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ABSTRACT 

This paper reports the successful efforts to change the 
W3C's next-generation Web forms working draft 
specification, XForms, from a computation engine 
architecture based on form-author-specified recalculation 
order to an automated determination of recalculation order 
based on optimal graph algorithms. We trace the historical 
beginnings of these algorithms from Knuth and Tarjan to 
their first known applications in electronic spreadsheets 
and XFDL (the first XML-based electronic forms 
vocabulary). The algorithms are then presented in the 
context of a detailed example. Also included are the 
implementation details that were necessary to add the new 
XForms recalculation engine to the open-source X-Smiles 
web browser. When compared to an implementation of the 
approach in earlier XForms drafts, running times were 
reduced from seconds to instantaneity.  Finally, the paper 
discusses some of the technical challenges encountered 
when rationalizing the graph algorithms with the 
properties of XPath and an implementation of XPath. 

KEY WORDS:  XForms, recalculation, topological 
sorting, depth-first search. 

1. INTRODUCTION 

The growth and success of the World Wide Web are 
predicated in no small part on the availability of 
interactive services such as search engines, online banking 
and e-commerce. A key technology used in interactive 
Web applications is HTML forms [HTML]. However, 
business requirements for these services have steadily 
increased in number and complexity since the advent of 
this technology, and many of today's high-end forms use 
complex client-side ECMAScript [ECMA] programming 
to achieve form field validation and simple computations 
(or bounce the form back and forth to the server). Heavy 
use of scripting inevitably leads to low maintainability and 
accessibility. Moreover, the current trend in server-side 
web application data processing is toward manipulation 
and even storage of information in XML format [XML], 
taking advantage of the flexibility of this more abstract 
document storage format. HTML forms do not integrate 
well with XML. Therefore, the World Wide Web 
Consortium (W3C) [W3C] is specifying XForms 
[XForms], the next generation Web forms. 

XForms, a work in progress that tries to solve the 
problems mentioned above, has three logical layers: 

Instance  

An arbitrary XML document that is modified by client-
side user interaction, then submitted to a server.  

Model  

Uses XML to define the constraints on items of the 
instance, which includes data types and ranges as well as 
computational relationships.  

User  Inter face  

Defines how the form is shown and expresses bindings to 
instance items. User input is governed by rules in the 
model for the instance item being modified (through a 
bound input control).  

As an example, let's consider a purchase order form. A 
purchase order has multiple lines of items with units, price 
and total. The user can add and remove items as well as 
change the number of items to order. The form must 
calculate an item total for each line by taking the product 
of the number of units and the unit price. The form must 
also calculate a subtotal, which is the sum of the line 
totals, and an amount of tax on the subtotal. Finally, the 
form must calculate a grand total, which may include a 
discount factor if the total exceeds a certain value. Figure 
1 depicts a typical screen display of such a form. 

 

Fig. 1.  A screenshot of a purchase order form 
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In order to show how XForms tackles this form, we start 
by designing an XML instance that describes a purchase 
order. The instance has exactly one element of the 
following: 'items', 'totals', and ' info'. The 'items' element 
consists of 0..n 'item' elements, which have 'name', 'units', 
'price' and 'total' for each line of the purchase order. An 
example of such instance data is shown in Figure 2. 

<pur chaseOr der  xml ns=" " > 
    <i t ems> 
      <i t em><name>I t em 1</ name> 
        <uni t s>3</ uni t s><pr i ce>50</ pr i ce> 
        <t ot al >0</ t ot al > 
      </ i t em> 
      <i t em><name>I t em 2</ name> 
        <uni t s>1</ uni t s><pr i ce>500</ pr i ce> 
        <t ot al >0</ t ot al > 
      </ i t em> 
      <i t em><name>I t em 3</ name> 
        <uni t s>1</ uni t s><pr i ce>1500</ pr i ce> 
        <t ot al >0</ t ot al > 
      </ i t em> 
    </ i t ems> 
    <t ot al s> 
      <subt ot al >0</ subt ot al > 
      <t ax>0</ t ax> 
      <t ot al >0</ t ot al > 
    </ t ot al s> 
    <i nf o><t ax>0. 22</ t ax></ i nf o> 
  </ pur chaseOr der > 

