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Chapter 1

Introduction

1.1 Turbulence

In nature, laminar flows are rather an exception, and most of the interesting flows
in engineering applications are turbulent. Turbulent flow is three-dimensional,
time-dependent, has large Reynolds number, includes a wide range of both time
and length scales, and it is diffusive and dissipative (Tennekes and Lumley 1972).
Especially the diffusive nature of turbulence is important in engineering applica-
tions since in a turbulent flow, momentum, energy, heat, and particles, etc. are
mixed effectively, which is seen, for example, in increased drag or enhanced chem-
ical reactions. From the point of view of numerical simulations, the existence of a
wide range of characteristic length and time scales is crucial, since for a successful
simulation one should be able to capture all these scales.

It follows from the classical theory of Kolmogorov that the length scales describ-
ing the eddies in a turbulent flow can be divided into three classes (Pope 2000).
The largest scales are of the same size as the characteristic length scales of the
geometry, and they depend on external properties of the flow. These scales also
contain most of the energy. The size of the smallest scales, or the Kolmogorov
scales, is determined by viscosity and by the dissipation rate. In these scales,
kinetic energy is dissipated into heat, and the related local Reynolds number is
of the order of unity. Between the largest and smallest length scales, there is
a range of scales which is characterised by a large local Reynolds number, and
the scales are independent of viscosity. At the same time, they are independent
of external properties of the flow. These intermediate scales or inertial range
of scales depend only on the dissipation rate. According to the theory of Kol-
mogorov, the intermediate and the Kolmogorov scales are universal, i.e. they
are similar in all flows. The three ranges of length scales are illustrated in Fig-
ure 1.1 with an energy spectrum, which is plotted on a logarithmic scale as a
function of wavenumber. Wavenumber is inversely proportional to wavelength or
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to the characteristic length scale of an eddy. The largest scales correspond to the
smallest wavenumbers and vice versa. Also the energy cascade process, which
was introduced by Richardson (Pope 2000), is illustrated in the figure. Energy is
mainly produced at the largest scales, and it is transfered via the inertial range
to the Kolmogorov scales where it is dissipated into heat. Dissipation takes place
mainly at the smallest scales. The energy transfer from the large scales to inertial
range is equal to the energy transferred from the inertial range to the Kolmogorov
scales and further into heat. This property is taken advantage of in large eddy
simulation of turbulent flows where the effect of the smallest scales on the large
ones is often modelled as dissipation (Sagaut 2001).

: |
| Production | ransfer of energy

| to smaller scales

N

Inertial range

|
|
L |
Large |
| energy—containing
scales : Dissipation

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

log(E)

Small
dissipative
scales

log(K)

Figure 1.1: Kinetic energy cascade from large turbulent eddy scales to small scales.
Vertical axis: logarithm of turbulent kinetic energy. Horizontal axis: logarithm of
wavenumber, k o inverse of length scale.

1.2 On Numerical Simulation of Turbulent Flows

The numerical simulations of turbulent flows are based on solving a set of non-
linear partial differential equations. These equations consist of a continuity equa-
tion which simply states that mass is conserved, Navier-Stokes equations or
momentum-balance equations which can be derived from Newton’s second law
of motion and, in the case of compressible flow, an energy equation (see e.g.
Pope (2000)). In addition, some constitutive relations, like ideal gas law, may
be required. In the momentum and energy equations, there are so-called convec-
tive terms which are non-linear. This non-linearity makes it impossible to solve



1.2 On Numerical Simulation of Turbulent Flows 19

the equations analytically in a general turbulent flow, and also obtaining numer-
ical solutions becomes difficult. This work concentrates on the numerical error
involved in one simulation approach, the large eddy simulation, and the main
problem is caused by the non-linear terms.

Direct numerical simulation (DNS) means numerical integration of the governing
equations of a fluid flow with such methods that the numerical error is negligible
and all the essential length and time scales of the flow field are captured. The fea-
tures of turbulence, like time-dependency, three-dimensionality and a wide range
of length and time scales make it a very challenging task. The smallest scales in
a turbulent flow field cannot be ignored since, owing to the non-linear nature of
turbulence, they affect the main flow and thus, in a numerical simulation, one
has to be able to capture all scales present. It can be shown that the required
computer capacity behaves as & (Re3) with the Reynolds number (Tennekes and
Lumley 1972).

