
©2004 Springer Science+Business Media. Preprinted, with permission, from Proc. of the Fourth
International Conference on Web Engineering (ICWE2004), Munich, July, 2004, pages 402-415.

An XHTML 2.0 Implementation

Mikko Pohja, Mikko Honkala, and Petri Vuorimaa

Telecommunications Software and Multimedia Laboratory,
Helsinki University of Technology

P. O. Box 5400, FI-02015 HUT, Finland
Tel. +358-9-4515260

{mikko.pohja, mikko.honkala, petri.vuorimaa}@hut.fi

Abstract. The next version of XHTML is at work-in-progress stage
in the World Wide Web Consortium. It adds a lot of features to the
most used content language of the Web. The most notable change is the
addition of XForms, the next generation WWW forms language. This
paper describes the XHTML 2.0 specification and an XML user agent
implementation for it. The new features of the language are discussed
both from the author’s and the user agent manufacturer’s point of view.
In addition, it describes a case study, which takes advantage of the new
features.

1 Introduction

HyperText Markup Language (HTML) [1] is one of the greatest factors to the
success of the World Wide Web (WWW). It provides an easy way for authors to
create content to WWW. Originally, HTML was designed to describe structure
of the document. Later, a lot of presentational features were added into it.

To bring HTML back to its origin, it was redefined as an Extensible Markup
Language (XML) [2]. First versions of XHTML were just reformulation of HTML
4, but the newest version, XHTML 2.0 [3], which is at work-in-progress stage
in the World Wide Web Consortium (W3C), is no longer backward compatible
with the earlier versions. As a starting point to a design of XHTML 2.0 has
been experiences and problems of earlier web technologies, especially HTML.
The intention is to make XHTML 2.0 easy to adopt for authors and to match to
original purpose of HTML (i.e., describe the structure of hypertext documents).
For instance, XHTML 2.0 removes all presentation elements from HTML and
subordinates all presentation to stylesheets. In addition, a lot of functionality
has been added to XHTML 2.0. The objective is to reduce the use of scripting
languages within XHTML documents. Most common scripts have been replaced
by functional elements.

The success of the WWW is also largely based on interactive services such
as search engines, online banking, and e-commerce. A key technology used in
interactive Web applications is HTML forms. However, requirements for these
services have steadily increased since the advent of the technology. Today’s high-
end forms use complex client-side ECMAScript [4] programming to achieve form

2 Mikko Pohja, Mikko Honkala, and Petri Vuorimaa

field validation and simple computations (or bounce the form back and forth to
the server). Heavy use of scripting inevitably leads to low maintainability and
accessibility. [5]

The HTML forms has been replaced by XForms in XHTML 2.0. That re-
moves need for scripts from the forms and separates model and presentation of
a form. Consequently completing the design principles of XHTML 2.0.

The transition to XHTML 2.0 will be more difficult than transitions between
earlier HTML versions. XForms [6] will be the biggest change in XHTML 2.0,
but there are also other changes, which are not backward compatible [7]. In
this paper, we have assessed the impacts of the transition to both user agent
developers and authors.

The paper describes XHTML 2.0 specification and an XML user agent im-
plementation for it. Next section introduces XHTML and XForms modules of
XHTML 2.0 and their integration. Sections 3, 4, and 5 discuss implementations
of X-Smiles XML browser, XHTML module, and XForms module, respectively.
A case study is described in section 6, while discussion about the transition to
XHTML 2.0 is in section 7. Finally, section 8 gives the conclusions.

2 XHTML 2.0

XHTML 2.0, which is a W3C Working Draft, is a markup language, which
describes structure of a document. It does not represent document’s layout.
XHTML 2.0 is successor of the earlier HTML languages, but it is not backward
compatible with them.

XHTML 2.0 is supposed to be as generic XML as possible. Since XHTML
2.0 is an XML language, it can be combined with other XML languages and use
their features. Only special-purpose XHTML features were included in XHTML
2.0. These are, for example, elements for images, tables, menus, etc. In addition,
XHTML 2.0 uses facilities like XForms, XML Events [8], and XML Base [9]. In
addition, layout of the document is defined by Cascading Style Sheets (CSS).
All the presentational elements, such as font are removed from XHTML 2.0.

