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1. Introduction
Multicriteria decision analysis (MCDA) is a structured
way to analyze problems with multiple criteria and
alternatives. Even swaps (Hammond et al. 1998, 1999)
is an MCDA method based on value trade-offs (see
e.g., Keeney and Raiffa 1976, Keeney 2002), which
are called even swaps. In an even swap, the conse-
quence of an alternative in one attribute is changed
and this change is compensated with a preferentially
equal consequence change in some other attribute.
The new alternative with these revised consequences
is equally preferred to the initial one, and thus it can
be used instead. The aim of the method is to carry
out even swaps that either make attributes irrelevant,
in the sense that all the alternatives have equal con-
sequences on this attribute, or create dominated alter-
natives, in the sense that some other alternative is
at least as good as this alternative on every attribute.
Such attributes and alternatives can be eliminated,
and the process continues until one alternative, the
most preferred one, remains. One can also eliminate
practically dominated alternatives (Hammond et al.
1998) during the process: An alternative x practically
dominates alternative y, if y is slightly better than x
in only one or few attributes, but x clearly outranks y

in several other attributes. The aim of practical domi-
nance is to reduce the problem in obvious cases, and
thus eliminate unnecessary even swap tasks.
Interval modeling provides a convenient way to

account for preferential uncertainty or imprecision
in MCDA. It has been applied in various methods.
One of the first ones was Alternative Ranking Inter-
active Aid based on DomiNance structural informa-
tion Elicitation (ARIADNE) (Sage and White 1984,
White et al. 1984), which allows uncertain judgments
through direct constraints on values and weights.
Kirkwood and Sarin (1985) developed an algorithm
for obtaining a partial rank order of alternatives
under partial information about attribute weights,
and Kirkwood and Corner (1993) studied the effec-
tiveness of partial information about the weights.
Hazen (1986) and Weber (1987) further developed the
concepts of dominance and potential optimality for
analyzing the results obtained with incomplete infor-
mation. Preference programming (Arbel 1989; Salo
and Hämäläinen 1995, 2004) is a general term for a
family of methods using intervals to model uncertain-
ties or incomplete information within MAVT. Pref-
erence Assessment by Imprecise Ratio Statements
(PAIRS) (Salo and Hämäläinen 1992) is a preference
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programming method, in which the attributes are
compared in pairs, and the alternatives are evaluated,
for example, by using value functions.
In this paper, we introduce an approach in which

preference programming is applied to support the
even swaps process. In our approach, the decision
maker (DM) carries out the even swaps process as
usual, but in parallel, the evolution of the prefer-
ences of the DM is modeled with the PAIRS method.
This model is initialized with some weak assump-
tions about the DM’s preferences and updated dur-
ing the process according to the trade-off information
given in even swaps. The additional preference infor-
mation obtained with this model is used in the even
swaps process to produce (1) suggestions for alterna-
tives that could be practically dominated and (2) suit-
able candidates for attributes on which to carry out
the next even swap.
The aim of the proposed approach is to combine the

benefits of both the even swaps method and MAVT
modeling. The main advantages of the even swaps are
that it is simple to use and it does not require making
any assumptions about the form of the value function
(see e.g., Butler et al. 2001). Thus, the method is also
well suited for DMs not having a mathematical back-
ground. However, the preference information given
in an even swap is only used to change the represen-
tation of the alternatives in the comparisons, but not
to elicit the DM’s preferences over the attributes in
general. Consequently, as a result of the process, one
only gets the dominance relations between the alter-
natives. In this respect, MAVT provides a structured
process to compose and represent the relative overall
scores of the alternatives by means of the weights of
the attributes and the ratings of the alternatives with
respect to each attribute. A disadvantage of MAVT is
that it requires assumptions about the form of a value
function. However, in our approach, these assump-
tions do not restrict the generality of the even swaps
process, as the PAIRS model is only operated in the
background to produce suggestions to help the pro-
cess, and the DM eventually decides whether or not
to follow these suggestions.
In practice, the implementation of the proposed

approach requires computer support to manage and
update the PAIRS model during the process. How-
ever, the even swaps process benefits from computer

support, in general, in managing the consequences
table, visualizing the process, keeping the log and
tracking the actions taken. In this paper, we will
briefly describe the web-based Smart-Swaps software
(Hämäläinen et al. 2003), which provides support for
all of these tasks. Smart-Swaps is available for free for
academic purposes at www.smart-swaps.hut.fi and it
is part of the Decisionarium website for decision sup-
port (Hämäläinen 2000, 2003).
We expect that the proposed support is most useful

in large problems, in which finding practical domi-
nance relations and suitable swaps could otherwise be
quite difficult. We also see that the approach should
be applied together with practical advice proposed
by Hammond et al. (1998, 1999). They suggest, for
example, to first make swaps on those attributes that
are easy to deal with (such as money), which can
usually be easily identified with by the DM. How-
ever, to reduce the size of the consequences table, the
DM should also make swaps that result in dominated
alternatives or irrelevant attributes. The DM can use
the approach proposed here to detect these swaps,
and then decide whether to make one of the sug-
gested swaps or would she prefer a swap on some
easily measurable attribute.
The proposed approach is well suited both for the

individual use of DMs and for supported use by deci-
sion analysts. In individual use, the DM does not have
to study the details of the method, as suggestions
can be produced by using the default initialization
parameters in the model. Then, the supporting system
should, however, provide some help to understand
the suggestions. For example, the Smart-Swaps soft-
ware provides explanations for the DM as to why the
given suggestions are worth considering. Yet, an expe-
rienced user, such as a decision analyst can customize
the approach, as described later.
As far as the authors know, the only reported appli-