While DNS is not a feasible brute-force method for engineering problems, it is,
however, a powerful research tool. From simulation results, almost any desired
quantity can be evaluated, and once the numerical simulation has succeeded, the
flow case can be studied more carefully than possible experimentally. In addition,
DNS is not limited by physical constrains like measurements. DNS can also
be applied to “thought experiments”, which are usually performed by physicists
(Moin and Mahesh 1998, Jiménez 2003). Other applications of DNS include, for
example, the study of the physics of turbulence, active flow control and validation
of computational models. A thorough review of different applications of DNS is
provided by Moin and Mahesh (1998). In this thesis, DNS is applied to a priori
and a posteriori testing of numerical simulations and to validation of simulation
results.

Since DNS requires such large computer capacities, also other simulation methods
are required. In large-eddy simulation (LES), the flow field is divided into resolved
and unresolved scales. The former are solved from the governing equations and
the effect of the latter is modelled (see e.g. Sagaut (2001)). The equations which
are used to describe a flow field in LES are formally obtained from the Navier—
Stokes equations using a filtering procedure, and the resulting equations together
with a model for the unresolved scales are solved on a discrete computational
grid. The cutoff wavenumber, which divides the length scales into resolved and
unresolved scales, should be located in the inertial range of Figure 1.1, and the
unresolved scales should be universal scales having large wavenumbers.

Using explicit filtering in a simulation means that a filtering procedure with a
low-pass filter is explicitly applied to the resolved flow field during the simulation.
This divides the flow field into resolved scales, subfilter scales and subgrid scales
(Carati, Winckelmans and Jeanmart 2001, Gullbrand and Chow 2003). Subfilter-
scales (SFS) are smaller than the applied filter width but larger that the grid
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resolution. An SFS model is applied to reconstruct these scales from the resolved
flow field (Gullbrand and Chow 2003). Subgrid scales (SGS) are smaller than the
grid spacing and an SGS model is applied to model their effect. In traditional
LES, no explicit filtering is applied, and the grid resolution defines the separation
between resolved and SGS scales. The damping introduced to the flow field is a
combination of the reduction on a discrete grid and SGS modelling. This approach
is often referred to as implicit filtering. In most practical simulations, this concept
of implicit filtering is applied, and a Smagorinsky model (Smagorinsky 1963) or
its dynamic version (Germano, Piomelli, Moin and Cabot 1991) is applied.

In engineering applications of computational fluid dynamics (CFD), Reynolds-
Averaged Navier—Stokes (RANS) simulations have been the traditional approach.
In RANS, an average flow field is solved, and the effect of turbulence is modelled.
Although RANS performs well in cases with attached boundary layers, LES is
superior in cases with large-scale time-dependent structures like in massively sep-
arated flows. LES is becoming a more and more popular approach in engineer-
ing applications, and e.g. in CFD conferences arranged by European Congress
on Computational Methods in Applied Sciences and Engineering (ECCOMAS),
more applied studies are performed with LES than with RANS. As discussed in
the next section, numerical methods and the effect of numerical error can have
a large effect in LES. In LES, their role is more pronounced than in RANS. As
LES is becoming a more popular approach also in engineering applications, there
is also a growing need for analysing the quality of the results and the effect of
numerics on the simulation results.

1.3 Previous Research

In a simulation with no turbulence modelling, the error is due to numerics and
it can be controlled by applying a fine computational grid. When the grid is
refined, it will finally be able to describe all the length scales present in the flow
field and the simulation becomes DNS. In LES, the concept is not as clear. Since
the idea is to model the effect of the subgrid motion on the larger scales, there are
dynamically important scales in the flow field that are of the same size as the grid
spacing. Usually, when LES is applied in complex geometries, finite-difference-
type schemes are applied. However, especially with low-order, i.e. second or
fourth-order finite-difference schemes, the effect of numerical error becomes more
pronounced than in spectral methods. There are not as many grid points for the
description of the small-wavelength components as for the high-wavelength com-
ponents, and thus, the smallest motions present in the solution are most badly
affected by the numerical error. When the frequency components of the resolved
flow field are studied, spectral methods treat all the frequency components in the
same manner. However, finite-difference-type schemes introduce so-called modi-
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fied wavenumbers and they produce accurately only the small-frequency compo-
nents and damp the high-frequency components (see e.g. Kravchenko and Moin
(1997)). When the grid resolution is increased in a simulation with no explicit
filtering, the numerical error related to the resolved scales of the coarser grid di-
minishes, but at the same time, there will be new small scales present, and these
scales are again contaminated by numerical error. In addition, the effect of the
SGS model will diminish with increased resolution. Thus, even after grid refine-
ment, the dominance of the SGS model over the numerical error is not necessarily
clear.

