
©2002 IASTED. Reprinted, with permission, from Proc. of the 6th IASTED International
Conference, Internet and Multimedia Systems, and Applications,

(IMSA 2002), Kauai, Hawaii, USA , August, 2002, pages 196-204.

The XForms Computation Engine:
Rationale, Theory and Implementation Exper ience

John Boyer, Ph.D.
PureEdge Solutions, Inc.,

Victoria, BC, Canada
tel. +1 250 708 8047, fax +1 250 708 8010

email jboyer@PureEdge.com, jboyer@ACM.org

Mikko Honkala
Telecommunications Software and Multimedia Laboratory

Helsinki University of Technology, Finland
tel. +358-9-451 4794, fax +358-9-451 5253

email Mikko.Honkala@iki.fi

ABSTRACT

This paper reports the successful efforts to change the
W3C's next-generation Web forms working draft
specification, XForms, from a computation engine
architecture based on form-author-specified recalculation
order to an automated determination of recalculation order
based on optimal graph algorithms. We trace the historical
beginnings of these algorithms from Knuth and Tarjan to
their first known applications in electronic spreadsheets
and XFDL (the first XML-based electronic forms
vocabulary). The algorithms are then presented in the
context of a detailed example. Also included are the
implementation details that were necessary to add the new
XForms recalculation engine to the open-source X-Smiles
web browser. When compared to an implementation of the
approach in earlier XForms drafts, running times were
reduced from seconds to instantaneity. Finally, the paper
discusses some of the technical challenges encountered
when rationalizing the graph algorithms with the
properties of XPath and an implementation of XPath.

KEY WORDS: XForms, recalculation, topological
sorting, depth-first search.

1. INTRODUCTION

The growth and success of the World Wide Web are
predicated in no small part on the availability of
interactive services such as search engines, online banking
and e-commerce. A key technology used in interactive
Web applications is HTML forms [HTML]. However,
business requirements for these services have steadily
increased in number and complexity since the advent of
this technology, and many of today's high-end forms use
complex client-side ECMAScript [ECMA] programming
to achieve form field validation and simple computations
(or bounce the form back and forth to the server). Heavy
use of scripting inevitably leads to low maintainability and
accessibility. Moreover, the current trend in server-side
web application data processing is toward manipulation
and even storage of information in XML format [XML],
taking advantage of the flexibility of this more abstract
document storage format. HTML forms do not integrate
well with XML. Therefore, the World Wide Web
Consortium (W3C) [W3C] is specifying XForms
[XForms], the next generation Web forms.

XForms, a work in progress that tries to solve the
problems mentioned above, has three logical layers:

Instance

An arbitrary XML document that is modified by client-
side user interaction, then submitted to a server.

Model

Uses XML to define the constraints on items of the
instance, which includes data types and ranges as well as
computational relationships.

User Inter face

Defines how the form is shown and expresses bindings to
instance items. User input is governed by rules in the
model for the instance item being modified (through a
bound input control).

As an example, let's consider a purchase order form. A
purchase order has multiple lines of items with units, price
and total. The user can add and remove items as well as
change the number of items to order. The form must
calculate an item total for each line by taking the product
of the number of units and the unit price. The form must
also calculate a subtotal, which is the sum of the line
totals, and an amount of tax on the subtotal. Finally, the
form must calculate a grand total, which may include a
discount factor if the total exceeds a certain value. Figure
1 depicts a typical screen display of such a form.

Fig. 1. A screenshot of a purchase order form

 2

In order to show how XForms tackles this form, we start
by designing an XML instance that describes a purchase
order. The instance has exactly one element of the
following: 'items', 'totals', and ' info'. The 'items' element
consists of 0..n 'item' elements, which have 'name', 'units',
'price' and 'total' for each line of the purchase order. An
example of such instance data is shown in Figure 2.

