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Abstract: An easy to configure hierarchical neuro-fuzzy system has been defined for the
configuration of a prognosis system for condition monitoring of machinery. The system
consists of a number of modules: data acquisition, signal processing, data handling, fuzzy
classifier and a neural net for diagnosis. Data acquisition is based on the use of an AD
card, and signal processing on the use of traditional FFT. The fuzzy classifier together
with the neural network is organised in a hierarchical structure, which enables the easy
configuration of the whole system. The approach is especially flexible in the sense that
the total number of parameters the system can handle is not limited in practice. In the
hierarchical structure the individual sub-models are restricted to handling eight fuzzy
inputs simultaneously. In the system, the type of neural networks can be chosen from a
list of choices based on the desired type of behaviour. In a normal case, parts of the
hierarchical system are configured based on crisp information. Similarly, the features of
neural nets are not used in all of the sub-models and they can be substituted with
arithmetic expressions if there is no need for handling non-linear information or the
behaviour is well known and can be easily defined otherwise.
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Introduction: Condition monitoring of rotating machinery has become increasingly
popular in recent years as a result of better understanding of the financial values involved
[ 1 ]. However, when organising condition monitoring in the plant environment, even
though the transducers are still not cheap and cabling can be even more expensive, the
problem in practice is the amount of work often involved in analysing the monitoring
data. The analysis work is also very demanding, and it takes time to train people to a
sufficient level of experience so that analysts become real professionals. Basically for the
above reasons, quite a number of attempts have been made to automate the whole
analysis and diagnosis procedure. The first kind of automatic analysis tools were rule-
based expert systems. The rule-based approach as such can be considered in principle to
be rather generic, assuming the developers have taken into account all possible situations
which can occur with the machinery in question. However, herein already lies the
problem in practice: only well-defined situations can be handled, and this in turn pushes
the solution towards working only with very simplistic machinery. One way to overcome
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this restriction is to use so-called case-based reasoning, where the principle is to develop
a system which can document all possible problems or cases and the corresponding
information from the transducers. Assuming that suitable information from analysis is
available, this kind of approach should lead to quite a reliable result if there is time and
resources to do the definition work. Since the features of condition monitoring signals
can be rather complicated to analyse, and it is not always easy to know when a fault is
present, different types of neural networks or statistical approaches have been used for
this classification task. Basically the idea with the use of neural nets and other numerical
methods is usually rather simple, i.e. let the net see a sufficient number of cases and it can
then learn how the measured parameters are linked and consequently learn how faults can
be recognised. Again, it is rather easy to say where the problem lies, i.e. how the system
can be fed enough information from a set of transducers so that the whole range of
interesting faults are covered in a remarkable set of running conditions. It is not the
purpose of this introduction to try to cover the wide field of artificial intelligence (AI)
and of knowledge based approaches to diagnosis of condition monitoring signals. Instead
the idea is merely to show, using some examples, how solving one problem might lead to
a range of other problems. There are so many approaches and none of them, although
they work well in certain cases, are suitable for every kind of purpose, and that is why
there is still room for new ideas and attempts in this demanding field of engineering and
maintenance. The approach described in the following could be described as an attempt
to combine a number of techniques referred to above in the most suitable way that would
make the system easy to use, reliable, and wide in scope.

