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Abstract

Sensitivity analyses have long been used to assess the impacts of uncertainties on outcomes of decision models. Several
approaches have been suggested, but it has been problematic to get a quick overview of the total impact of all the uncer-
tainties. Here we show how interval modeling can be used for global sensitivity analyses in multiattribute value trees, and
a nuclear emergency case is used to illustrate the method. The approach is conceptually simple and computationally fea-
sible. With intervals, the decision maker can include all the possible uncertainties and quickly estimate their combined
impact. This is especially useful in high-risk decisions where a worst-case type of sensitivity analysis is essential. By vary-
ing the intervals one can also examine which uncertainties have the greatest impact and thus need the most consideration.
Global sensitivity analysis reveals how the outcome is affected by many simultaneous variations in the model.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction done is likely to strongly affect the confidence that

the decision makers have in the results. If the

Dealing with uncertainties related to data and
preferential judgments is an essential part of a
practical decision analysis project. How this is
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uncertainties are not well accounted for, the cred-
ibility of the decision analysis method used can
suffer. Thus an easy-to-use and transparent meth-
od for examining the effects of the uncertainties
is needed to ensure the decision makers’ commit-
ment to the decision.

Sensitivity analyses are commonly used to ana-
lytically assess the impacts of uncertainties on out-
comes of decision models. In this paper, our focus
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is on multiattribute value tree analysis (MAVT) as
described in Keeney and Raiffa (1976). MAVT is
based on structuring the decision problem into a
value hierarchy, or a value tree. The topmost
objective is the overall goal that the decision
maker wishes to achieve. This objective is divided
into sub-objectives, and on the lowest level are
the measurable attributes that are important for
the decision problem at hand. The attributes are
weighted according to their importance, and the
overall performance of each alternative is mea-
sured by a value function, which aggregates the
performance measures of this alternative on each
attribute into a single overall value measure.

Previous research has suggested that intervals
and incomplete judgments can be used to incorpo-
rate uncertainties directly in the modeling phase
(see e.g. Arbel, 1989; Salo and Hamaéldinen, 1992,
1995, 2001; Weber, 1985; White et al., 1984). In
an interval approach, preference judgments and
the outcomes of the alternatives are presented as
ranges including all the possible value estimates
for these. Consequently, the overall values of the
alternatives will be intervals. The approach is also
called Preference Programming (Arbel, 1989; Salo
and Hamaéldinen, 1995, 2003) which reflects the fact
that one can see how the preferences over the alter-
natives evolve as the information increases and the
preference statements become less incomplete.
Interval methods have been successfully used in
applications including environmental decision
making and policy analysis (see e.g. Himéildinen
and Leikola, 1996). Intervals can also be used in
group decision making to incorporate the prefer-
ences of all participants in a single model (see e.g.
Héamadldinen et al., 1992; Hiamiéldinen and Poyho-
nen, 1996; Kim et al., 1999).

In this paper, we present a way to carry out glo-
bal sensitivity analysis in MAVT by Preference
Programming. That is, we allow the model param-
eters to vary within given intervals representing the
uncertainty ranges and study the consequential ef-
fects in the results. The aim is to quickly assess the
total impact of all uncertainties. The main benefit
of our approach is that it is conceptually straight-
forward. It captures all the uncertainties in a single
analysis, and intervals used in the model are easy
to understand for non-mathematicians who might

not be familiar or comfortable with probability
distributions associated with the preferences and
the ratings of the alternatives. In this type of anal-
ysis, it is the extreme possibilities (i.e. the worst-
case results) that are important and not the prob-
ability distributions. Yet, the proposed approach
explicitly studies the sensitivity with respect to
the input elicited from the decision maker (i.e.
the weight ratios between the attributes). The
previous approaches including the traditional
one-way sensitivity analysis have typically only
considered the sensitivity of the final weights.

This work fits into the framework of sensitivity
analysis proposed by Rios Insua and French
(1991) and Proll et al. (2001), in which one em-
ploys constraints on the model parameters to de-
scribe uncertain or imprecise information. The
Preference Programming approach applied here
gives a convenient and computationally efficient
way to include the constraints in the weight ratios
of the attributes and in the outcomes of the alter-
natives, also in hierarchical value trees. However,
some related concepts such as potential optimality
(see Hazen, 1985; Rios Insua and French, 1991)
may not be applicable when considering the anal-
ysis from the worst-case perspective, as it may
eliminate alternatives that are never optimal but
perform reasonably well in all situations and are
thus less risky.

The interval model leads to a set of linear extre-
mum problems. In hierarchical MAVT models, the
overall problem is computationally quick to solve,
as the extremum problems on each branch of the
value tree can be separately solved (Salo and
Héamaéldinen, 1992, 1995), and in a typical model
there are seldom more than ten sub-objectives
under any objective in the hierarchy. This makes
it possible to carry out interactive analyses. For
example, with our WINPRE software (Workbench
for INteractive PREference Programming;
Héamildinen and Helenius, 1997), the decision
maker can immediately see the changes in the
results when adjusting the intervals. This requires
that the calculations can be done very fast, prefer-
ably within a few tenths of a second, which is not
always possible with other approaches.

