
 ©2006 by authors. Reprinted from Proc. of the The Sixth
International Conference on Web Engineering (ICWE2006), Palo Alto, California, July, 2006, pages 201-208.

http://doi.acm.org/10.1145/1145581.1145624

Multimodal Interaction with XForms

Mikko Honkala
Helsinki University of Technology, TML
P. O. Box 5400, FI-02015 HUT, Finland

mikko.honkala@tml.hut.fi

Mikko Pohja
Helsinki University of Technology, TML
P. O. Box 5400, FI-02015 HUT, Finland

mikko.pohja@tml.hut.fi

ABSTRACT
The increase in connected mobile computing devices has cre-
ated the need for ubiquitous Web access. In many usage
scenarios, it would be beneficial to interact multimodally.
Current Web user interface description languages, such as
HTML and VoiceXML, concentrate only on one modality.
Some languages, such as SALT and X+V, allow combining
aural and visual modalities, but they lack ease-of-authoring,
since both modalities have to be authored separately. Thus,
for ease-of-authoring and maintainability, it is necessary to
provide a cross-modal user interface language, whose se-
mantic level is higher. We propose a novel model, called
XFormsMM, which includes XForms 1.0 combined with
modality-dependent stylesheets and a multimodal interac-
tion manager. The model separates modality-independent
parts from the modality-dependent parts, thus automati-
cally providing most of the user interface to all modalities.
The model allows flexible modality changes, so that the user
can decide, which modalities to use and when.

Categoriesand SubjectDescriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Voice I/O; Graphical user interfaces (GUI);
I.7.2 [Document and Text Processing]: Document
Preparation—Markup languages

GeneralTerms
Design, Experimentation, Standardization, Languages

Keywords
Multimodal Interaction, UI Description Language, XForms

1. INTRODUCTION
The diversity of Web applications, and devices, which are

used to access them, is increasing. Additionally, new usage
contexts bring new kinds of requirements for Web applica-
tions. Using multiple modalities (e.g., aural and visual input
and output) simultaneously can help to fulfill these require-
ments. For instance, Web applications could be used with
voice input and output while driving a car, and a keyboard-
less device could use voice input to enhance a graphical ap-
plication’s input capabilities. Studies have also shown that

Copyright is heldby theauthor/owner(s).
ICWE’06, July11-14,2006,PaloAlto, California,USA.
ACM 1-59593-352-2/06/0007.

new and complex tasks are solved faster with the use of
multiple modalities [4]. Additionally, several countries have
enacted legislation, which require public Web services to be
accessible to people with disabilities [9]1.

The problem is that current approaches to authoring
multimodal Web applications lack ease-of-authoring. They
concentrate on one modality at the time. For instance,
HTML+ECMAScript approach focuses on the visual UI,
and it has well-known accessibility issues when used with
speech tools, while VoiceXML is only intended for voice us-
age. Two main multimodal Web UI approaches, SALT [22]
and XHTML+Voice (X+V) [1], allow to author and deliver
the same user interface for both speech and GUI, but require
each modality to be authored separately, and thus they limit
ease-of-authoring. The solution is to raise the semantic level
of the user interface description.

The main research problem was efficient authoring of mul-
timodal user interfaces in the Web context. The research
was conducted in two phases. First, a literature study was
done, in order to derive requirements for a multimodal UI
language. Second, the requirements were converted into an
design, which was then implemented as a proof-of-concept.
This approach was then compared with SALT and X+V
based on the requirements.

As a result, we propose to use XForms as the user interface
description language, because of its modality-independent
nature. We define a multimodal UI model called XForms
Multimodal (XFormsMM), which includes XForms 1.0 and
modality-dependent stylesheets as the UI description lan-
guage and a definition of a multimodal interaction manager.
This solution allows filling and submitting any XForms com-
pliant form simultaneously with aural and visual input and
output. A proof-of-concept implementation was created and
integrated into X-Smiles XML browser. Two use cases were
developed to demonstrate the functionality of the imple-
mentation, including input and output of several datatypes,
as well as navigation within a form. One of the use cases
was also compared to an equivalent application realized with
X+V.

The paper is organized as follows. The next two Sections
give background information about the topic and introduces
the related work. The research problem is discussed in Sec-
tion 4. Section 5 introduces the design of XFormsMM, while
Section 6 describes our implementation of it. Use case im-
plementations are shown in Section 7. Section 8 compares
XFormsMM to other approaches, discussion is in Section 9
and, finally, Section 10 concludes the paper.