cations of even swaps in the literature are the ones on
strategy selection in a rural enterprise (Kajanus et al.
2001) and on environmental planning (Gregory and
Wellman 2001). This indicates lack of use, which can
be partly due to the fact that despite the simplicity
of the method, there is still a need for computational
help in the screening of the consequences, especially
in large problems. So far there has not been any soft-
ware for this before the introduction of the Smart-
Swaps software.
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This paper is organized as follows. Section 2
presents the framework for the use of the proposed
approach and the preference programming model.
Section 3 describes how to identify practical dom-
inance relations, and §4 describes how to identify
applicable candidates for the next even swap with
this model. The Smart-Swaps software is introduced
in §5. Section 6 demonstrates the use of the proposed
approach with an illustrative example, and §7 com-
pares the approach with MAVT. Section 8 concludes
this paper.

2. Even Swaps with Preference
Programming

The framework for the use of the proposed approach
is illustrated in Figure 1. The idea is that each time the
DM makes changes in the consequences table during
the even swaps process, this information is updated
into the underlying preference programming model.
This model is then applied to provide suggestions to
the DM about the next even swap and candidates
for the alternatives to be eliminated as practically
dominated.

2.1. The Preference Programming Model
The preference programming model builds on two
assumptions: (1) the DM’s preferences can be mod-
eled with an additive MAVT model and (2) the DM is
able to provide some general initial information about
her preferences. An additive model can be used if

Figure 1 Use of Preference Programming to Support the Even Swaps
Process

Initial statements about the attributes

Even swaps

Problem initialization

Eliminate dominated
alternatives

Eliminate irrelevant
attributes

More than one
remaining alternative?

Yes

No

Make an even swap

The most preferred
alternative is found

Practical dominance candidates

Even swap suggestions

Trade-off information

Updating of
the model

Preference
programming

Note. The dotted lines represent the information exchange between these.

the attributes are mutually preferentially independent
(see e.g., Keeney and Raiffa 1976). Then, the overall
score of an alternative described by the consequence
vector x= �x1� � � � � xn� is

v�x�=
n∑

i=1
wivi�xi�� (1)

where n is the number of attributes, xi is the conse-
quence of this alternative with respect to attribute i,
vi�xi� is its rating on 
0�1� scale, and wi is the weight
of attribute i representing the relative importance of
this attribute. The weights are normalized to sum up
to 1. Additivity is not assumed in even swaps, but, in
general, the assumption of an additive value model is
not considered to be very restrictive (see e.g., Keeney
and Raiffa 1976, Stewart 1996). The additive model is
also the most commonly used form in practice (see
e.g., Belton and Stewart 2002).
According to the basic principles of MAVT, each

attribute in the model should have some importance
to the DM (see e.g., Keeney 1992). The practical
dominance concept also implicitly assumes that even
swaps are reasonable in terms of the allowed compen-
sations. Thus, it is justifiable to assume that the rat-
ings and the ratios of the weights are not completely
unrestricted. This allows us to initialize the PAIRS
model by first assigning general interval bounds for
the ratings of the alternatives and for the weight
ratios between the attributes so that every rating and
weight ratio is assumed to be within these bounds.
For details of using PAIRS to model imprecision, see
Salo and Hämäläinen (1992), and for details of assign-
ing the bounds in our model, see §§3.1–3.3.
We emphasize that the proposed approach can be

used even if the above assumptions are not fulfilled,
as the implications of the preference programming
model are only treated as suggestions for how to pro-
ceed with the even swaps process. The DM is explic-
itly asked to approve the suggestions, and thus any
operations based on too strict assumptions will not be
made automatically.
For brevity, we will use the term “alternative x”

throughout this paper to denote “the alternative
described by the consequence vector x.” We shall use
the notation x� �i� xi → x′

i� j� xj → x′
j � for an even swap,

where the way alternative x is represented is altered
by changing attribute i from xi to x′

i, which is com-
pensated for with a change in attribute j from xj to x′

j .
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3. Practical Dominance
In models with incomplete information, the pair-
wise dominance concept is used to analyze relations
between the alternatives (see e.g., Hazen 1986, Weber
1987, Salo and Hämäläinen 1992). Alternative x dom-
inates alternative y in a pairwise sense if the overall
score of x is at least as high as the overall score of y
with every feasible combination of the weights and
the ratings; that is, if

min
w∈S

n∑
i=1

wi
vi�xi�− �vi�yi��≥ 0� (2)

where S is the feasible region of the weights, vi�xi�

and �vi�yi� are the lower and upper bounds for vi�xi�

and vi�yi�, respectively, and the inequality is strict
at least for some w = �w1� � � � �wn� ∈ S.
When the DM eliminates an alternative using prac-

tical dominance during the even swaps process, she
implicitly assumes that there are no feasible swaps
with which this alternative can be made the most
preferred one. With this interpretation, any alterna-
tive that is dominated in a pairwise sense in our
PAIRS model can also be seen as practically domi-
nated. That is, in the model, there are bounds for the
weight ratios and the ratings that define the max-
imum allowed imprecision in these. These bounds
implicitly set bounds for the feasible swaps too. Thus,
if an alternative is dominated in a pairwise sense
within these bounds, it cannot be made the most pre-
ferred one with any feasible swaps, and thus it can be
seen as practically dominated.

Assumption 1. Assume that the DM’s preferences are
modeled with preference programming as described in §2.
Then, an alternative is practically dominated if it is domi-
nated in a pairwise sense.

