
This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of Helsinki
University of Technology's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

©2004 IEEE. Reprinted, with permission, from Proc. of the IEEE Sixth International Symposium on
Multimedia Software Engineering (MSE2004), Miami, FL, USA, December, 2004, pages 232-239.

A Configurable XForms Implementation

Mikko Honkala
Helsinki University of Technology, TML

P.O. Box 5400, FIN-02015 HUT, FINLAND
Mikko.Honkala@hut.fi

Petri Vuorimaa
Helsinki University of Technology, TML

P.O. Box 5400, FIN-02015 HUT, FINLAND
Petri.Vuorimaa@hut.fi

Abstract

XForms is a new language for defining dynamic forms
and user interfaces for the World Wide Web. In order to
take advantage of the user interaction related features in
the language, a client side processor is needed. This paper
describes a configurable open source software implementa-
tion of XForms. The main goal of the implementation is to
conform to the World Wide Web Consortium’s XForms Rec-
ommendation. The other goals are external to the XForms
specification and are related to the portability and config-
urability of the processor. The important questions are re-
lated to implementing an XForms processor for diverse en-
vironments, and the integration of XForms and other XML
languages with different layout models. In the paper, more
detailed requirements are gathered from these goals. Also,
the design and implementation are presented in detail, in
order to give insight to the more difficult and non-obvious
parts of the software. The results of the paper cover the run-
time requirements of the XForms processor.

1. Introduction

Although HyperText Markup Language (HTML), the
main content language of the World Wide Web, was orig-
inally just a document description language, lately WWW
has been transformed into a platform for interactive services
[1]. HTML, being a device and operating-system indepen-
dent, is still used to describe the user interface of the ser-
vices. However, the GUI technology behind the services,
HTML forms, is now outdated. The complexity of today’s
applications is far greater than what was imagined when the
technology was first invented. Therefore, today’s high-end
forms have to use complex client-side ECMAScript [2] pro-
gramming to achieve form field validation and simple com-
putations (or bounce the form back and forth to the server).

Heavy use of scripting inevitably leads to low maintain-
ability and accessibility [3]. Also, for the author, using both

scripting and markup can be cumbersome, since it creates
semantic and performance discontinuities [4].

Interaction in an application often depends on the device
and environment at hand. For instance, the interaction with
a mouse and a desktop computer differs from the interac-
tion with a smartphone, let alone speech interaction with a
normal phone. The traditional interaction technologies usu-
ally target just one environment or device. Applications run-
ning in the WWW can be accessed with different kinds of
devices, but still the interaction is usually designed to just
one or few different usage environments. Due to limitations
in HTML forms, it is not easy to target the same applica-
tion to different devices.

Due to these problems, W3C has developed a successor
to HTML forms, XForms [5]. It removes need for scripts,
and separates content from the presentation. Furthermore,
it uses an abstraction of an user interface, enabling inter-
action across different modalities and devices. Other im-
portant questions are related to implementing an XForms
processor for diverse environments, and the integration of
XForms and other XML languages with different layout
models.

Currently, the most interoperable option for developing
a cross-platform client, (i.e., a browser), is Java. Programs
written in Java can be run in desktops, smartphones and
digital-TV set-top boxes. All of them have different libraries
available, though.

There are XML-based form technologies that predate
XForms, including XFDL1 and XFA 2. Also, there is cur-
rently a lot of effort put into XML-based GUI technologies.
Some of them are mainly designed for defining GUIs for
stand alone applications, including Glade3, Netscape XUL
4 and Microsoft XAML 5 , while some address the office

1 Extensible Forms Description Language (XFDL) 4.0, John Boyer,
Tim Bray, Maureen Gordon, 2 September 1998. Available at:
http://www.w3.org/TR/NOTE-XFDL

2 XFA-Template Version 1.0, Gavin McKenzie, 14 June 1999. Avail-
able at: http://www.w3.org/1999/05/XFA/xfa-formcalc.html

3 Glade. Available at: http://glade.gnome.org/
4 XML User Interface Language (XUL) 1.0, David Hyatt (ed.), Avail-

able at: http://www.mozilla.org/projects/xul/xul.html

application space, namely InfoPath6 . The configurable im-
plementation reported in this paper is based on an earlier
prototype the authors have made [6]. Dynamic calculations,
and their implementation within XForms have been stud-
ied in [3]. Dynamic user interfaces, such as repeating con-
structs have been studied in [7]. The relationship between
the latest XHTML 2.0 and XForms has been described in
[8].