Fig. 2.  The instance data for purchase order 

The next step is to define a model for the form. Figure 3 
shows a model definition for the purchase order form. The 
instance is fetched from an external URL. The datatypes 
and basic value constraints are defined by a separate XML 
Schema [Schema] document, which is also referenced in 
the model definition header. However, our focus in this 
paper is on the XForms computational constraints 
expressed by the 'bind' elements. These model item 
definitions are bound to the instance data using an XPath 
expression [XPath] in the r ef  attribute. Calculations of 
instance node values and other XForms constraints are 
also expressed using XPath. These calculation expressions 
are called constraints because they are not simply 
evaluated at the initialization time, but rather they are 
enforced throughout the life of the form by re-evaluation 
every time the instance changes. The XForms processor 
must decide which expressions to evaluate at which times. 
The part of the XForms processor that accomplished this 
is called the XForms Calculation Engine, the algorithmic 
details of which are discussed in the next section. 

<ht ml > 
<t i t l e>XFor ms exampl e</ t i t l e> 
<head> 
<xf m: model > 
 <xf m: i nst ance xl i nk: hr ef =" dat a. xml " / > 
 <xf m: schema xl i nk: hr ef =" pur chase. xsd" / > 
 <xf m: bi nd 
  r ef =" pur chaseOr der / i t ems/ i t em/ t ot al "   
  cal cul at e=" . . / uni t s  *  . . / pr i ce"  
  r el evant =" . . / uni t s  > 0"  / > 
 <xf m: bi nd 
  r ef =" pur chaseOr der / t ot al s/ subt ot al "   
  cal cul at e=" sum( . . / . . / i t ems/ i t em/ t ot al ) " / > 
 <xf m: bi nd  
  r ef =" pur chaseOr der / t ot al s/ t ax"   
  cal cul at e=" . . / subt ot al * . . / . . / i nf o/ t ax" / > 
 <xf m: bi nd  
  r ef =" pur chaseOr der / t ot al s/ t ot al "   
  cal cul at e=" i f  ( . . / subt ot al  + . . / t ax>4000,  
     . . / subt ot al  + . . / t ax,   
     ( . . / subt ot al  + . . / t ax)  * 0. 9) " / > 
 
 </ xf m: model > 
</ head> 

Fig. 3.  XForms model definition for the purchase order 

The first bind element defines the calculation 'units *  price' 
for every line item in the purchase order. It also defines 
that the 'total' field is relevant (shown) only when the 
'units' field has a value greater than zero. Only a single 
declaration is required for all line items because the XPath 
expression in the attribute r ef  selects all t ot al  nodes 
from the items. The cal cul at e attribute then defines 
the calculation for each t ot al  node using that node as 
the context node [XPath]. The other bind elements define 
the rest of the calculations, the tax and the total with the 
possible discount. 

The final step is to design the UI for the purchase order. 
The design of the UI is out of the scope of this paper. 

As we have now seen, it is possible to define complex 
interactive calculations in XForms using just a few lines of 
declarative markup. Similar calculations in HTML forms 
would have to be programmed with hard-to-maintain 
JavaScript code. Most of the work in XForms in done by 
the recalculation engine in the XForms processor. 

2. THE RECALCULATION ALGORITHM 

The XForms recalculation algorithm is based on a method 
called topological sorting, which creates a natural order 
or linear order to run computations such that all values 
reference in an expression have already been recalculated 
before the expression is selected for recalculation. 
According to [CLR90], Knuth was the first to provide a 
linear time algorithm for topological sorting for use in 
such diverse applications as interdependent task 
scheduling with 'PERT' charts, networking problems and 
even linguistics [K68]. In 1982, topological sorting also 