3.1. Initial Bounds
The use of pairwise dominance to represent practical
dominance requires setting initial general bounds for
the weight ratios and for the ratings of the alterna-
tives. We assume (1) a general upper bound for the
weight ratios, (2) exponential value function bounds
that define the lower and upper bounds for the rat-
ings on each attribute, and (3) general bounds for
the rating differences (i.e., for the slope of the feasi-
ble value functions). The motivation for using these

types of bounds is that weight ratios and exponential
value functions are conceptually easy to understand
and they are commonly used.
The bounds (1) and (3) can be given directly, but

on (2), one gives a general input parameter that
defines the curvatures of the exponential functions
from which the bounds for the ratings are derived.
The same general bounds apply for each weight ratio
and rating interval in the model. Thus, the model can
be initialized quickly and easily. Naturally, one could
assign separate bounds on each attribute and weight
ratio, but this would mean a thorough interval-based
MAVT assessment of the model.
Setting a general upper bound r ≥ 1 for the weight

ratios leads to a set of constraints

wi

wj

≤ r� ∀ i� j = 1� � � � �n� i �= j� (3)

These constrain the feasible region of the weights S.
An example of the feasible region on the weight plane∑n

i=1wi = 1 is illustrated in Figure 2.
The upper and lower bounds for the ratings vi�xi�

are derived from the exponential value functions

�vi�xi� =
axN

i − 1
a− 1 and (4)

vi�xi� =
�1/a�xN

i − 1
�1/a�− 1 � (5)

respectively, where xN
i = �xi−x0i �/�x

∗
i −x0i � is the value

of xi standardized onto range 
0�1�, and x0i and x∗
i

Figure 2 Feasible Region of the Weights S in the Case of Three
Attributes �r = 5�
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Figure 3 Bounds for the Ratings Derived from Exponential Functions
�a= 0�2�

0

vi(xi)

1

xi
*xi xi

0

vi(·)

vi(·)

vi(xi)

stand for the minimum and the maximum values
of xi, respectively, in the initial set of the alternatives.
Figure 3 illustrates how to derive the bounds for the
rating of consequence xi from these functions. In a
case of a predefined discrete consequence scale, x0i
and x∗

i stand for the end points of the scale, and the
set of possible consequences is evenly distributed on
this scale. Input parameter a ∈ �0�1� defines the cur-
vature of the functions, so that the closer it is to 1,
the closer the functions are to a linear function. In this
paper, we assume that the functions are increasing,
but analogous bounds can be derived for decreasing
functions. One should also note that these bounds do
not explicitly define the shapes of feasible value func-
tions, but any shapes (e.g., linear, exponential, as well
as S shaped) within these bounds are allowed.
The general lower bound s ∈ 
0�1� for the slope of

the function leads to constraints

vi�x
′
i�− vi�xi�

�xN
i

≥ s� ∀ i= 1� � � � �n and ∀x′
i� xi� (6)

where �xN
i = x′N

i − xN
i = �x′

i − xi�/�x
∗
i − x0i � is the dif-

ference between consequences x′
i and xi standard-

ized onto range 
0�1� (Figure 4). That is, any feasible
component value function has the slope of at least s

Figure 4 Bounds for the Slope �s= 0�5�

0

max(v (x ′i)– v(xi))

min(v (x ′i)– v (xi))

Maximum slope (1/s)

Minimum slope (s)

1

xi
0 xixi xi

*′

throughout the function. In practice, it is reasonable to
assume that s ≥ 0 (i.e., the functions are monotonic).
Monotonicity is not explicitly assumed in the even
swaps method, but in practice the consequences of the
attributes are often either maximized or minimized,
when the corresponding value functions are mono-
tonic. Yet, in our approach, a nonmonotonic value
function can be modeled by using a discrete scale to
set a preference order for a set of consequences. An
upper bound for the slope can be set similarly as the
lower bound, for example, by setting it as 1/s �s �= 0�
(see Figure 4).

3.2. Updating the Model with the Information
Obtained from the Given Even Swaps

Additivity of the proposed model implies that the
consequence changes made in an even swap are not
assumed to depend on the consequence levels of the
other attributes. This allows us to use the trade-off
information given in an even swap to represent the
DM’s general preferences over the attributes. Con-
sequently, we can elicit new bounds for the weight
ratios to make the model more precise. That is, by
making an even swap x� �i� xi → x′

i� j� xj → x′
j �, the

additivity implies that wivi�xi�+wjvj�xj� = wivi�x
′
i�+

wjvj�x
′
j � ⇔ wi�vi�x

′
i� − vi�xi�� = wj�vj�xj� − vj�x

′
j ��. As

the ratings, and consequently the rating differences
between the attributes, are assumed to be within some
bounds, we can obtain a new additional upper bound
for the weight ratio wi/wj as the maximum feasible
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ratio of these differences:

wi

wj

≤max
(

vj�xj�− vj�x
′
j �

vi�x
′
i�− vi�xi�

)
� (7)

A corresponding upper bound can be obtained for the
weight ratio wj/wi.

3.3. Remarks on the Bounds
The bounds for the weight ratios in (3) and (7) define
the maximum relative differences between the impor-
tances of the attributes, which should always be
considered with respect to the ranges used. In our
approach, the end points of the ranges in (4)–(6) are
elicited as the minimum and the maximum of the
attributes’ consequences in the initial set of the alter-
natives. Thus, the model assumes that the variations
in the attributes’ values over their ranges impact on
the preference for the alternatives. One should also
note that the current minimum and maximum con-
sequences of the attributes may change during the
even swaps process because of changes of attribute
values in even swaps, or because of the elimination
of alternatives. Thus, to keep the interpretation of the
weights the same, the initially defined [x0i � x

∗
i ] ranges

have to be used throughout the modeling process.
The consequences of the alternatives may also

exceed the initially defined [x0i � x
∗
i ] ranges when mak-

ing an even swap. The proposed bounds can also be
used outside this range. However, then the exponen-
tial lower and upper bounds for the ratings have to
swap places with each other (i.e., (4) has to be set as
the lower bound and (5) as the upper bound), as they
cross with each other at the points x0i and x∗

i .

