algorithms use the same feature that is extracted from input data,
this feature can be calculated only once and the results are shared by all the algorithms
utilizing it. For example in figure 3 there are several gesture detectors that need velocity
information. With this approach the velocity can be computed only once and the data is
then available to all interested objects. While this design promotes modularity it does
not rule out big monolithic data processors.

Originally the data processing layer was split into four parts. The purpose of this
split was to separate different parts of the signal processing to different layers with one
layer following another. Later we realized that the layering was artificial and any layer-
ing would be totally application-specific. In practice one can design different layering
structures with each layer performing some small operation on the data. For example
Bimber’s architecture contains eight layers[14]. Of these eight six correspond to the
single data processing layer in FLUID. Such layering can be useful for separating tasks,
but it also requires application programmers to be aware of all the layers and their inter-
action. Once we take into account the fact that modules that operate in lower level may
need to be controlled by modules from higher level we end up with feedback-cycles that
essentially break down the layering approach. For these reasons we selected a single
monolithic data processing layer. The users can create arbitrary data processing net-
works within this layer. Since the FLUID data passing mechanisms are very flexible it
is possible to create any kind of layering within data processing layer.



330 T. Ilmonen and J. Kontkanen

7.2 Data Flow

FLUID has a data-flow architecture that allows arbitrary data to be passed from one
object to another. There are two ways to pass data: data streaming via IO-nodes and
event passing.

Each processor object can have an arbitrary number of named output nodes. When
other nodes need to access the data they typically need to perform two tasks. First they
get access to the node that contains the data. At this phase they must also check that
the node is of correct type. Typically a processor object stores pointers to its input data
nodes and only performs this operation once during its life-time. Once the processor has
access to the IO-node they can read data from it. Since the IO-node is of known type
the processor object can access its data directly, with minimal overhead. This data-flow
architecture causes minimal run-time performance penalty. The user can introduce new
IO-node types by inheriting the virtual base class and adding the data structures for the
new type. In practice this scheme is similar to OpenTracker’s data-flow architecture[12].
The primary differences are that in FLUID the users can create new processors and
IO-node types and FLUID does not (yet) support XML-based processor-graph creation.
Additionally the FLUID data-flow architecture is based on polling – data is not pushed
from processor to another. In fact the OpenTracker framework could be implemented
on top of FLUID’s input-device and data-flow components.

While the data-flow architecture is good for dealing with fixed-rate signals it is not
ideal for passing events that take place seldom. For these situations we have augmented
the system with message-passing interface. Each processor can send events to other
processors. Events are delivered with push-approach. FLUID has definitions for the
most common event types (integer- and floating point numbers and character strings)
and users can introduce new event types when needed.

7.3 Processor Creation

The processor objects are recursively created as needed. For example the application
might request for an object that detects hand claps. In this case the application passes a
request-object to the processor collection[15](page 233). This request object first checks
if the requested object type (with matching parameters etc.) already exists. If the object
does not exist then the request-object tries to create one. This may lead to new requests
since the gesture detector would need to know the acceleration of the hands. This causes
a request for an acceleration object. As the acceleration calculator is created it needs
a velocity calculator. The velocity calculator in turn needs a motion tracker which it
requests from the input layer.

If the gesture detector programmer had been very clever there might even be a
possibility that if there is no way to detect hand claps with motion trackers (they might
be missing) then the request-object could try to create a clap detector that relies on
microphone input or accelerometer input. At any case the request tries to create the
processor object and all necessary objects recursively. If the process is successful then
it returns an object that outputs events as user claps hands.

This infrastructure enables the application to ask for a particular data processor
without knowing what is the exact method by which the data processing detector works



Software Architecture for Multimodal User Input – FLUID 331

(or even the needed input devices). This system also enables different algorithms to share
common parts without knowing much else than the output node types of the relevant
objects. While this infrastructure provides a way to share algorithms and algorithm parts
between applications it is heavy if one only needs to create specific processor object. To
accommodate these cases there is a possibility to directly add a data processing detector
to the collection, bypassing the request approach.

The system includes dependency management that tries to optimize the call-order
of the processors. Thus the system first calls the nodes that are closest to the input and
once they are updated it goes on to the higher-level nodes.

There can be multiple data processor collections in one application. This makes it
easy for an application to shut down one processor section if it is not needed. For example
when application changes its state and user interaction type it might switch over to a
totally different set of data processors.