Our focus is on MAVT, and thus other models
such as decision trees (see Clemen, 1996) are
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beyond the scope of this work. The suggested ap-
proach may also be well suited for other types of
models, although the number of parameters may
set limitations for its use (e.g. the model presented
in Francos et al. (2003) involves 82 input parame-
ters). For an overview of suitable global sensitivity
analysis approaches for these cases (such as vari-
ance based importance measures, Bayesian net-
works, etc.), the reader is referred to the special
issue of Reliability Engineering and System Safety
on sensitivity analysis (Tarantola and Saltelli,
2003).

Global worst-case analysis is especially relevant
in high-consequence decisions with a high level of
uncertainty, such as in the case of nuclear emer-
gencies. We have previously successfully applied
multiattribute decision analysis and decision con-
ferences to support nuclear emergency manage-
ment (Hamaildinen et al., 2000), and the example
case used in this paper is taken from one of these
studies (Ammann et al., 2001).

This paper is organized as follows. Section 2 de-
scribes different approaches to carry out sensitivity
analysis. Section 3 describes the interval sensitivity
analysis method, and how to use it in practice. An
example of using interval sensitivity analysis in a
nuclear accident case is given in Section 4, and Sec-
tion 5 concludes the paper.

2. Sensitivity analyses—Why and how?

Uncertainties can be grouped in several differ-
ent ways. French (1995) suggested a classification
into three groups depending on which step of the
analysis they belong; modeling, interpreting the re-
sults or exploring the model (Table 1). One should
note that in this paper the term uncertainty is used

Table 1
Classifying uncertainties following French (1995)

in a similar way as in French (1995) to also cover
such types of uncertainties that may arise from
imprecision or ambiguity.

Another perspective is to focus on the origins of
uncertainties. For example, in the field of risk
analysis Salo (2001) suggests three dimensions of
technological risks; physical causation (e.g. uncer-
tainties in causal relationships), value concerns
(e.g. changes in the stakeholders’ preferences)
and policy response (e.g. the effectiveness of the ac-
tions taken).

In the different cases, methods are needed to
support the decision maker in dealing with the
uncertainties in a constructive way. Sensitivity
analyses are commonly used, and the reader is re-
ferred to Saltelli et al. (2000a,b), Tarantola and
Saltelli (2003) or French (2003) for a perspective
on different approaches in general, or to Belton
and Stewart (2001), French and Rios Insua
(1999) or Rios Insua and French (1991) on differ-
ent approaches specific to MAVT.

Sensitivity analyses can be used for a wide range
of purposes. Pannell (1997) grouped these into
four categories:

1. Decision making (identifying critical values/
parameters, testing robustness, overall riskiness
of decision).

2. Communication (increasing commitment/confi-
dence/credibility, explicitly showing critical
assumptions).

3. Increased understanding (understanding rela-
tionship between input/output variables).

4. Model development (identifying needs for more
accurate measurements/more information).

The single parameter test is a common sensitiv-
ity analysis method to examine how sensitive a

When modeling the decision problem

When interpreting the results

When exploring the model

e Uncertainty about what might
happen or what can be done

e Uncertainty about meaning
or ambiguity in terminology

e Uncertainty about related decisions

e Uncertainty about the appropriateness
of a descriptive/normative model

e Uncertainty about the depth to which
to conduct the analysis

e Uncertainty resulting from physical
randomness or lack of knowledge

e Uncertainty about the evolution of
future beliefs and preferences

e Uncertainty about judgments

e Uncertainty about accuracy of calculations
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model is to small changes in one parameter. That is,
all other parameters are held fixed except a single
one that is allowed to vary. The analysis is usually
visualized by graphs showing the consequential
variations in the overall results. The tornado dia-
gram is another common method providing useful
diagrams. It is usually drawn for single parameter
tests and employed to compare the base alternative
to another option (Felli and Hazen, 1999). For a
detailed discussion of tornado diagrams, the reader
is referred to Clemen (1996). These methods do
not, however, account for parameter interactions
nor do they cover the worst-case settings.

Often there is more than one parameter that the
decision maker might be uncertain about, and with
the traditional approaches it can be difficult to esti-
mate the combined overall impact. For example,
Felli and Hazen (1999) showed that single parame-
ter tests tend to overestimate the overall sensitivity.
This leads to the need for a multiparameter test.

Global sensitivity analysis incorporates the
influences of the whole ranges of variation in
model parameters and these variations are allowed
in multiple parameters simultaneously (Saltelli
et al., 2000a). Especially in complex simulation
models, for example, when modeling environm-
ental phenomena, the model can have numerous
input parameters. Different types of global sensi-
tivity analysis approaches have been developed
for dealing with uncertainties in these models,
and these approaches often rely on statistical or
probabilistic calculations. Examples of such app-
roaches include Monte Carlo analysis, ANOVA,
FAST and Bayesian models (see e.g. Saltelli
et al., 2000a,b). Rank based methods can also be
used to study the sensitivity of the model with
respect to uncertainties in the rankings of param-
eters (see e.g. Barron, 1992; Salo and Punkka, 2005).