3.4. Computational Considerations
Computationally, one has to go through m× �m−1�/2
alternative pairs (in which m is the number of the
alternatives) to check all the possible practical domi-
nance relations between the alternatives. The bounds
for the rating differences can be obtained directly
from the value function constraints (4)–(6), but solv-
ing the optimization problems (2) requires linear pro-
gramming (LP) methods.
In large problems, standard LP methods may ap-

pear to be too slow to solve the optimization prob-
lems. However, the characteristics of the model make
it possible to speed up the calculation process with

certain techniques. For example, if alternative x dom-
inates alternative y, it is not necessary to check
whether y dominates x. Also, when using iterative
techniques (e.g., the simplex method), the calcula-
tion process can be interrupted once a negative value
for (2) is found, as this implies that the minimum is
also negative. The dominance relations can also be
checked in some specific order, for example, in the
order based on the value difference between the alter-
natives at some specific point of the feasible region.
Then, the dominated alternatives are more likely to
be found in earlier phases of the checking process,
when one does not have to check the other possible
dominance relations on these alternatives.
Especially, if the additional constraints (7) derived

from the given even swaps are not used, one can sub-
stantially speed up calculations by using Theorem 1
to check the possible pairwise dominance relations.

Theorem 1. If the feasible region of the weights is
bounded by weight ratio constraints wi/wj ≤ r that have
the same upper bound r ≥ 1 for ∀ i� j = 1� � � � �n, i �= j ,
then alternative x dominates alternative y in a pairwise
sense if

n∑
i=1

ci
vi�xi�− �vi�yi�� > 0�

where




ci = 1 if 
vi�xi�− �vi�yi��≥ 0�
ci = r if 
vi�xi�− �vi�yi�� < 0�

(8)

Proof. See the appendix.
Theorem 1 is based on the symmetry of the feasible

region, as the constraints (3) are all of the same form.
It does not require solving optimization problems.
Even if the additional constraints (7) are used, The-
orem 1 can be used as a preliminary check for pair-
wise dominance. That is, if pairwise dominance was
reached without using the constraints (7), it would
also be reached with these, as then the feasible region
is the subset of the initial one.

4. Suggestions for the Next
Even Swap

In a typical even swaps process, the DM has to
make several swaps until the most preferred alter-
native is found. Usually, there are several possibil-
ities for an even swap to be carried out next, and
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different sequences of swaps can substantially dif-
fer from each other with respect to how quickly the
most preferred alternative is found. In this section, we
discuss how to help the DM select applicable swaps
to make the process efficient in the sense of making
alternatives dominated and attributes irrelevant with
as few swaps as possible. However, as mentioned ear-
lier, there are also other ways to measure the quality
of the swaps, for example, with respect to their easi-
ness. We emphasize that the best use of the proposed
aids is obtained by using them with common sense by
also addressing the other considerations when select-
ing the next swap.
In our approach, the primary candidates for the

next swap are those swaps with which some alter-
native could become dominated or some attribute
irrelevant. If there are no such swaps, we next con-
sider the swaps with which some alternative (or
attribute) could be made to be one swap apart from
being dominated (or irrelevant), and so on. However,
usually there are several swaps that are equal with
respect to how few swaps apart from obtaining dom-
inance relations or irrelevant attributes we can reach
with this swap. On the swaps leading to irrelevant
attributes, we can next study with which of these
swaps we could also make alternatives dominated.
However, on the swaps that may lead to dominance
relations, we cannot be sure that an alternative will
actually become dominated with a particular swap, as
we do not know the precise preferences of the DM,
and consequently, the amount of the consequence
change in the compensating attribute. For example,
if alternative y outranks alternative x only in one
attribute i, we can try to make y dominated with a
swap x� �i� xi → yi� j� xj → x′

j �. However, the attribute-
wise ranking of the alternatives in attribute j may
change because of this swap, in which case, alterna-
tive y will not become dominated.

4.1. Applicability of an Even Swap to Make
an Alternative Dominated

Preference programming provides a way to evaluate
the applicability of the swaps in terms of how close
to making an alternative dominated one would get
with each swap. We propose an applicability index that
indicates how large a consequence change the DM
is allowed to make in the compensating attribute to

reach dominance, in proportion to the estimated con-
sequence change that would be made in this attribute.
Definition 1. Assume that the DM’s preferences

are modeled with preference programming as
described in §§2 and 3, and alternative y outranks
alternative x only on attribute i. Then, the applicabil-
ity index of an even swap x� �i� xi → yi� j� xj → x′

j � to
make alternative x dominate alternative y is

d�x→ y� i� j� = min
(

vj�xj�− vj�yj�

vj�xj �− vj�x
′
j �

)

= min
(

vj�xj�− vj�yj�

�wi/wj�
vi�yi�− vi�xi��

)
� (9)

where the compensation x′
j in attribute j is unknown,

and the extremes for the weight ratio wi/wj are based
on (3) and (7) and the extremes for the rating differ-
ences on (4)–(6).
Thus, d�x→ y� i� j� (or d hereafter) is the ratio be-

tween the minimum feasible rating difference �vj�xj �−
vj�yj�� in attribute j with which the dominance would
still be reached, and the maximum feasible rating
change �vj�xj � − vj�x