    3 

  

became the basis of spreadsheet update algorithms. 
According to Dan Bricklin, inventor of the electronic 
spreadsheet, a simple row-by-row, column-by-column 
algorithm was used to update VisiCalc spreadsheets 
[Bricklin]. In general, the simplest possible algorithms 
were used to conserve memory. However, Mitchell Kapor, 
who founded Lotus Development Corporation, indicated 
that a natural ordering algorithm was used in Lotus 1-2-3 
Release 1, the successor of VisiCalc (publicly released in 
January of 1983) [Kapor]. An interesting historical note 
made in [Bricklin] is that the Lotus 1-2-3 update algorithm 
was created after noting the similarities between the 
spreadsheet update problem and the LISP garbage 
collector, in which objects are destroyed when their 
number of referrents drops to zero. While the Lotus 1-2-3 
update algorithm may not have been based on 
foreknowledge of Knuth's topological sort, in 1982 Frank 
Ruskey also communicated topological sorting and the 
insight of its applicability to spreadsheets to Peter 
Eichhorst and Jim Kearney, who were then working on the 
CalcStar spreadsheet from Micropro International 
Corporation [Ruskey]. 

Although electronic forms tend to permit computations on 
more than just values, the problem of updating 
computationally related properties and values in an 
electronic form is analogous to the spreadsheet update 
problem [BB99]. The first XML-based forms definition 
language, the Extensible Forms Description Language 
(XFDL) [XFDL-W3CNote], used a method of 
recalculation similar to the VisiCalc update algorithm. 
However, version 4.3 (and higher) of XFDL [XFDL-44] 
was the first XML-based form definition language to use 
(an elaborated variation of) the linear time algorithms 
described in this paper for resolving computations, and as 
such provided the conceptual basis and prior 
implementation experience for the current XForms effort. 

The topological sort is a method for sequencing the 
members of a set S such that all constraints in a relation 
are satisfied. Given a set of integers and the less-than 
relation, a topological sort would produce the same output 
as a classical sort because less-than produces a result for 
every pair of integers. Topological sorting is used when 
the relation does not express a total order on the set, i.e. 
when the relation does not specify a result for every pair of 
elements in the set. A good example is a set of events in 
which certain events must precede certain other events, but 
some pairs of events are not dependent on one another and 
could therefore occur in any relative order. A topological 
sort would determine a schedule for the events by creating 
an event sequence in which each event e occurs after the 
events which must precede e and before any events that e 
must precede. While this line of thinking could be applied 
to many scheduling tasks, such as scheduling of inter-

related software development tasks, it is also suitable for 
scheduling the order in which a sequence of computational 
expressions should be run when some of the expressions 
refer to other computed expressions. 

2.1.  XForms Recalculation as a Topological 
Sor ting Problem 

According to [XForms], the bi nd element expresses 
computations for the values and properties of the instance 
data nodes indicated by the r ef  attribute. In the example 
of the previous section, an expression in the cal cul at e 
attribute of a bi nd element was applied to multiple nodes 
of instance data specified by r ef . One can think of the 
calculate expression as being instantiated for each node 
indicated by r ef , with the current values of the 
instantiated expressions being stored in the element 
content of the respective instance nodes. Using other 
attributes such as r eadOnl y , r equi r ed and 
r el evant , the bi nd element can express properties of 
the instance nodes indicated by r ef . Unlike calculated 
values, the current values of computed properties are not 
stored in the XML markup of the instance (i.e. they are 
stored by internal mechanisms of an implementation). 

For the purpose of applying the topological sort, the 
computational dependencies in an XForms instance can be 
represented as a directed graph, or digraph, in which there 
is a vertex for each instance node and for each desired 
property of each instance node. Let G denote the 
computational dependency digraph consisting of a set V of 
vertices and a set of directed edges from referenced 
vertices to the vertices that reference them. A directed 
edge (v, w) exists in v if it is necessary to compute the 
value of v in order to compute the value of w. In this case, 
w refers to v such that a change of value of v implies the 
need to recalculate w. 