2. The XForms language

XForms 1.0 Recommendation [5] is the next-generation
Web forms language. It solves some of the problems found
in the HTML forms by separating the purpose from the pre-
sentation and using declarative markup to describe the most
common operations in form-based applications.

Figure 1. The XForms layers.

XForms separates the form into three main lay-
ers: Model, Instance, and User Interface (cf. Fig. 1).

Instance An arbitrary XML document that is modified by
clientside user interaction, then submitted to a server.

Model Uses XML to define the constraints on items of the
instance, which includes data types and ranges as well
as computational relationships.

User Interface Defines how the form is shown and ex-
presses bindings to instance items. User input is gov-
erned by rules in the model for the instance item being
modified (through a bound input control).

The Model layer includes theXML Schemaand the
Model Item Properties. The structure and the data types
of the instance data can be defined using the schema, but

5 XAML, Available at: http://msdn.microsoft.com/.
6 Microsoft InfoPath, Available at:

http://www.microsoft.com/office/infopath/prodinfo/default.mspx

Figure 2. The external requirements.

it’s use is optional to the author. The Model Item Proper-
ties (MIP) are dynamic constraints written in XPath. They
can reference other values in the instance data and are dy-
namically evaluated by the XForms Processor. With MIPs,
it is possible to define dynamic calculations and cross-value
checks, which are not possible with XML Schema.

Fig. 1 also depicts the typical usage scenario of XForms.
It consists of a client, which includes an XForms processor
and an HTTP server with application specific software. The
user interface of the application is defined with static doc-
uments, written in XForms combined with a host language,
such as XHTML. Similarly, the structure of the data is de-
scribed with static XML Schema documents. The applica-
tion logic is responsible for sending and receiving XML in-
stance data, which correspond to the data gathered from the
user.

Compared to current Web applications with HTML, a lot
of the user interface processing is transferred to the client in
XForms. This frees bandwith and improves the user expe-
rience. Additionally, the application data is separated from
the user interface, which helps to build modular software,
which is easier to maintain.

Because of the quite heavy dependencies on XML pro-
cessing tools, such as XML Schema and XPath, XForms
may be difficult to implement in a restricted device, such as
a smartphone. To overcome this problem, W3C has speci-
fied a smaller profile of the language, called XForms Basic
[9], which does not include full Schema capabilities.

3. Requirements for the XForms processor

The requirements for the XForms processor come from
multiple directions. The main goals can be divided into five
categories, as depicted in Fig. 2. The main goal was to have
a conforming XForms processor. The other goals were ex-
ternal to the XForms specification and were related to the
portability and configurability of the processor. They are
Java VM support, XML Processing Libraries, UI Toolk-
its, andHost Languages. The requirements that we derived

from these goals are described in detail in the following list.
These requirements are the focus of the implementation part
of this paper.

XForms Processor: Requirements.

XForms Full XForms 1.0 Support.

XForms Basic Can be configured to run in XForms
Basic mode with reduced processing.

Java VM Support: Requirements.

Desktop Java 2 Standard Edition (J2SE) support.

Personal Java Runs in Personal Java 1.1 and Java 2
Micro Edition (J2ME) Personal Profile.

MHP Multimedia Home Platform (MHP) support.

XML Processing: Requirements.

XML Should allow third party XML parser, XPath,
and XML Schema libraries.

UI Toolkits: Requirements.

Swing Supports Swing Toolkit in Desktop.

AWT Supports Abstract Windowing Toolkit (AWT).

Havi Uses Havi Toolkit in digital tv set-top boxes.

Host Languages: Requirements.

CSS LanguagesSupports CSS flow and box model.

Absolute positioning Supports absolute positioning
in SVG and SMIL.