The separation of content and presentation has many advantages. Layout of
the document can be easily changed, layout can be specified for different devices,
documents are smaller, and user agents are easier to implement. For instance,
from the user agent vendor’s point of view the user agent’s components can
be separated and they can be smaller, while the author can more easily reuse
styling. This also leads to better accessibility because it is easy to change the
styling of a document without touching the contents.

Compared to earlier versions, XHTML 2.0 has better ability to make docu-
ments more structured. Content is intended to be divided into sections, which
all can have titles and subsections. Sections within sections can nest indefinitely
deep. As before, content in sections consist of paragraphs, tables, list, etc.

One aim of XHTML 2.0 is to reduce scripting from the documents. Many
elements have now some kind of functionality as a default. That reduces device
dependency and eases authors work, because they do not have care about script

An XHTML 2.0 Implementation 3

languages. It is still possible to use scripting via the Document Object Model
(DOM) interfaces. Other benefits of moving from scripts to declarative languages
are improved accessibility and device-independence. This results from the fact
that it is easier to use automated tools to process declarative markup than
scripted documents.

XHTML languages are divided into modules. XHTML 2.0 contains all the
modules defined in XHTML Modularization 1.0 [10]. Although, content of the
modules have been changed a bit. In addition, it uses modules from XForms,
XML Events, and Ruby. XForms module is discussed in more detail in next
subsection. XML Events provides an uniform way to integrate DOM Level 2
event interfaces with event listeners and handlers. Ruby module is used to add
short annotations to the text. Usually it is used as pronunciation instructions
with eastern languages. The Ruby module is out of scope of this paper.

The biggest changes in XHTML module are the addition of structural and
functional elements. Functional elements had to be realized by scripts earlier.
Now, there are elements, which have some default functionality. For instance,
menus are common on the web pages. For that, there is navigation list in XHTML
2.0 [11]. Navigation list is like normal list, but only selected part of the list is
shown at a time. The part can be selected for instance by moving cursor on it. It
is possible to style such a list as a drop-down menu with CSS, as shown in Fig.
1. XForms specification also contains lot of features, whose intent is to replace
scripting.

Fig. 1. Navigation list styled as a drop-down menu

Also, the use of attributes has changed. Attributes can be used more gen-
erally than before. For example, href attribute can be added to any element.
That makes the a element useless. In addition, all the elements can have src

attribute. That enables addition of external sources to the element. Element’s
normal content is shown, if source is not available or cannot be shown in the
device in question.

4 Mikko Pohja, Mikko Honkala, and Petri Vuorimaa

2.1 XForms

HTML forms has many well-known shortcomings. It has no separation of data
and presentation. Building anything more than a simple form requires excessive
amounts of scripting, which is hard to implement and maintain. Another often-
used approach is to send the form back and forth between the browser and the
server, which leads to great amount of round-trips and reduced maintenance of
the forms.

XForms 1.0 Recommendation is the next-generation Web forms language,
designed by the W3C. It solves some of the problems found in the HTML forms
by separating the purpose from the presentation and using declarative ways to
describe the most common operations in form-based applications. It can use any
XML grammar to describe the content of the form (the instance data). Thus,
it is also possible to create generic editors for different XML grammars with
XForms.

XForms separates the form into three main layers: Model, Instance Data, and
User Interface (cf. Fig. 2 (a)). The Model layer includes the XML Schema and
constraints. With the schema, it is possible to define the structure and the data
types of the instance data, but XForms can also be authored without a schema.
The schema can be processed via a normal XML Schema processor as shown in
Fig. 2 (a).

(a) (b)

Fig. 2. (a) XForms layers and (b) the pseudo-class ::value inside a form control

It is possible to define dynamic relations (constraints) between parts of the
instance data. These relations are defined using XPath expressions. Examples
of dynamic relations include inter-field calculations and constraints, which dy-
namically set the state of an item in instance data to read-only or required. The
calculation engine interacts with the instance data and it resolves and computes
these relations dynamically while the user interacts with the form [5].

The User Interface is also bound to the instance data using XPath expres-
sions. The choice of form controls covers the range of typical GUI widgets (al-
though they are defined in higher level terms, such as select1 instead of menu).

