
PUBLICATION P6

Ilmonen, Tommi. Mustajuuri - An Application and Toolkit for Interactive Audio
processing. Proceedings of the 7th International Conference on Auditory Displays,
pages 284–285, Helsinki, Finland, 2001.

 © 2001 by author

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

MUSTAJUURI – AN APPLICATION AND TOOLKIT FOR INTERACTIVE AUDIO
PROCESSING

Tommi Ilmonen

Helsinki University of Technology
Telecommunications Software and Multimedia Laboratory

P.O.Box 5400, FIN-02015 HUT
Tommi.Ilmonen@hut.fi

ABSTRACT

Mustajuuri is a freeware application and toolkit for audio sig-
nal processing. It is designed for quick prototyping, testing and
combination of audio or MIDI processing modules. Its main fo-
cus is on efficient and low-latency real-time operation. Mustaju-
uri offers an extremely flexible plugin architecture. By creating
new plugins programmmers can extend Mustajuuri to meet new
needs. The C++ API takes into account the necessary features of
audio signal processing and application development: low-latency
real-time audio signal processing, easy debugging, graphical and
text-mode user interfaces, internationalization and portability (cur-
rently supported on IRIX and Linux, but Windows port is pos-
sible). Mustajuuri also offers developers a rich set of support
libraries that contain audio-related signal processing and graph-
ics tools. Mustajuuri is licensed under the Library GNU Pub-
lic License and it is available for download from the home-page:
http://www.tml.hut.fi/ tilmonen/mustajuuri/.

1. INTRODUCTION

This paper presents a modular audio application Mustajuuri. Mus-
tajuuri has been created to act both as an audio signal processing
test-bench and as an end user application. The demands for modu-
larity, flexibility, interactive use, high-performance signal process-
ing, low latency and platform independence have been taken into
account in the core of the design. Mustajuuri is an open source
effort aimed primarily at the UNIX/Linux operating environment.
It is portable to Windows as well.

Mustajuuri can be used in many ways. One can use it as an
interactive audio DSP engine. This is done by starting the applica-
tion with graphical user interface and using it as a normal desktop
application, as in figure 1. A more involved user can create new
plugins for the system and simply use Mustajuuri as a host to run
the plugins. This saves the user the trouble of creating from scratch
all the necessary infrastructure that is needed in interactive audio
applications – audio I/O, real-time considerations and user inter-
face. Mustajuuri has also been used as a stand-alone DSP engine
without the GUI. In this case it was used to run a 15-channel vir-
tual acoustics sound system [1]. Rather than having local control it
was controlled over the internet. To achieve this there was no need
to modify the base code. Instead the users wrote the necessary
DSP and control functionality in a few plugins.

Figure 1: A an example of a simple mixer.

2. BACKGROUND AND RELATED WORK

There are already several audio processing libraries and applica-
tions available. The aim of Mustajuuri is not to compete with them,
but provide functionality that other applications and APIs do not
offer. At the same time it offers two-way compatibility with other
toolkits – other toolkits can be used within Mustajuuri and other
projects can use code available in Mustajuuri. It is even possible
to load Mustajuuri plugins to other applications.

The venerable CSound system is the academia-standard for
sound processing [2]. While it offers a collection of tools it lacks
interactive elements and a graphical user interface (there have been
attemps at both, but the CSound architecture has made these at-
temps difficult). More modern systems are the Synthesis ToolKit
[3] and Sound Processing Kit [4]. These are pure DSP engines –
neither of these systems have been designed for interactive use.

The Mustajuuri plugin API is not the only available plugin API

ICAD01-1

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

for UNIX/Linux environment. A newer and much more restricted
plugin API is the LADSPA (Linux Audio Developers Simple Plu-
gin API) [5]. Mustajuuri is two-way compatible with LADSPA.
Thus, Mustajuuri can use LADSPA plugins and many Mustajuuri
plugins can be exported as LADSPA plugins.

3. OVERALL DESIGN

Mustajuuri is composed of several libraries. An optimized low-
level digital signal processing (DSP) library – libmjdsp – is sup-
plied so that it would be easier to write new plugins. Often-needed
extra widgets for the graphical user interface (GUI) are supplied
in libmjwidgets library. More exotic extensions have their own
library – libmjutils. The primary library – libmj – contains the
plugin API and several support classes. The plugin architecture
is very flexible. It supports audio streams (constant stream of au-
dio signal at fixed sampling rate) and control messages (named
and timestamped messages containing arbitrary data, for example
MIDI).