Principles of the approach: The system consists of a number of modules: data
acquisition, signal processing, data handling, a fuzzy classifier and a neural net for
diagnosis. Data acquisition is based on the use of an AD card, which can be configured to
work with a number of sensors including, for example, vibration transducers. The system
can also handle the on/off type of crisp information. Signal processing is mainly based on
the use of traditional FFT (Fast Fourier Transform) together with ordinary statistical
parameters. The novelty in signal processing and data handling lies in the use of
regression analysis functions which make it possible to monitor a great number of
different kinds of components, e.g. the tools in a machining process, without running into
problems with available computer hard disk space. In the approach fuzzy logic, neural
networks and case based reasoning are combined to build a system where the user can
easily, through a graphical user interface, use and configure the system. The fuzzy
classifier together with the neural network is organised in a hierarchical structure, which
enables the easy configuration of the whole system. The approach is especially flexible in
the sense that the total number of parameters the system can handle is not really limited
in practice. In the hierarchical structure the individual sub-models are restricted to
handling eight fuzzy inputs simultaneously (see Figure 1). The user can construct the
whole diagnosis model through a graphical user interface. In practice, the most time
consuming task is not the configuration of the system but the adjustment of the limits of
the fuzzy classes, which again takes place through an easy to use graphical user interface
with built-in editing features, such as copying. In the system the type of neural networks
can be chosen from a list of choices based on the desired type of behaviour. In a normal
case, parts of the hierarchical system are configured based on crisp information, and in
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these sub-models the fuzzy classifier does not have its normal function but is merely used
as such to render the treatment of data similar in all cases. Similarly, the features of
neural nets are not used in all of the sub-models and they can be substituted with
arithmetic functions or expressions if there is no need for handling non-linear information
or the behaviour is well known and can be easily defined otherwise. The system has been
programmed using Visual Basic programming language in a Windows operating system
environment and is based on the use of multiple windows [ 2 ]. The major advantages in
the proposed approach are its flexibility of working with different types of machinery and
the possibility to copy parts of the model (=sub-models) from one industrial plant to
another where similar components are used.
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Figure 1. The structure of the hierarchical neuro-fuzzy system.

Data acquisition: Data acquisition is based on the use of an AD card, which can be
configured to work with a number of sensors including, for example, vibration, sound,
acoustic emission, pressure, current, voltage, power, speed of rotation and strain. The AD
card is configured using a graphical user interface. The user is expected to define such
parameters as the sampling rate, number of channels, type of windowing function,
amplification/sensitivity, name of sensor, type (vibration, pressure, strain etc.) of sensor,
units definition, type of averaging and number of averages. The idea is for the system to
be capable of supporting a number of AD cards from a number of manufactures, although
to date it has been configured to support only two models from different manufacturers.

Signal analysis: Signal processing is based on the use of traditional (spectrum, cepstrum)
FFT (Fast Fourier Transform) together with statistical (root mean square, average,
maximum, minimum, skewness and kurtosis) parameters and also the on/off type of
information [ 3 ]. The user has a choice of these parameters and can assign from one to
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eight of them to the system at the lowest defined classification level in a suitable optimal
mix. The novelty in signal processing and data handling lies in the use of regression
analysis functions which make it possible to monitor a great number of different kinds of
components, e.g. the tools in a machining process [ 4 ]. When using regression analysis
techniques, only the regression analysis coefficients are stored in the database. This
markedly reduces the amount of data to be stored, especially if the system is used to
monitor such a complex target that this might become a problem. The available
regression functions are first-, second- and third-order polynomials, and a logarithmic
function developed to indicate or follow the progress of wear and thus to be suitable for
prognosis of the remaining lifetime of the machine component [ 5 ].

Database: All data used by the system is stored in an Access database. The neuro-fuzzy
diagnosis part of the database consists of five tables, as shown in Table I along with the
function of each. The database, although very easily described, is actually the key
element of the whole system. All communication internally is through this database, i.e.
the definition of the structure of the system is there, as is all the measured data saved
there, taken from there for diagnosis, and the results of the diagnosis. The consequence of
the above is naturally that the database size can with time become immense, although
both signal analysis techniques and regression analysis are used to reduce the amount of
data.

Table I. Tables of the database of the neuro-fuzzy diagnosis module.