7.4 Example

An example of how the nodes behave is in figure 3. The left side of the figure shows
how a stream of data is transformed as it passes through the system. The motion tracker
object has an output node called “location”. This node contains a ring-buffer of motion
samples. The sensor selector reads data from the motion tracker and stores data from one
sensor to two output nodes (velocity and rotation). The velocity calculator reads data
from this node, calculates the velocity of the tracker sensor and places the data to its own
output node. The acceleration calculator is in fact identical to the velocity calculator.
The only difference is that it takes its input from the output of velocity calculator. The
running average calculator in turn uses the acceleration data it obtains from acceleration
calculator and calculates the average acceleration over a period of time. The application
in turn can use this as parameter according to the application logic.

In the right hand side there is a sign detector that relies detects different finger signs.
As the sign changes the information is passed to the application in the form of an event.

In the center there is a network that combines data from two sources. The Fourier
transform calculator performs Fourier separately on each three dimensions of the velocity
vector. The gesture detector then uses information coming from the Fourier transforma-
tion, sign detector and velocity calculation to trigger an event as the user performs some
gesture.

8 Implementation

Above we have outlined the FLUID architecture. This architecture could be implemented
in nearly any language or platform. In this section we outline our proof-of-concept
implementation. By proof-of-concept implementation we mean that the current FLUID
toolkit does not have support for a wide range of input devices, device types or data
processors. It has been used in pilot applications to test the architecture in practice.

We have implemented FLUID with C++. This choice was made since we already
use C++ and it offers high performance, reasonable portability and support for object-
oriented programming.At the moment the FLUID core libraries work on IRIX and Linux



332 T. Ilmonen and J. Kontkanen

operating systems. The drivers in turn are rather platform-specific, so some of them work
on IRIX, some on Linux and some on both. The FLUID library is very compact and it
can be easily ported to any platform that offers support for ANSI C&C++ and POSIX
threads. FLUID does not have any other external dependencies so porting it to different
platforms should be fairly easy.

Any application can use the components of FLUID – it does not force the application
into certain framework (internal main-loops etc.). As such it can be added to nearly any
software with ease.

The input layer and processor layer are in separate libraries. It is therefore possible
to use only the input layer in projects where the data processors are not needed.

FLUID library is internally multithreaded, but it hides the complexity of multi-
threaded programming from application developer. However, the system is not thread
safe in a sense that if the application developer utilizes the FLUID input API from mul-
tiple threads the results are undefined. It should be noted that this is a limitation of the
current implementation and as there are only a couple of places where a conflict might
occur, it should not require much effort to make the system fully thread safe.

The current version has an API and input drivers for mice, motion trackers, data
gloves and speech recognition.The speech recognition system is based on the commercial
software package ViaVoice by IBM[17]. The speech recognition API is independent of
the ViaVoice package however.

There is also possibility to write data onto the disk and read it later (as with VRPN).
This enables us to simulate and debug application behaviour without actually using the
physical devices. This cuts down costs as one can test VR applications with realistic
input data without using the expensive VR facilities. It also helps in debugging since we
can use identical input data sequences between runs.

All of the device drivers have option for network-transparent operation – the physical
device and the application can be in different computers. The device data is transmitted
over a TCP/IP connection from the physical device to the application. This network oper-
ation is encapsulated within the FLUID device drivers so that application developers do
not need to know about such details. This feature was necessary since some of the devices
we use can only be attached to one kind of computer (Linux PC) while the application
runs in other kind of machine (IRIX workstation). While network transparency has not
been a primary goal for us it is a positive side-effect of our implementation strategy. This
only applies to the input drivers, we have not tried to make FLUID processor collection
a distributed system like QuickSet[3]. A programmer creating a new data processor can
of course distribute the processors to multiple CPUs with multithreading or to multiple
computers via network interface.

The FLUID device drivers are implemented as plugins that are loaded as the ap-
plication starts. Thus there is no need to modify the core libraries to add new device
drivers. This also guarantees that the device APIs do not depend on any particular device
manufacturer’s proprietary APIs or protocols.