′
j �� that could be made in this

attribute. We do not know the compensation x′
j in

attribute j , but the difference vj�xj� − vj�x
′
j � is esti-

mated from the additivity assumption wj�vj�xj� −
vj�x

′
j ��=wi�vi�yi�− vi�xi��.
The bigger the applicability index d is, the more

likely the consequence x′
j stays above yj (i.e., within

the area in which x dominates y). By default, Defini-
tion 1 gives a worst-case value for d, as it is obtained
as the minimum of the feasible ratios. Thus, d > 1
indicates that any feasible compensation in attribute j

makes alternative x dominate y. However, we can
also calculate an average-case value for d by deriving
the rating differences in (9) from linear value func-
tions and by estimating the weight ratio wi/wj as a
geometric average of its lower and upper bounds.
This value may often be more useful to the DM and
then d = 1 indicates that it is estimated to be equally
likely to reach or not to reach dominance with this
swap. Yet, one should note that even if we apply lin-
ear value functions in (9) to model the average of all
the possible value functions, the preference program-
ming model is still needed to update the new prefer-
ence information obtained from the given swaps into
the weight ratios.
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In Definition 1, we evaluate the applicability index
of an even swap x� �i� xi → yi� j� xj → x′

j �. How-
ever, dominance can also be reached by making the
consequences the same in attribute j and compen-
sating this change in attribute i (i.e., with a swap
x� �j� xj → yj� i� xi → x′

i��. Then, the attributewise
ranking of the alternatives in attribute i must change
to reach dominance. However, in terms of evaluat-
ing the applicability of an even swap to reach dom-
inance, it is irrelevant in which way the even swap
is made because in an additive model the extents of
the rating changes do not depend on the levels of
the other attributes. Thus, for the swap x� �j� xj → yj ,
i� xi → x′

i�, we can use the same value of the applica-
bility index as for the swap x� �i� xi → yi� j� xj → x′

j �.
In both cases, an even swap can also be carried out so
that the change is made in alternative y, but we can
use the same index value also in those cases.
In Definition 1, we assume that alternative y may

be made dominated with one swap, but similar
indices can be calculated for swaps with which alter-
native y may be made to be one (or more) swaps
apart from being dominated in a case where y out-
ranks x in two (or more) attributes. However, one
should note that then the strategy of selecting the
swap with the highest applicability index might not
be the best choice if the possible subsequent swaps
are also considered. The DM may, for example, prefer
a compensation that comes as close as possible to the
threshold value yj—but does not exceed this—so that
dominance can be reached with the following swap.
The DM may also make some other alternative

than y (say, alternative z) dominated with a swap
x� �i� xi → yi� j� xj → x′

j �. In this case, we can evalu-
ate the applicability index of this swap to also make z
dominated, by replacing the threshold value yj in (9)
by the corresponding consequence zj .

5. Smart-Swaps Software
The Smart-Swaps (Hämäläinen et al. 2003) software
follows the original Problem, Objectives, Alternatives,
Consequences, Trade-offs (PrOACT) working phases
(Hammond et al. 1999). The aim of the software is that
the DM can carry out the even swaps process inde-
pendently with the help provided by the software.
The Trade-offs phase is supported by the prefer-

ence programming approach described in this paper.

In practice, before starting to make an even swap,
the DM can let the software suggest candidates either
for a swap that could lead to irrelevant attributes or
for a swap that could lead to dominated alternatives.
The suggested swaps are always the first ones in the
shortest paths of swaps needed to make an alterna-
tive dominated or an attribute irrelevant, and they
are suggested in the order based on their applicabil-
ity index to reach dominance. To keep the task of the
DM as simple as possible, the software gives the sug-
gestions one at a time. With each suggestion, the DM
is informed of what can be achieved with this swap;
that is, which alternatives can possibly become dom-
inated and which attributes can become irrelevant
with this swap. This will help the DM understand the
process and the logic behind the suggestions. To keep
the number of suggestions reasonable, only one swap
for a given pair of attributes and alternatives is pre-
sented, and there is a limit of six suggestions.
The initial input parameters for setting the bounds

in (3)–(6) default to r = 5, a = 0�2, and s = 0�5, and
these can be adjusted by the DM. This has an effect
on the number of candidates for practical dominance
relations shown. For advanced users, the software
also provides several other options to customize how
the swaps are suggested. One can, for example, define
whether to use the average or worst-case values for
the applicability indices. One can also choose to show
the applicability index, as this can be useful informa-
tion, especially for a decision analyst.
After each swap, the software automatically iden-

tifies the dominated and practically dominated alter-
natives. The computation of practical dominance
relations is carried out with the proposed preference
programming approach and the simplex method, and
it is speeded up with the techniques described in §3.4.
After each swap, the software also checks whether
there are any inconsistencies in the weight ratios
obtained from the given swaps, as in practice, the
bounds derived from the given even swaps may
become conflicting. If this is the case, the software
informs the DM about the attributes between which
there are inconsistencies and suggests checking the
consistency of the given swaps on these attributes by
backtracking the process. If the DM does not redefine
the given swaps, the assumptions of the model are
likely to be too strong and the software does not apply
the additional constraints in the future suggestions.
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6. Example
We illustrate the use of the proposed approach with
the Smart-Swaps software by an office selection prob-
lem adapted from Punkka and Salo (2004). There are
12 possible locations for the office of a medium-sized
company and the decision is based on eight attributes:
(1) size of the office, (2) rental costs, (3) renovation
need, (4) car park opportunities, (5) availability of pub-
lic transport, (6) distance to city center, (7) other facilities
(e.g., restaurants, etc.), and (8) habitability of the office
and the neighborhood. We have made some minor
modifications to the original example, for instance, the
attribute values that were originally given as optional
(e.g., renovation need of Alternative 7 was small or
considerable) have been changed into single values.
Table 1 shows the consequences as they are in our
example.
We assume that before making a swap, the DM