4. Design of the XForms processor

The XForms implementation discussed in this paper is
done completely by the first author. Some of the libraries
used (e.g., the CSS renderer), also have contributions from
the first author. The first author is also a participant of the
XForms Working Group and therefore is one of the authors
of the specification [5]. The processor was one of the three
interoperable implementations of XForms, which were re-
quired in order to raise the status of the language into W3C
Recommendation. The XForms processor reported in this
paper is part of the Open-Source XML Browser X-Smiles
[10][11].

4.1. Architecture

Fig. 3 depicts the architecture of the XForms implemen-
tation. There are three layers: the XForms model, Meta UI,
and the User Interface. XForms model implements XML
Parsing, XPath and XML Schema. It also includes a calcu-
lation engine, datatypes, and the implementation of the in-
stance data. The Meta UI layer has implementations of re-
peating user interface constructs (i.e., dynamic lists, enu-
merations, and tables), and switching parts of the user inter-
face on and off dynamically.

Figure 3. The architecture of the processor.

<bind nodeset="items/item/total"
calculate="../units * ../price"
relevant="../units > 0" />

<bind nodeset="totals/subtotal"
calculate=
"sum(../../items/item/total)"/>

<bind nodeset="totals/tax"
calculate="../subtotal *

../../info/tax"/>
<bind nodeset="totals/total"

calculate="../subtotal + ../tax">

Figure 4. An example of a model. [3]

Finally, the user interface layer contains both high
and low level implementations of all form controls in the
XForms specification.

4.2. Instance data

XML parser is used to read the instance data into a DOM
representation. We used Xerces 2.4.0, which has been built
with a special option to include DOM L3 PSVI informa-
tion and have extended the DOM implementation, so that
it includes the XForms MIPs. It would also be possible to
store the MIPs, for instance, in a Hashtable, which would
remove the need to extend a certain DOM implementation,
but it would degrade the performance. One solution for stor-
ing the MIPs is to use the User Data functionality in DOM
Level 3, when that gets supported in the DOM implementa-
tions.

4.3. Calculation engine

The calculation engine takes care of calculating and
keeping track of the model item properties of the form. For
instance, the bind statements in Fig. 4 define multiple MIPs
and assigns them to a group of nodes.

Figure 5. A dependency graph example. [3]

It is the Calculation Engine’s responsibility to an-
alyze the expressions and evaluate them at right time.
The XForms specification gives an algorithm, which en-
sures that all expressions in the model are evaluated only
once when they are needed. The algorithm has an impor-
tant pre-requisite: it needs to obtain the referents of each
XPath expression. For instance, the first calculate expres-
sion in Fig. 4 refers to 2 nodes: @units and @price. Once
this information is present, the expressions can be ana-
lyzed for all the nodes in the nodeset and adependency
graph can be built. The calculation engine uses a topo-
logical sorting algorithm to define the optimal calculation
order. The details about the algorithm and our implementa-
tion is documented in [3].

Fig. 5 depicts an example of a dependency graph. This
graph is the runtime representation of the example in Fig. 4,
where there exists three items in the ”items/item” nodeset.
The arrows represent the flow of calculation, so for instance,
all of the ”item/total” calculations must be performed be-
fore the ”subtotal” calculation can be done.

4.4. User interface

XForms supportsdynamic dependenciesin UI. Imple-
menting them needs special treatment. Additionally, dy-
namic dependencies are underspecified in XForms 1.0 spec-
ification. Although dynamic dependency is specified in sec-
tion 7.5.1 [5], it is not specified when to re-evaluate (orre-
wire) the UI bindings. Consider the following:

<input ref="/user[@id=/selection]/name"/>

The expression in theref attribute has a predicate, which
means that a certain element from the collection ofuserel-
ements is selected based on its id. This creates a dynamic
dependency if the id is compared to something that might
change during the lifetime of the form.

Figure 6. Dynamic UI dependencies.

Implementation of dynamic dependencies differs from
dependency graph. The main difference is that the depen-
dencies are never longer than one step: one binding cannot
be dependent of another one (although the context is inher-
ited to the ancestor bindings, which need to be re-evaluated
if the bound node changes). Other difference is the dynamic
nature of the dependencies: the graph for dynamic bindings
must be re-created automatically if a change is detected,
while the model’s dependency graph is static until structure
of the instance changes. Both require obtaining the XPath
referents.