1W3C WAI Policies, http://www.w3.org/WAI/Policy/

2. BACKGROUND
In a multimodal system, the user communicates with an

application using different modalities (e.g., hearing, sight,
speech, mouse). The input can be sequential, simultaneous,
or composite between modalities. Moreover, uses of mul-
timodality can be either supplementary or complementary.
Supplementary means that every interaction can be carried
out in each modality as if it was the only available modality,
while complementary means that the interactions available
to the user differ per modality. Finally, one of the key con-
cepts is the interaction manager, which handles the dialog
between the user and the application. [10]

As a modality, speech is quite different from graphical UI.
The main difference is the navigation within the UI. In the
visual modality, more information and navigation options
can be represented simultaneously, while speech interface
has to be serialized. On the other hand, spoken command
input allows intuitive shortcuts. It has been shown an effi-
ciency increase of 20-40 per cent using speech systems com-
pared with other interface technologies, such as keyboard in-
put [11]. Although speech interaction seems to be promising,
the potential technical problems with speech interfaces may
irritate the user and reduce task performance [18]. That is
why speech is often used by combining it with other modal-
ities to offset the weaknesses of them [5]. Especially, GUIs
are often combined with speech modality.

Basically, there are three different approach to realize
speech interface: command, dialog, and natural language
based. Human-computer interaction through speech is dis-
cussed in [2]. The basis of the paper is that perfect per-
formance of a speech recognizer is not possible, since the
system is used, e.g., in noisy environments with different
speakers. Therefore, dialog and feedback features are impor-
tant to a recognizer because both human and computer may
misunderstand each other. In conclusion, a speech interface
should provide adaptive feedback and imitate human con-
versation. Natural language speech user interfaces are not
necessary better than dialog and command based, and it has
been shown 80 % of the users prefer a mixture of command
and dialog based user interface over a natural language user
interface. [13]

XForms 1.0 Recommendation [6] is the next-generation
Web forms language, designed by the W3C. It solves some
of the problems found in the HTML forms by separating
the purpose from the presentation and using declarative
markup to describe the most common operations in form-
based applications [3]. It is possible to create complex forms
with XForms using declarative markup, thus not resorting
to scripting.

XForms form controls, grouping constructs and event
types are abstract and generic. Therefore, it suits describing
multimodal user interfaces. Raman [17] lists several features
in XForms, which are of use when creating multimodal UIs.
A recent study compared XForms with other abstract user
interface description languages, and found it, along with the
AIAP language, to best suit their universal access require-
ments [20].

3. RELATED WORK
Simon et al. have researched the same area of authoring

multimodal Web applications [19]. They focus on creating
an authoring environment, but they also summarize that

a cross-modal UI language, which provides single-authoring
for multiple modalities is the best approach. They conclude
that XForms is well suited to act as this language. There
are also other proposals to realize multimodal interaction.

Raggett and Froumentin propose extensions to Cascading
Stylesheets (CSS) to allow simple multimodal interaction
tasks [15]. The paper defines new CSS properties, which add
aural modality to current HTML applications. In contrast
to our proposal, the aural UI must be created separately
from visual UI through the CSS extension.

XHTML+Voice profile [1] is based on W3C standards and
is used to create multimodal dialogs with visual and speech
modalities. In addition to XHTML Basic and modularized
subset of VoiceXML 2.0 [12], it consists of XML Events mod-
ule, the XHTML scripting module, and a module contain-
ing a small number of attribute extensions to both XHTML
and VoiceXML 2.0. XHTML is used to define layout of
the graphical content of a document, whereas VoiceXML
adds voice modality to the document. XML Events pro-
vides event listeners and associated event handlers for the
profile. Finally, the attribute module facilitates the shar-
ing of multimodal input data between the VoiceXML dialog
and XHTML input and text elements. VoiceXML is inte-
grated into XHTML using DOM events. When an element
is activated, a corresponding event handler is called. The
event handler synthesizes the text obtained from the ele-
ment that activated the handler. Also, a speech input to an
XHTML form field is assigned through VoiceXML elements.
XHTML+Voice documents can be styled both by the visual
and aural style sheets.

Speech Application Language Tags (SALT) is an XML-
based language for incorporating Speech input and output
to other languages [22]. It can be embedded, for instance,
in XHTML documents. The speech interaction model is
dialog-based. SALT uses a the notion of subdialogs, which
can be added to a page. SALT does not have explicit data
model, but it binds to external data models, such XHTML
forms, using ids. It has quite low-level programming model,
thus allowing authors to fully control the speech dialog in-
terface.

4. RESEARCH PROBLEM AND SCOPE
The research problem was to study efficient authoring of

multimodal interfaces for the Web. The scope of this work
is Web applications in general, with special focus on au-
ral and visual modalities. The application domain contains
medium-interaction applications, which would benefit from
flexible user-defined modality changes.