An important detail we only realized when implementing the input layer is that the
input threads must have a possibility run often enough. The problem is that a multitasking
operating system may well give plenty of CPU-time to the main thread of the application,
but fail to give enough CPU-time to the input threads. As a result the input data buffers



Software Architecture for Multimodal User Input – FLUID 333

do not get new data even tough there would be new data available. This problem occurs
when the main thread of the application is very busy (many multimedia application –
games and VR systems – do just this). The way to overcome this problem is by increasing
the priorities of the input threads so that they can run as fast as they need to run. This
also reduces the latency caused by threading.

We have also built a small library of data processors. This library offers a few gesture
detectors (simple hand clap- and finger sign detectors) and some feature extractors
(velocity and acceleration calculators and finger flexure calculator).

8.1 Performance Issues

The FLUID architecture has been designed with performance issues in mind. Depending
on the application there are two alternate bottle-necks.

The first cause for overhead is the input layer. The threading and buffering of input
data cause extra overhead for the application. In normal circumstances this is hardly a
problem. As a benchmark we created a minimal application that reads data from motion
tracker, mouse and two data gloves – all at 33 Hertz sampling rate. This application
consumes less than 3 percent of the available CPU time on low-end hardware (SGI O2
with 195MHz R10k processor). This reflects the fact the the input driver threads do not
have much to do. Most of the time they wait for new data to come. This figure does
not tell the actual overhead of the input layer, but even if the load of 3 percent was
caused solely by FLUID overhead this is seldom harmful for the application. A situation
where such overhead might become significant is in the realm of ubiquitous computing.
In these cases the host computer may have the computing power of an old 386 or 486
-processor. In any case the computer running FLUID must be powerful enough to run
a multitasking operating system. Obviously many embedded systems do not fulfill this
criterion.

The other potential bottle-neck is the data-processing layer. Even tough the data pro-
cessors may do heavy computation this layer should not cause significant overhead. The
data is passed from one processor object to another directly without any generalization
mechanisms. In theory the only source of overhead compared to a dedicated solution
should be the single virtual function call per data processor.

8.2 Latency

Some multimodal applications require minimal latency between input data measurement
and the moment when the data is used. For example in immersive virtual reality systems
it is necessary to update the projection with data that is as new as possible. Thus the
toolkit should not induce extra latency in the data transfer path.

In the FLUID architecture the device driver threads are run at high “real-time” prior-
ity that guarantees that the drivers threads can always operate when new data becomes
available from the physical data source (device/network). As a result the device threads
can offer the data immediately to the application thread. In practice this approach mini-
mizes the latency caused by FLUID to the short time that the operating systems spends
when switching between threads.



334 T. Ilmonen and J. Kontkanen

9 Fluid and Other Toolkits

It is sometimes the case that the application is using another toolkit that depends on
user input. This might impose a problem, since it is rare that input device APIs have
support for accessing the input from multiple toolkits at the time. Typical case like this
arises in VR systems since virtual reality toolkits must utilize some input devices to be
successful. The most common reason for this is the projection calculations that are done
to compensate user movements. As a consequence many toolkits (VR Juggler, DIVE)
have integrated motion tracker support. While this makes life easy for the toolkit it poses
a problem for a programmer who wishes to use FLUID – the tracker device is managed
by the other toolkit with it’s internal API. This makes it impossible for FLUID to connect
to the device.

We have solved this problem with VR Juggler by creating new VR Juggler device
drivers that actually run on top of FLUID input layer. In this way VR Juggler works
perfectly while the actual data is coming from FLUID. One might also do the reverse –
use VR Juggler native device drivers and transmit data from those over to FLUID. This
latter alternative would have the problem that VR Juggler does not maintain history of
samples in the low-level drivers. As a result the FLUID drivers would have to re-sample
the VR Juggler input devices with some frequency hoping that no samples would be lost.
This would certainly lead to loss of data quality.

With our current approach one has the benefits of both systems: VR Juggler’s inte-
grated projection management and FLUID’s high quality input data and data processing
libraries.

10 Building Applications with FLUID

The FLUID libraries has been designed to fit easily into many kinds of applications. To
outline how one can use FLUID in a new application we give an example of how one can
use FLUID in a multimodal application. Although this example is expressed in general
terms it matches the AnimaLand application that we have build (explained in section
11).

A typical multimodal application collects input data from several devices and delivers
output to the user via multiple media. The application has a main loop that is synchronized
to one of the devices – for example the application may draw a new graphics frame each
time the main loop is executed (common approach in games). In each loop iteration the
application collects input data from the devices and uses application logic to control the
output devices (graphics, sound, etc.). The loop iteration rate can vary as the application
runs depending on how heavily the computer is loaded.