In our implementation, UI binding is represented by aUI
Bindingobject. It is instantiated for every element that has
UI binding attributes (i.e.,ref, nodeset, or bind). The Bind-
ing object takes care of creating the listeners in the instance
data as shown in Fig. 6.

In order to optimize re-wiring, our strategy is to keep
the result of the expression cached. Then, when a referent
is changed, the result (nodeset or node) is compared to the
cached, and action is only taken when there is a difference
between them. In our experience,repeatand itemsetbene-
fit a lot from this simple optimization.

Normally, the re-wiring changes the bound instance
node, which means that the value of the form con-
trol must be changed. In some rare occasions, the type of
the value might be different from the type of the previ-
ously bound node. If the form control is sensitive to the
type of the node, the form control itself must be changed.
This is left as future work in this paper.

4.5. XPath engine

XPath is one of the core technologies in XForms. Model
Item Properties and UI binding must be authored using
XPath expressions. There exists a lot of commercial and
open source implementations of XPath, but not all of them
fullfill the requirements that XForms presents. XForms im-
plicitly sets the following requirements for the XPath en-
gine:

DOM support XPath expressions must be evaluated on
top of a dynamically changing DOM.

DOM Expression Referents It must be possible to obtain
the referents of an XPath expression, in addition to the

result of the expression. This requirement is explained
in more detail in section 4.3.

Context support The engine must support user defined
context, including namespace context, context node,
and the context nodeset.

Extension Functions The XPath engine must sup-
port adding extension functions.

In our implementation, a genericXPathEngineinterface,
which supports all of the requirements in the list above, was
created. For performace reasons, the parsing of XPath ex-
pression into a object model is a separate operation. This al-
lows for the XForms engine to parse expressions only once,
while possibly executing them multiple times.

The interface supports two kinds of evaluation opera-
tions, one without tracing for the referents and one with
the tracing. The context information is passed in the evalu-
ation call, and includes the context node, the context node-
set, the namespace element (namespace evaluation context),
and an empty list of referents. We have two implementa-
tions of the XPath interface. One uses Xalan 2.5.1 library,
while the other uses Jaxen. Jaxen is more efficient, com-
pared to Xalan, when used on top of a DOM tree. It is also
smaller in size (cf. section 7.1). Some environments, such
as Sun J2SE 1.4 already include Xalan, and that is why it
is also supported. Both Jaxen and Xalan had to be modified
in order to support”DOM Expression Referents”require-
ment. Other requirements listed in this section were quite
easily met just be using the provided interfaces in the li-
braries.

4.6. XML Schema processing

XML Schema is used in XForms for two purposes: to de-
fine the datatypes within the instance data and to define the
structure of the instance data. Datatypes are more impor-
tant for XForms, since the structure of the instance is quite
static, except for few operations (insert, delete, and copy).
Additionally, datatypes are part of the basic profile whereas
structure is not.

It is quite essential that the datatypes are implemented
efficiently. For instance, it is possible to author a form, us-
ing the incrementalattribute, so that every keypress mod-
ifies the instance data. If there are the datatypes of the in-
stance data available at that time, all that is needed is to
check the changed text against the schema datatype.

In XForms Full, there is the need to parse the provided
XML Schemas and extract the Post Schema Validation In-
foset (PSVI) information for each node. For datatypes, we
used the datatypes implementation in Xerces 2.4.0, which
also provides the PSVI implementation for the XForms Full
mode.

Havi

XSelectOneHaviSelectOne HaviSelectOne

ComponentFactory

HaviComponentFactory SwingComponentFactory

XInputHaviInput

<<create>>

SwingiInput

<<create>>

XSelectOneHaviSelectOne SwingSelectOne

HText

HList

Swing

JTextArea

JMenu

Figure 7. Component Factory’s classes.

5. Integration to UI toolkits

Although the layout of the document containing XForms
is the responsibility of the host language (e.g., XHTML) im-
plementation, it is still necessary to render the form controls
according to the device at hand.