For example, consider the purchase order example of 
Section 1. The dependency digraph for the bindings in 
Figure 3 is shown in Figure 4. Each of the three purchase 
order rows is represented by three vertices for the number 
of units, price per unit and item total. There are three more 
vertices to represent the subtotal of all item totals, the tax, 
and the grand total. The directed edges from each Uni t s  
value vertex to the Rel evant  vertex for the same item 
represents the calculated r el evant  model item property 
on the item's Tot al . Likewise, the directed edges from 
the Uni t s  value vertex and Pr i ce value vertex of each 
item to the Tot al  value vertex for each item represents 
the references made by the calculate attribute in bi nd 
element (1) in Figure 3. The second bi nd element in 
Figure 3 invokes the XForms sum() extension function on 
the node-set given by its parameter. The node-set finds all 
item Tot al  elements, so the dependency digraph contains 
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directed edges from each item's Tot al  value vertex to the 
value vertex for the Subt ot al . Similarly, the directed 
edges from the Subt ot al  value vertex to the value 
vertices of Tax  and Tot al  are due to the references to 
the Subt ot al  element value in the calculate attributes of 
bi nd (3) and (4) in Figure 3. Finally, the calculate 
attribute in the fourth bi nd in Figure 3 also references 
Tax , resulting in a directed edge from the Tax  value 
vertex to the Tot al  value vertex. 

 

Fig. 4.  Main Dependency Graph for the Purchase Order 
Example 

Now suppose the user changes the number of units of X-
Smiles Desktop licenses from 3 to a new value of 50. It is 
clearly necessary to first recalculate the Tot al  value of 
the X-Smiles Desktop item before recalculating the 
purchase order Subt ot al . Then, the Subt ot al  value 
vertex has directed edges leading to the Tax  and Tot al  
value vertices, both of which must be recalculated. 
However, the Tax  value vertex also has a directed edge to 
the Tot al , so Tax  must be recalculated first. Finally, 
note that the Uni t s  vertex also has a directed edge to 
Rel evant , but there are no interdependencies between 
Rel evant  and any of the other values needing 
recalculation, so the Rel evant  vertex could be 
recalculated at any time. Thus, this example demonstrates 
that XForms recalculation sequencing fits the profile of a 
topological sorting problem. The elements of the set to be 
sorted are vertices of the dependency digraph, and the 
partial order relation is expressed by paths of directed 
edges. The order of calculation of two vertices is 
interchangeable unless there is a path of directed edges 
that connects the two vertices. 

2.2.  Efficient Calculation of the Per tinent 
Dependency Subgraph 

The topological sort systematically explores paths of 
directed edges emanating from a given vertex. In XForms, 
the given vertex is the one representing the value changed 
by user input. The topological sort explores all paths 
leading to a vertex before visiting the vertex (in XForms, 
visitation implies re-evaluation of the associated 
computational expression). However, before the 
topological sort can be used to determine a recalculation 
sequence, it is first necessary to create a reduced form of 
the dependency digraph called the pertinent dependency 
subgraph that contains only the paths in the dependency 
digraph that emanate from the vertex changed by user 
input. These paths are pertinent because they contain the 
vertices that may change in value upon re-evaluation of 
their expressions. As such, only the pertinent paths leading 
to a vertex need be explored before visiting the vertex. 
Computing the pertinent dependency subgraph eliminates 
the non-pertinent paths so that the topological sort can 
easily detect when all of the pertinent paths leading to a 
vertex have been explored. 

In certain cases such as the initial load of a form, the 
pertinent subgraph is simply a copy of the entire master 
dependency graph. In other cases such as user input, the 
pertinent dependency subgraph is computed by duplicating 
the vertices and edges along pertinent paths emanating 
from the changed vertex. It is also possible to have 
multiple changes made to user input controls (e.g. with a 
JavaScript function), which implies multiple simultaneous 
changes to the underlying instance nodes to which the user 
input controls are bound. To account for this possibility, 
we use Lc to denote a set of vertices associated with 
changed form controls. In the simple case of a user input 
change, the change list Lc would contain only one vertex. 

The pertinent subgraph S for a given change list Lc can be 
identified in linear time using depth-first search [T72], a 
suitable version of which appears in the Xforms 
specification. To continue the purchase order example, 
consider the depth-first search on the dependency digraph 
in Figure 4 under the aforementioned condition that the X-
Smiles Desktop ����� value is changed to 50. The results 
appear in Figure 5. Only those vertices reachable by a path 
of directed edges from the X-Smiles Desktop Units vertex 
are retained.   
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Fig. 5.  Pertinent Subgraph for the Purchase Order 
Example 

In order to ensure that construction and initialization costs 
for the pertinent subgraph are commensurate with the size 
of the pertinent subgraph and not the master dependency 
digraph, the initial size of the vertex array for S is one. To 
ensure that expansion costs remain at a constant factor as 
vertices are added to S, the array doubling technique can 
be used [DDJ98] (often, object oriented array 
implementations, such as the Java Vector class, use this 
technique). A side effect of having a smaller vertex array 
in the pertinent subgraph S is that the array index of a 
vertex w in the pertinent subgraph is likely different from 
the location of w in the master dependency digraph.  
Additional steps were taken in the XForms specification to 
account for this problem. 