In MAVT, the Monte Carlo simulation tech-
nique can be used to analyze model uncertainties
and to statistically rank the alternatives (see e.g.
Arbel and Vargas, 1993; Butler et al., 1997; Stam
and Silva, 1997). The main advantage of this
method is that one gets a lot of information, such
as mean values, variances and fractiles, about the
characteristics of the decision model subject to
uncertainties. However, the normalization of the
weights and the reciprocity of the weight ratios

make the application of distributions on the weights
very difficult. In addition, the effort needed for the
calculations can become substantial and one can-
not always carry out what-if analyses without com-
putational delays. To avoid this, Kirkwood (1992)
has suggested a method to estimate the impact of
uncertainty on the results of a multiattribute model
prior to a complete probabilistic analysis. How-
ever, this would still demand the approximation
of expected values, variances and covariances.

Kirkwood (1997) provides a summary of litera-
ture on scenario analysis in decision making. In
scenario analysis, parameters are given (sometimes
extreme) values so as to make the analysis favor a
certain view of the actual situation. Often the set of
scenarios contains expected, optimistic and pessi-
mistic alternatives. The process of scenario gener-
ation is not, however, a straightforward one. For
example, there is no clear rule how pessimistic
the pessimistic scenario should be.

The precautionary principle (see e.g. Goldstein
and Carruth, 2004; Graham, 2000) has recently
received growing attention. The precautionary
approach addresses the problems of multi-
dimensionality, humility about knowledge and
openness to alternatives. It places the burden of
proof on the advocates to prove the soundness of
the suggested decision. Thus, also in that approach,
a global worst-case analysis would be useful.

3. Worst-case sensitivity analysis with intervals
3.1. Interval methods

In MAVT the overall values of the alternatives
are composed of the ratings of the alternatives
with respect to each attribute and of the weights
of the attributes. If the attributes are mutually
preferentially independent (see e.g. Keeney and
Raiffa, 1976), an additive value function can be
used to derive the overall values for the alterna-
tives to represent the decision maker’s overall pref-
erence over the alternatives. The overall value of
alternative x is

o) = Y w) 1)
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where 7 is the number of attributes, w; is the weight
of attribute 7, x; is the consequence of alternative x
with respect to attribute i and v{x;) is its rating.
The weights denote the relative importances of
the attributes changing from their worst level to
their best level compared to the changes in the
other attributes. The sum of the weights is normal-
ized to one, and the ratings v{x;) are scaled onto
the range [0, 1].

The value tree can also be constructed hierar-
chically. Then the upper level objectives are di-
vided into sub-objectives, and the weighting is
carried out locally on each set of these. In this case,
w; in (1) denotes the overall weight of the lowest
level attribute i, which is calculated as a product
of the local weight of this attribute and the local
weights of all the preceding upper level objectives.

Preference Programming can be used to model
uncertainties in the decision maker’s preference
statements with intervals. PAIRS (Salo and
Hamélidinen, 1992) is a Preference Programming
method in which intervals are directly given to con-
strain both the weight ratios of any attribute pairs
and the ratings of the alternatives. For example, in-
stead of giving an exact weight ratio w;/w, = 2, the
decision maker can define that w/w, € [1,4] (i.e.
the ratio is at least 1 but no more than 4). The given
intervals constrain the feasible region of the
weights. Fig. 1 illustrates the feasible region .S con-
strained by intervals wi/w, € [1,4], wi/w; € [1,4]
and w»/ws € [1/2,2]. Similarly, uncertainties in

W

w,= lwz
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decision outcomes can be modeled with ranges of
possible values (e.g. v(x;) € [0.3, 0.5]). As a result,
the overall values of the alternatives will also be
intervals, which can be calculated as extremes of
(1) with linear programming. The lower bound
for the value of alternative x is

(2)

where S is the feasible region of the weights, v{x;) is
the least allowed value for v(x;) and w = (wy, ...,
w,) € S. The upper bound is calculated analo-
gously. For details refer to Salo and Hadmaldinen
(1992).

Interval models require that we specify the
dominance concepts to analyze the results (see
e.g. Weber, 1987; Salo and Héméldinen, 1992).
Alternative x dominates alternative y absolutely,
if the lower bound of the overall value interval
of x is higher than the upper bound of the interval
of y. Alternative x dominates y in a pairwise sense,
if the overall value of x is higher than or equal to
that of y for every feasible weight and value com-
bination, i.e. if

min " (x) — ()] > 0. (3)

and the inequality is strict at least for some w € S.
Thus, pairwise dominance can also exist on over-
lapping value intervals. Absolute dominance im-

H‘.?: “l.l'

Fig. 1. Example of the feasible region of the weights S on the weight plane w; + w, + w3 = 1.
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plies pairwise dominance, and in general, the term
dominance is considered to refer to pairwise
dominance.