<pur chaseOr der xml ns=" " >
 <i t ems>
 <i t em><name>I t em 1</ name>
 <uni t s>3</ uni t s><pr i ce>50</ pr i ce>
 <t ot al >0</ t ot al >
 </ i t em>
 <i t em><name>I t em 2</ name>
 <uni t s>1</ uni t s><pr i ce>500</ pr i ce>
 <t ot al >0</ t ot al >
 </ i t em>
 <i t em><name>I t em 3</ name>
 <uni t s>1</ uni t s><pr i ce>1500</ pr i ce>
 <t ot al >0</ t ot al >
 </ i t em>
 </ i t ems>
 <t ot al s>
 <subt ot al >0</ subt ot al >
 <t ax>0</ t ax>
 <t ot al >0</ t ot al >
 </ t ot al s>
 <i nf o><t ax>0. 22</ t ax></ i nf o>
 </ pur chaseOr der >

Fig. 2. The instance data for purchase order

The next step is to define a model for the form. Figure 3
shows a model definition for the purchase order form. The
instance is fetched from an external URL. The datatypes
and basic value constraints are defined by a separate XML
Schema [Schema] document, which is also referenced in
the model definition header. However, our focus in this
paper is on the XForms computational constraints
expressed by the 'bind' elements. These model item
definitions are bound to the instance data using an XPath
expression [XPath] in the r ef attribute. Calculations of
instance node values and other XForms constraints are
also expressed using XPath. These calculation expressions
are called constraints because they are not simply
evaluated at the initialization time, but rather they are
enforced throughout the life of the form by re-evaluation
every time the instance changes. The XForms processor
must decide which expressions to evaluate at which times.
The part of the XForms processor that accomplished this
is called the XForms Calculation Engine, the algorithmic
details of which are discussed in the next section.

<ht ml >
<t i t l e>XFor ms exampl e</ t i t l e>
<head>
<xf m: model >
 <xf m: i nst ance xl i nk: hr ef =" dat a. xml " / >
 <xf m: schema xl i nk: hr ef =" pur chase. xsd" / >
 <xf m: bi nd
 r ef =" pur chaseOr der / i t ems/ i t em/ t ot al "
 cal cul at e=" . . / uni t s * . . / pr i ce"
 r el evant =" . . / uni t s > 0" / >
 <xf m: bi nd
 r ef =" pur chaseOr der / t ot al s/ subt ot al "
 cal cul at e=" sum(. . / . . / i t ems/ i t em/ t ot al) " / >
 <xf m: bi nd
 r ef =" pur chaseOr der / t ot al s/ t ax"
 cal cul at e=" . . / subt ot al * . . / . . / i nf o/ t ax" / >
 <xf m: bi nd
 r ef =" pur chaseOr der / t ot al s/ t ot al "
 cal cul at e=" i f (. . / subt ot al + . . / t ax>4000,
 . . / subt ot al + . . / t ax,
 (. . / subt ot al + . . / t ax) * 0. 9) " / >

 </ xf m: model >
</ head>

Fig. 3. XForms model definition for the purchase order

The first bind element defines the calculation 'units * price'
for every line item in the purchase order. It also defines
that the 'total' field is relevant (shown) only when the
'units' field has a value greater than zero. Only a single
declaration is required for all line items because the XPath
expression in the attribute r ef selects all t ot al nodes
from the items. The cal cul at e attribute then defines
the calculation for each t ot al node using that node as
the context node [XPath]. The other bind elements define
the rest of the calculations, the tax and the total with the
possible discount.

The final step is to design the UI for the purchase order.
The design of the UI is out of the scope of this paper.

As we have now seen, it is possible to define complex
interactive calculations in XForms using just a few lines of
declarative markup. Similar calculations in HTML forms
would have to be programmed with hard-to-maintain
JavaScript code. Most of the work in XForms in done by
the recalculation engine in the XForms processor.

2. THE RECALCULATION ALGORITHM

The XForms recalculation algorithm is based on a method
called topological sorting, which creates a natural order
or linear order to run computations such that all values
reference in an expression have already been recalculated
before the expression is selected for recalculation.
According to [CLR90], Knuth was the first to provide a
linear time algorithm for topological sorting for use in
such diverse applications as interdependent task
scheduling with 'PERT' charts, networking problems and
even linguistics [K68]. In 1982, topological sorting also

 3

became the basis of spreadsheet update algorithms.
According to Dan Bricklin, inventor of the electronic
spreadsheet, a simple row-by-row, column-by-column
algorithm was used to update VisiCalc spreadsheets
[Bricklin]. In general, the simplest possible algorithms
were used to conserve memory. However, Mitchell Kapor,
who founded Lotus Development Corporation, indicated
that a natural ordering algorithm was used in Lotus 1-2-3
Release 1, the successor of VisiCalc (publicly released in
January of 1983) [Kapor]. An interesting historical note
made in [Bricklin] is that the Lotus 1-2-3 update algorithm
was created after noting the similarities between the
spreadsheet update problem and the LISP garbage
collector, in which objects are destroyed when their
number of referrents drops to zero. While the Lotus 1-2-3
update algorithm may not have been based on
foreknowledge of Knuth's topological sort, in 1982 Frank
Ruskey also communicated topological sorting and the
insight of its applicability to spreadsheets to Peter
Eichhorst and Jim Kearney, who were then working on the
CalcStar spreadsheet from Micropro International
Corporation [Ruskey].