2.3.  Topological Sor ting of the Per tinent 
Dependency Subgraph 

Except for the vertices corresponding to the initial 
elements from the change list Lc, the vertices of the 
pertinent dependency subgraph S form a set that must be 
sequenced by a topological sort, with the paths of directed 
edges in S as the partial order relation. The sequence of 
vertices produced by the topological sort dictates a valid 
order of XForms recalculation in which an expression is 
re-evaluated after all expressions on whose results it 
depends and before any expressions that depend on its 
result. The XForms specification contains pseudo-code for 
a version of the topological sort suitable for the XForms 
recalculation problem. 

The topological sort begins by obtaining a list Z of all 
vertices in the pertinent subgraph that do not depend on 
any other vertices. Typically, these vertices in S 
correspond to vertices in the master dependency digraph G 
that are listed by the change list Lc. The exception is when 

Lc is not given, such as on form load when the full 
dependency graph is processed. The elements of Z are 
those that require no prior calculations, so they are not 
computed.  The main loop of a topological sort removes a 
vertex v from Z for processing,  The vertex v is processed  
by recalculating it as described below.  Then, v and its 
outgoing edges are removed from the pertinent subgraph.  
If, as a result, any neighbors of v that drop to an in-degree 
of zero, then those neighbors are added to Z for processing 
(an in-degree of zero means that a vertex has no more 
unprocessed computational dependencies). 

In XForms, the recalculation of a vertex is associated with 
a number of XForms-specific processing steps. If the 
vertex corresponds to the text content of an XML instance 
node, then the new value is stored in the instance node. 
Either using a simple dirty flag or using a queue, modified 
instance nodes are identified for subsequent update of the 
visual form controls bound to the instance nodes. If a 
vertex corresponds to some property of an instance node, 
then the property value is updated in the internal 
implementation and the effects of the property change are 
immediately propagated to the user interface. 

Finally, it should be noted that topological sorting is an 
algorithm applied to directed acyclic graphs.  However, it 
is not possible to prevent forms authors from writing 
circular references.  The XForms specification defines 
additional steps that generate a circular reference 
exception one exists in the pertinent dependency subgraph.  
This is detected if the list Z of vertices with zero in-degree 
becomes empty without all vertices of S being  
recalculated. By contradiction, suppose S is a directed 
acyclic graph, but there exist one or more vertices that 
were not visited by the topological sort. Each such vertex 
must have an in-degree greater than zero, despite the fact 
that its in-degree has been decremented for each processed 
vertex on which it depends. Thus, each unprocessed vertex 
must be target of a directed edge that originates from 
another unprocessed vertex. Consider a subgraph S' of the 
original pertinent subgraph that contains only the 
(hypothetical) unprocessed vertices (and their directed 
edges). Consider traversing the directed edges of S' in 
reverse, i.e. from target to source. Starting with any vertex 
v of S', traverse a directed edge (u, v) to obtain the source 
vertex u, which contains a dependency node indicating v. 
Perform this process repeatedly at each source vertex to 
find a successive source vertex. Every vertex in S' has in-
degree greater than zero, so finding a successor is always 
possible. Moreover, if we find a successor that is also a 
vertex previously visited by this process, then a cycle has 
been found, contradicting the claim that S' and hence S are 
acyclic. So, we consider the case in which every vertex is 
visited without encountering a previously visited vertex. 
The last vertex w to be visited has an in-degree greater 
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than zero, so another previously visited vertex of S' has a 
directed edge leading to w, which again completes a cycle 
and proves that the XForms model contains a circular 
reference if the topological sort fails to process all vertices 
in the pertinent dependency subgraph. 