3.2. Interval sensitivity analysis

In this paper, we apply the PAIRS method to
carry out interval sensitivity analysis in MAVT.
In this approach, the decision maker extends the
initial point estimates of the weight ratios and
attribute ratings to intervals indicating the ranges
within which these estimates are allowed to vary.
These intervals describe the possible uncertainties
in the weight ratios and attribute ratings. By
studying the consequential changes in the overall
value intervals and in dominance relations, the
decision maker can elicit how sensitive these are
to all the possible variation in the model simulta-
neously. For example, if the dominance relations
between the alternatives remain unchanged when
assigning the uncertainty intervals, the rank order
of the alternatives is not sensitive to any allowed
variation in the model. However, if more than
one alternative become non-dominated, any of
these can be considered as a suitable candidate
for the most preferred alternative.

Intervals can be simultaneously assigned both
to the weight ratios between the attributes on
any level of the value tree, and to the ratings of
the alternatives. This makes it possible to study
the joint effects of different types of uncertainties,
for example, due to the decision maker’s inability
to accurately estimate the relative importances of
the attributes and due to the imprecision in the in-
put data on the alternatives.

Interval sensitivity analysis can also be applied to
the Analytic Hierarchy Process (AHP; Saaty, 1980).
In the AHP, the attribute weights are computed
from a matrix of all the pairwise weight ratio judg-
ments. Thus, Preference Programming can be used
to carry out interval sensitivity analyses by setting
intervals on all the pairwise judgments. However,
in AHP one also has to take into account feasibility
constraints due to the redundancy of comparisons.

3.2.1. Interpreting the intervals
In practice there are different ways to interpret
the intervals. The strictest one is to set the intervals

so that they cover all the possible variation in the
weight ratios and in the ratings. Then the sensitiv-
ity analysis can be seen as a way to find a true
worst-case solution. That is, if a dominating alter-
native is found, it is the best alternative for every
feasible combination of model parameters, includ-
ing the worst ones. However, with this interpreta-
tion, the intervals may easily become so wide that
no dominance relations between the alternatives
can be established.

One can also use tighter intervals that may not
cover all the possible variation in parameter val-
ues. The analysis should then be interpreted as a
“what-if”’ type sensitivity analysis. That is, we
study what would the overall value intervals be,
if we allowed the weight ratios and ratings to be
any values within the given intervals.

Yet another approach is to consider intervals as
confidence intervals (e.g. 95% confidence interval).
However, if the parameter distributions on these
intervals are not given, the overall value intervals
would not be true confidence intervals, but they
would merely describe the bounds for the possible
variation in the overall values when allowing each
parameter to be any value within its confidence
interval. To get true confidence intervals for the
overall values, one has to assign distributions to
the parameters, but this leads to the use of a
Monte Carlo simulation approach.

Attributes can have different levels of uncer-
tainty, which can be taken into account by using
intervals of different size. If the decision maker is
not willing or able to give the intervals explicitly,
he/she can, for example, assign error ratios to
the initial point estimates (see e.g. Bryson et al.,
1995; Salo and Hamalédinen, 2001). They provide
a quick way to model the proportional uncertain-
ties. An error ratio is a coefficient by which we
multiply each weight ratio to get an upper bound
for this ratio. For example, with error ratio 2,
the weight ratio w;/w, =3 extends to interval
wi/wy € [3/2,3 x 2] =[1.5,6]. Similarly, the rat-
ings of the alternatives can be extended to intervals
by setting a general value for the maximum
allowed variation in the initial ratings. For exam-
ple, with the maximum allowed variation of
+0.1, the rating estimate v,(x;) = 0.3 extends to
interval v{x;) € [0.3 — 0.1,0.3 +0.1]=1[0.2,0.4].
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The choice of intervals could, however, be diffi-
cult if there is a high level of uncertainty involved.
This could lead to a set of wide intervals, when it
may be too risky to draw any conclusions from
the results. In this case, the value of the analysis
would be in finding out the key factors that re-
sulted in the non-acceptable uncertainty intervals.
That is, we can assign the uncertainty intervals
to different model parameters or parameter groups
one-by-one, and study what uncertainties have the
greatest impact and thus need the most consider-
ation. A detailed analysis might even reveal how
much the uncertainties need to be reduced to ar-
rive at an acceptable outcome.

3.2.2. Potential optimality and the decision rules

In many cases it may be useful to first try to re-
duce the number of alternatives before the final
decision on which alternative to choose. The dom-
inance test eliminates clearly inferior alternatives
but the remaining set can still be extensive. Rios
Insua and French (1991) discuss the use of poten-
tial optimality (Hazen, 1985) for reducing the
number of alternatives. This method aims at the
optimal solution and only considers alternatives
that could potentially be optimal. In many cases
this can be a useful approach but not necessarily
in the worst-case analysis, as it might reject non-
optimal alternatives that would have been accept-
able to the decision maker. For example, in the nu-
clear accident case presented here, a non-optimal
alternative might be the best decision if it performs
reasonably well in all the possible scenarios.