4.1 UseCases
Example applications include a route planner (public

transportation and car routes), a text message sending ser-
vice, and a car rental service. A common denominator in
these services is the requirement of mobility and different
usage contexts. For example, the applications could be used
in the following contexts:
1. At the office. The user uses the car rental service to
book a car for a holiday trip. Then she wants to know how
to get to the car rental pick-up using public transportation.
She uses mainly visual modality to interact with the route
planner. The route planner saves the query.
2. Walking. While walking to the bus, the user realizes
that they need a bigger car, so that the holiday skiing equip-

ment would fit in. She logs in to the car rental service using
her mobile phone. Using speech input combined with visual
output, she changes the car preference and notices that the
pick-up point changes. She logs in to the route planner, and
inputs the new pickup address using voice input. Finally,
she uses the text message service using speech input to no-
tify her husband that she will be picking up the rental car.
3. Driving a car. The user plans the route while driv-
ing, utilizing the onboard multimodal internet browser. She
interacts purely with voice to select the holiday destination
(the startpoint is filled in by her GPS receiver). She uses
visual output for the map of the route and aural output for
the driving instructions.

4.2 Requirements
We used the W3C Multimodal Interaction Requirements

[10] to design our system. The requirements are summarized
below:

General Requirements. The integration of modalities
should be seamless. Easiness to author, use, and implement
a multimodal language are required. Finally, requirements
include also accessibility, security, and flexible delivery con-
text related issues.

Input Modality Requirements. It is required that
modality related information can be authored. The input
should be able to be given sequentially, simultaneously, and
combined from several modalities. Also, temporal position-
ing of input events should be available.

Output Media Requirements. Output must be able to
be represented both sequentially and simultaneously in dif-
ferent modalities.

Architecture, Integration, and Synchronization

points. Compound documents with already existing lan-
guages should be preferred. Also, the specification should
be modular. Data model, presentation layer, and applica-
tion logic should be separated. The language should provide
means to detect or prescribe the available modalities.

Nichols et al., derive another set of requirements for auto-
matically generating multimodal remote control user inter-
faces for home appliances and services [13]. Those require-
ments differ from the W3C requirements, which are used in
this paper. The most notable difference is whether the pos-
sibility to author modality-dependent information is explic-
itly required (W3C [10]) or disallowed (Nichols et al. [13]).
Our and W3C’s focus is enabling multimodal usage of Web
applications, which are typically expected to be visually ap-
pealing. The other difference is that W3C do not have the
requirement for two-way communications, since that is not
typical for Web applications, and works against the request-
response model of the Web.

Trewin, et.al. present another set of requirement from
the point of view of universal access [20]. Their requirements
are compatible with the W3C requirements, albeit on higher
level and less detailed.

5. XFORMS AS THE MULTIMOD AL UI
LANGUAGE: XFORMSMM

We propose to use XForms as the abstract UI descrip-
tion language for multimodal applications. Our approach,
XFormsMM, combines XForms as a Multimodal Application

Figure 1: XFormsMM Execution Environment.

Figure 2: The XFormsMM Authoring Format.

Authoring Format with Modality-Dependent Stylesheets and
a description of an multimodal Interaction Manager.

The execution environment is depicted in Figure 1, where
the interaction manager interacts with the XFormsMM doc-
ument (i.e., the live DOM representation of it) and synchro-
nizes the Visual and Aural Renderings so that simultaneous
multimodal input and output and flexible modality switch-
ing are possible.

5.1 Authoring Format
XFormsMM user interfaces are authored in the XForms

1.0 language. Hence, non-speech-enabled user agents will be
able to present the user interface in the visual modality. This
is depicted in Figure 2, where the document is separated
into modality-independent and dependent portions. The ar-
rows represent the direction of dependencies. The modality-
independent portion includes the XForms Data Model and
the abstract UI. The data model is further separated into
instance data and constraints, while the UI contains group-
ing and abstract form controls. XHTML 1.0 is used as the
host language. The main modules used from XHTML are:
Structure, Stylesheet, Hypertext, and Image Modules, while
the Forms module is replaced by XForms. The modality-
dependent portion contains stylesheets.

There are some limitations on authoring XFormsMM.
First, using hierarchical grouping when defining the user
interface is essential. Similar result can be found in [13]. If
the grouping is only based on coordinates and font styles,
the interaction manager will not be able to create a de-
cent speech-only navigation. Second, free-text input fields
and textareas should be avoided because of the limitations
of the current automatic speech recognition (ASR) engines.
Third, the number of simultaneously available items should
be reduced to the minimum. This can be achieved with a
multi-page layout (e.g., a wizard or tabs), instead of pre-
senting all items simultaneously.

5.2 Modality-DependentStylesheets
Supplementary use of modalities [10] means that every in-

teraction can be carried out in each modality as if it was the
only available modality. This is provided in XFormsMM by
default. Every user interaction is defined using the XForms
User Interface Module [6], and can be interacted with either
speech or GUI.