Although electronic forms tend to permit computations on
more than just values, the problem of updating
computationally related properties and values in an
electronic form is analogous to the spreadsheet update
problem [BB99]. The first XML-based forms definition
language, the Extensible Forms Description Language
(XFDL) [XFDL-W3CNote], used a method of
recalculation similar to the VisiCalc update algorithm.
However, version 4.3 (and higher) of XFDL [XFDL-44]
was the first XML-based form definition language to use
(an elaborated variation of) the linear time algorithms
described in this paper for resolving computations, and as
such provided the conceptual basis and prior
implementation experience for the current XForms effort.

The topological sort is a method for sequencing the
members of a set S such that all constraints in a relation
are satisfied. Given a set of integers and the less-than
relation, a topological sort would produce the same output
as a classical sort because less-than produces a result for
every pair of integers. Topological sorting is used when
the relation does not express a total order on the set, i.e.
when the relation does not specify a result for every pair of
elements in the set. A good example is a set of events in
which certain events must precede certain other events, but
some pairs of events are not dependent on one another and
could therefore occur in any relative order. A topological
sort would determine a schedule for the events by creating
an event sequence in which each event e occurs after the
events which must precede e and before any events that e
must precede. While this line of thinking could be applied
to many scheduling tasks, such as scheduling of inter-

related software development tasks, it is also suitable for
scheduling the order in which a sequence of computational
expressions should be run when some of the expressions
refer to other computed expressions.

2.1. XForms Recalculation as a Topological
Sor ting Problem

According to [XForms], the bi nd element expresses
computations for the values and properties of the instance
data nodes indicated by the r ef attribute. In the example
of the previous section, an expression in the cal cul at e
attribute of a bi nd element was applied to multiple nodes
of instance data specified by r ef . One can think of the
calculate expression as being instantiated for each node
indicated by r ef , with the current values of the
instantiated expressions being stored in the element
content of the respective instance nodes. Using other
attributes such as r eadOnl y , r equi r ed and
r el evant , the bi nd element can express properties of
the instance nodes indicated by r ef . Unlike calculated
values, the current values of computed properties are not
stored in the XML markup of the instance (i.e. they are
stored by internal mechanisms of an implementation).

For the purpose of applying the topological sort, the
computational dependencies in an XForms instance can be
represented as a directed graph, or digraph, in which there
is a vertex for each instance node and for each desired
property of each instance node. Let G denote the
computational dependency digraph consisting of a set V of
vertices and a set of directed edges from referenced
vertices to the vertices that reference them. A directed
edge (v, w) exists in v if it is necessary to compute the
value of v in order to compute the value of w. In this case,
w refers to v such that a change of value of v implies the
need to recalculate w.

For example, consider the purchase order example of
Section 1. The dependency digraph for the bindings in
Figure 3 is shown in Figure 4. Each of the three purchase
order rows is represented by three vertices for the number
of units, price per unit and item total. There are three more
vertices to represent the subtotal of all item totals, the tax,
and the grand total. The directed edges from each Uni t s
value vertex to the Rel evant vertex for the same item
represents the calculated r el evant model item property
on the item's Tot al . Likewise, the directed edges from
the Uni t s value vertex and Pr i ce value vertex of each
item to the Tot al value vertex for each item represents
the references made by the calculate attribute in bi nd
element (1) in Figure 3. The second bi nd element in
Figure 3 invokes the XForms sum() extension function on
the node-set given by its parameter. The node-set finds all
item Tot al elements, so the dependency digraph contains

 4

directed edges from each item's Tot al value vertex to the
value vertex for the Subt ot al . Similarly, the directed
edges from the Subt ot al value vertex to the value
vertices of Tax and Tot al are due to the references to
the Subt ot al element value in the calculate attributes of
bi nd (3) and (4) in Figure 3. Finally, the calculate
attribute in the fourth bi nd in Figure 3 also references
Tax , resulting in a directed edge from the Tax value
vertex to the Tot al value vertex.