An XHTML 2.0 Implementation 5

Some form controls also adapt to the underlying XML Schema data type. For
instance, an input control bound to a date data type will show a calendar picker
instead of a text field. XForms also hosts a collection of dynamic user interface
features, such as displaying and dynamically modifying collections of repeating
items and switching parts of the user interface on and off. [12]

XForms exposes a lot of the processing to the author via DOM events. For
instance, there are events that are thrown when the instance data becomes in-
valid, read only, required, etc. The author can catch these events declaratively
using XML Events. The counterpart to XML Events are XForms actions, which
can be executed when a certain event condition is met. This way it is possible
to define, in a declarative fashion, certain actions to happen when the user in-
teracts with the form. For instance, the form could be submitted partially when
the user selects a certain item from a selection list.

2.2 Integration of XForms and XHTML

XForms is not a self-standing document type, i.e., it needs a host language
to define the document’s master layout. XHTML is a natural choice as a host
language in Web context. The current version of the XHTML 2.0 Working Draft
includes XForms as the forms module.

Since XHTML relies heavily on CSS2 layout, it is important that XForms
also integrates to this model well. For instance, it uses the notions of pseudo-
class, and pseudo-element from CSS. For instance, the ”::value” pseudo-element
is used to define the appearance of the UI widget itself (it would otherwise
be hard to style just the widget, since in XForms, the form control element
also encapsulates a label element). Fig. 2 (b) shows this; the first code snippet
shows what the author writes to create a form control. It contains only the input

element and a label child. To give the author better CSS control of the rendering,
the specification describes an additional CSS pseudo-element, called ”::value”.
The element input and label should be laid out using the CSS rules (such as
display:block or display:inline) and the additional pseudo-element ::value is used
to define style just for that part of the control, which the user can interact with;
in this case an input box.

Other pseudo-elements defined non-normatively in the XForms specification
are ::repeat-item and ::repeat-index. The ::repeat-item pseudo-element is used to
style all the items in a repeating collection, while ::repeat-index pseudo-element
is used to style the currently selected item.

3 The X-Smiles XML Browser

X-Smiles is an open source XML browser developed at the Helsinki University
of Technology. The authors of this paper have implemented XHTML 2.0 and
XForms support in the browser. In addition, the CSS layout implementation is
done by the authors. The authors have also actively participated in the W3C
XForms Working Group.

6 Mikko Pohja, Mikko Honkala, and Petri Vuorimaa

This section describes the main architecture of the browser. The main com-
ponents of the X-Smiles browser can be divided into four groups: XML pro-
cessing, Browser Core Functionality, Markup Language Functional Components
(MLFCs) and ECMAScript Interpreter, and Graphical User Interfaces (GUIs).

3.1 Operation

The core of the browser controls the overall operation of the browser. It includes
browser configuration, event handling, XML Broker, etc. MLFCs handle different
XML languages and render the documents. There are several GUIs in the X-
Smiles distribution. They are used to adapt the browser to various devices or
as virtual prototypes, when prototyping content targeted to diverse range of
devices. [13]

Basically, the X-Smiles operation consists of three steps: parsing, creating
DOM, and rendering. Parsing and creating DOM are done concurrently. When
reading new XML document, the X-Smiles browser first reads the document
source. The file is accessed using either the file or http protocol. The Xerces
XML parser and DOM implementation construct the DOM model of a document.
Parser creates different Simple API for XML (SAX) events, which are used by
DOM implementation. The MLFCs handle the presentation of the document.
The MLFC layer is done in a modular way; it is possible to add and remove
MLFCs for certain browser configurations without rebuilding the browser. It is
also possible to show embedded documents. For instance, it is possible to use a
SMIL presentation referenced by an object element in XHTML.

3.2 Hybrid Documents

Hybrid XML documents are documents, which contain several XML languages,
separated by namespaces. Recently, the usage of hybrid documents has increased.
The trend has been to specify XML languages as modules, which are combined
to construct complete languages. This way, the modules can be reused across
different languages, making implementations smaller and easier. It also reduces
the number of different languages that the author must learn.

