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Third-Order Intermodulation in
Microelectromechanical Filters

Coupled With Capacitive
Transducers

Ari T. Alastalo and Ville Kaajakari

Abstract—Third-order intermodulation in capacitively cou-
pled microelectromechanical filters is analyzed. Parallel-plate
transducers are assumed and, in addition to the capacitive non-
linearities, also the usually much weaker second- and third-order
mechanical resonator nonlinearities are taken into account.
Closed-form expressions for the output signal-to-interference
ratio (SIR) and input intercept point are derived. The analytical
results are verified in experiments and in numerical harmonic-bal-
ance simulations. It is shown that intermodulation as a function of
frequency is asymmetric with respect to the passband. The results
are valuable in designing micromechanical filters, for example, for
communication applications. [1544]

Index Terms—Communication systems, intermodulation distor-
tion, microelectromechanical devices.

I. INTRODUCTION

H IGH-QUALITY factor resonators are ubiquitous in
todays communication devices. Macroscopic ceramic,

SAW or FBAR filters offer excellent performance but their
large size, high cost and unsuitability for IC integration limit
their scope of application. In order to reduce the number of
these bulky off-chip filters, receiver architectures such as direct
conversion have been developed [1]. However, high-Q filters
remain needed as band-select or channel-select filters to sup-
press interfering signals.

Miniature mechanical resonators, fabricated with microelec-
tromechanical-systems (MEMS) technology, are a potential re-
placement of off-chip filters as they are compact in size and in-
tegratable with IC electronics [2]. The demonstrated quality fac-
tors of MEMS resonators, at 10 MHz [3] and

at 1 GHz [4], are comparable to their macroscopic coun-
terparts. While the mechanical properties of microresonators are
very promising, obtaining a low electrical impedance
is challenging, especially for the minituarized high frequency
resonators that are mechanically stiff. To obtain low impedance
levels, strong electromechanical transduction is needed which
in case of electrostatic coupling requires a large bias voltage
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and/or a narrow electrode gap. As large bias voltages are not pre-
ferred, narrow electrode gaps are often used, which
introduces nonlinear electrostatic transducer forces and higher
harmonics due to the inverse relationship between the electrode
capacitance and the gap spacing. Additionally, mechanical non-
linear effects are possible in microresonators and fundamentally
material nonlinearities set the limit for minituarization [5].

In filter applications, signal intermodulation (IM) due to odd-
order nonlinearities is especially detrimental as it can lead to
unwanted frequency components within the filter passband. For
example, cubic mixing of two fundamental signals having fre-
quencies and results in third-order intermodulation (IM3)
products at frequencies and . If
and , the IM product at is at the pass-
band center frequency corrupting the desired signal.

While complete linear models for the capacitively coupled
resonators/filters have been developed [6], [7], intermodulation
has received less attention. Navid et al. measured IM3 for a
10 MHz electrostatically coupled beam resonator [8]. They
found that due to intermodulation distortion, there is a tradeoff
between linearity and motional resistance. Their measured and
calculated intermodulation results for interferers far below the
passband were in agreement. However, since in [8] the analysis
is based on transducer forces, not all mechanisms contributing
to the intermodulation for varying interferer frequencies are
taken into account. Our analysis is valid at both sides of the
passband as well as for interferers within and close to the
passband edge, where our results differ from those of [8].
Nolan et al. considered receivers with a linear MEMS filter
preceding a nonlinear low-noise amplifier (LNA) [9]. They
found that increasing the quality factor of the filter enhances
the resulting signal-to-interference ratio (SIR). However, as
we will show, this conclusion does not hold when the limiting
intermodulation is due to nonlinearities of the MEMS filter.