looks into the suggestions provided by the software
for a swap that could make some alternatives dom-
inated. We also assume that the DM always makes
one of the suggested swaps, or a corresponding swap
in the other direction. Naturally, in practice, she can
decide to make other swaps as well. The suggestions
are derived with the default initialization parameters
of the PAIRS model and the average-case values are
calculated for the applicability indices.
At the start of the process, the software scans

through the consequences table and finds out that
Alternative 12 might be practically dominated by
Alternative 4. By comparing these alternatives explic-
itly, the DM can see that Alternative 12 is equal to

Table 1 The Office Selection Problem Adapted from Punkka and Salo (2004)

Size Rent Renovation Public Distance to Other
Alternatives (m2) ($) need Car park transport center (km) facilities Habitability

1 180 2,000 Considerable Good Quite bad 12 Intermediate Great
2 240 3,000 No Good Good 15 Good Bad
3 210 2,800 Intermediate Bad Great 0 Great Good
4 214 2,000 Very small Great Bad 25 Intermediate Good
5 300 3,200 Considerable Great Good 4 Great Very good
6 170 1,800 Considerable Quite bad Good 0 Great Good
7 250 2,600 Considerable Great Intermediate 7 Good Intermediate
8 260 2,650 Intermediate Intermediate Good 10 Intermediate Intermediate
9 262 2,400 Big Great Good 10 Intermediate Very good
10 241 2,500 Small Very good Intermediate 7 Good Good
11 198 2,200 Considerable Good Bad 17 Good Good
12 201 2,000 Intermediate Quite bad Bad 22 Quite bad Intermediate

or worse than Alternative 4 in all the other attributes
except in distance, in which it is only a little more
preferable. Thus the DM eliminates Alternative 12
based on practical dominance.
After eliminating Alternative 12, there are no more

dominated alternatives and the process continues by
making an even swap. When asked for suggestions
for the next swap, the software suggests making a
swap between car park and renovation need of Alterna-
tive 8. The software also informs the DM that with
this swap, Alternative 8 may become dominated by
Alternative 9, and that this suggestion is the first of
six suggestions. This suggestions seems to be a quite
reasonable one (the applicability index d = 3�0), and
thus the DM makes a swap Alternative 8: (car park:
intermediate → great, renovation need: intermediate →
considerable). As a result, Alternative 8 becomes dom-
inated by Alternative 9 and is thus eliminated.
From now on, the process continues in the same

way; that is, the DM repeats making even swaps
and eliminating dominated alternatives and irrelevant
attributes until the best alternative is found. Table 2
shows one possible realization of the process, which
results in Alternative 9 being the most preferred alter-
native. In this example, the DM makes, with certain
exceptions, the first swaps suggested by the software.
However, in some situations, it could be useful to also
check the other suggestions. For example, on swap
Number 3, the applicability index for the first sug-
gested swap is only 0.93, and thus it may not be
very likely to reach dominance with this swap. The
applicability indices for the next two suggestions are
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Table 2 Even Swaps Made During the Process

Even swap
Resulting

Number Change Compensation Suggestion dominance relations

Initial scanning through the consequences table Alternative 12 practically
dominated by Alternative 4

1 Alternative 8 Car park: Renovation need: 1 of 6 Alternative 8 dominated
intermediate→ great intermediate→ considerable by Alternative 9

2 Alternative 11 Renovation need: Rent: $2�200→ $2�800 1 of 6 Alternative 11 dominated
considerable→ small by Alternative 10

3 Alternative 7 Rent: $2�600→ $3�200 Size: 250→ 290 3 of 5 Alternative 7 dominated
by Alternative 5

4 Alternative 6 Distance: 0→ 4 Size: 170→ 175 1 of 6
5 Alternative 6 Rent: $1�800→ $3�200 Size: 175→ 260 1 of 5 Alternative 6 dominated

by Alternative 5
6 Alternative 2 Habitability: Rent: $3�000→ $3�300 1 of 6 Alternative 1 practically

bad→ very good dominated by Alternative 5
7 Alternative 2 Renovation need: Size: 240→ 305 1 of 5 Alternative 2 practically

no→ considerable dominated by Alternative 5
8 Alternative 5 Renovation need: Facilities: great→ intermediate 2 of 6

considerable→ big
9 Alternative 5 Size: 300→ 262 Rent: $3�200→ $2�600 1 of 2
10 Alternative 5 Distance: 4→ 10 Rent: $2�600→ $2�500 1 of 1 Alternative 5 dominated

by Alternative 9
11 Alternative 4 Rent: $2�000→ $2�400 Size: 214→ 240 1 of 6
12 Alternative 4 Public transport: Renovation need: 1 of 4

bad→ good very small→ intermediate
13 Alternative 4 Renovation need: Distance: 25→ 15 1 of 3 Alternative 4 dominated

intermediate→ big by Alternative 9
14 Alternative 3 Car park: Distance: 0→ 30 2 of 6

bad→ very good
15 Alternative 3 Facilities: great→ good Distance: 30→ 23 1 of 6
16 Alternative 3 Public transport: Distance: 23→ 5 1 of 4 Alternative 3 practically

great→ intermediate dominated by Alternative 10
17 Alternative 10 Car park: Distance: 7→ 15 2 of 6

very good→ great
18 Alternative 10 Facilities: Distance: 15→ 12 2 of 6

good→ intermediate
19 Alternative 10 Renovation need: Size: 241→ 265 1 of 5 Alternative 10 practically

small→ big dominated by Alternative 9

Alternative 9 is the only remaining alternative→ It is the most preferred one.