As the number of languages gets higher, a way to flexibly handle these kinds
of documents is required. The X-Smiles browser has a framework that handles
hybrid documents. This framework includes a component called XML Broker,
which handles the registration of language implementations. A language imple-
mentation in the framework is called a MLFC (i.e., Markup Language Functional
Component). An important concept in hybrid documents are host and parasite

languages. There is always one host language in a document, usually determined
by the namespace of the document element. The host language is used for the
master layout of the document. Other languages that are embedded in the docu-
ment are called parasite languages. In this paper, XHTML 2.0 is a host language,
while XForms and XML Events are parasite languages. In an implementation,
there is a need for communications between the host and parasite elements in

An XHTML 2.0 Implementation 7

the DOM. In X-Smiles, this is done by extending the DOM implementation and
implementing general browser-defined interfaces. [14]

4 XHTML Module

The XHTML module handles XHTML documents. The documents can be styled
by style sheets and contain elements from other XML languages. The operation
of the XHTML module is depicted in Fig. 3. An XML parser parses a given XML
document and creates DOM document, which is an object tree representation of
the XML document. From each tag in the XML document, a node for DOM tree
is created. The document is displayed by a layout document, which implements
Java Swing’s document model. The layout document is formed from DOM tree.
Basically, every DOM element have respective layout element in layout docu-
ment. Layout document is displayed by Swing Views. Each layout element has
respective View, which defines its layout. Views render the document in browser
window. [15]

Fig. 3. Operation of the XHTML module

The XHTML elements can be divided into two groups: stylable and non-
stylable elements. All the visible elements are stylable. A style is assigned for
each stylable element after DOM has been created. Elements get their style from
the style sheet object. It is possible to change the visual type of the element by
using the CSS property ”display” (e.g., inline/block).

Every DOM element has a respective layout element, which is used by layout
document. In X-Smiles, XHTML elements and all the other elements in XHTML
document have to have layout element in order to get rendered. In the case of
XHTML, layout element is an instance of AbstractElement, which is an inner
class of XHTMLDocument2. AbstractElement implements also Swing’s Element

interface, whereas XHTMLDocument2 implements Swing’s StyledDocument in-
terface. That way they both can be used as a part of Swing document model.
[16]

Views are also the part of the Swing document model. They define how
elements are rendered in browser window. Views can contain content and other
views and they are placed in a row either vertically or horizontally. For instance,
inline elements are placed horizontally and paragraphs vertically. Every view has

8 Mikko Pohja, Mikko Honkala, and Petri Vuorimaa

some basic layout, which can be modified by style sheet. Elements are associated
with Views by editor kit, which ties the layout document and views together.

5 XForms Module

The XForms module was also implemented using the MLFC interfaces in the X-
Smiles browser. It is an parasite MLFC and always needs a host MLFC (in this
paper, XHTML2 MLFC). The host is responsible for the main document layout,
while the parasite is responsible for rendering the host language elements.

5.1 Architecture

Fig. 4 depicts the architecture of the XForms MLFC in X-Smiles. There are three
main layers in the implementation: XForms model, Meta UI and User Interface.
At the lowest level of the XForms model, there are the XML libraries that the
implementation uses. For XML parsing and XML Schema, we used the Xerces-J
2.4.0 implementation compiled with DOM level 3 support. DOM level 3 support
was needed for Post Schema Validation Infoset (PSVI), which is used to get
the data type information. For XPath, Xalan-J 2.5.1 was used. On top of the
XML libraries lie the Instance document implementation, and the validation and
calculation engine implementations. Data types are used in all layers, for instance
to instantiate right types of form controls. The middle layer, Meta UI, contains
high-level User Interface constructs, such as repeating items in a collection and
switching parts of the User Interface on and off. The topmost layer is the User
interface. To further enable multi-platform support, an additional layer, called
Abstract Components was created. For each platform, an implementation, or
wrappers, of the abstract components were included. Currently, we have support
for AWT, Swing and Havi widgets.

Fig. 4. XForms MLFC architecture in X-Smiles

XML Events was implemented by creating the XML Events MLFC into X-
Smiles. The MLFC uses DOM events implementation in the Xerces-J parser to

An XHTML 2.0 Implementation 9

implement listeners and events. A general action interface was created for the
browser, and all XForms action elements implement that interface.