On the other hand, complementary use of modalities [10]
means that the interactions available to the user differ per
modality. In XFormsMM, this is provided by the use of
modality-dependent CSS (cf. Figure 2). For the visual
modality, CSS 2.1 is used, so for instance, setting a CSS
value of the property ”display” to ”none”, effectively re-
moves the interaction from the visual modality. For the
aural modality, CSS Voice [16] is used, and e.g., setting the
property of ”speak” to ”none”, removes the interaction from
the aural modality.

Notice that it is possible to dynamically change these CSS
properties by using the XForms pseudo-classes in the CSS
selectors. For instance, the following CSS code will remove
read-only address from the voice interaction and navigation,
while still leaving it to GUI:

#address:read-only {display:block; speak:none;}

The read-only property itself is defined using an XPath
statement, and it can change during the form-filling, based
on the users input.

5.3 Multimodal Interaction Manager
The main roles of the XFormsMM interaction manager are

synchronization of the modalities, flexible switching between
the modalities, and navigation. It also receives events from
the modality-dependent rendering subsystems.

The interaction manager for XFormsMM supports mixed-
initiative dialog capabilities. The main idea behind the in-
teraction manager is that aural and visual states are syn-
chronized automatically. Setting the focus in one modality
automatically transfers the focus also in the other modal-
ity. Since the modalities share a single XForms data model,
all data items and their constraints are also automatically
shared.

For the aural modality, it is necessary that the interac-
tion manager analyzes the document for available focus-
able objects, and use that information to create feasible
speech-only navigation of the user interface. The inter-
action manager distinguishes between four main types of
speech-focusable objects: branch containers, toggles, input
fields, and output fields. Branch containers include ele-
ments such as xforms:group, and xhtml:div which are log-
ical container containing other elements. Toggles are in-
teractors, which have only simple activation function, such
as xhtml:a link and xforms:trigger. Input fields include all
XForms form controls, while output fields have many mani-
festations, such as xforms:output, xforms:label, xforms:help,
and xforms:alert. Note, that an input field can become an
output field dynamically, based on XForms model item prop-
erties (i.e., constraints), such as readonly.

The interaction manager searches the focus points of a
document and holds the current focus point. Elements,
which do not have a label, have to be analyzed heuristically
for possible label. Since the documents can change dynami-
cally (e.g., via XForms constraints or dynamic UI bindings),

the interaction manager must at each point re-evaluate the
document for speech-focusable objects.

The interaction manager has two main procedures, Main-
Loop, which waits for events, and SearchFocusPoints, which
searches for the next available aural focus points in a docu-
ment. Both are described below:

Procedure MainLoop waits for any user or document events,
and synchronizes the different modalities based on the current
focus point type and the event.
Operation: For each document or user event E:

1. If E = document.load:

a) Initialize G to general options (”help”, ”browser
reload”, ”browser back”, ”back”, ”next”, etc.).

b) set FP=searchFocusPoints(document.documentElement).
set FA = first aurally focusable in FP.
set FV = first visually focusable in FP.

2. If E = value changed in widget W from modality M:

a) Set new value through the XForms processor.

b) Notify renderers in all modalities that new value has
been set for W.

3. If E = focus in for widget W from modality M:

a) if W is aurally available, set FA = W.
if W is visually available, set FV = W.

b) set FP = searchFocusPoints(FA).

4. If E = document change event:

a) if a new message or alert element became available,
present it in all modalities.

b) if FA is no longer aurally available, set FA to next au-
rally available focusable element and set FP = search-
FocusPoints(FA).

c) if FV is no longer visually available, set FV to next
visually available focusable element.

5. If E is a general command in G: do the requested navigation
function and move both FA and FV accordingly to the new
node N. Set FP = searchFocusPoints(N).

6. VISUAL: show document with the current focus point FV
visualized.

7. AURAL: if FA not widget, present current options: FP+G.
If some options are outputs, present also current value.
Otherwise present the widget FAs prompt.

Procedure SearchFocusPoints(Node root) Gets as input a
node in the current DOM, and returns the list of possible speech-
focusable objects from that node.
DEFINITION: Node N is speech-focusable only if it is of focusable
type (input, output, branch, toggle) and the speak CSS property
of N is set to other than none.
Operation:

1. Initialize NodeSet F to root

2. Do a depth first search starting at root. For each node N:

(a) If N is not speech-focusable or contains only one
speech-focusable branch child node, ignore that node,
and continue depth-first

(b) Otherwise include N in F and terminate that branch
of depth-first search

3. return F

Figure 3: Focus points of a document.

A notable difference between the visual and aural naviga-
tion and focusable objects is that in aural modality, branch
elements are considered explicitly focusable.

The forms are usually hierarchically grouped, so the nav-
igation has to be possible both to siblings and to parent
and children. To imitate a real dialog, user agent must be
able to ask user a question, which relates to a current focus
point, and repeat user’s answer to ensure that the answer
was correctly recognized. After repeating the answer, the in-
teraction manager moves the focus to next logical position
and waits for the user’s action.