Table Description

Hierarchy Describes the hierarchy of the system

Measurement-Data-Fuzzy | Gives the measurement results

Measurement-Conditions Describes the measurement conditions

Text Texts that the program uses for communication in different
languages
Diagnosis The results of fuzzy classification

Fuzzy classifier: In the approach, fuzzy logic, neural nets and case-based reasoning are
combined to build a system which the user can easily configure through a graphical user
interface. The fuzzy classifier, together with the neural network, is organised in a
hierarchical structure which enables easy configuration of the whole system. The fuzzy
classifier acts as a pre-processor to the neural net [ 6 ]. The approach is especially flexible
in the sense that the total number of parameters the system can handle is not limited in
practice (i.e. with the limitations given below there can be a total of 4681 lines in the
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hierarchy table). In the hierarchical structure the individual sub-models are restricted to
handling eight fuzzy inputs simultaneously. The number of hierarchy levels in the system
is limited to four. The user can construct the model through a graphical user interface. In
practice the most time-consuming task is not configuring the system, but adjusting the
limits of the fuzzy classes, which again takes place through an easy-to-use graphical user
interface show in Figure 2.
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Figure 2. User interface of the fuzzy classification module.

The number of fuzzy classes can vary from one to eight. The classes must be continuous
but the user can turn off checking for continuity while changes are being made, and then
turn it on again. In the example shown in Figure 2, the number of fuzzy classes is five.
For all of these inputs the user is expected to give four values which define the limits of
that specific fuzzy class. However, two of these values actually define two values for the
next class, i.e. only two additional values are needed for definition of the next class. In
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practice this means that two plus n times two values are needed in the definition of n
classes. The user interface shows the fuzzy classes graphically. It also gives the user the
opportunity to test what happens when the parameter being classified gets a certain value,
i.e. into which class it falls. It should be noted that all the measured parameters go
through the fuzzy interface, and similarly all the results of fuzzy classification of lower
sub-models pass through this interface. However, not all the classes need to be fuzzy, i.e.
it is possible to define sharp limits between the classes. Sharp limits are often used when
the results of fuzzy classification are passed further on, or when on/off type information
is being handled. The example shown in Figure 2 is from a higher level, i.e. it is not the
lowest level that handles parameters from condition monitoring signals or process status
information. The example shows the fuzzy interface at the level where the diagnosis
system distinguishes between a number of typical faults that can be diagnosed with the
use of vibration measurements.

Diagnosis: In the system, the type of neural networks can be chosen from a list of
choices based on the desired type of behaviour. In a normal case parts of the hierarchical
system are configured based on crisp information, and in these sub-models the fuzzy
classifier does not have its normal function but is merely used as such to make the
treatment of data similar in all cases. Similarly, the features of neural nets are not used in
all of the sub-models, and they can be substituted with arithmetic functions if there is no
need to handle non-linear information. If the behaviour is well known, i.e. it is implicitly
defined what combination of results a fuzzy sub-model means, this information can be
defined into the system through the interface shown in Figure 3. When the updating
routines of the system are started, the hierarchy is first optimised during which all
unnecessary nodes of the hierarchy tree are deleted. After optimisation the system goes
through all the nodes and levels, starting at the bottom. If classification between the
levels is based on neural nets or other algorithms, the whole classification process
proceeds automatically. However, if the user has chosen to specify that a certain
combination in a sub-model should be translated or classified to correspond to a specific
situation, i.e. to a certain number, this combination may not yet have been defined.
Should this be the case, the system will stop and ask the user to make this specification.
In the case of neural nets there is some variation depending on the type of nets used. In
the case of a traditional feed forward network, it is assumed that the user will train the
sub-model first so that it can handle all possible situations [ 7 ]. In the case of self-
organised maps it is possible to let the system organise itself, so that after a learning
period it can handle various situations. The aim is especially to configure a specific
version of the QSOM routine [ 8 ] so it can be used as a self-organising map. For each of
the sub-models, the system shows on the interface the corresponding interpretation of that
model using a colour code. It also shows the result both as a number and as plain text if
the cursor is moved to that point on the interface (see Figure 4). The idea is that when the
system is running continuously, the user can easily identify where the indication of a fault
or something peculiar appears in the system. More specifically, the system shows the
item the user is looking at, and gives information about the fault. Naturally all this
information has had to be defined for the system, and if the number of connected
channels is high this might be quite a task. However, to make the system definition more
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effective in the case of complicated systems, it is possible to copy information from one
parameter to another.
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Figure 3. The interpretation of fuzzy classification.