5.2 CSS Integration

Because of the way XForms language was designed, it was not entirely trivial to
integrate it with a CSS based layout engine, such as the XHTML+CSS engine in
X-Smiles. For instance, there exists a notion of cursor inside a repeated construct,
that has no correspondence in the DOM. Also, the element describing the form
control contains a label element inside it, making it difficult to style just the
form control itself, as discussed in section 2.2. Basically, the implementation of
pseudo-classes was quite straight-forward, since it is a concept outside of the
DOM tree. On the other hand, pseudo-elements are conceptually in the DOM
tree for CSS styling and cascade purposes, and are therefore much harder to
implement. For instance, the pseudo-elements ::repeat-item and ::repeat-index
should be inserted in the middle of the DOM tree. Fig. 5 depicts this; a simple
repeat construct bound to a nodeset containing two nodes leads to more complex
run-time object tree containing several pseudo-elements. Note that some DOM
elements are treated as children of the pseudo-elements for purposes of CSS
styling and cascading.

<repeat nodeset="chapters/chapter">
 <input ref="@title">
</repeat>

repeat

::repeat-index

::repeat-item

::repeat-item

input

input

Fig. 5. repeat-specific pseudo-elements

We implemented all pseudo-classes, such as :invalid, describing the state of
the form control. Also, we implemented the pseudo-element ::value. The pseudo-
elements for styling the repeated structures were left as a future work item.

6 A Case Study: Document Composition

In this section, we introduce a real-world example of how to use XHTML 2.0 to
compose and navigate a large document. One of the shortcomings of XHTML 1.0
is that it does not support forms that edit repeating structures, thus requiring

10 Mikko Pohja, Mikko Honkala, and Petri Vuorimaa

server-side or script processing to provide such functionality. Another shortcom-
ing is the non-existing support for navigation lists, such as pull-down menus.
Navigation lists show only the currently selected part of the list, thus helping
the user to navigate more easily in a large document hierarchy. Navigation lists
have to be implemented with complex scripting in XHTML 1.0, decreasing acces-
sibility and device-independence. The example shows how to use the declarative
features of XHTML 2.0 to implement both the structural editing and navigation.
The whole example runs in the client and does not need server-side program-
ming. It also does not use any scripting, thus making it accessible and device
independent.

The document used in this case study is X-Smiles’ Technical Specification
document. It has been created using the Doc Book XML format. In this case
study, we show how to present and navigate that document in XHTML 2.0 and
even edit the document composition. The Doc Book source files are controlled
by XForms and transformed to XHTML 2.0 using XSL Transformations.

The components of the example are shown in Fig. 6. The document consists
of chapters, which each are in separate XML files. Headings, paragraphs, images,
etc. are marked by specific tags in the chapter documents. All the chapter docu-
ments are included into a composition document by XML Inclusions (Xinclude)1.
The composition document is edited by Edit document, which is an XHTML 2.0
document with XForms form. The composition document is an instance of the
form. Through the Edit document, user can select, which chapters are included
in the final document. The final document is transformed to XHTML 2.0 format
by XSL style sheet. The document composition and structure are discussed in
more detail below.

Fig. 6. Test case architecture

The editor document, which is depicted in upper-right corner of Fig. 6, is
an XHTML 2.0 document, which includes embedded XForms elements. The
XForms instance data is the Composition document. The editor document uses
a XForms repeat element to create an editor for this document. It is possible to
add new sections to the composition, or enable/disable them. The editor UI is
depicted in Fig. 7 (a).

1 XML Inclusions, http://www.w3.org/TR/xinclude/

An XHTML 2.0 Implementation 11

(a) (b)

Fig. 7. (a) Editing the composition with XForms and (b) viewing the final document

The XSL style sheet converts all the elements from the composed file to
XHTML 2.0 elements. Content of chapter documents is divided to sections,
which can contain other sections, paragraphs, headings, etc. The XSL Transfor-
mation converts all the chapter and section elements to XHTML 2.0 sections.
Therefore, document is structured automatically. In XHTML 2.0, all headings
can be represented by h elements. Their style depends of amount of embedding
sections. So, during transforming, there is no need to decide the level of headings.

The document has a menu in the beginning. It is realized using XHMTL 2.0
navigation list. Navigation list contains all the headings of the document. The
navigation list shows only selected part of the list at the time. List items are
also links, which refer to the heading in question in the document. Source code
of the navigation list with few entries is shown below.

Source code of the navigation list

<nl>

<label>Table of Contents</label>

<li href="#Introduction">

<nl>

<label href="#Introduction">Introduction</label>

<li href="#WhatisX-Smiles?">What is X-Smiles?