Fig. 4. Main Dependency Graph for the Purchase Order
Example

Now suppose the user changes the number of units of X-
Smiles Desktop licenses from 3 to a new value of 50. It is
clearly necessary to first recalculate the Tot al value of
the X-Smiles Desktop item before recalculating the
purchase order Subt ot al . Then, the Subt ot al value
vertex has directed edges leading to the Tax and Tot al
value vertices, both of which must be recalculated.
However, the Tax value vertex also has a directed edge to
the Tot al , so Tax must be recalculated first. Finally,
note that the Uni t s vertex also has a directed edge to
Rel evant , but there are no interdependencies between
Rel evant and any of the other values needing
recalculation, so the Rel evant vertex could be
recalculated at any time. Thus, this example demonstrates
that XForms recalculation sequencing fits the profile of a
topological sorting problem. The elements of the set to be
sorted are vertices of the dependency digraph, and the
partial order relation is expressed by paths of directed
edges. The order of calculation of two vertices is
interchangeable unless there is a path of directed edges
that connects the two vertices.

2.2. Efficient Calculation of the Per tinent
Dependency Subgraph

The topological sort systematically explores paths of
directed edges emanating from a given vertex. In XForms,
the given vertex is the one representing the value changed
by user input. The topological sort explores all paths
leading to a vertex before visiting the vertex (in XForms,
visitation implies re-evaluation of the associated
computational expression). However, before the
topological sort can be used to determine a recalculation
sequence, it is first necessary to create a reduced form of
the dependency digraph called the pertinent dependency
subgraph that contains only the paths in the dependency
digraph that emanate from the vertex changed by user
input. These paths are pertinent because they contain the
vertices that may change in value upon re-evaluation of
their expressions. As such, only the pertinent paths leading
to a vertex need be explored before visiting the vertex.
Computing the pertinent dependency subgraph eliminates
the non-pertinent paths so that the topological sort can
easily detect when all of the pertinent paths leading to a
vertex have been explored.

In certain cases such as the initial load of a form, the
pertinent subgraph is simply a copy of the entire master
dependency graph. In other cases such as user input, the
pertinent dependency subgraph is computed by duplicating
the vertices and edges along pertinent paths emanating
from the changed vertex. It is also possible to have
multiple changes made to user input controls (e.g. with a
JavaScript function), which implies multiple simultaneous
changes to the underlying instance nodes to which the user
input controls are bound. To account for this possibility,
we use Lc to denote a set of vertices associated with
changed form controls. In the simple case of a user input
change, the change list Lc would contain only one vertex.

The pertinent subgraph S for a given change list Lc can be
identified in linear time using depth-first search [T72], a
suitable version of which appears in the Xforms
specification. To continue the purchase order example,
consider the depth-first search on the dependency digraph
in Figure 4 under the aforementioned condition that the X-
Smiles Desktop ����� value is changed to 50. The results
appear in Figure 5. Only those vertices reachable by a path
of directed edges from the X-Smiles Desktop Units vertex
are retained.

 5

Fig. 5. Pertinent Subgraph for the Purchase Order
Example

In order to ensure that construction and initialization costs
for the pertinent subgraph are commensurate with the size
of the pertinent subgraph and not the master dependency
digraph, the initial size of the vertex array for S is one. To
ensure that expansion costs remain at a constant factor as
vertices are added to S, the array doubling technique can
be used [DDJ98] (often, object oriented array
implementations, such as the Java Vector class, use this
technique). A side effect of having a smaller vertex array
in the pertinent subgraph S is that the array index of a
vertex w in the pertinent subgraph is likely different from
the location of w in the master dependency digraph.
Additional steps were taken in the XForms specification to
account for this problem.

2.3. Topological Sor ting of the Per tinent
Dependency Subgraph

Except for the vertices corresponding to the initial
elements from the change list Lc, the vertices of the
pertinent dependency subgraph S form a set that must be
sequenced by a topological sort, with the paths of directed
edges in S as the partial order relation. The sequence of
vertices produced by the topological sort dictates a valid
order of XForms recalculation in which an expression is
re-evaluated after all expressions on whose results it
depends and before any expressions that depend on its
result. The XForms specification contains pseudo-code for
a version of the topological sort suitable for the XForms
recalculation problem.