An example is given in Figure 3, which depicts a small
document, which has been analyzed for focusable objects.
In the figure, the possible focus points from point 1 are 1.1,
1.2, 1.3, and 1.4. Note that the branch items with only one
choice are ignored (e.g., ancestor of 1.1).

5.4 Rendering
Each modality has it’s own rendering subsystem, whose

main roles are outputting the current state to the user and
receiving modality-dependent events from the user. The ren-
dering takes care of detailed events (such as mouse move-
ments in visual modality or partial speech recognition events
in aural modality), and provide higher-level events (such as
value changed and focus changed) to the interaction man-
ager. This is depicted in Figure 1.

6. IMPLEMENT ATION
XFormsMM and the multimodal interaction man-

ager were implemented on top of an open-source
XHTML+CSS+XForms implementation, X-Smiles [21].
The components of the implementation are depicted in Fig-
ure 4.

6.1 Ar chitecture
The XForms engine [8] provides the state of the document.

Interaction manager is a thin layer, which communicates be-
tween the XForms engine and the GUI and speech rendering
subsystems (cf. Figure 4). It implements the Main Loop
algorithm described in Section 5.3. The GUI rendering is
provided by the CSS Layout Engine [14]. Speech rendering
was implemented in this study, and it consist of a dialog
handler, speech widgets, a focus provider, and a Speech API.
The dialog handler uses speech widgets and focus provider
to provide a speech UI navigation and a form field filling.
Speech widgets are created for each element according to
the datatypes, and they store the input data to a form in
correct format. The Speech API is a low-level interface for

Figure 4: The components of the XFormsMM im-

plementation in X-Smiles.

speech recognition and synthesis. Sphinx-42 was used as the
speech recognition engine and FreeTTS3 as a speech synthe-
sis engine, while the Speech API allows an easy way to plug
in different ASR and TTS engines.

6.2 Dialog Handler
The Dialog Handler resides on the topmost level of the

Speech Rendering. It generates aural rendering for the cur-
rent focus point. It also receives the voice input and de-
termines which object should handle it. Additionally, it
implements XForms alerts and navigation within repeating
structures.

When requested by the interaction manager, the dialog
handler creates a question or command list and delivers it
to the speech synthesizer. The question consists of label
of an element and possibly the selections that can be made.
The selections can be, for instance, navigable focus points or
items of a selection input. For all the questions or command
lists, the dialog handler must create a new grammar for the
recognizer. JSGF4 grammar format was used, since that is
what Sphinx-4, and Java-based tools in general, support.
The grammar consists of possible replies user can give and,
in addition, navigational commands (e.g., back). The reply
part is received from a corresponding speech widget and
navigational commands are added by the dialog handler.

6.3 FocusProvider
The visual focus management is already provided by the

graphical XForms implementation [8]. Hence, the interac-
tion manager registers itself as a listener for graphical focus
events. In addition, a speech focus provider was created.
The focus provider implements the algorithm SearchFocus-
Points for traversing the DOM tree and searching for pos-
sible focus points (this algorithm was described in detail in
Section 5.3). Additionally, it provides functionality to find
the parent focus point, and to store the current focus points.

6.4 SpeechWidgets
The speech widgets are the aural counterpart of the vi-

sual form controls. Their responsibilities include provid-
ing a grammar about possible replies for dialog handler and

2Sphinx-4, http://cmusphinx.sourceforge.net/sphinx4/
3FreeTTS, http://freetts.sourceforge.net/docs/index.php
4Java Speech Grammar Format,
http://java.sun.com/products/java-
media/speech/forDevelopers/JSGF/

parsing the user’s reply and passing it to a corresponding
element in correct format. Creation of a grammar depends
on a form control. Certain types of control have a constant
grammar (e.g., date and numbers). In that case, the gram-
mar is fetched from a file. If possible selections are defined
in a form, the grammar must be formed according to those.
When the user replies, the dialog handler receives the reply
from the recognizer and delivers it to a corresponding wid-
get. The user’s answer is returned to a widget as a string,
and the widget parses it and interprets to a corresponding
element in correct format. Finally, the widget informs the
interaction manager, that the focus should be moved.

7. USECASES
Two use cases from Section 4 were selected and imple-

mented as a proof-of-concept of the model. The first one,
a multimodal short message service, was compared with a
similar use case implemented in X+V. The second one is a
more realistic Web car rental user interface with a wizard-
type of visual interface.

7.1 Multimodal Short MessageService
We implemented a multimodal SMS sending example,

which already had implementation in X+V5. We were able
to realize same features in 72 lines of code (2.3 KB),
whereas the X+V implementation takes 261 lines includ-
ing grammars (9.3 KB), which are generated automatically
in XFormsMM. In X+V, the UI has to be partially defined
twice, i.e., for both modalities separately. In addition, the
X+V implementation requires a lot of scripts.