In this paper, our prior analysis of in-band filter distortion [10]
is extended to out-of-band interferers. Additionally, mechanical
nonlinearities are included in the analysis. All intermodulation
effects are taken into account to the first significant order and
a closed form expression is derived for the signal-to-interfer-
ence ratio (SIR). The analytical work is compared to numer-
ical large-signal harmonic-balance simulations as well as to ex-
periments and a good agreement is obtained. Due to the high
motional impedance of micromechanical filters, classical filter
matching to 50 seems challenging and the microfilters may
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Fig. 1. (a) Capacitively coupled nonlinear resonator fk ; k ; k ;m; g
filtering an electronic signal u. (b) Small-signal electrical equivalent model for
the linear resonator with identical input and output transducers.

TABLE I
DEFINITIONS USED IN THE PAPER

be best suited for on-chip channel select filtering where inter-
facing to 50 may not be required [2]. The analysis in this
paper is therefore formulated in terms of filter input voltages
and output currents to facilitate analysis with any source and
load impedance with minimal effort.

The paper is organized as follows. First, in Section II, an an-
alytical model for the intermodulation is developed. This is fol-
lowed by Section III, where the analytical results are compared
to measured and simulated intermodulation of two different mi-
croresonators. In Section IV, the present results are discussed
and compared to other published results and the utility of the
paper is demonstrated by calculating the IM for micromechan-
ical filters at 1 GHz. Section V concludes the paper.

II. ANALYSIS

Fig. 1 shows a simplified model for a capacitively coupled
mechanical resonator used as a filter and Table I collects the
shorthand notations used in this paper. Here is the bias

voltage, is a small-signal input voltage and is the output cur-
rent. The zero-voltage gap of the input and output transducers
is denoted and is the displacement of the resonating mass

. The linear and nonlinear mechanical spring constants of the
resonator are , and and is the damping coefficient.
For generality, the displacement at the output transducer is
related to the resonator displacement by , where (1) is
shown at the bottom of the page. In Section III, we will show
measurement results for the both cases of (1). The capacitance
values of the input and output transducers are

(2a)

(2b)

where is the area of the transducer electrodes. The voltages
across the transducers are and and the
forces exerted by the transducers to the resonating mass are

(3)

The positive direction of the force is as shown in Fig. 1.
The equation of motion for the resonator in Fig. 1 is

(4)

where and are found from (3) after expanding the capac-
itances of (2a) and (2b) in power series as

(5a)

(5b)

where . Taking nonlinearities into account up to
third order in small parameters and , one
finds for the equation of motion

(6)

For definitions of the variables in (6), see Table I. The time
derivative is denoted with a dot. The fundamental frequency of
the resonator is . The dc force term (a) is nonzero for
(1) which is the case for example for a BAW resonator in the
square-extensional mode [3] or for a flexural-beam resonator if
the input and output transducers are at the same side of the beam.
For in (1), the dc force vanishes . For intermod-
ulation performance, the dc term has no effect and will not be
considered in what follows.

e.g., for transducers at different sides of a flexural beam.
e.g., for transducers at the same side of a flexural beam or for a BAW resonator.

(1)
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For a force term in the right-hand side of (6), the re-
sponse function

(7)

with real and imaginary parts

(8)

gives the linear solution as

(9)

where the second term is due to dissipations. Note the short no-
tation for the real and imaginary parts, and , respectively.
For the resonance frequency we have

(10)

The output current

(11)

can be expanded with (5b) as

(12)

Here we have indicated the terms that contribute to the signal
and intermodulation currents at the fundamental frequency .
Since scales all the considered current terms and therefore
does not affect SIR, is set to unity in the following analysis
for simplicity.

Analytical expressions will now be derived for the signal cur-
rent as well as for the two IM3 terms and in (12)
and the resulting SIR will be discussed. The desired signal
at the resonance frequency and an interfering signal at
the filter input are

(13a)

(13b)

where

(14)

The linear motion due to the excitations (13a) and (13b) is easily
found with (6) , and (9)

(15a)

(15b)

Here . The signal output current is with (12)

(16)

The signal current is in phase with the signal input voltage (13a)
and its amplitude is denoted .