2.4.  Constraints on XPath Expressions and 
Their  Rationale 

The ability to compute a pertinent subgraph of the master 
dependency digraph is critically dependent on there being 
no way to create dynamic dependencies, i.e. dependencies  
that change as the result of recalculating values. If 
dependencies could change as the result of a recalculation 
then different parts of the master dependency digraph 
could become pertinent during the topological sort, so the 
pre-computed pertinent subgraph used by the topological 
sort would no longer be valid. Furthermore, the parts of 
the digraph that become pertinent could even be 
dependent on the order in which the recalculations are 
performed. Unfortunately, XPath has the expressive power 
to create dynamic computational dependencies.  To solve 
this problem, the XForms specification characterizes the 
types of XPath expressions that can result in dynamic 
dependencies and creates constraints against those XPath 
expressions. 

In XForms 1.0, the dependencies must be rebuilt if 
instance data elements are added or deleted, so actions 
such as adding a row to a purchase order still result in a 
form that operates as one would expect (i.e. due to the 
rebuild of dependencies, computations within the new row 
are operational, and the row's item total becomes part of 
the purchase order subtotal and related calculations). 
However, the addition and deletion of items is assumed to 
occur outside of a recalculation, so XForms forbids 
functions that have side effects on the structure of the 
instance data. Moreover, functions that have any side 
effects at all are also forbidden because these changes 
cannot be accounted for by the dependency digraph. 

In general, XForms 1.0 also forbids the use of XPath 
language constructs that could result in a change of node-
set references within an XPath expression based on any 
changes to the instance data. Since a function can receive 
node-sets as parameters and make calculations over the 
values in the nodes of the node-set, changes to the 
referenced nodes obviously affect the return result of the 
function. Therefore, it is forbidden to use a function that 
returns a node-set. As well, dynamic predicates are 
forbidden. For example, if a calculate attribute contains 
the subexpression f oo[ @bar =" xy" ] , then the 
subexpression is forbidden if the attribute bar  is itself 
calculated or if it is bound to an input form control. 
Finally, XPath variables are forbidden, which is not 

actually problematic since XForms 1.0 provides no 
variables to the XPath evaluation context. 

3. CALCULATION ENGINE 
IMPLEMENTATION IN X-SMILES 

X-Smiles is an Open Source XML browser implemented 
in Java. It supports multiple XML languages and allows 
mixing them in a single document. Each XML language is 
handled by a Markup Language Functional Component 
(MLFC). An MLFC is basically a markup language-
specific Document Object Model (DOM) implementation 
and renderer. Currently implemented host MLFCs include 
XSL Formatting Objects (XSL FO), Synchronized 
Multimedia Integration Language (SMIL) and Scalable 
Vector Graphics (SVG). XForms MLFC is a 'parasite' 
MLFC; it needs some other MLFC as the host. Currently, 
XForms can be embedded in SVG, SMIL and XSL FO 
documents. [X-Smiles] 

The XForms implementation in X-Smiles is the first (and 
currently the only) [XForms1] browser implementation of 
the XForms Working Draft. Most of the XForms features 
are implemented in the browser. An important part of the 
implementation is the calculation engine, which is 
implemented with the algorithms described in Section 2. 

3.1.  Overview of the Implementation 

Figure 9 presents an overview of the X-Smiles browser 
implementation of the XForms calculation engine. It 
includes three distinct types of data structures: 

• The presentation DOM is the memory representation 
of the host XML document, e.g. the SMIL document 
that hosts the XForms elements. The implementation 
of this markup language is a specialized tree extended 
from a generic DOM implementation. It contains host 
DOM nodes implemented in the host MLFC and 
XForms DOM nodes which implement, for example, a 
specific form control.  

• The instance DOM is an XForms internal DOM 
implementation, also derived from the generic DOM, 
that holds the current state of the instance, namely 
instance data item values and their constraint states, 
such as 'relevant'.  

• Dependency graphs are used by the calculation engine. 
There are two dependency graphs per instance: The 
Master Dependency Graph, which is created at 
initialization time, and The Pertinent Dependency 
Subgraph, which is generated on the fly from the main 
graph whenever the calculation engine is run. The 
dependency graphs are composed of Vertices and 
Edges as described in Section 2.  