The topological sort begins by obtaining a list Z of all
vertices in the pertinent subgraph that do not depend on
any other vertices. Typically, these vertices in S
correspond to vertices in the master dependency digraph G
that are listed by the change list Lc. The exception is when

Lc is not given, such as on form load when the full
dependency graph is processed. The elements of Z are
those that require no prior calculations, so they are not
computed. The main loop of a topological sort removes a
vertex v from Z for processing, The vertex v is processed
by recalculating it as described below. Then, v and its
outgoing edges are removed from the pertinent subgraph.
If, as a result, any neighbors of v that drop to an in-degree
of zero, then those neighbors are added to Z for processing
(an in-degree of zero means that a vertex has no more
unprocessed computational dependencies).

In XForms, the recalculation of a vertex is associated with
a number of XForms-specific processing steps. If the
vertex corresponds to the text content of an XML instance
node, then the new value is stored in the instance node.
Either using a simple dirty flag or using a queue, modified
instance nodes are identified for subsequent update of the
visual form controls bound to the instance nodes. If a
vertex corresponds to some property of an instance node,
then the property value is updated in the internal
implementation and the effects of the property change are
immediately propagated to the user interface.

Finally, it should be noted that topological sorting is an
algorithm applied to directed acyclic graphs. However, it
is not possible to prevent forms authors from writing
circular references. The XForms specification defines
additional steps that generate a circular reference
exception one exists in the pertinent dependency subgraph.
This is detected if the list Z of vertices with zero in-degree
becomes empty without all vertices of S being
recalculated. By contradiction, suppose S is a directed
acyclic graph, but there exist one or more vertices that
were not visited by the topological sort. Each such vertex
must have an in-degree greater than zero, despite the fact
that its in-degree has been decremented for each processed
vertex on which it depends. Thus, each unprocessed vertex
must be target of a directed edge that originates from
another unprocessed vertex. Consider a subgraph S' of the
original pertinent subgraph that contains only the
(hypothetical) unprocessed vertices (and their directed
edges). Consider traversing the directed edges of S' in
reverse, i.e. from target to source. Starting with any vertex
v of S', traverse a directed edge (u, v) to obtain the source
vertex u, which contains a dependency node indicating v.
Perform this process repeatedly at each source vertex to
find a successive source vertex. Every vertex in S' has in-
degree greater than zero, so finding a successor is always
possible. Moreover, if we find a successor that is also a
vertex previously visited by this process, then a cycle has
been found, contradicting the claim that S' and hence S are
acyclic. So, we consider the case in which every vertex is
visited without encountering a previously visited vertex.
The last vertex w to be visited has an in-degree greater

 6

than zero, so another previously visited vertex of S' has a
directed edge leading to w, which again completes a cycle
and proves that the XForms model contains a circular
reference if the topological sort fails to process all vertices
in the pertinent dependency subgraph.

2.4. Constraints on XPath Expressions and
Their Rationale

The ability to compute a pertinent subgraph of the master
dependency digraph is critically dependent on there being
no way to create dynamic dependencies, i.e. dependencies
that change as the result of recalculating values. If
dependencies could change as the result of a recalculation
then different parts of the master dependency digraph
could become pertinent during the topological sort, so the
pre-computed pertinent subgraph used by the topological
sort would no longer be valid. Furthermore, the parts of
the digraph that become pertinent could even be
dependent on the order in which the recalculations are
performed. Unfortunately, XPath has the expressive power
to create dynamic computational dependencies. To solve
this problem, the XForms specification characterizes the
types of XPath expressions that can result in dynamic
dependencies and creates constraints against those XPath
expressions.

In XForms 1.0, the dependencies must be rebuilt if
instance data elements are added or deleted, so actions
such as adding a row to a purchase order still result in a
form that operates as one would expect (i.e. due to the
rebuild of dependencies, computations within the new row
are operational, and the row's item total becomes part of
the purchase order subtotal and related calculations).
However, the addition and deletion of items is assumed to
occur outside of a recalculation, so XForms forbids
functions that have side effects on the structure of the
instance data. Moreover, functions that have any side
effects at all are also forbidden because these changes
cannot be accounted for by the dependency digraph.

In general, XForms 1.0 also forbids the use of XPath
language constructs that could result in a change of node-
set references within an XPath expression based on any
changes to the instance data. Since a function can receive
node-sets as parameters and make calculations over the
values in the nodes of the node-set, changes to the
referenced nodes obviously affect the return result of the
function. Therefore, it is forbidden to use a function that
returns a node-set. As well, dynamic predicates are
forbidden. For example, if a calculate attribute contains
the subexpression f oo[@bar =" xy"] , then the
subexpression is forbidden if the attribute bar is itself
calculated or if it is bound to an input form control.
Finally, XPath variables are forbidden, which is not

actually problematic since XForms 1.0 provides no
variables to the XPath evaluation context.