The threaded and buffered input device layer of FLUID fits this scheme well – the
application can run at nearly any iteration rate and the input devices will not lose data. The
application can use the gesture detector layer to extract information from the input data.
The input data is turned into fixed-rate data streams or events that the application receives
via call-backs functions (as in many GUI toolkits). The application builds one or more
processor collections to match its needs. While one collection might fit to the needs of a
particular application there are cases where the ability to remove parts of the processing



Software Architecture for Multimodal User Input – FLUID 335

is necessary. For example the application might require special processing when it enters
a given state. In these situations the application can build new gesture detector collections
on demand and erase them as they are no longer needed. Alternatively the application
can create the detectors in the beginning and later on simply use the relevant processor
collections.

There can be special output and input devices that need to be controlled separately
from the application main loop. Often the reason for this separation is that there are
strict latency limits that some input/output -operations must meet (force-feedback and
audio systems being common examples). The processing for these special devices often
happens in a separate high-priority thread. If the application needs such high-priority
threads to process data at rate that differs fro the main loop rate these threads must have
processor collections of their own. All the threads can how-ever access the same input
devices as long as the application makes sure that the different application threads do
not update the input devices while another thread is reading data from them.

11 Examples

We have used FLUID in three cases. These cases illustrate how building multimodal
applications is easier with FLUID and how it can be used as a small component to intro-
duce novel input devices to any application. The first two applications also demonstrate
user interaction that is very different from the traditional computer usage. Such new
interaction styles could potentially be used to enable more universal access to informa-
tion technology and information networks. Compared to our previous experience with
handling novel input devices [1][2] these new applications were easier to create.

In the AnimaLand project we built an application where user can control computer
animated particle system in real-time[18]. The control mechanisms are gesture-based.
For interaction we selected gestures that are easy to detect – hand claps and finger
gestures. We also included some generic parameters to be used as control – average
velocity of and the average joint angle (“fistiness”) of user’s left hand. Figure 4 shows
the application in use. The processor layer with its gesture detectors simplified the
application development significantly. Instead of building the data-processing blocks
inside the application we coded the gesture detectors into the FLUID library. As a result
the gesture detectors are usable in other applications as well. The application architecture
became more modular since we could separate input processing from the animation
engine. We could also take advantage of FLUID’s ability to store the input data to a file.
We used this feature for debugging and also as a way to store the control information
for post-processing the animations later on.

In another project undergraduate students of our university created a virtual reality
sculpting application “Antrum” (figure 5). The user can “draw” lines and surfaces in 3D
space by moving hands. In this case the ability to collect data at constant sampling rate
is very important. The application must collect motion data at constant rate even if the
rendering process slows down significantly. In practice artists always create models that
eventually choke the computer. With FLUID the application can refresh the graphics at
any rate (be it 6 or 60 Hz) and we can still guarantee that all details of the user’s motion
will be stored at the specified sampling rate (be it 33 or 133 Hz). If one only got the



336 T. Ilmonen and J. Kontkanen

Fig. 4. The user is working in the AnimaLand environment.

motion samples as the application main loop executes once then we would lose data as
the graphics frame rate goes down. Although Antrum does not use the FLUID processor
layer the input layer is used since it offers a simple API to access the devices and handle
the buffering issues.

Our third project was a desktop-application that needed to get input data from a
cheap motion tracker. The application was a sound-processing engine Mustajuuri that is
running the signal processing at very low latency – less than 10 milliseconds[19]. The
motion tracker access was a cause for random latency – it took some time to read each
new sample from the device. To move this cause of latency to another thread we used the
FLUID input layer. As a result the sound-processing thread can execute at the required
rate and the data from the motion tracker is made available to it when the data is read from
the device. In this case FLUID was only a small component within a large pre-existing
application. Since FLUID does not enforce any particular application framework it was
easily integrated in this case.

12 Conclusions and Future Work

We have presented an architecture for user input data management and outlined our
implementation of the architecture.

This architecture incorporates support for arbitrary input devices and arbitrary input
processing networks. It is intended to make programming of multimodal applications
easier.