We have also extended the original example. First,
we added possibility to edit messages in visual modality
through keyboard. Second, the application automatically
calculates and represents the number of characters left for a
message. It also alerts the user when the number of charac-
ters exceeds the maximum. Screenshot of the SMS sending
example is shown in Figure 5.

7.2 Multimodal Car Rental
The second use case is a more realistic car rental Web

user interface. The graphical user interface of the system
is shown in Figure 5. The form is divided to several pages
through xforms:switch element. There are different input
types in the document. Pick up location, car model, and
transmission can be selected from a predefined list, dates
are calendar type inputs, and number of child seats must
be input as integers. Finally, there are triggers to submit
and navigate the document. A possible voice-only dialog
between the system and the user is shown below. Note that
at any point, the user might use the pointing device to focus
or interact in the visual modality, which would also affect
the speech dialog flow accordingly.

System: 1. When to pickup and return the car. Pickup Date.
Return Date. Number of days. Next. Back.
User: return date
System: Return Date October 12, 2005. Select a date.
User: august nineteen
System: Alert: The return date must be after the pickup date!
Return Date : August 19, 2005. Select a date.
User: october nineteen

5X+V-based SMS sending, http://www-
128.ibm.com/developerworks/wireless/library/wi-
send.html

System: Return Date October 19, 2005. Select a date.
User: back
System: Back. 1. When to pickup and return the car. Pickup
Date. Return Date. Number of days. Next. Back.
User: next
System: Next. 2. Location of pickup and return.. City. Next.
Back.
User: next
System: Next. 3. Select the car model.. Car. Transmission.
Next. Back.
User: transmission
System: Transmission .Automatic. Select from: ”Automatic”,
”Manual”, ”Semi-automatic”
User: manual
System: Transmission . You selected: Manual
3. Select the car model.. Car. Transmission. Next. Back.
User: next
System: Next. 4. Optional extra selections.. Child seats. Lug-
gage Racks. Next. Back.
User: next
System: Next. 5. Check your reservation.
Pickup Date October 12, 2005, Return Date October 19, 2005
Number of days 6
The car model Ford T, Transmission Manual
Rate 1194 euros
Confirm. Cancel. Back
User: confirm
System: Confirm. Thank for your reservation!

Figure 5: Screenshots of the use cases.

8. COMPARING XFORMSMM TO OTHER
APPROACHES

We compared our approach, XFormsMM, with two other
approaches, X+V and SALT. The W3C Multimodal Interac-
tion Requirements are used as the criteria [10]. This section
lists only those requirements, which are fullfilled differently
by the approaches.

8.1 GeneralRequirements
Supplementary and complementary use of different modal-

ities: XFormsMM is clearly better at supplementary inter-
action, since all interaction is always automatically available
in both modalities, and the user can, at any point, switch
between the modalities. On the other hand, complementary
interaction is possible with all three.

Seamless synchronization of modalities: XFormsMM en-
abled seamless synchronization between the modalities, but
only at the field-level. Both SALT and X+V allow synchro-
nization at all levels, but they require scripting.

In both Multilingual support and Accessibility,
XFormsMM has clear benefits over the others. Every
label can be easily internationalized (@ref on labels), and
accessibility is one of the benefits of XForms over XHTML
(labels for all form controls, specific elements for help, hint,
and alert).

In Easy to implement, there are big differences. Ease-
of-authoring is best in XFormsMM, where only single UI
definition is required, compared to authoring both aural and
visual parts in SALT or X+V. On the other hand, Ease-of-
use, when using only aural modality, is better in SALT and
X+V, since their aural expressive power is greater.

The Delivery and context requirement is not very well met
by any of the languages. There might be additional tools on
top of any of the languages, which would transform the doc-
ument based on the context. For this approach to be success-
ful, the abstraction level should be high. XFormsMM has
the highest abstraction level, X+V the second highest, while
SALT has the lowest abstraction level. For non-automatic
(i.e., authored) approaches, a solution would be a set of
DOM events to notify about context changes.

For Navigation specification, all specifications support
navindex, or similar for the visual part. For the aural modal-
ity, SALT and X+V support very detailed navigation spec-
ification, while XFormsMM counts on single definition with
navindex, grouping, and modality-dependent CSS.

8.2 Input Modality Requirements
In Input processing, X+V and SALT both rely on

modality-dependent strategies, such as voice grammars. In
XFormsMM, cross-modality definitions, such as data and
input types are used. This means, that the author has
more control on input processing in X+V and SALT, but
XFormsMM is much easier to author and maintain. Se-
quential multimodal input is supported by all of the three
languages. Simultaneous multimodal input and Composite
multimodal input are also supported, but X+V and SALT
provide more author control, while similar effects can be
achieved with modality-dependent CSS in XFormsMM. Se-
mantics of input is best provided by XFormsMM, with data-
and input types. Also Coordinated constraints is best pro-
vided by XFormsMM, by sharing a single structured data-
model (along with declarative constraints and calculations)
between modalities.