In a perfect world, there would be a single UI Toolkit,
whose look and feel could be altered to different environ-
ments and input/output methods. Applications would only
need to support one toolkit. Unfortunately, even in Java,
different environments use different UI Toolkits. Although
this is clearly a design mistake, we still had to support it
as stated in our requirements. Our requirement was to sup-
port Swing, AWT, and Havi. Swing is used in desktop en-
vironments, AWT, e.g., in hand-held devices, and Havi in
Digital-TV set-top boxes.

On the other hand, XForms form controls are intent-
oriented rather than presentation-oriented. For instance
there is no form control calledcalendar, but instead anin-
put, which is bound to a data withdate datatype, might
produce a calendar control in some platforms. There-
fore it is natural to divide the architecture of the UI be-
tween intent-oriented and presentation-oriented parts. The
intent-oriented part was discussed in section 4.4, and
the rest of this section focuses on the presentation ori-
ented part.

5.1. Component Factory

The presentation-oriented part of the user interface was
implemented by creating a factory interface Component
Factory, along with interfaces for different types of widgets.
Then, for each Java component toolkit, such as Swing, an
implementation of the Component Factory along with the
implementations of each of the widgets is provided. This
requires quite many classes, but since these classes are just
wrappers for the real widget implementations, there is not
that much programming involved.

Figure 8. The pseudo-class ::value inside a
form control. [8]

Fig. 7 depicts the class relationships between the factory
and widget interfaces and their implementing classes.Com-
ponentFactoryis an Java interface thatHaviComponentFac-
tory andSwingComponentFactoryimplement. There is also
other interfaces for the widgets themselves. All of these
interfaces are implemented by the corresponding compo-
nent toolkit wrapper. Each of the implementing classes uses
components from the underlying component toolkit to pro-
vide the functionality. For events, AWT event classes and
listeners are used where possible, thus removing the need
for defining extra event classes.

6. Integration to host languages

As noted earlier, the division of work between the host
language and XForms is such that the host language is re-
sponsible for the main layout of the document, and XForms
is responsible for presenting the form controls and collect-
ing user feedback. There are some features in the XForms
language, which do not strictly adhere to this rule of thumb.
Among these features are the styling of visible elements,
such as form controls, labels, groups, repeating constructs,
and switching parts of the user interface on and off dynam-
ically.

The basic integration of form controls and the host lan-
guage is done by reserving a rectangular area from the host
languages document area, and the XForms processor can
draw a component and handle it’s events from that area.
This functionality is provided by the X-Smiles browser, in
order to support mixed namespace documents [11].

6.1. CSS based languages

To integrate well with CSS based layout model, XForms
uses the notions of pseudo-class, and pseudo-element from
CSS. For instance, the ”::value” pseudo-element is used to
define the appearance of the UI widget itself (it would oth-
erwise be hard to style just the widget, since in XForms,
the form control element also encapsulates a label element).
Fig. 8 shows this; the first code snippet shows what author
writes to create a form control. It contains only theinputel-

ement and alabelchild. The elementinputandlabelshould
be laid out using the CSS rules and the additional pseudo-
element ::value is used to define style just for the value part
of the control; in this case an input box.

Other pseudo-elements defined non-normatively in the
XForms specification are ::repeat-item and ::repeat-index.
The ::repeat-item pseudo-element is used to style all the
items in a repeating collection, while ::repeat-index pseudo-
element is used to style the currently selected item.

Our implementation was integrated to the CSS layout
and rendering model in X-Smiles. This allows, for instance,
word wrapping in labels and groups. Also, it enables the use
of CSS (e.g., display:block; or display:inline;) to determine
how to layout the form controls. We needed to add good
support of pseudo-elements in the rendering engine for the
purposes of this integration. Currently, pseudo-elements can
be added to the rendered document, and they behave like
normal DOM elements for layout purposes.

6.2. Languages with absolute layout

The requirement for the processor was to support all of
the languages supported by the X-Smiles browser. Some of
these have non-CSS layout models. Examples of these lan-
guages are SMIL and SVG.

We implemented SVG and SMIL support as a proto-
type [6]. Our implementation experience shows that imple-
menting repeat is not feasible for these languages. We had
an experimental repeat implementation for SMIL [12], but
that was later abandoned. We are currently implementing
Timesheets [13], which integrate to the CSS layout model
well, thus allowing the use of repeating constructs in timed
documents.