We have created a toolkit to handle user input. The toolkit is fit for different appli-
cations, but it has been tested and proved only in VR applications so far. We have found



Software Architecture for Multimodal User Input – FLUID 337

Fig. 5. Sculpting in virtual reality.

that FLUID makes application development easier. It offers a clear distinction between
input data, input processing and application and offers a useful set of data processors.

The FLUID architecture has proven to be solid and thus there is no need for major
adjustments. In future we expect that most of the work will be in adding new device
drivers and device types (audio, video and MIDI input for example). We are also planning
to test FLUID in a multimodal desktop application that relies on video and audio input.

References

1. Ilmonen, T., Jalkanen, J.: Accelerometer-based motion tracking for orchestra conductor
following. In: Proceedings of the 6th Eurographics Workshop on Virtual Environments.
(2000)

2. Ilmonen, T., Takala, T.: Conductor following with artificial neural networks. In: Proceedings
of the International Computer Music Conference. (1999) 367–370 URL:
http://www.tml.hut.fi/Research/DIVA/old/publications/1999/ilmonen icmc99.ps.gz.

3. Cohen, P.R., McGee, D.R., Oviatt, S.L., Wu, L., Clow, J., King, R., Julier, S., Rosenblum,
L.: Multimodal interactions for 2d and 3d environments. IEEE Computer Graphics and
Applications (1999) 10–13

4. Schoemaker, L., Nijtmans, J., Camurri, A., Lavagetto, F., Morasso, P., ıt, C.B., Guiard-
Marigny, T., Goff, B.L., Robert-Ribes, J., Adjoudani, A., Deféé, I., Münch, S., Hartung,
K., Blauert, J.: A taxonomy of multimodal interaction in the human information processing
system. Technical report, ESPRIT BRA, No. 8579 (1995)

5. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing. Macmillan Publishing Company,
New York (1992)



338 T. Ilmonen and J. Kontkanen

6. Laurence, N., Joëlle, C.: A design space for multimodal systems: Concurrent processing and
data fusion. In: The proceedings of InterCHI ‘93, joint conference of ACM SIG-CHI and
INTERACT. (1993) 172–178

7. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development of context-
enabled applications. In: Proceeding of the CHI 99 Conference on Human factors in Com-
puting Systems, Pittsburgh, Pennsylvania, United States, ACM Press New York, NY, USA
(1999) 434–441

8. Mankoff, J., Hudson, S.E., Abowd, G.D.: Providing integrated toolkit-level support for ambi-
guity in recognition-based interfaces. In: Proceedings of the CHI 2000 conference on Human
factors in computing systems, The Hague, The Netherlands, ACM Press NewYork, NY, USA
(2000) 368–375

9. Landay, J., Myers, B.: Sketching interfaces: Toward more human interface design. Computer
34 (2001) 56–64

10. Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C.: Vr juggler: A
virtual platform for virtual reality application development. In: The Proceedings of IEEE VR
Conference 2001. (2001)

11. CAVELib: Cavelib user’s manual. WWW-page (Cited 24.6.2001)
http://www.vrco.com/CAVE USER/.

12. Reitmayr, G., Schmalstieg, D.: An open sotfware architecture for virtual reality interaction.
In: Proceedings of the ACM symposium on Virtual reality software and technology, ACM
Press New York, NY, USA (2001) 47–54

13. Taylor, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: Vrpn: a device-
independent, network-transparent vr peripheral system. In: Proceedings of the ACM sym-
posium on Virtual reality software and technology, ACM Press New York, NY, USA (2001)
55–61

14. Bimber, O., Encarnação, L.M., Stork, A.: A multi-layered architecture for sketch-based
interaction within virtual environments. Computers & Graphics 24 (2000) 851–867

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: elements of reusable
software. Addison Wesley Longman Inc. (1994)

16. Ilmonen, T.: Tracking conductor of an orchestra using artificial neural networks. Master’s
thesis, Helsinki University of Technology, Telecommunications Software and Multimedia
Laboratory (1999)

17. IBM: Ibm voice systems. WWW-page (Cited 24.6.2002)
http://www-3.ibm.com/software/speech/.

18. Ilmonen, T.: Immersive 3d user interface for computer animation control. In: The Proceedings
of the International Conference on Computer Vision and Graphics 2002, Zakopane, Poland
(2002 (to be published))

19. Ilmonen, T.: Mustajuuri - an application and toolkit for interactive audio processing. In:
Proceedings of the 7th International Conference on Auditory Displays. (2001) 284–285