The numerical error involved with low-order finite-difference schemes has been
studied a priori by using both actual finite-difference methods (Vreman, Geurts
and Kuerten 1994a, Vreman, Geurts and Kuerten 1995, Majander and Siikonen
2002) and spectral schemes with modified wavenumbers, which mimic the be-
haviour of the difference scheme, (Ghosal 1996, Kravchenko and Moin 1997, Chow
and Moin 2003). In a priori tests, the numerical error and the SGS term of an
LES grid are calculated from DNS data. The DNS data are filtered and re-
stricted on a coarser grid and the derivatives evaluated there represent an LES
result. This result is then compared to the derivatives evaluated on the DNS
grid, which represents the exact solution. In all these studies, it was noticed that
the numerical error involved with the low-order finite-difference scheme can be
larger than the effect of the SGS model. Applying high-order methods would
improve the situation, but as the truncation error is reduced, aliasing error may
become a problem (Kravchenko and Moin 1997). In the above mentioned a priori
studies, explicit filtering was noticed to decrease the numerical error (Vreman
et al. 19944, Ghosal 1996), and they recommended using an explicit filter with a
filter width four times the grid spacing when a second-order scheme is applied.

Explicit filtering has also been applied in actual LES. Lund and Kaltenbach (1995)
applied explicit filtering in a simulation of a fully developed turbulent channel
flow between two infinite parallel walls. They filtered the velocity field in the
streamwise and spanwise directions using the spectral cutoff filter. This filter is
applied in the spectral space and it is sharp, i.e. multiple filtering does not affect
the resolved flow field. To keep the effective grid resolution constant, Lund and
Kaltenbach increased the grid resolution as the filtering was applied. They noticed
that the filtering improved the simulation results, but it was computationally
quite demanding. It was easier to obtain improved simulation results by increasing
the grid resolution than by filtering.

In practical applications of LES, increasing the grid resolution or transformation
into the spectral space is not possible owing to limited computer capacity and
complex geometries, respectively. Thus, filtering has to be performed in the
physical space. However, the filters applied in the physical space are smooth in
the spectral space and multiple filtering of the flow field produces extra damping
to all frequency components of the resolved flow field. Lund (1997) suggested
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that, when smooth filters are applied, filtering should be performed only for the
non-linear convection term of the Navier—Stokes equations.

Gullbrand studied the use of explicit filtering of the non-linear convection term
with different SGS models and a fourth-order scheme in several publications
(Gullbrand 2001, Gullbrand 2002, Gullbrand and Chow 2003). As a test case,
she used turbulent channel flow. She concluded that explicit filtering improved
the simulation results when compared to the traditional implicit filtering and
that when explicit filtering was applied, the contribution from the SGS model
increased (Gullbrand 2001). In addition, she found that in simulations with ex-
plicit filtering, the use a SF'S model for scales smaller than filter width and larger
than grid spacing improved the results when compared to using the dynamic
Smagorinsky model (Gullbrand 2002). Amiri, Hannani and Mashayek (2005) ap-
plied explicit filtering also in the channel flow but at a lower Reynolds number
with a compact fourth-order scheme and the dynamic Smagorinsky model. They
obtained somewhat improved results when compared to the simulations with no
filtering. However, in all actual applications of explicit filtering, the improvement
of the simulation results was not as large as could be expected based on the a pri-
ori tests. There are also alternative approaches to explicit filtering, and we will
discuss some of them in the next chapter.

In a priori tests, the interaction of numerics and SGS modelling is unclear. Most
SGS models are dissipative and they smooth out the resolved LES field, thus
affecting the numerical error. It is difficult to include this phenomenon in a priori
testing. In a posteriori tests, actual LES results are compared to DNS and to
so-called grid-independent LES or fine-grid LES to separate the effect of the
numerical and modelling error. Vreman, Geurts and Kuerten (1996) studied
different numerical methods, second and fourth-order and a spectral scheme, in
a turbulent mixing layer using a dynamic mixed model and found that the effect
of the numerical and modelling errors can be of different sign, and thus they
can partially cancel out each other. In addition, they noticed that also in the
actual simulation, the numerical error was larger than the modelling error if the
filter width was equal to the grid spacing and the situation was reversed when
a filter with the width of two grid spacings was applied. Geurts and Frohlich
(2002) proposed a method for predicting the error components, where different
combinations of grid resolutions and filter widths are characterised by quantities
named as SGS resolution and SGS activity. Geurts and Frohlich (2002) and
Meyers, Geurts and Baelmans (2003) applied this approach with the standard
Smagorinsky model in a turbulent mixing layer and in homogeneous turbulence,
respectively. In both studies, the numerical error of a fourth-order scheme and
the modelling error related to the standard Smagorinsky model were of the same
size and they partially cancelled out each other, as in the study of Vreman et al.
(1996).