<li href="#MainFeatures">Main Features

<li href="#ThisDocument">This Document

</nl>

<li href="#Environment">

<nl>

<label href="#Environment">Environment</label>

12 Mikko Pohja, Mikko Honkala, and Petri Vuorimaa

<li href="#RuntimeEnvironment">Runtime Environment

<li href="#Runningit">Running it

<li href="#BuildingwithAnt">Building with Ant

</nl>

</nl>

The navigation menu could be styled like a regular pull-down menu as shown
in Fig. 1, but due to limitations in the CSS layout in the current version of X-
Smiles (0.82) that was not done. As discussed in Section 8, we are building a
better CSS layout engine into the X-Smiles browser. The resulting document,
viewed in the X-Smiles browser is shown in Fig. 7 (b). Part of the navigation
list, whose source is shown above, is also visible.

7 Discussion

So far, the appearance of a new HTML version has not caused much headache
for authors and user agent developers. Different HTML versions are backward
compatible, which means that old documents do not need major revising. Even
the transition to XHTML 1.0 is a straight forward process as it is basically a
reformulation of HTML 4.01 in XML format. The new XHTML 2.0 specification
will cause more problems, though. The biggest change is related to forms. The
fifth Working Draft specifies that XForms will be used as the forms technology
in XHTML 2.0.

XForms requires major changes especially in user agents. Old HTML form
implementations cannot be used as a base for XForms, because the whole concept
is different. XForms has a new data model and it contains more functionality
than HTML forms. The new data model requires the use of XML Schema and
XPath processors. Both of these are large components, which causes problems
in restricted devices. W3C is aware of this problem, and thus it has defined the
XForms Basic Candidate Recommendation. In XForms Basic, the data model is
less advanced, requiring only support for certain data types, in effect removing
the need for full XML Schema processor.

The transition to XHTML 2.0 causes also problems for authors. The main
obstacle is that they have to learn a new forms language. Fortunately, they do not
have to start from scratch. The reason is that XForms is based on XPath. Most
XML developers use XSLT regularly. Since both XForms and XSLT are based
on XPath, the developers already have a starting point. Another advantage is
that XForms is declarative language. Current, HTML forms are heavily based on
scripting, which makes updating and reusing of forms difficult. XForms is easier
to maintain and it allows the reuse of forms in different XHTML documents.

Another major change in XHTML 2.0 is the real separation of content and
presentation. XHTML 2.0 removes all the presentation related features from
XHTML 1.0 and concentrates only on defining the structure of the document.
All presentation related issues are defined using separate CSS style sheets. In ad-
dition, several XHTML 2.0 elements and attributes contain functionality, which

An XHTML 2.0 Implementation 13

before had to be realized using scripting. Therefore, authors do not have to
use scripting as much as before and also their documents will be more widely
accepted by the different user agents. Both of these features improve the main-
tenance of XHTML 2.0 documents.

Based on the above facts, our conclusion is that XHTML 2.0 is a major step
in the development of web technology. The new features require major changes
in user agents, though. In addition, the authors have to learn how to use the
new features. In our opinion, the advantages brought by XHTML 2.0 outweigh
the problems. For instance, XHTML 2.0 removes the need for heavy scripting
and separates the content from presentation. Therefore, XHTML 2.0 documents
are easier to maintain and reuse.

8 Conclusions

In this paper, we have discussed the new XHTML 2.0 specification and its user
agent implementation. According to the previous section, the XHTML 2.0 doc-
uments are easier to maintain and reuse, because they require less scripting
and the content is really separated from the presentation. The introduction of
XHTML 2.0 requires major changes in user agents, though.

Our XHTML 2.0 implementation is part of the X-Smiles user agent. The
implementation is modular and mainly based on already existing components.
No changes had to be made to the parsing and processing of XML documents.
The XHTML module uses the well established DOM interface to access the XML
data. The DOM documents are rendered using Java Swing document model. The
XHTML 2.0 documents can be styled by CSS style sheet and they can contain
XForms elements. We reused an already existing CSS processor.

Unfortunately, we could not implement all XForms specific CSS features.
Currently, we are removing the Swing dependency form the CSS layout engine.
In future, we plan to use the new CSS layout engine with the XHTML 2.0 and
XForms components. Then, we expect to be able to implement all XForms spe-
cific features. For instance, at the time of writing we have already implemented
all the XForms pseudo-elements in the new version of the layout engine.