To obtain a first-order estimate for the intermodulation cur-
rent at due to the interference motion at and (15b)
requires some work. We assume that and that the
value of the resonator is high enough to forbid motion at the
harmonics of the excitation frequencies. Thus, the second-order
terms (c,d,e) in (6) can be ignored. When the interference mo-
tion of (15b) and signal of (13b) are substituted to the
third-order terms (f,g,h) in (6), a force at

is generated according to the formulas expressing trigono-
metric exponents and products, such as , in
terms of first order functions, such as . The
corresponding motion at , given by (9), results in an in-
termodulation current contribution in (12)

(17)

where the subscripts and refer to in-phase and quadrature
components, respectively. The second contribution to the
intermodulation current is obtained by substituting of
(15b) to the term in the current expansion (12) and is
given by

(18)

The total intermodulation current is a sum of the two contribu-
tions (17) and(18)

(19)

where

(20a)

(20b)

Thus, the two IM3 mechanisms, force intermodulation 1) and
current intermodulation 2), can be summarized as:

1) & 2) Interfering signal:

interfering force:

linear displacement:

1) linear displacement

IM3 force:

IM3 displacement:

IM3 current: .

2) linear displacement

IM3 current
The approximative nature of the analysis is mainly due to the
IM3 displacement being only a first-order estimate of the solu-
tion to the nonlinear equation of motion (6).
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After some algebra, the current contributions , ,
, and in (17) and(18) can be written as

(21a)

(21b)

(21c)

(21d)

Equations (21a) and (21c) give the amplitude of the in-phase in-
termodulation current (20a), while (21b) and (21d) give the
quadrature-phase current (20b). The signal-to-interference
(or signal-to-intermodulation) ratio (SIR) can now be expressed
as

(22)

At the limit , (22) is determined by the first in-phase cur-
rent component of (21a) only. This is seen from the limits
of the response functions as : ,

and . Thus is the only
nonlinear current component that goes to infinity in addition to
the linear current in (22) resulting in finite SIR. The quadra-
ture currents in (21b) and (21d) approach a finite value while

in (21c) vanish as . Consequently, (22) simplifies
considerably as shown by (23) at the bottom of the page where

is the interference-to-signal ratio at the filter
input. As will be illustrated with measurements in Section III,
(22) can actually be approximated by (23) as soon as the inter-
fering signals are outside the resonator passband. The labels ,

and in (23) correspond to those in (6) showing the origin

of different SIR contributions. As (23) contains odd powers of
, it is asymmetric around the resonance predicting different

SIR values for interferers below the resonance and interferers
above the resonance. Especially, the odd-order term labeled
in (23) proves to be important in Section III.

The third-order intercept point (IP3) is a useful measure of
linearity and is typically defined as the crossing point of the
linear extrapolations of the small-amplitude IM3 signal and a
fundamental two-tone test signal in the device output. For fre-
quency selective components such as filters, the above definition
may be modified as IP3 being the crossing point of the linear ex-
trapolations of the IM3 output signal and a wanted output signal
when the wanted signal has the same input magnitude as the in-
terferers and is located at the passband center. The signal level
at the filter input, corresponding to IP3, is termed IIP3 and is
found from SIR as [11]

(24)

Alternatively, IIP3 is obtained by setting
in (22) or (23) and solving for the signal amplitude that gives

.
The in-band result, given in [10], is obtained in the limit

and . With nonvanishing mechanical non-
linearities , the result of [10] is slightly modified to

(25)

where

(26)

Here the approximation is valid if and
the electromechanical pull-in voltage, at which bias level the
resonator becomes unstable, is

(27)

where for (bias forces act at opposite directions on
the resonator) and for in (1). As discussed
in [10] the strongest contribution in (25) for high is due to the

nonlinearity in (6) . On the other hand, as the interferers
are moved far outside the passband, the term becomes unim-
portant in SIR.