Mustajuuri has been written with the C++ programming lan-
guage. The strong typesafety checks of C++ compilers eliminate
many bugs that might creep in with some other languages. It relies
on the Qt class library that provides platform-independent base
functionality (file input/output, XML parsing, graphical user in-
terface, C++ template classes) [6]. Mustajuuri also uses other li-
braries depending on the platform; it uses the native audio device
interfaces of each operating system (IRIX audio, Linux/OSS and
Linux/ALSA) and the SGI audio file library (IRIX and Linux).

The plugin programming interface has been designed to help
create plugins with ease. To create a new plugin type one only
needs to inherit the plugin base class and extend it to match the
needs. The plugin API supports both very simple and very com-
plex plugins. An example of a simple plugin might be a mono-
phonic low-pass filter. Another extreme would be a hard-disk
recorder with any number of input and output channels.

The user interface supports multiple options as well. A plugin
may have a small graphical user interface with just a slider or two.
Alternatively the user can use a separate interface that allows more
detailed modification of the plugin. Custom plugins can also be
created for cases where it gives better usability (example in figure
2). To make users’ life easier these interfaces can be open simul-
taneously.

Figure 2: The custom GUI of a graphical equalizer.

The plugin API allows recursive plugins – a plugin may host
other plugins. A practical example is the most commonly used top-
level plugin: the mixer (illustrated in figure 1). The mixer acts as a
framework for work that fits well into the classical mixer-oriented

audio processing. It is possible to create other top-level plugins as
well. An interesting variant would be an interface that mimics an
analogue synthesizer with the wires-and-boxes approach.

The need for low latency drove us to use a threaded design.
This way a high-priority DSP thread can operate without any drop-
outs while the user interface thread runs the user interface.

4. APPLICATIONS

Mustajuuri has been designed to be a general-purpose system that
can be customized for particular porposes. So far it has been used
1) as an effect processor for musical work, 2) as a software mixing
tool, 3) as a support libary for a software synthesizer and 4) as
an engine to process the sound in our virtual reality installation
“EVE” [1] [7].

5. EXPERIENCE

The largest obstacle was the immaturity of Linux multimedia sub-
systems. Fortunately many of these problems are becoming prob-
lems of the past with the rapid development rate of Linux mul-
timedia subsystems. Mustajuuri web site has information about
suitable sound cards, Linux tweaks and installation instructions
[8].

On the positive side the application structure has proved to
work. Mustajuuri can operate with very low latency (less than ten
milliseconds) on tuned systems. While this is already practical
we are working to further lower this limit to the 1-3 milliseconds
range.

The graphical user interface has been a major benefit – even
for users who did not anticipate they would need it.

6. REFERENCES

[1] J. Hiipakka, T. Ilmonen, Matti. Lokki T., Gröhn, and
L. Savioja, “Implementation issues of 3D audio in a virtual
room,” in Proc. of 13th Symposium of IS&T/SPIE, Electronic
Imaging 2001, January 2001, vol. 4297B.

[2] Richard Boulanger, Ed., The Csound Book: Perspectives
in Software Synthesis, Sound Design, Signal Processing, and
Programming, MIT Press, October 1999.

[3] Perry Cook and Gary Scavone, “The Synthesis Toolkit
(STK),” in Proceedings of the International Computer Mu-
sic Conference, Beijing, China, 1999, pp. 164–166.

[4] Kai Lassfolk, “Sound Processing Kit – An Object Oriented
Signal Processing Framework,” in Proceedings of the Inter-
national Computer Music Conference, Beijing, China, 1999,
pp. 422–424.

[5] LADSPA-team, “Linux Audio Developer’s Simple
Plugin API (LADSPA),” WWW-site, Cited 1.5.2001,
URL=http://www.ladspa.org/.

[6] Troll-Tech, “The Qt class library,” WWW-site, Cited
1.5.2001, URL=http://www.trolltech.com/.

[7] EVE-team, “Experimental Virtual Environment,” WWW-site,
Cited 1.5.2001, URL=http://eve.hut.fi/.

[8] Tommi Ilmonen, “Mustajuuri Home Page,” WWW-site, Cited
1.5.2001, URL=http://www.tml.hut.fi/ tilmonen/mustajuuri/.

ICAD01-2