3. CALCULATION ENGINE
IMPLEMENTATION IN X-SMILES

X-Smiles is an Open Source XML browser implemented
in Java. It supports multiple XML languages and allows
mixing them in a single document. Each XML language is
handled by a Markup Language Functional Component
(MLFC). An MLFC is basically a markup language-
specific Document Object Model (DOM) implementation
and renderer. Currently implemented host MLFCs include
XSL Formatting Objects (XSL FO), Synchronized
Multimedia Integration Language (SMIL) and Scalable
Vector Graphics (SVG). XForms MLFC is a 'parasite'
MLFC; it needs some other MLFC as the host. Currently,
XForms can be embedded in SVG, SMIL and XSL FO
documents. [X-Smiles]

The XForms implementation in X-Smiles is the first (and
currently the only) [XForms1] browser implementation of
the XForms Working Draft. Most of the XForms features
are implemented in the browser. An important part of the
implementation is the calculation engine, which is
implemented with the algorithms described in Section 2.

3.1. Overview of the Implementation

Figure 9 presents an overview of the X-Smiles browser
implementation of the XForms calculation engine. It
includes three distinct types of data structures:

• The presentation DOM is the memory representation
of the host XML document, e.g. the SMIL document
that hosts the XForms elements. The implementation
of this markup language is a specialized tree extended
from a generic DOM implementation. It contains host
DOM nodes implemented in the host MLFC and
XForms DOM nodes which implement, for example, a
specific form control.

• The instance DOM is an XForms internal DOM
implementation, also derived from the generic DOM,
that holds the current state of the instance, namely
instance data item values and their constraint states,
such as 'relevant'.

• Dependency graphs are used by the calculation engine.
There are two dependency graphs per instance: The
Master Dependency Graph, which is created at
initialization time, and The Pertinent Dependency
Subgraph, which is generated on the fly from the main
graph whenever the calculation engine is run. The
dependency graphs are composed of Vertices and
Edges as described in Section 2.

An XForms presentation DOM node is linked two-ways to
the corresponding instance DOM node. The only

 7

relevance of the presentation DOM to the calculation
engine, are the instance item value updates, which are
reflected to the presentation DOM and vice versa. The
dependency graph's vertices are linked one-way to the
instance DOM nodes. There may be many vertices linked
to the same instance node, as long as they are of different
type (e.g. calculate and relevant vertices), as shown in the
figure.

Fig. 6. Overview of the implementation

3.2. Obtaining the Referents of an XPath

Expression

As shown in the Introduction, a computable constraint,
such as cal cul at e in a bi nd element, can express a
computation for multiple instance data items. Each
computation can refer to multiple data items. For example,
the following bind expression attaches a calculation of
pr i ce * uni t s to every item t ot al .

<bi nd r ef =" pur chaseOr der / i t ems/ i t em/ t ot al "
cal cul at e=" . . / pr i ce * . . / uni t s" / >

Fig. 7. Code for calculating the totals

This leads to an important prequisite for building the Main
Dependency Graph; the ability to obtain the referents of
each XPath expression, e.g. how to find out which
instance data items the calculate expression . . / pr i ce
* . . / uni t s in the above example references. This is
not readily possible with an arbitrary XPath processor, so
an implementation must usually build support for it. X-
Smiles uses XPath processor in Xalan, which had to be

extended to support this feature. We execute an XPath
expression once in its correct context (namespace and
XPath context nodes), and collect references to every node
that the expression's location paths reference [XPath].
This is sufficient for XForms' purposes. Actually the
expression need not be fully executed since the result is
not interesting at initialisation time, but only the referents
of the expression.

3.3. Class Structure

In X-Smiles, the following objects hold the state of the
calculation engine: abstract superclass DependencyGraph,
and derived classes MainDependencyGraph and
SubDependencyGraph. These classes contain the methods
for creating the graphs and for the recalculation.

The implementation of Vertices and Edges is done in the
way described in Section 2. There are five types of
vertices derived from a single class Vertex. The edges are
represented by the vector depList. Vertex has the members
described in Section 2 plus an additional member, the
reference to a bind DOM element. The bind element is
used to associate the Vertex with the XPath expression to
be executed. The bind element is also the context node for
resolving namespaces for the XPath expression. Each of
the vertex types override single method: compute(). This is
where the XPath expression is executed and the result is
handled according to the Vertex type.