As a result of a worst-case analysis there may be
several non-dominated alternatives. The decision
maker can then carry out what-if analyses to study
with which uncertainty intervals there would only
be one non-dominated alternative. If a set of such
intervals are found, the decision maker should
consider whether these intervals could be accepted
to represent the related uncertainties. If he/she is
not willing or able to modify the intervals, decision
rules (see e.g. Salo and Hiamdldinen, 2001) can be
applied to rank non-dominated alternatives, for
example, according to the minimum values of the
overall value intervals.

The possible loss-of-value estimates (Salo and
Héaméldinen, 2001) can also be used to further

compare non-dominated alternatives. The possible
loss-of-value for alternative x is calculated as

max w; [Ei(y) - Qi(x)]- (4)

It indicates how much the decision maker can at
the most lose in the overall value by choosing
alternative x instead of any other alternative.
Thus, it can also be seen to describe the decision
maker’s maximum regret if he/she chooses this
alternative. Possible loss-of-value can be used,
for example, to reduce the set of non-dominated
alternatives by specifying an acceptable limit for
how far from optimality any alternative can be
at most. If the possible loss-of-value for the origi-
nally chosen alternative is within acceptable limits,
this alternative might still be acceptable, even if the
uncertainties might cause this to be overtaken by
another alternative in some circumstances.

3.2.3. Origins of uncertainty

Depending on the origins of uncertainty (see
e.g. French, 1995) one can assign intervals to the
ratings of the alternatives or to the weight ratios
between the attributes. An interval assigned to a
rating of an alternative describes uncertainty in
this alternative only, and any variation within
the given interval is assumed to be independent
of the allowed variations on the other alternatives.
On the other hand, by definition the weight of an
attribute describes the importance of the range of
this attribute compared to the other attribute
ranges (Keeney and Raiffa, 1976). In addition,
any variation in the weight of an attribute affects
linearly to the attribute-specific value (i.e. the share
of the overall value contributed through this attri-
bute) of each alternative. Thus, linear correlations
in the uncertainties of the alternatives’ measure-
ment values on some attribute can be modeled
by keeping the corresponding ratings constant
and assigning an uncertainty interval to the weight
of this attribute. Then, the relative ratings of the
alternatives on this attribute remain the same,
but the relative importance of this attribute is al-
lowed to vary with respect to the other attributes.

As a simple example, consider attribute Costs
on two alternatives A and B. If there is uncertainty
in, for example, some general costs, it is likely to
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affect both alternatives in the same way so that the
relative Costs between 4 and B remain the same
(i.e. if the Costs of A4 double, so do the Costs of
B). This kind of uncertainty is actually related to
the range of the measurement values of the Costs,
and thus should be assigned to the weight of the
Costs. In contrast, if uncertainty in the Costs of
A is independent of any uncertainty in the Costs
of B, these should be modeled by assigning uncer-
tainty intervals directly to the ratings of the Costs.

3.2.4. Computer support

In practice, computer support is needed as the
solutions are elicited through linear programming.
In hierarchical MAVT models, the overall linear
extremum problem can be decomposed into
smaller problems so that there is one extremum
problem for each branch of the hierarchy (Salo
and Hamaldinen, 1992, 1995). Thus, when varying
a model parameter, the linear programming prob-
lems need to be re-calculated only on those
branches of the value tree in which the change is
made, and upwards thereof. This makes the model
computationally quick to solve and update, which
is especially important in what-if type of analyses.
Computer support can also be used, for example,
to visualize the results.

As noted above, there already exists software
for the interval techniques considered here, and
sensitivity analyses can easily be run on this soft-
ware. The WINPRE software provides an interac-
tive approach by presenting to the user the overall
values of the alternatives and the dominance rela-
tions immediately when making changes to the
model parameters. The example case in Section 4
is analyzed using WINPRE and Figs. 2-6 are
screen captures from the software. WINPRE is
freely available for academic purposes on the Deci-
sionarium Web site (www.decisionarium.hut.fi;
Héamaéldinen, 2000, 2003).

3.3. Comparison with other sensitivity analysis
approaches

Next we shall compare interval sensitivity anal-
ysis to one-way sensitivity analysis and related
techniques such as tornado diagrams, as well as
to the Monte Carlo simulation technique, which

are commonly used sensitivity analysis approaches
in MAVT. We shall also discuss for which types of
situations the different approaches are best suited.

3.3.1. One-way sensitivity analysis

The resulting graph in one-way sensitivity anal-
ysis shows the overall values of the alternatives
with respect to each possible weight of an attribute
under consideration (see e.g. Clemen, 1996). Two-
way sensitivity analysis extends this analysis into
two attributes, when the combined effects of varia-
tions in these are presented with a three-dimen-
sional graph. However, with more than two
attributes, visualization of the analysis becomes
impossible. With tornado diagrams one can study
the effects of several different parameter variations
in the same graph, but these effects are also calcu-
lated by varying a single weight at a time. Similar
analyses can be carried out on the ratings of the
alternatives.