SVG support is problematic as well; SVG is a vector
drawing language, which supports zooming in and out, a
feature, which is not normally supported by UI toolkits. We
have simulated zooming by changing the font size in form
controls depending on the zoom level. Future work item
would be to draw the form controls in SVG itself, thus al-
lowing for real zooming and integration to SVG drawing
model.

7. Configurability

Most of the requirements in section 3 are related to run-
ning the processor in different environments with different
UI toolkit and XML processing libraries. In order to full-
fill these requirements, the processor was designed to be
configurable. Different configuration options are depicted in
Fig. 9. On the top, there are the host languages supported by
the processor. The supported UI toolkits are shown on the
left side, while XML processing libraries lay to the right. At
the bottom, there are the supported Java Virtual Machines.

Figure 9. Configuring the processor.

Figure 10. The processor running in J2ME
Personal Profile reference implementation.

Table 1 lists few of the configurations that we have cre-
ated and used. The first is theDesktopconfiguration, which
is a full XForms implementation running inside the X-
Smiles browser. It integrates to all of the host languages that
are supported by X-Smiles. The second one,J2ME Embed-
ded, is an embedded XForms basic processor targeted to a
handheld device running J2ME Personal Profile. It supports
few of the host languages and has a more compact XPath
processor and uses AWT as the UI toolkit. This configura-
tion is depicted as a screenshot in Fig. 10, where it is run-
ning on top of Sun’s reference implementation of J2ME Per-
sonal Profile. The final one is theDigital-TV Browser, run-
ning XForms basic on top of Havi UI toolkit.

The main difference between the XForms basic and full
profiles is that basic does not require schema processing,
but instead uses just the pre-defines schema datatypes. We

have implemented XForms full by parsing the instance
DOM into a PSVI-extended DOM using Xerces. XForms
basic was therefore implemented as an configuration op-
tion, which uses a normal DOM instead of the PSVI DOM.
For datatypes, the datatypes implementation in Xerces was
used also in basic configuration mode.

7.1. Memory requirements

The storage memory requirements of the implementation
are dependent of the configuration that is being used. Nor-
mally, some of the libraries are already provided by the sys-
tem. For instance, every system usually has the UI Toolkit
libraries pre-installed. Therefore we measured the size of
the processor itself. We wanted to show also the size of the
minimal browser as a reference value.

The storage size of the processor is reported in table 2.
We also used an open-source tool calledProGuard 7 , to
minimize the storage size of the jars. It successfully de-
creased the size of xsmiles-personaljava.jar by 35%. The
sizes reported in table 2 are the sizes after the minimiza-
tion. The size of the XForms basic processor including the
XPath library is 505 KB, while the size of the XForms full
processor is 734 KB. This does not include the basic XML
parsing and DOM, which is included in the browser part,
being 1052 KB in total.

The run-time memory usage depends on the size of the
form application. The set of our demo applications, written
in XHTML+XForms, run with 10 MB of Java heap. The
most comprehensive application, a configuration file fron-
tend, includes about 100 interactive form controls accessing
different parts of the instance data. It also includes switch-
ing and repeating user interface contructs. The java heap
includes the run-time memory used by the browser core,
XHTML + CSS renderer, and the XForms processor.

8. Conclusion

XForms is a next generation markup language for defin-
ing user interfaces in the WWW. It provides ease of author-
ing, reuse, device independence, and accessibility. In or-
der to deploy XForms, support in the user agent is needed.
We have presented a configurable XForms processor that is
portable to different environments. The processor supports
different XML processing libraries found typically in Java
environments. It is also independent of the UI toolkit in use.
For instance, the Havi toolkit, uses the remote control and
television set as the input/output devices. The processor is
also independent of the host language. We have integrated
the processor with XML+CSS, XHTML, SMIL, XSL FO,
and SVG. In order to facilitate for the XForms integration,

7 ProGuard, Available at: http://proguard.sourceforge.net/.

Configuration Profile Java VM XML Parser XPath UI Toolkits Host Languages

Desktop Full J2SE Xerces Xalan Swing
XHTML, XML+CSS
SMIL,SVG, XSL FO

J2ME Embedded Basic
J2ME

Basic Profile
XercesDTD Jaxen AWT

XHTML
XML+CSS, SMIL

Digi-TV Browser Basic
JDK 1.1

Personal Java
XercesDTD Jaxen Havi

XHTML
XML+CSS, SMIL

Table 1. Examples of working configurations.