3.4. Run-time Processes

The initialization of the calculation engine consists of the
creation of the Master Dependency Graph and performing
a full calculation with it. The referents of each XPath
expression are obtained as described above. For optimal
performance, the X-Smiles implementation performs the
first complete recalculation directly on the master graph.
This has the side effect of invalidating the inDegree
members of the vertices. However, it does not matter,
because inDegree's are recalculated for each pertinent
subgraph. The entry points for full initialization are:

• Document load. This is when the main initialization
happens.

• Insertion or deletion of instance data items. This can
happen only in the 'xform:repeat' construct. It could
also be possible to optimize insertion or deletion by
modifying only the corresponding part of the main
graph, thus removing the need for full initialization.

• Reset. At Reset, the instance DOM is reconstructed
completely and the whole form is reinitialised. This
happens when the xforms:reset event is dispatched to a
model.

Recalculation happens when an instance data item's value
changes. First, a Pertinent Dependency Subgraph is

 8

constructed, then the re-calculation algorithm is run on it.
The possible entry points for recalculation are:

• User input. The user has changed a value in a form
control.

• setValue. This XForms' declarative event is fired.
• ECMAScript. ECMAScripts can access the instance

DOM and change values thereof.

Whenever an instance data item's value changes, the user
interface has to be updated accordingly. In X-Smiles, the
form controls register themselves to the instance data
items, which keep an internal vector of referent form
controls in memory. Every time an item's value or other
property such as 'readOnly' changes, the item asks the
form controls to change their display accordingly.
Whether this has immediate effect depends on whether the
component is currently on screen or not.

Since the instance DOM is a specialized implementation
derived from a general DOM, the model item properties,
such as relevant and readOnly, are kept within an extra
object InstanceItem, created for each of the instance DOM
node implementation. The instance DOM has extended
implementations of ElementNSImpl, AttrNSImpl, and
AttrImpl. There are accessor methods in the instance DOM
for getting the InstanceItem and its properties.

Fig. 8. Recalculate Collaboration Diagram

Figure 8 shows the collaboration diagram of user changing
the value in a 'selectOne' form control. The sequence is
initiated when the JList component used by the 'selectOne'
element dispatches the valueChanged event, which the
selectOne listens to. After recording the specific form
control, the base class calls setValue() for its bound

InstanceItem. The instance item then calls recalculate()
with a change vector containing itself. The recalculate is
applied to the XForm object, which creates a new
SubDependencyGraph and calls calculate() on it.
SubDependencyGraph then runs the recalculation
algorithm on itself, as described in Section 2, and changes
the values and properties on the recalculated
InstanceItems, which in turn are reflected to the user
interface. After the recalculation, the revalidate() function
is called on the Model object to determine whether any
schema constraints [Schema] have been violated or
corrected.

4. CONCLUSION

In this paper, we presented the results of a successful
application of optimal graph algorithms (topological
sorting and depth-first search) to the W3C's next-
generation Web forms specification, XForms. We tracked
the history of these important and classic algorithms,
especially their first known applications in electronic
spreadsheets and XML-based electronic forms. Moreover,
we presented the algorithms with pseudo-code and highly
detailed explanations and examples. We also presented the
implementation details necessary to run the recalculation
engine within the X-Smiles web browser. Finally, we
described some of the technical challenges that arose when
applying these algorithms in the context of XForms
(ongoing challenges are described below).

The application of these algorithms within the X-Smiles
browser is especially significant because the initial
approach to computations in early drafts of XForms was
already implemented, providing a basis for empirically
assessing the improvement resulting from this work. The
earlier approach required the user to define the order of
calculation, and all calculations would be run after any
change of the instance data. This lead to a few problems.
Firstly, the calculation order was difficult to define
manually and harder to maintain. Secondly, running all
calculations was quite inefficient, taking a few seconds on
a large form. Using the depth-first search to calculate the
pertinent subgraph in linear time, and using a topological
sort to determine the recalculation order in linear time, the
same forms were given to instantaneous update.