In MAVT the attribute weights are typically
estimated from a process in which the decision ma-
ker gives ratio statements about the relative impor-
tances of the attribute ranges. For example, in the
SWING method (Von Winterfeldt and Edwards,
1986), the decision maker is first asked to give a
hundred points to the most important attribute
(i.e. to an attribute whose consequence he/she
most preferably would change from its worst level
to its best level). Then, he/she is asked to assign
fewer points to each other attribute to denote the
relative importance of the corresponding conse-
quence change in this attribute compared to the
change in the most important attribute. Finally,
the actual attribute weights are elicited by normal-
izing the sum of these points to one. Thus, uncer-
tainty in the personal judgments is related to the
weight ratio statements between the attributes.
However, one-way sensitivity analysis only consid-
ers changes in an individual weight at a time, and it
does not directly reflect the uncertainty originating
from the weight elicitation process. In contrast,
interval sensitivity analysis explicitly considers
the weight ratios between the attributes, and con-
sequently uncertainty in the weight assessment.
One should note that one-way sensitivity analysis
could also be carried out, for example, by varying
the points given to the attributes in the SWING
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method. As far as the authors know, this approach
has not yet been applied.

Especially in hierarchical problems, interval
sensitivity analysis as a multiparameter analysis
may provide useful additional information com-
pared to one-way sensitivity analysis. In these
problems, the weighting is carried out locally on
each branch of the value tree, and the overall
weight of the lowest-level attribute is obtained as
a product of the local weights of this and all the
preceding upper level attributes. With one-way
analysis we can only consider uncertainty in one
branch of a value tree at a time. However, if one
wants to take the joint effects of uncertainties in
different attribute levels as well as in alternatives
into account, multiparameter analysis is needed.

One-way sensitivity analysis shows the resulting
overall values for all the possible values of the
parameter under consideration in one graph. In
contrast, interval sensitivity analysis only shows
the extreme values of the overall values with re-
spect to allowed variations in model parameters.
Thus, if one wants to study how the changes in
the given parameter intervals affect the overall
value intervals, he/she has to produce a separate
graph for each set of intervals. Another way is
to use the method interactively by varying the
parameter intervals and studying the immediate
response in the overall value intervals.

3.3.2. Monte Carlo simulation

In Monte Carlo simulation, one assigns full
probability distributions to the ratings of the alter-
natives and to the weights of the attributes. The
overall values of the alternatives are calculated
from each sample over these distributions and, as
a result, one gets overall value distributions reflect-
ing the variation in the model parameters. One can
also estimate some other statistical measures from
this data, such as the probability of one alternative
being better than some other alternative.

It is conceptually straightforward to assign dis-
tributions to the ratings of the alternatives. How-
ever, the situation is different when we consider
the weights of the attributes, which are dependent
of each other through the normalization. Earlier
researchers have found a specific distribution for
the weights (i.e. the Dirichlet distribution) with

which the simulation can be done (Butler et al.,
1997; Moskowitz et al., 2000). However, the use
of general distributions on the weights becomes
intractable due to the normalization of the sum
of the weights to one. In addition, the approach
only considers the final weights, and thus the inter-
pretation of the given distributions may become
problematic, as was noted earlier. Another simula-
tion technique is to assign distributions onto the
feasible regions of the weights (Haines, 1998).
However, in this case the marginal distributions
of the individual weight ratios become ambiguous.
To simulate the effects of imprecision in the state-
ments of the decision maker, one should assign
distributions to the given weight ratios, similarly
to the way that intervals are applied in the interval
SMART/SWING method (Mustajoki et al., 2005).
However, due to the normalization of the weights
and the reciprocity of the weight ratios this ap-
proach also leads to problems in those weight ra-
tios that are not given explicitly. For example, a
uniform distribution assigned to a weight ratio
on interval wi/w, € [1,2] implies that the corre-
sponding distribution on the reciprocal ratio inter-
val wo/w; € [1/2, 1] will not be uniform.

In many cases, the decision maker is interested
in the extreme values, for example, to get a
worst-case solution, or to study deterministic dom-
inance relations between the alternatives. For these
purposes, interval sensitivity analysis should be
used, as it explicitly concentrates on the extremes
of the intervals. Monte Carlo simulation can be
used to find additional statistical information on
the value distributions and relations between the
alternatives. However, the assignment of the distri-
butions and sampling under constraints could
often become an overwhelming task.

4. Interval sensitivity analysis in a nuclear
accident exercise

We demonstrate the use of interval sensitivity
analysis by applying it to a model developed in a
decision conference (i.e. a facilitated training
workshop) exercise. The aim of the conference
was to plan protective actions on the milk produc-
tion chain in a case of a hypothetical nuclear acci-
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dent (for details, see Ammann et al., 2001). The
conference was one in a series of decision confer-
ences on nuclear emergency management (see also
Hémilédinen et al., 2000). Although no real deci-
sions were made in the exercise, the gained experi-
ences are to be utilized should a real accident take
place. The participants of the conference and the
preparatory meetings were representatives of the
safety authorities and experts on radiation, farm-
ing and the dairy industry.