8.3 Output Media Requirements
All three languages meet output media requirements sim-

ilarly, although SALT provides best synchronization of out-
put events by the use of a special Prompt Queue.

8.4 Ar chitecture, Integration and Synchro-
nization Points

Since we focus on client-side implementation, some of the
requirements, such as Distributed processing are not taken
into account. From this set of requirements, we found only
two, which differ between the languages. First, Separation
of data model, presentation layer and application logic, is
properly supported only by XFormsMM. Synchronization
granularities is best supported by SALT and X+V, since
XFormsMM only supports field- and event level synchro-
nization.

9. DISCUSSIONAND FUTURE WORK
During the study, it became obvious that XForms has

clear advantages over XHTML forms in multimodal applica-
tion authoring. The main advantages of XForms are strong
datatyping, better accessibility, and less reliance on script-
ing. The better accessibility is due to the higher semantic
level of the elements. For instance, alert, hint and mes-
sage provide more information compared to generic script,
which modifies the document through the DOM API, and
mandatory label on groups and form controls is better than
a heuristic search of possible label. Similarly, datatypes can
be utilized very well to generate speech grammars. Also,
XForms supports dynamic changes in the UI based on user
input. This means that the same instance of the form can
stay at the client longer, thus retaining the speech focus
point.

We also noticed that creating a usable speech UI requires
grouping of the UI elements. That is, the UI elements
must be divided into the groups in order to reduce possible
choices, from which user can select at a time. The finding
is equivalent to the one represented by Nichols et al. [13].

The weakness of using pure XForms to describe multi-
modal interfaces, is that the exact behavior of voice dialogs
is left to the interaction manager. More work is required to
study the possibility of creating shortcuts in the navigation
sequence. Also, some author control of speech input and
output is needed. A promising approach is to use sXBL [7]
to bind in VoiceXML constructs to create aural-only subdi-
alogs. CSS Voice [16] might also need to be extended to be
able to describe better the aural semantics of the UI group-
ing, and to dynamically control, which elements are included
in the aurally focusable elements list at a given time.

The current implementation could be improved and ex-
tended. More widget types and a more complete datatype
support should be added. More research is needed to verify
the usability of the proposed speech navigation and compare
it to different approaches. Also, currently the implementa-
tion handles only XForms, and support for XHTML should
be added.

10. CONCLUSIONS
Enabling the Web user interface authors to write multi-

modal Web applications is a current problem. Today’s web
technologies make applications usable only with one modal-
ity at the time (e.g., HTML and VoiceXML). We have pro-
posed a novel approach, called XFormsMM, for authoring
multimodal applications. It uses XForms as the UI descrip-
tion language, and enables the multimodal use of the appli-
cations, focusing on the simultaneous use of GUI and speech.

There are several accessibility features in XForms, which
are of use when creating multimodal UIs. The main advan-
tages of XForms are strong datatyping, better accessibility,
and less reliance on scripting.

W3C Multimodal Interaction Requirements were used to
evaluate our proposal against two other approaches, X+V
and SALT. The main difference is the semantic level, which
is higher in XFormsMM. This results in better ease-of-
authoring, since only one UI description needs to be written.
Also, synchronization between the modalities is automatic
in XFormsMM, and scripting is not required for most user
interfaces.

XFormsMM has a built-in interaction manager, which

provides navigation and form filling in different modali-
ties. It also provides automatic synchronization between the
modalities. The interaction manager suits most use cases
and simplifies the authoring of the user interfaces drastically.
In the other approaches, the interaction manager needs to
be re-programmed by the author for each application.

On the other hand, our proposal has less control over
the voice modality and synchronization granularity. Use of
modality-dependent stylesheets in XFormsMM is good way
of providing complementary use of different modalities.

As a conclusion, XFormsMM best fits usage scenarios,
where the author does not know which modalities for input
and output are present. The user can freely choose between
any of them. On the other hand, in scenarios where the
author needs a complete control on modality switches, the
proposed solution is not optimal.

We have presented an implementation of XFormsMM,
which is now part of the open-source X-Smiles XML browser.
Also, in the paper, two use cases were developed to demon-
strate the functionality of the implementation. The first one
is a multimodal short message service, which required less
than third of the code lines, compared to a similar applica-
tion written in X+V. The second use case is a wizard-type
of car rental Web interface. Both demonstrate input and
output of several datatypes and complex navigation within
a form.

11. ACKNOWLEDGMENTS
The authors would like to thank Dr. Pablo Cesar for in-

depth comments about this paper. Also, we would like to
thank Alessandro Cogliati, the developer of the CSS engine,
and Petri Vuorimaa, the leader of the research group. The
author Mikko Pohja would like to thank Nokia Foundation
for providing support during the research.