almost the same (0.93 and 0.90, respectively), and thus
it would be useful to compare all these suggestions to
find out the most suitable swap. Based on this com-
parison, the DM decides to make the third suggested
swap between rent and size of Alternative 7, as then
Alternative 7 becomes dominated.
This example demonstrates how the preference in-

formation given in the even swaps can give the DM
new information about the relations of the alterna-

tives. For example, as a result of the swap Number 6,
Alternative 1 becomes practically dominated by Alter-
native 5, although no changes have been made in
either of these alternatives during the process. How-
ever, the swaps Numbers 5 and 6 result in new pref-
erence information about the attributes, of which we
elicit new constraints 1�21 ≤ wsize/wrent ≤ 2�29 and
1�60≤wrent/whabitability ≤ 8�45 to the PAIRS model. Based
on this updated preference information, the advantage
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of Alternative 1 in rent and habitability is not enough
to compensate for the advantage of Alternative 5 in
the other attributes, and thus Alternative 1 becomes
practically dominated.
One can follow different strategies in defining the

initial bounds of the PAIRS model. The basic idea
is that the bounds reflect all the possible impreci-
sion in the model. In practical decision support, the
bounds can, however, be used to customize the pro-
cess. Tighter bounds will produce more candidates
for practical dominance relations. For example, with
the parameter values r = 3, a = 0�4, and s = 0�75,
Alternatives 8 and 11 also become identified as prac-
tically dominated in the initial scanning of the con-
sequences table. However, because of these tighter
assumptions of the model, the DM has to carefully
consider whether to eliminate these alternatives using
practical dominance or not. If she decides to do this,
she escapes making the first two swaps in Table 2.
This example shows that the even swaps process

can be easily carried out in relatively large problems,
assuming that some kind of support, such as the
approach presented in this paper, is available. How-
ever, we think that without any support, it would be
difficult to apply the even swaps method to prob-
lems of this size, and in this respect, the proposed
approach provides a useful way to support the even
swaps method. Yet, it is an empirical question as to
how much easier the use of the even swaps method
can become with the proposed approach in real situa-
tions with real DMs. These tests are beyond the scope
of this paper, and are a topic of further research.

7. Comparison with MAVT
Next, we analyze the same example with a tradi-
tional MAVT approach and compare the pros and
cons between even swaps and MAVT. We focus on
four characteristics of the approaches: (1) assumptions
needed, (2) elicitation burden, (3) transparency of the
process and outcome, and (4) computational issues.
In MAVT, the ratings for the alternatives in (1)

are typically derived from attributewise value func-
tions and the weights for the attributes elicited with
some specific weighting method such as Simple
Multiattribute Rating Technique (SMART) (Edwards
1977, von Winterfeldt and Edwards 1986) or Swing

(von Winterfeldt and Edwards 1986). The weight elici-
tation typically requires at least n−1 preference state-
ments, where n is the number of attributes. For a
comparison of different weighting methods, see, for
example, Borcherding et al. (1991) or Pöyhönen and
Hämäläinen (2001). Here, we do not consider dif-
ferences in the weighting methods, but assume the
weights to be wsize = 0�3, wrent = 0�2, wrenovation need =
0�15, wcar park = 0�10, wpublic transport = 0�08, wdistance = 0�07,
wfacilities = 0�05, and whabitability = 0�05, which are consis-
tent with the even swaps made in Table 2. The rat-
ings are obtained by using linear value functions on
the attribute values over their ranges. As a result, we
get the overall scores for the alternatives. These can
be decomposed into components describing the con-
tribution of different attributes (Figure 5). The best
alternatives are Alternative 9 (overall score 0.607),
Alternative 5 (0.597), and Alternative 10 (0.576). This
result is consistent with the result of the even swaps
process, in which Alternative 9 is the most preferred
alternative, and Alternatives 5 and 10 are both elimi-
nated during the process because of the dominance by
Alternative 9.
As mentioned before, one of the main advantages

of the even swaps method over MAVT is that it
does not require making any assumptions about the
form of the value function. Additive value functions
are typically used in MAVT, but if the mutual pref-
erential independence between the attributes cannot

Figure 5 Overall Scores of the Alternatives and the Contribution of
Different Attributes to the Overall Scores
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be assumed, some other form, for example, a multi-
plicative value function should be used. This makes,
however, the elicitation of the MAVT model more
complex and less attractive.
In the even swaps process, one does not know in

advance how many swaps are needed to find out the
most preferred alternative. Depending on the char-
acteristics of the problem, the number of the swaps
needed can become high. In our example, we need
19 swaps until the best alternative is found, whereas
in MAVT, the weight elicitation, for example, by
SMART requires seven preference statements between
the attributes. In practice, making trade-offs in the
weighting of the attributes is a comparable task as
making even swaps. In MAVT, one additionally needs
an attributewise value function for each attribute. In
many applications, these are assumed to be linear for
simplicity, but, in general, the elicitation of value func-
tions also requires that the DM makes value compar-
isons between consequence changes on the attributes.
Typically, this would mean at least one elicitation
question for each attribute. One should note that in
MAVT, the elicitation burden does not increase with
the number of alternatives. In even swaps, this is
not the case, but more steps are usually needed when
there are more alternatives.
In MAVT, the value comparisons are made over