III. EXPERIMENTAL VERIFICATION

To verify the intermodulation model, narrow gap single-
crystal silicon (SCS) resonators fabricated on silicon-on-insu-
lator (SOI) wafers were characterized with linear and nonlinear

(23)
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Fig. 2. Measurement setup. Pressure (P ) in the vacuum chamber is measured
and controlled using the valve to vary the Q value of the resonator.

excitation. As the fabrication process is detailed elsewhere [12],
only the experimental setup and results are given here.

A. Measurement Setup

Fig. 2 shows the measurement setup used to validate the an-
alytical results. The resonator is kept in a vacuum chamber to-
gether with a JFET preamplifier that has a gain of 10 dB, an
input resistance of 1 , and an input capacitance of 8.5 pF.
Pressure in the camber is controlled with a valve to tune the
value of the resonator. To measure the intermodulation at ,
signals at and are generated and summed at
the resonator input. The signal generators (Agilent 33250A and
HP 8648B) are isolated with 20 dB attenuators to prevent inter-
modulation at the signal sources. The resonator output signal is
buffered with a preamplifier and measured with a spectrum ana-
lyzer (HP 4195A). As the preamplifier is kept in its linear range,
it does not affect the SIR. The signal generators and the spec-
trum analyzer are locked to a common frequency reference. The
desired-signal output power is measured with one of the signal
generators turned off and the other tuned to .

B. Simulation Model

To accurately model the characterized microresonators, the
resonator, the electric biasing, and read-out circuitry are imple-
mented in a circuit simulator [14]. The resonator is modeled as
an electrical equivalent of the spring-mass system in Fig. 1. For
the capacitive coupling, the accurate nonlinear model is used
[13]. The simulations are used: i) to obtain good estimates of
the mechanical and electrical parameters by fitting the simulated
transmission curves to the measured responses and ii) to verify
the analytical model of the intermodulation. For the intermod-
ulation simulations, the large-signal harmonic-balance analysis
with multiple input and output signal tones is used. As the har-
monic-balance analysis is carried out in the frequency domain,
it is computationally efficient for systems that have high quality
factors and are thus slow to settle in the time-domain (transient)
analysis [15]. Schematic of the simulation setup is shown in
Fig. 3.

C. BAW Resonator

Fig. 4(a) shows the schematic of a bulk-acoustic-wave
(BAW) resonator oscillating in the square-extensional mode [3]

Fig. 3. Schematic of the harmonic-balance Aplac®-circuit-simulator model
[13] for the desired signal (a) and the interferers (b). The model for the resonator
(see Fig. 1) and the nonlinear transducers are included in the shaded three-port
components. SIR is determined as the ratio of OUT voltage to OUT
voltage at the fundamental frequency.

Fig. 4. Schematics of the two experimentally characterized resonators. Also
indicated are the input and output ports corresponding to 1 and 2 in Fig. 2. (a)
BAW resonator in the square-extensional mode [3]. The dotted lines illustrate
the movement of the plate from the rest position. The two input ports as well
as the two output ports are electrically shorted. (b) Clamped-clamped flexural
beam resonator [10].

for which in (1) (all the faces of the square plate move
in phase). The resonator is fabricated on a silicon-on-insulator
(SOI) wafer and has a size of 320 320 10 .
Two transducers at opposite sides of the square plate are used
for signal input and output. Fitting the simulated response to
measured behavior at different bias voltages, as shown in Fig. 5,
allows one to find the equivalent-model parameters given in
Table II. Fitting was done by adjusting the spring constant