4.1. Multiattribute value tree

The MAVT approach was used to structure the
problem. The value tree (Fig. 2) was developed on
the basis of the discussion in the decision confer-
ence and in the preliminary meetings. It describes
the objective hierarchy in which the Overall goal
of finding the best action is composed of three
main objectives: Health effects, Socio-psychological
effects and Costs. These are further divided into
sub-objectives (i.e. attributes) and the alternatives
are measured with respect to these. For the full
names of the attributes, see Table 2.

It was assumed that due to the accident, fodder
in the area becomes contaminated, and if nothing
is done, the radioactivity migrates into milk prod-
ucts. As a precautionary action, the cattle were

“iE NUCLEAR

k1|

sheltered and provided with uncontaminated fod-
der and water for the first week after the accident.
Our focus was on the later phase actions (from 1 to
12 weeks after the accident). Three protective ac-
tion policies were considered: (1) supplying clean
fodder (‘Fod’), in which uncontaminated fodder
is transported into the contaminated area, (ii) pro-
duction change (‘Prod’), in which the milk produc-
tion is replaced by other dairy products, as the
production processes of these can enrich, dilute
or secrete radio nuclides, and (iii) banning milk
(‘Ban’), in which the use of contaminated milk is
totally banned. In addition, an action where noth-
ing is done (‘- - -’) was included in the analysis as
a reference. The actions were divided into two
phases. The first phase covers the actions during
weeks 2-5 after the accident and the second phase
covers weeks 6-12. The actual alternatives consid-
ered were combinations of these. For example,
‘Ban+Fod’ represents an alternative where the
use of milk is banned during weeks 2-5 and clean
fodder is supplied during weeks 6-12. In Fig. 2, the
alternatives are shown as the rightmost elements of
the value tree.

The initial point estimates for the attribute
weights and the alternatives’ ratings in the model
(Table 2) are the ones given by one of the partic-
ipant groups in the conference. The estimates for

Fig. 2. Value tree for evaluating the protective actions in the case. A screen capture from the WINPRE software.
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Table 2
Weights of the attributes and the ratings of the alternatives
Weights Ratings
Local weight Overall weight - --+--- Fod+--- Fod+Fod Prod+Fod Ban+Fod Ban+Ban
Health 0.588
Thyroid cancers 0.909 0.534 0.01 0.98 1.00 0.98 1.00 1.00
Other cancers 0.091 0.053 0.04 0.90 0.98 0.95 0.98 1.00
Socio-psychological  0.294
Reassurance 0.526 0.155 0.00 0.18 0.60 0.48 0.76 0.86
Anxiety 0.053 0.016 0.00 0.21 0.87 0.75 0.49 0.35
Industry 0.158 0.046 0.10 0.46 0.67 0.34 0.19 0.14
Feasibility 0.263 0.077 1.00 0.65 0.55 0.78 0.67 0.46
Costs 0.118 0.118 1.00 0.88 0.82 0.70 0.26 0.00

the consequences of Health effects and Costs were
calculated with a Real-time on-line Decision
Support system called RODOS (Ehrhardt and
Weis, 2000). The values of Socio-psychological
attributes were directly rated by the group. Attri-
bute weighting was carried out with the SWING
method.

The resulting overall values for the alternatives
are shown in Fig. 3. The alternatives are listed at
the bottom, and the upper and lower bounds for
the overall value of each alternative are shown
above its name. The bounds are also graphically
shown on a [0-1] value scale between the numeri-
cal values. One should note that on each alterna-
tive the lower and upper bounds are now the
same, as initially both the attribute weights and
the alternatives’ consequences are exact point esti-
mates. The figure indicates that alternative ‘Fod+
Fod’, where clean fodder is provided for both
periods, is the best alternative with an overall
value of 0.86.

FiValue Intervals M =] E3

0.21 0.78 0.86 0.82 0.80 0.77
g =

0.5-

0-
0.21 0.78 0.86 0.82 0.80 0.77
Fod+--- Prod+Fod Ban+Ban
srbnes Fod+Fod Ban+Fod

Fig. 3. Overall values for the alternatives.

4.2. Sensitivity analysis

This example is a typical case where interval
sensitivity analysis is useful. In emergency plan-
ning, we often want to design precautionary ac-
tions following the worst-case approach. The
alternative with the highest performance score
might not be the right one to choose if a worst-case
analysis reveals a risk of getting an unacceptably
low performance under certain circumstances. An
alternative with a slightly lower scoring on an
average might be preferred, if the analysis shows
that it performs in an acceptable way in all the
possible circumstances. When applying the worst-
case approach, we need to take into account all
the possible uncertainties both in the ratings of
the alternatives and in the weight ratios between
the attributes in different levels of the value tree.
Thus, multiparameter analysis is needed.