Component Basic (KB) Full (KB)
Browser core
Browser core + GUI 258 ”
CSS Layout and Renderer 64 ”
CSS Parser (Steady State) 149 ”
XML Parser (Xerces DTD) 446 ”
XML APIS (W3C / Xerces) 134 ”
Total 1052 KB 1052 KB
XForms Processor
XForms processor 164 ”
XPath engine (Jaxen) 228 ”
XML Schema Datatypes 113 ”
XML Schema Structures 0 230
Total 505 KB 734 KB
Grand Total 1557 KB 1786 KB

Table 2. The storage memory requirements.

changes are usually needed in the host language implemen-
tations. We have shown that XHTML integration is possi-
ble with some additions to the host language implementa-
tion. For languages, which support only absolute position-
ing, such as SMIL and SVG, the integration is not straight-
forward. Some XForms features, such as repeat which re-
quire flow layout are impossible, while some host language
features, such as SVG zooming, require features, which are
usually missing from the UI toolkits.

Our processor was one of the three conforming proces-
sors when XForms raised as W3C Recommendation. We
have successfully ran our browser in variety of environ-
ments, such as MHP for Digital TV and Java 2ME Personal
Profile, which is targeted at embedded devices.

The paper gives the memory requirements for the pro-
cessor for different operating configurations. The storage
memory size in the smallest configuration is 1,5 megabytes
including browser infrastructure. The XForms processor’s
minimum size is 500 kilobytes including an XPath proces-
sor and Schema datatypes implementation. If the environ-
ment already has these, the size can be as low as 164 kilo-
bytes. In our opinion, this shows that is is possible to in-
clude an XForms processor in most environments, possibly

counting out low-range mobile phones.
The research was funded by the GO-MM project to

whose partners and researchers the authors would like to ex-
press their gratitude. We would also like to thank Pablo Ce-
sar for valuable comments about this paper.

References

[1] M. H. Butler. Current technologies for device independece.
Technical Report HPL-2001-83, Hewlett Packard Laborato-
ries, March 2001.

[2] ECMA-262m. Ecmascript language specification, 1998.
[3] J. Boyer and M. Honkala. The xforms computation engine:

Rationale, theory and experience. In6th IASTED Interna-
tional Conference, Internet Systems, and Applications, IMSA
2002, 2002.

[4] M. Hostetter, D. Kranz, C. Seed, and S. Ward C. Terman.
Curl, a gentle slope language for the web.World Wide Web
Journal, 1997.

[5] M. Dubinko et al. (eds.). Xforms 1.0. W3C Recommenda-
tion, 2003.

[6] M. Honkala and P. Vuorimaa. Xforms in x-smiles.WWW
Journal, pages 151–166, 2001.

[7] M. Honkala and P. Vuorimaa. Advanced ui features in
xforms. In 8th International Conference Systems, DMS
2002.

[8] M. Pohja, M. Honkala, and P. Vuorimaa. An xhtml 2.0 im-
plementation. InInternational Conference on Web Engineer-
ing, ICWE 2004.

[9] M. Dubinko and T.V. Raman (eds.). Xforms 1.0. W3C Can-
didate Recommendation, 2003.

[10] P. Vuorimaa, T. Ropponen, N. von Knorring, and
M. Honkala. A java based xml browser for consumer de-
vices. In 17th ACM Symposium on Applied Computing,
Madrid, Spain, March 2002.

[11] K. Pihkala, M. Honkala, and P. Vuorimaa. A browser frame-
work for hybrid xml documents. InInternet and Multimedia
Systems and Applications, IMSA 2002. IMSA, August 2002.

[12] K. Pihkala, M. Honkala, and P. Vuorimaa. Multimedia web
forms. InSMIL Europe 2003.

[13] W. ten Kate, P. Deunhouwer, and R. Clout. Timesheets - inte-
grating timing in xml. InMultimedia on the Web Workshop,
9th international World Wide Web Conference, WWW9.