The copy and paste technique is very practical and saves a lot of time if the machinery to
be monitored has, for example, a number of rolling bearings that are monitored using a
number of acceleration sensors. In principle, all of these are monitored using basically the
same set-up and fuzzy limits at the start, so it is easy to copy the definition of bearing
monitoring for all of these bearings. In practice, the way these bearings behave may vary,
which affects what sort of parameters should be used and what the exact fuzzy limits are.
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However, it is a lot easier to do a little fine tuning than to define the same thing a number
of times from scratch.
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Figure 4. User interface of the hierarchical neuro-fuzzy prognosis system.

The time it takes for the system to go through all the sub-models with all parameters
naturally depends on the number of parameters defined, and on the power of the
computer. With a typical Pentium-type PC it takes only a few seconds if only a few
channels are connected, or several minutes if a number of sub-models are connected. The
user interface shows how the system is progressing. Naturally, if these times are
compared with off-line monitoring lasting 2 weeks they are ridiculously short, but to a
hurried user used to quick responses with a PC, they may feel a lot longer. Especially
during the training and definition phase it may be frustrating to wait for the system to
update, but it is possible to concentrate only on sub-models of interest by clicking off
those parts that are not of interest. Even though a channel is turned off, the definition for
that channel will be held in the database unless purposely altered or deleted. Because the
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structure of the whole system is large it is impossible to show it all at once; consequently
the user can move around in the model using the arrows shown in Figure 4. The user
interface shows the level and channel in question.

Further development: The system is undergoing a testing phase in e.g. the food and
manufacturing industries, power production and the monitoring of conveyors and lifts.
The neural network part of the system cannot be regarded as complete due to the number
of approaches that could be installed. Connections to different kinds of measuring
equipment could widen the scope of the system. In many cases it would be logical to use
the system on the World Wide Web as this could lower the cost of ownership, and offer
ease of upgrading and a larger number of sub-models in the library [ 9 ]. Naturally the
most important thing is to take into account feedback from industrial users, especially
concerning any bugs in the system, and their views on how to make the system easier,
faster and more logical to use.

Conclusion: An easy to configure hierarchical neuro-fuzzy system has been defined for
the configuration of a prognosis system for condition monitoring of machinery. The
system consists of a number of modules: data acquisition, signal processing, data
handling, a fuzzy classifier and neural networks for diagnosis. Data acquisition is based
on the use of an AD card, which can be configured to work with a number of sensors
including, for example, vibration, sound and pressure. The system can also handle the
on/off type of crisp information. Signal processing is based on the use of traditional FFT
(Fast Fourier Transform) together with statistical time domain parameters. The novelty in
signal processing and data handling lies in the use of regression analysis functions which
make it possible to monitor a great number of different kinds of components, like the
tools in a machining process. The fuzzy classifier together with the neural network is
organised in a hierarchical structure, which enables easy configuration of the whole
system. The approach is especially flexible in the sense that the total number of
parameters the system can handle is not limited in practice. In the hierarchical structure
the individual sub-models are restricted to handling eight fuzzy inputs simultaneously.
The user can construct the model through a graphical user interface. In practice the most
time-consuming task is not the configuration of the system but the adjustment of the
limits of the fuzzy classes, which again takes place through an easy-to-use graphical user
interface. In the system the type of neural networks can be chosen from a list of choices
based on the desired type of behaviour. In a normal case parts of the hierarchical system
are configured based on crisp information, and in these sub-models the fuzzy classifier
does not have its normal function but is merely used as such to render the treatment of
data similar in all cases. Similarly, the features of neural nets are not used in all of the
sub-models and they can be substituted with arithmetic functions if there is no need for
handling non-linear information, or if the behaviour is well known and can be easily
defined otherwise. The major advantages in the proposed approach are its flexibility of
working with different types of machinery and the possibility to copy parts of the model
(=sub-models) from one industrial plant to another where similar components are used.
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