After the release of XForms 1.0, a number of areas of
future work exist for XForms recalculation. The working
group deliberately deferred the creation of XPath accessor
functions for all model item properties. The value of an
instance node can be referenced in a calculation, but
properties such as r el evant and r equi r ed cannot be
used in other computational expressions because they are
not represented in the instance data. Adding accessors
significantly complicates the creation of the dependency

 9

digraph since we must not only know what references an
expression makes but also which references appear as
parameters to an accessor function. This, in turn, requires
a node-by-node analysis of the XPath expression parse
tree, which may not be available. A second area of
exploration would be to specify how to most efficiently
update the master dependency digraph based on the
addition or deletion of instance data nodes. In XForms 1.0,
we simply rebuild the entire dependency digraph, which
could be a costly operation when adding a few elements to
a large form. If the elements added or deleted are not
heavily referenced, then a stream-lined approach would
yield a great benefit. Finally, the use of advanced data
structures to handle dynamic pertinence should be
investigated. The performance would likely degrade to
O(n log n), which is slower than the O(n) algorithm
reported in this paper but still fast enough in practice. The
advantage would be the ability to overcome the constraints
described in Section 2.4, thereby increasing the flexibility
of the XPath expressions that could be used in XForms
computations.

5. ACKNOWLEDGEMENTS

The work of Mikko Honkala has been funded by the HIIT XML
Devices project. He would also like to thank the Nokia Oyj
Foundation for scholarship and support during this research.

REFERENCES

[BB99] B. Blair & J. Boyer. XFDL: Creating Electronic
Commerce Transaction Records Using XML. Computer
Networks: The International Journal of Computer and
Telecommunications Networking, vol. 31, pp. 1611-1622,
1999. Also presented at the Eighth International World
Wide Web Conference and available at
http://www8.org/w8-papers/4d-
electronic/xfdl/xfdl.html.

[Bricklin] D. Bricklin. Personal Communication.
Regarding update algorithm used in VisiCalc. October 23,
2001.

[CLR90] T. H. Cormen, C. E. Leiserson, & R. L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[DDJ98] J. Boyer. Resizable Arrays, Heaps and Hash
Tables. Dr. Dobb's Journal, January, 1998.

[ECMA] ECMA, ECMAScript Language Specification
3rd Edition. Standard ECMA-262, December 1999.
Available at ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf

[HTML] Dave Raggett, Arnaud Le Hors, and Ian Jacobs
(eds.). HTML 4.01 Specification. W3C Recommendation,
December 24, 1999.

[K68] D. E. Knuth. The Art of Computer Programming:
Volume 1 Fundamental Algorithms. Addison-Wesley,
1968. Third edition, 1997.

[Kapor] M. Kapor. Personal Communication. Regarding
update algorithm used in Lotus 1-2-3 Release 1. October
24, 2001.

[Ruskey] F. Ruskey. Personal Communication. Regarding
use of topological sort in CalcStar. October 19, 2001.

[T72] R. E. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal of Computing, Vol. 1, No. 2,
pp. 146-160, 1972.

[Schema] H. Thompson et al. (eds.). XML Schema part 1:
Structures. W3C Recommendation, May 2, 2001.

[XFDL-W3CNote] J. Boyer, T. Bray, & M. Gordon
(eds.). The Extensible Forms Description Language
(XFDL) 4.0. W3C Note, 1998. Available at
http://www.w3.org/TR/NOTE-XFDL

[XFDL-44] J. Boyer, T. Bray, & M. Gordon (eds.). XFDL
Specification v4.4. PureEdge Technical Manual, 2001.
Available at
http://docs.pureedge.com/xfdldocs/pdfdocs/XFDL44.
pdf.

[XForms] M. Dubinko, et al. (eds.). XForms 1.0. W3C
Working Draft, 18 January, 2002.

[XForms1] M. Honkala and P. Vuorimaa. XForms in X-
Smiles. The 2nd Int. Conf. on Web Information Systems
Engineering, Kyoto, Japan, December 3-6, 2001.

[XML] T. Bray et al. (eds.). Extensible Markup Language
(XML) 1.0 (Second Edition). W3C Recommendation,
October 6, 2000.

[XPath] J. Clark and S. DeRose (eds.). XML Path
Language (XPath) Version 1.0. W3C Recommendation,
November 16, 1999.

[XSmiles] P. Vuorimaa, T. Ropponen and N. von
Knorring. X-Smiles XML Browser. The 2nd International
Workshop on Networked Appliances, IWNA'2000, New
Brunswick, NJ, USA, November 30 - December 1, 2000.

[W3C] World Wide Web Consortium,
http://www.w3c.org/