Grid-independent or fine-grid LES means an LES simulation where the grid res-
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olution is increased to a level where the effect of numerics is negligible while the
effect of the SGS model is preserved. Thus, the effect of the SGS model is not
decreased with increasing resolution. There are different approaches to obtain
grid-independent LES and to analyse the error components of LES. An approach
using explicit filtering was applied in the a posteriori tests of Vreman et al. (1996)
and in the studies involving the behaviour of different SGS models of Gullbrand
(2002). They kept the absolute width of the explicit filter constant while increas-
ing the grid resolution. This means that the frequency content of the resolved
flow field is controlled explicitly by applying a low-pass filter that removes the
high-frequency components. Geurts and Frohlich (2002) and Meyers et al. (2003)
applied implicit filtering provided by the standard Smagorinsky model, and the
grid-independent LES was approached by increasing the grid resolution while
keeping the model length scale constant. The model length scale is a parame-
ter controlling the size of the smallest resolved length scales. In this approach,
the LES equations are interpreted as a set of equations with one externally de-
fined parameter, the model length scale. Traditionally, the model length scale
is a priori tied to the grid resolution. In addition, there are methods for qual-
ity assessment of LES which do not require DNS data or grid-independent LES
(Klein 2005, Celik, Cehreli and Yavuz 2005). These methods are based on the
Richardson extrapolation. It has been suggested that 80 per cent of the energy
should be resolved in LES (Pope 2000), and Celik, Cehreli and Yavuz (2005) pro-
posed an index of resolution quality for LES, which is based on approximating the
resolved turbulent kinetic energy using Richardson extrapolation. Klein (2005)
applied the Richardson extrapolation to evaluate the numerical and modelling
error in LES, and he strongly criticises the use of the concept of grid-independent
LES.

1.4 Formulation of Present Research Problems

The present thesis work concentrates on error analysis of LES and on explicit
and implicit filtering. The test case applied is fully developed turbulent channel
flow between two infinite parallel walls. An incompressible case at a relatively
low Reynolds number, where accurate DNS is possible, is chosen. The research
is divided into three parts: First, a priori studies are performed, then filtering is
applied in actual simulations and finally, a posteriori tests are performed and the
different error analysing methods are compared.

In the previous a priori studies described above, explicit filtering of the whole
velocity field was studied, while in actual simulations, filtering of the non-linear
convection term has been applied. In the a priori tests of this thesis, the filtering
of the non-linear convection term is studied and the differences between the two
approaches are first analysed a priori. After the a priori tests, filtering is applied
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to actual LES. As described above, the previous studies where explicit filtering
was applied in actual simulations concentrated mainly on SGS and SF'S modelling.
Here, besides testing the hypothesis based on the a priori tests, the aim is to find
out how the choice of the filter function and model parameters affect the total
simulation error and what the pure effect of filtering is when compared to SGS
modelling. In addition, results obtained using explicit filtering are compared to
simulations with implicit filtering, and the differences between these approaches
are described. In this thesis, Smagorinsky-type and scale-similarity SGS and SF'S
models are applied to study explicit filtering. These models were chosen because
they are not computationally too heavy, and the aims of the work are not related
to improved modelling but rather to a fundamental study on explicit filtering. On
the other hand, the use of more advanced models, like a dynamic mixed model
and a reconstruction model, has already been studied in the context of explicit
filtering by Gullbrand (2002).

Both implicit and explicit filtering are applied in the present a posteriori tests and
in addition, the use of the Richardson extrapolation in LES is studied. The aims
are to quantify the numerical and modelling error as well as the effect of filtering,
to explain the behaviour of simulation results by the two error components and to
compare the different approaches to obtaining the errors. A comparison between
these three approaches has not been previously presented and in addition, the
approach to a posteriori testing using implicit filtering has not been applied in a
wall-bounded flow before.

In this thesis, it is shown that according to a priori tests, filtering of the whole
velocity field leads to an unphysical situation, while filtering of the nonlinear con-
vection term decreases the numerical error effectively. However, when comparing
these results to the actual simulations, it is noticed that the numerical error pre-
dicted by a priori tests for the second-order methods is too pessimistic at least
when the standard Smagorinsky model is applied. In a posteriori studies, the
numerical and modelling errors are estimated and it is demonstrated that their
magnitude can be of the same size, which has been noticed also in other test cases
in previous studies. In addition, the use of explicit filtering with smooth filters
is studied and it is shown in both actual simulations and in a posteriori studies
that this approach can introduce a large additional error component.