, eigenfrequency , value, feed-through capacitance
, gap , and that is a parasitic contact resistance

at the ground connect of the resonator and accounts for the
weakening of the antiresonance in Fig. 5(a). The same order of
DC resistance for was also measured. As the capacitive
nonlinearity is the dominant effect, the mechanical nonlineari-
ties and are neglected (for the 184 nm gap, the capacitive
nonlinearity dominates at bias voltages greater than 2.5 V) [5].
With a 5.77 V bias voltage, corresponding to the middle curve
in Fig. 5, the theoretical estimate of in-band IIP3 given by (22)
is 21 dBm (corresponding to a 50 source impedance) and the
estimate for off-resonance interferers with , given
by (23) and (24), is .
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Fig. 5. Measured (dashed lines) and simulated (solid lines) S for the
BAW resonator with three different bias voltages. The result is calibrated
with a zero-bias response, that is, S is defined as the ratio of the motional
current through the electrical-equivalent RLC circuit of Fig. 1 to the parasitic
feed-through current through C . Measured and simulated results differ
slightly only at the peaks of the curves.

TABLE II
PARAMETER VALUES FOR THE BAW RESONATOR. VALUES AT THE

BOTTOM ROW ARE FOR 5.77 V BIAS VOLTAGE

Fig. 6(a) shows the measured, simulated and analytic results,
all in very good agreement, for the SIR as a function of interferer
separation at the output of the BAW resonator with the signal
(13a) and interferer (13b) input powers of
and , respectively. The large interferer power was
chosen to obtain a sufficient signal-to-noise ratio in the mea-
surements. The infinite- limit of (23) becomes valid as soon
as the interferers are outside the resonator passband of

for in vacuum. Also, as pre-
dicted from the theory, at intermediate frequencies of

we observe that the SIR is much lower for inter-
ferers below the resonance than for interferers above
the resonance . The difference between the SIR for

and is at greatest when the interferer frequen-
cies are close to the 3-dB-passband edge of the resonator. Of the
odd-order terms in (23) that explain this difference, the one
originating from in (6) dominates.

Fig. 6. Simulated (solid), analytic (22) (dashed), analytic for Q ! 1

(23) (dotted) and measured (large dots) intermodulation results for the BAW
resonator are shown for �f < 0 (thin lines) and �f > 0 (thick lines). Bias
voltage is 5.77 V corresponding to the middle curve in Fig. 5. The signal and
interferer input powers are P = �50 dBm and P = 0 dBm.

Fig. 6(b) shows the SIR at constant interferer separation for
different quality factors obtained by adjusting the chamber pres-
sure. At low , the analytic estimates expectedly deviate from
the measured and simulated results due to the approximations
utilized in Section II. Increasing reduces SIR toward the in-
finite- limit (23).

Fig. 7 shows the different intermodulation current compo-
nents , , , and in (21a)–(21d) as functions of
the interferer frequency separation. It is seen that the force inter-
modulation mechanism 1) dominates over the current intermod-
ulation 2), that is, and except

at small positive for which .

D. Flexural Beam Resonator

To have a further justification of the analysis of Section II, we
consider a flexural-beam resonator [10], shown schematically
in Fig. 4(b), with , and

II/6



ALASTALO AND KAAJAKARI: THIRD-ORDER INTERMODULATION IN MEM FILTERS 147

Fig. 7. Intermodulation current contributions (21a)–(21d) for the BAW
resonator.

TABLE III
PARAMETERS FOR THE FLEXURAL-BEAM RESONATOR WITH A 13 V BIAS

. Equivalent-model parameters for the beam resonator
are given in Table III.

Fig. 8(a) shows the measured, simulated and analytic results
for the SIR as a function of interferer separation. Again, a very
good agreement is obtained and the predicted asymmetry in
is observed. At small , the analytic result deviates from the
measured and simulated. This is because the interferer power is
of the same order as the in-band IIP3 point [10] and thus the in-
termodulation signal at is weaker than its analytical estimate.
Fig. 8(b) shows the SIR at different quality factors. Here the
value is considerably lower than for the BAW resonator and as
much tuning range is not obtained by varying the pressure in the
vacuum chamber.