An XForms presentation DOM node is linked two-ways to 
the corresponding instance DOM node. The only 
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relevance of the presentation DOM to the calculation 
engine, are the instance item value updates, which are 
reflected to the presentation DOM and vice versa. The 
dependency graph's vertices are linked one-way to the 
instance DOM nodes. There may be many vertices linked 
to the same instance node, as long as they are of different 
type (e.g. calculate and relevant vertices), as shown in the 
figure. 

 

Fig. 6.  Overview of the implementation 
 
3.2.  Obtaining the Referents of an XPath 

Expression 

As shown in the Introduction, a computable constraint, 
such as cal cul at e in a bi nd element, can express a 
computation for multiple instance data items. Each 
computation can refer to multiple data items. For example, 
the following bind expression attaches a calculation of 
pr i ce *  uni t s  to every item t ot al . 

<bi nd r ef =" pur chaseOr der / i t ems/ i t em/ t ot al "  
cal cul at e=" . . / pr i ce *  . . / uni t s" / > 

Fig. 7.  Code for calculating the totals 

This leads to an important prequisite for building the Main 
Dependency Graph; the ability to obtain the referents of 
each XPath expression, e.g. how to find out which 
instance data items the calculate expression . . / pr i ce 
*  . . / uni t s  in the above example references. This is 
not readily possible with an arbitrary XPath processor, so 
an implementation must usually build support for it. X-
Smiles uses XPath processor in Xalan, which had to be 

extended to support this feature. We execute an XPath 
expression once in its correct context (namespace and 
XPath context nodes), and collect references to every node 
that the expression's location paths reference [XPath]. 
This is sufficient for XForms' purposes. Actually the 
expression need not be fully executed since the result is 
not interesting at initialisation time, but only the referents 
of the expression. 

3.3.  Class Structure 

In X-Smiles, the following objects hold the state of the 
calculation engine: abstract superclass DependencyGraph, 
and derived classes MainDependencyGraph and 
SubDependencyGraph. These classes contain the methods 
for creating the graphs and for the recalculation. 

The implementation of Vertices and Edges is done in the 
way described in Section 2. There are five types of 
vertices derived from a single class Vertex. The edges are 
represented by the vector depList. Vertex has the members 
described in Section 2 plus an additional member, the 
reference to a bind DOM element. The bind element is 
used to associate the Vertex with the XPath expression to 
be executed. The bind element is also the context node for 
resolving namespaces for the XPath expression. Each of 
the vertex types override single method: compute(). This is 
where the XPath expression is executed and the result is 
handled according to the Vertex type. 

3.4.  Run-time Processes 

The initialization of the calculation engine consists of the 
creation of the Master Dependency Graph and performing 
a full calculation with it. The referents of each XPath 
expression are obtained as described above. For optimal 
performance, the X-Smiles implementation performs the 
first complete recalculation directly on the master graph. 
This has the side effect of invalidating the inDegree 
members of the vertices. However, it does not matter, 
because inDegree's are recalculated for each pertinent 
subgraph. The entry points for full initialization are: 

• Document load. This is when the main initialization 
happens.  

• Insertion or deletion of instance data items. This can 
happen only in the 'xform:repeat' construct. It could 
also be possible to optimize insertion or deletion by 
modifying only the corresponding part of the main 
graph, thus removing the need for full initialization.  

• Reset. At Reset, the instance DOM is reconstructed 
completely and the whole form is reinitialised. This 
happens when the xforms:reset event is dispatched to a 
model.  

Recalculation happens when an instance data item's value 
changes. First, a Pertinent Dependency Subgraph is 
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constructed, then the re-calculation algorithm is run on it. 
The possible entry points for recalculation are: 

• User input. The user has changed a value in a form 
control.  

• setValue. This XForms' declarative event is fired.  
• ECMAScript. ECMAScripts can access the instance 

DOM and change values thereof.  