The results of this paper show that implementation of XHTML 2.0 requires
further development of user agents, but is not unrealistic. User agents, which
already support XHTML 1.0 can be updated to support XHTML 2.0. Already
existing components can be used in most cases. Generally, changes below the
DOM interface are not required, albeit XForms requires DOM Level 3 support.
Also, existing XML Schema and XPath engines can be used. Some changes to the
CSS layout model can be expected, though. In some cases, the XForms module
is the only new component.

In our future work, we plan to study the use of XHTML 2.0 in restricted de-
vices. The main research question is how all the components required by XHTML
2.0 can be fitted in to a restricted devices with less memory and processing power
than desktop devices. Most problems are related to XForms. At the moment, it
remains to be seen whether XForms Basic will help in this problem.

14 Mikko Pohja, Mikko Honkala, and Petri Vuorimaa

9 Acknowledgments

The author Mikko Honkala would like to thank to Nokia Oyj Foundation for
providing support during the research. The research was funded by the XML
Devices and GO-MM projects to whose partners the authors would like to ex-
press their gratitude.

References

1. Ragget, D. et al., ”HTML 4.01 Specification,” W3C Recommendation, December
1999. Available at http://www.w3.org/TR/html401/

2. Bray, T. et al., ”Extensible Markup Language (XML) 1.0,” W3C Recommendation,
February 2004. Available at http://www.w3.org/TR/2004/REC-xml-20040204/

3. Axelsson, J. et al., ”XHTML 2.0,” W3C Working Draft, May 2003. Available at
http://www.w3.org/TR/xhtml2/

4. ECMA-262, ECMAScript language specification, European Computer Manufac-
turers Association (ECMA), 1998.

5. Boyer, J., and Honkala, M., ”The XForms Computation Engine: Rationale, Theory
and Implementation Experience,” in Proc. of the 6th IASTED International Con-

ference, Internet and Multimedia Systems, and Applications, (IMSA 2002), August
12-14, 2002, Kauai, Hawaii, USA.

6. Dubinko, M. et al., ”XForms 1.0,” W3C Recommendation, October 2003. Available
at http://www.w3.org/TR/2003/REC-xforms-20031014/

7. Pilgrim, M. The Vanishing Image: XHTML 2 Migration Issues,” O’Reilly xml.com,
July 02, 2003. Available at: http://www.xml.com/pub/a/2003/07/02/dive.html

8. McCarron, S. et al., ”XML Events,” W3C Recommendation, October 2003. Avail-
able at http://www.w3.org/TR/xml-events/

9. Marsh. J., ”XML Base,” W3C Recommendation, June 2001. Available at
http://www.w3.org/TR/xmlbase/

10. Altheim, M. et al., ”Modularization of XHTML,” W3C Recommendation, April
2001. Available at http://www.w3.org/TR/xhtml-modularization/

11. Kendall, G.C., ”XHTML 2.0: The Latest Trick,” O’Reilly xml.com, August 07,
2002. Available at: http://www.xml.com/pub/a/2002/08/07/deviant.html

12. Honkala, M., and Vuorimaa, P., ”Advanced UI features in XForms,” in Proc. of

the 8th International Conference on Distributed Multimedia Systems, September
25 - 28, 2002, pp. 715-722.

13. Vierinen, J., Pihkala, K., and Vuorimaa,P., ”XML based prototypes for future
mobile services,” in Proc. 6th World Multiconf. Systemics, Cybernetics and Infor-

matics, SCI 2002, pp. 135-140.
14. Pihkala, K., Honkala, M., and Vuorimaa, P., ”A Browser Framework for Hybrid

XML Documents,” in Proc. of the 6th IASTED International Conference, Inter-

net and Multimedia Systems, and Applications, (IMSA 2002), August 12-14, 2002,
Kauai, Hawaii, USA, pp. 164-169.

15. Cogliati, A. et al., ”XHTML and CSS Components in an XML Browser,” in Proc.

of the 4th International Conference on Internet Computing, IC 03, Las Vegas, USA,
June 2003, pp. 563-569.

16. Pohja, M. and Vuorimaa, P., ”Dynamic XHTML Layout Document for an XML
Browser,” in Proc. of the 2nd IASTED International Conference on Communi-

cations, Internet, and Information Technology, CIIT 2003, Scottsdale, AZ, USA,
November 2003, pp. 355-360.