IV. DISCUSSION

In this paper, a concise formulation for SIR and IIP3 in ca-
pacitively coupled micromechanical filters is given. The exper-
imental verification is provided for two single-resonator struc-
tures but the formulation applies to all single-stage MEMS fil-
ters that are coupled with parallel-plate transducers. Such filters
could be used to construct a receiver front-end structure having
a bank of narrow-band (ultimately channel-select) filters with
different passbands to cover all the RX channels [2]. While the
results in the present paper are believed to be indicative of the
MEMS filter performance in general, further work is needed to
expand the analytical results to more complex multi-stage filter
structures. This will be a subject of future research.

In the paper, the motional impedances are much higher
than the source and load impedances (see Figs. 1

and 2). As the analysis has been formulated in terms of input
voltages and output currents, the derived expressions for SIR
and IIP3 are valid also for tightly coupled resonators with source
and load impedances being comparable to or larger than the

Fig. 8. As Fig. 6 (thick lines for �f > 0 and thin lines for �f < 0) but for
the flexural-beam resonator [10]. Bias voltage is 13 V, P = �50 dBm, and
P = �10 dBm.

motional impedance provided that: i) the source and filter input
impedances are used to adjust the resonator input voltages and ii)
the loaded in-circuit quality factor is used for SIR calculations.
What is not taken into account is that in the strongly coupled case,
the motional impedance is a strong function of frequency and the
different interfering signals now see different mechanical im-
pedances. Consequently, the interference input voltage levels do
not remain equal as assumed in this paper. However, simulations
show that this effect is not significant. Finally, we note that for
strong interferers within the passband, Duffing effect results in
signal compression that may also limit the filter performance [5].

The previously obtained experimental IM3 results of [8] for
are in good agreement with (23). For example,

assuming that the spring constant of the beam can be approx-
imated by the point-force result [16],
where is the Young modulus, (23) and (24) give the same
IIP3 voltage of (corresponding to
18 dBm with a 50 source impedance) as reported in Fig. 5 of
[8]. On the other hand, for as well as for the interferers
close to the passband edge, our results (22)–(24) differ from the
analytical results (absolute value of (11)) in [8] by up to 10 dB
for the BAW and flexural-beam examples of this paper.
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Fig. 9. The theoretical IIP3 voltage from (22)–(24) for the 1.156 GHz
resonators of [4]. The curves for R = 2:5 M
 are for a fabricated device
while R = 750 
 corresponds to a theoretical device.

To further demonstrate the utility of this paper, we consider
the recently reported radial-mode 1.156 GHz disk resonators
of [4]. Fig. 9 shows the IIP3 voltage, corresponding to a 50

source impedance, given by (22)–(24) for a measured and
a theoretical improved resonator. For the fabricated device
with a motional resistance of , the SIR is sym-
metric around the passband. The exceptionally high IIP3 is not
suprising as most of the power is reflected due to impedance
mismatch. For the theoretical device with that has
an improved electromechanical coupling and correspondingly
better impedance match and lower IIP3, there is a clear asym-
metry of IIP3 with respect to also outside the passband of

. Both resonators of Fig. 9 have
an IIP3 that meet the requirements set, for example, for GSM
receivers [17]. On the other hand, the motional resistance is still
far from 50 even for the theoretical device. Lower resistances
can be obtained, for example, by reducing the gap and/or
increasing the bias voltage which, however, lowers the IIP3 [8].

V. CONCLUSION

Detailed analysis of intermodulation in capacitively coupled
MEMS filters was presented and closed form expressions for
SIR and IIP3 were derived. It was shown that the force inter-
modulation mechanism is usually the dominant effect. However,
close to or within the filter passband, the current intermodula-
tion mechanism is also important. The analytical results were
verified with experiments and simulations and excellent agree-
ment was obtained.

The results of this paper may be used in designing microme-
chanical filters, for example, for communication applications.
Well outside the passband, the obtained SIR does not depend on
the quality factor. Within the passband, increasing the quality
factor lowers the IIP3. The asymmetry observed near the pass-
band edge results in interferers below the passband being more
difficult to block than interferers above the passband.
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