Whenever an instance data item's value changes, the user 
interface has to be updated accordingly. In X-Smiles, the 
form controls register themselves to the instance data 
items, which keep an internal vector of referent form 
controls in memory. Every time an item's value or other 
property such as 'readOnly' changes, the item asks the 
form controls to change their display accordingly. 
Whether this has immediate effect depends on whether the 
component is currently on screen or not. 

Since the instance DOM is a specialized implementation 
derived from a general DOM, the model item properties, 
such as relevant and readOnly, are kept within an extra 
object InstanceItem, created for each of the instance DOM 
node implementation. The instance DOM has extended 
implementations of ElementNSImpl, AttrNSImpl, and 
AttrImpl. There are accessor methods in the instance DOM 
for getting the InstanceItem and its properties. 

 

Fig. 8.  Recalculate Collaboration Diagram 
 
Figure 8 shows the collaboration diagram of user changing 
the value in a 'selectOne' form control. The sequence is 
initiated when the JList component used by the 'selectOne' 
element dispatches the valueChanged event, which the 
selectOne listens to. After recording the specific form 
control, the base class calls setValue() for its bound 

InstanceItem. The instance item then calls recalculate() 
with a change vector containing itself. The recalculate is 
applied to the XForm object, which creates a new 
SubDependencyGraph and calls calculate() on it. 
SubDependencyGraph then runs the recalculation 
algorithm on itself, as described in Section 2, and changes 
the values and properties on the recalculated 
InstanceItems, which in turn are reflected to the user 
interface. After the recalculation, the revalidate() function 
is called on the Model object to determine whether any 
schema constraints [Schema] have been violated or 
corrected. 

 
4. CONCLUSION 

In this paper, we presented the results of a successful 
application of optimal graph algorithms (topological 
sorting and depth-first search) to the W3C's next-
generation Web forms specification, XForms. We tracked 
the history of these important and classic algorithms, 
especially their first known applications in electronic 
spreadsheets and XML-based electronic forms. Moreover, 
we presented the algorithms with pseudo-code and highly 
detailed explanations and examples. We also presented the 
implementation details necessary to run the recalculation 
engine within the X-Smiles web browser.  Finally, we 
described some of the technical challenges that arose when 
applying these algorithms in the context of XForms 
(ongoing challenges are described below).   

The application of these algorithms within the X-Smiles 
browser is especially significant because the initial 
approach to computations in early drafts of XForms was 
already implemented, providing a basis for empirically 
assessing the improvement resulting from this work. The 
earlier approach required the user to define the order of 
calculation, and all calculations would be run after any 
change of the instance data. This lead to a few problems. 
Firstly, the calculation order was difficult to define 
manually and harder to maintain. Secondly, running all 
calculations was quite inefficient, taking a few seconds on 
a large form. Using the depth-first search to calculate the 
pertinent subgraph in linear time, and using a topological 
sort to determine the recalculation order in linear time, the 
same forms were given to instantaneous update. 

After the release of XForms 1.0, a number of areas of 
future work exist for XForms recalculation. The working 
group deliberately deferred the creation of XPath accessor 
functions for all model item properties. The value of an 
instance node can be referenced in a calculation, but 
properties such as r el evant  and r equi r ed cannot be 
used in other computational expressions because they are 
not represented in the instance data. Adding accessors 
significantly complicates the creation of the dependency 
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digraph since we must not only know what references an 
expression makes but also which references appear as 
parameters to an accessor function. This, in turn, requires 
a node-by-node analysis of the XPath expression parse 
tree, which may not be available. A second area of 
exploration would be to specify how to most efficiently 
update the master dependency digraph based on the 
addition or deletion of instance data nodes. In XForms 1.0, 
we simply rebuild the entire dependency digraph, which 
could be a costly operation when adding a few elements to 
a large form. If the elements added or deleted are not 
heavily referenced, then a stream-lined approach would 
yield a great benefit. Finally, the use of advanced data 
structures to handle dynamic pertinence should be 
investigated. The performance would likely degrade to 
O(n log n), which is slower than the O(n) algorithm 
reported in this paper but still fast enough in practice. The 
advantage would be the ability to overcome the constraints 
described in Section 2.4, thereby increasing the flexibility 
of the XPath expressions that could be used in XForms 
computations. 
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