12. REFERENCES
[1] J. Axelsson, C. Cross, J. Ferrans, G. McCobb, T. V.

Raman, and L. Wilson. XHTML+Voice Profile 1.2.
Technical report, March 2004. Available online
http://www.voicexml.org/specs/multimodal/x+v/12/.

[2] S. E. Brennan and E. A. Hulteen. Interaction and
feedback in a spoken language system: a theoretical
framework. Knowledge-Based Systems, 8(2):143–151,
1995.

[3] R. Cardone, D. Soroker, and A. Tiwari. Using XForms
to simplify web programming. In WWW ’05:
Proceedings of the 14th international conference on
World Wide Web, pages 215–224, New York, NY,
USA, 2005. ACM Press.

[4] P. Cohen, M. Johnston, D. McGee, and S. Oviatt. The
efficiency of multimodal interaction: A case study. In
Proceedings of the International Conference on Spoken
Language Processing, pages 249–252. IEEE, 1998.

[5] P. R. Cohen. The role of natural language in a
multimodal interface. In UIST ’92: Proceedings of the
5th annual ACM symposium on User interface
software and technology, pages 143–149, New York,
NY, USA, 1992. ACM Press.

[6] M. Dubinko, L. L. Klotz, R. Merrick, and T. V.
Raman. XForms 1.0. W3C Recommendation, 2003.

[7] J. Ferraiolo, I. Hickson, and D. Hyatt. SVG’s XML
binding language (sXBL). W3C working draft, W3C,

September 2004. Available at
http://www.w3.org/TR/sXBL/.

[8] M. Honkala and P. Vuorimaa. A configurable XForms
implementation. In Proceedings of the IEEE Sixth
International Symposium on Multimedia Software
Engineering (ISMSE’04). IEEE, 2004.

[9] H. Jahankhani, J. A. Lynch, and J. Stephenson. The
Current Legislation Covering E-learning Provisions for
the Visually Impaired in the EU. In EurAsia-ICT ’02:
Proceedings of the First EurAsian Conference on
Information and Communication Technology, pages
552–559, London, UK, 2002. Springer-Verlag.

[10] S. H. Maes and V. S. (eds.). Multimodal interaction
requirements. W3C NOTE, 2003.

[11] G. L. Martin. The utility of speech input in
user-computer interfaces. Int. J. Man-Mach. Stud.,
30(4):355–375, 1989.

[12] S. McGlashan and et al. Voice Extensible Markup
Language (VoiceXML) Version 2.0. W3C
recommendation, W3C, March 2004.

[13] J. Nichols, B. Myers, T. Harris, R. Rosenfeld,
S. Shriver, M. Higgins, and J. Hughes. Requirements
for automatically generating multi-modal interfaces
for complex appliances. In ICMI ’02: Proceedings of
the 4th IEEE International Conference on Multimodal
Interfaces, page 377, Washington, DC, USA, 2002.
IEEE Computer Society.

[14] M. Pohja and P. Vuorimaa. CSS Layout Engine for
Compound Documents. In Proceedings of the Third
Latin American Web Congress, pages 148–157, Buenos
Aires, Argentina, October 2005. IEEE.

[15] D. Raggett and M. Froumentin. CSS Extensions for
Multimodal Interaction. WWW page, 2004. Available
online http://www.w3.org/2004/10/css-mmi/.

[16] D. Raggett and D. Glazman. CSS3 speech module.
W3C working draft, W3C, July 2004.

[17] T. Raman. XML Powered Web Forms.
Addison-Wesley, 1st edition, 2003.

[18] B. Shneiderman. Designing the user interface:
strategies for effective human-computer interaction.
Addison-Wesley, 2nd edition, 1992.

[19] R. Simon, F. Wegscheider, and K. Tolar.
Tool-supported single authoring for device
independence and multimodality. In MobileHCI ’05:
Proceedings of the 7th international conference on
Human computer interaction with mobile devices &
services, pages 91–98, New York, NY, USA, 2005.
ACM Press.

[20] S. Trewin, G. Zimmermann, and G. Vanderheiden.
Abstract user interface representations: how well do
they support universal access? In CUU ’03:
Proceedings of the 2003 conference on Universal
usability, pages 77–84. ACM Press, 2003.

[21] P. Vuorimaa, T. Ropponen, N. von Knorring, and
M. Honkala. A Java based XML browser for consumer
devices. In The 17th ACM Symposium on Applied
Computing, Madrid, Spain, March 2002.

[22] K. Wang. Salt: A spoken language interface for
web-based multimodal dialog systems. In Proceedings
of the 7th International Conference on Spoken
Language Processing (ICSLP’02), 2002.