Next, we demonstrate the use of interval sensi-
tivity analysis in this case. The objective is to study
the changes in the relations between the alterna-
tives when all the possible uncertainties in the
problem are considered. The analysis consists of
three phases. First, the sensitivity in the weight
assessment is studied by extending the initial
weight ratio point estimates to intervals. In the
next phase, the effects of the possible variation in
the alternatives’ ratings are studied by giving these
as intervals. Finally, uncertainties in both of these
are simultaneously taken into account. The
approximation of uncertainties is based on the re-
sults of the survey carried out among the decision
makers in the conference.
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To model uncertainty in the weight assessment,
we extend each initial weight ratio estimate between
the attributes to intervals. For each weight ratio, an
error ratio 2 is used to reflect this uncertainty. For
example, the weight ratio estimate between the attri-
butes Health and Socio-psychological effects extends
to an interval [(0.588/0.294)/2,(0.588/0.294)*2] =
[1,4]. Fig. 4 shows the resulting value intervals and
dominance relations (e.g. “4 — B’ denotes that 4
dominates B). Alternative ‘Fod+Fod’ still domi-
nates all the other alternatives. Thus, the choice of
the most preferred alternative is not sensitive to con-
siderable variation in the weights. One should note
that alternatives ‘Fod+- - -°, ‘Prod+Fod’, ‘Ban+
Fod’ and ‘Ban+Ban’ are all dominated, although
the upper bound of these is higher than the lower
bound of ‘Fod+Fod’. Thus, dominance is pairwise,
which means that there is no single feasible weight
combination with which the overall value of any
of these is higher than the overall value of
‘Fod+Fod .

In the second phase, uncertainty in the decision
makers’ subjective estimates in the Socio-psycho-
logical effects is studied. This uncertainty can be
taken into account by extending the initial rating
estimates to intervals. We assume an uncertainty
level of +10% of the value interval so that each ini-
tial rating estimate v,(x;) is extended to an interval
[v{x;) — 0.1, v{x;) + 0.1]. In the cases where the
lower or the upper bound of the interval exceeds
the [0, 1] rating range, this bound is set to 0 or 1,
respectively. One should note that any variation
within these intervals is assumed to be independent
of variations in the other alternatives, and the pos-
sible uncertainties in the ranges of the attributes
are taken into account in the variation of the
weights. Fig. 5 shows the resulting value intervals
and dominance relations. In this case, ‘Fod+Fod’
dominates all the other alternatives except
‘Prod+Fod’. Thus, the choice of the best alterna-
tive is not very sensitive to considerable variations
in the participants’ value estimates either.
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Fig. 5. Overall value intervals and dominance relations calculated with uncertainty in value estimation.
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Fig. 6. Overall value intervals and dominance relations when all the possible uncertainty in the problem is taken into account.

Finally, Fig. 6 shows the overall value intervals
when there is uncertainty both in the weight assess-
ment and in the value estimation. Although the
previous analyses did not show the problem to be
very sensitive to these uncertainties alone, under
these joint effects all the alternatives except ‘- - -
+- - =" (i.e. do nothing) become non-dominated.
Thus, the decision maker can safely only eliminate
this alternative. However, of the non-dominated
alternatives, ‘Fod+Fod’ still performs well. For
example, it has the highest lower and upper bounds
of the overall value interval (0.75 and 0.93, respec-
tively). Thus, this analysis can also increase the
confidence on the alternative ‘Fod+Fod’, as even
in the worst-case it is not considerably worse than
any of the other alternatives.

The above analysis showed how the decision
maker can quickly assign uncertainties to the
model. In practice the decision maker can continue
the process by further adjusting the intervals on
the weight ratios and on the ratings, and by study-
ing how the overall value intervals are affected by
these changes. He/she can, for example, tighten the
intervals and evaluate what are the widest intervals
for which ‘Fod+Fod’ is the only dominant alterna-
tive, and then consider whether to accept these
tightened intervals to represent the allowed uncer-
tainties in the problem.

5. Conclusion

In this paper we have described how to use
interval modeling in global sensitivity analyses in
multilevel value trees to analyze the effects of the
total impacts of all combined uncertainties in the

model. Our approach is concerned with the ex-
treme values of the intervals which are needed,
for example, if one is interested in a worst-case sce-
nario. The proposed approach is computationally
fast and the interpretation of the results is concep-
tually straightforward for non-mathematicians.
With software, such as WINPRE, intervals can
be easily given and graphical output visualizes
the magnitude of the total uncertainty in an
easy-to-understand way.

The intervals can be constructed in different
ways. Strict maximum and minimum values will
enable worst-case analyses. The decision maker
can also assign error ratios to point estimates or
treat the intervals as a kind of confidence interval,
although in this case one needs to be careful when
interpreting the results. One can assign different
levels of uncertainties to all the model parameters
simultaneously. By varying the intervals, the deci-
sion maker can also carry out what-if analyses.
This is useful, for example, for finding the level
of uncertainty allowed for the decision to still be
the best in all circumstances. In a more detailed
analysis the interval method can also show which
factors affect the outcome the most. That is, by
adding imprecision to different factors one by
one, the analysis will reveal what information
should be collected and how much that will reduce
the uncertainty in the model.

As demonstrated in our example, the proposed
approach is likely to be attractive in high-risk situ-
ations where a worst-case analysis is needed and
where the decision makers might want to quickly
try out different what-if analyses. Also when fol-
lowing the precautionary principle, a global sensi-
tivity analysis using intervals would be useful.
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