the whole range of all the attributes. One might
say that this is more difficult than the even swaps
process, where the comparisons are only made on
those attribute values that are involved in the even
swaps. However, in even swaps, the DM may have
to make several comparisons on the same pair of
attributes during the process. Also, the DM has to
decide which swaps to make, whereas in MAVT,
all the steps needed are known in advance. In this
respect, MAVT can be said to be clearly more struc-
tured. To summarize, the elicitation burden, when
counting the number of statements, with an addi-
tive MAVT model is likely to be lower than in the
even swaps process. One should, however, note that
the questions to be answered in MAVT are entirely
different.
The results of MAVT analyses are clear to interpret,

and from the overall scores, one can easily see the ori-
gins of the differences in the preferences between the
alternatives. In even swaps, the process reveals the

dominance relations between the most preferred alter-
native and the other alternatives, but it does not pro-
duce the relative scores of the alternatives. This can
be a problem, especially if there are alternatives close
to each other, all of which could be considered as the
most preferred one. We feel that the most problematic
feature in even swaps is that during the process, the
alternatives’ outcomes are replaced by artificial out-
comes, which are changed with each trade-off. This
is a characteristic of the process only, and it can be
difficult to understand that when the best alternative
is found, it will indeed be the original one with the
original outcomes.
Computationally, the MAVT and even swaps pro-

cesses can both be carried out easily, for example, on
a spreadsheet program. The use of the proposed pref-
erence programming approach requires solving lin-
ear programs, but with the computational capacity of
current PCs, this is not a critical issue. For example,
the initial calculation of practical dominances in our
example takes 12 seconds with the Smart-Swaps soft-
ware on a 2.4 GHz computer.
Overall, both methods have their pros and cons.

We think that a traditional MAVT is always required
when you need to have a transparent process and
explain and justify the choice. This is important in
group and public policy decisions. The even swaps
method suits personal decision making, where you
are only looking for the best alternative for yourself.
It has appealing characteristics such as freedom from
assumptions, but the use of it requires understand-
ing the nature of trade-offs. In addition, the elicita-
tion burden can become high in large problems, but
in this respect, the approach proposed here should
make the use of the even swaps method easier. Yet,
the question about the relative usefulness of the meth-
ods in different kinds of situations is an open issue.
The effectiveness and efficiency of the methods need
to be evaluated in experiments, preferably with real
DMs, and this remains a topic of further research.

8. Conclusions
We have introduced an approach to help the DM
carry out the even swaps process in practice. The orig-
inal process of swapping remains the same, but the
proposed preference programming approach makes
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the process easier by giving helpful suggestions dur-
ing the process. The greatest benefits of using the
approach are obtained in large problems, in which
a thorough screening of the problem is practically
impossible without computational help.
Even swaps is a relatively new method, and thus

its practical applicability remains to be demonstrated.
The availability of the Smart-Swaps software is likely
to increase the number of real-life applications. The
basic philosophy of the even swaps process is to keep
the elicitation burden of the DM as low as possible.
Our approach contributes to this by making use of all
the possible partial preference information obtained
during the process.
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Appendix. Proof of Theorem 1
The minimum of the function is found in an extreme point
of the feasible region of the weights S, which is now con-
strained by only one type of constraints wi/wj ≤ r for ∀ i� j =
1� � � � �n, i �= j . Thus, in each extreme point, at least one
weight ratio is on its bound wi/wj = r , as otherwise, this
point would not be an extreme point. Correspondingly, each
other weight wk for ∀k = 1� � � � �n, k �= i, k �= j on this point
is on bound wi/wk = r or wk/wj = r , and thus the weights of
the attributes are wj , wi = r ×wj , and either wk =wi/r =wj

or wk = r ×wj for ∀k = 1� � � � �n, k �= i, k �= j . The set of all
the extreme points can be elicited by taking all the points
c = �c1� � � � � cn�, where ci = 1 or ci = r for ∀ i = 1� � � � �n, and
normalizing the sum to

∑n
i=1 ci = 1. (In fact, the point where

c1 = c2 = · · · = cn should be excluded from this set, but in the
computation of the minimum, this point can be included in
the set of extreme points as it is clearly an interior point.) As
a result, we get the set of non-normalized extreme points
EC =  c = �c1� � � � � cn� � ci = 1 or ci = r� ∀ i = 1� � � � �n}, and by
normalizing the sum of the weights to one, we get the set
of extreme points ES =  w = �c1/

∑
ci� � � � � cn/

∑
ci� � c ∈ EC }.

Assume min
∑n

i=1 ci
vi�xi�− �vi�yi�� > 0, c ∈ EC , i.e.,

n∑
i=1

ci
vi�xi�− �vi�yi�� > 0� ∀ c ∈ EC�

As

∑
ci > 0 ⇒

n∑
i=1

ci∑
ci


vi�xi�− �vi�yi�� > 0� ∀ c ∈ EC�

As

ES =
{
w =

(
c1∑
ci

� � � � �
cn∑
ci

)∣∣∣ c ∈ EC

}

⇒
n∑

i=1
wi
vi�xi�− �vi�yi�� > 0� ∀w ∈ ES� (10)

Thus, x dominates y.
Values ci in c = �c1� � � � � cn� ∈ EC do not depend on each

other ⇒ min
∑n

i=1 ci
vi�xi� − �vi�yi�� = ∑n
i=1 min�ci
vi�xi� −

�vi�yi���. On the other hand, min�ci
vi�xi�− �vi�yi��� for any i
is directly obtained at the point ci = 1 if �vi�xi�− �vi�yi��≥ 0,
and at the point ci = r if �vi�xi�− �vi�yi�� < 0. �
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