The contents of the thesis is organised as follows. A description of the applied
numerical and modelling methods is given in Chapter 2. In Chapters 3, 4 and 5,
the results a priori studies, simulations with explicit and implicit filtering and
a posteriori tests are presented, respectively. The conclusions are drawn in the
last chapter.

The results of the a priori studies in Chapter 3 were published in Brandt (2006q)
and they also formed the main part of the author’s licentiate thesis (Brandt 2004).
The results of simulations with explicit and implicit filtering in Chapter 4 were
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published in Brandt (2006b) and Brandt (2006d). The results of the a posteriori
tests obtained using implicit and explicit filtering were published in Brandt (2007)
and Brandt (2006¢), respectively, and the study on the Richardson extrapolation
in Brandt (2006¢€).
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Chapter 2

Applied Models and Numerical
Methods

In Section 2.1, we briefly review the equations being solved in direct numerical
simulation (DNS) and large eddy simulation (LES) and discuss the subgrid-scale
(SGS) model applied in LES in this thesis. One of the focuses of this thesis is
explicit filtering in LES, and the filter functions and the different approaches to
explicit filtering are discussed in Section 2.2. The numerical implementation of
the applied methods is discussed in Section 2.3, and a grid-convergence study
with no SGS modelling is presented in Section 2.4.

2.1 Equations Being Solved in LES

2.1.1 Equations Describing the Flow of an Incompressible
Fluid

In the case of an incompressible flow, the continuity equation and Navier—Stokes
equations may be written in a non-dimensional form as

Ouj _
8—% =0 (2.1)
ot O + O0z; ( ity Re, (8@- + 8@-))’ (2:2)

where u; (i = 1,2, 3) is the non-dimensional velocity component in the ith coordi-
nate direction, p is the non-dimensional pressure and Re, is the Reynolds number
based on the friction velocity. This thesis concentrates on the fully developed tur-
bulent channel flow between two parallel walls, and the reference scales are thus
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chosen to be appropriate for this flow case. We scale the equations by channel
half-height, h/2, and by friction velocity, u,, and the Reynolds number is here
defined as

uh/2

v

Re, = (2.3)

where v kinematic viscosity. Hereafter, u; refers to velocity field scaled by the
friction velocity, u,, x; to a coordinate scaled by the channel half-height, ¢ to time
scaled by h/u, and p to pressure scaled by pu?, where p is the density. Friction
velocity is defined via wall-shear stress, 7,,, as

Ur = 4 —. (2.4)
p

In large eddy simulation (LES), the idea is to solve only the largest scales of
motion and to model the effect of the smaller scales. The equations being solved
are formally derived by applying a low-pass filter to the continuity and Navier—
Stokes equations (2.1 and 2.2). This filter separates the large and small scales. A
one-dimensional filtering operation for the velocity field is defined in the physical
space as

u; (r) = /G(:E—&,Af,x) w; () dE, (2.5)

where Ay is the filter width, x and { are spatial coordinates and G is the filter
function. Extending the filtering to three dimensions is straightforward. The
obtained equations may be written as

ou;  _

o, 0 (2.6)
o, op 0 o 1 (9u;  Ouy

ot ox; + Ox; < titly = Tij + Re, <8xj + 8:1:1)) (2.7)

where 4; is the resolved velocity component and 7;; is a subgrid-scale (SGS) stress
defined as

Tij = Wiy — U;l;. (2.8)
7;; stress appears in the equations from the filtering of the non-linear convection
term u,;u;. It cannot be determined using only the resolved flow field @;, and thus
it requires modelling. The subgrid-scale models applied for modelling of 7;; in this
thesis are discussed in Subsection 2.1.2. Often when finite-volume-type schemes
are applied, implicit filtering concept is applied and filtering is present only in
the derivation of the equations, and not in the actual implementation. If explicit
filtering is applied during the simulation, the form of the equations changes, and
often a subfilter scale is applied to model the effect of scales that are smaller than
the filter width but larger than the grid spacing. This is discussed in more detail
in Section 2.2.
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In the channel flow, there are two homogeneous directions, the streamwise and
the spanwise. In these directions, periodic boundary conditions are applied. The
no-slip condition is forced on the top and bottom walls. In the applied coordinate
system, the x-axis points in the streamwise direction, the z-axis in the spanwise
and the y-axis in the wall-normal direction. Correspondingly, the streamwise
velocity component wu; is referred to as u, the wall-normal component uy as v,
and the spanwise component ug as w.

2.1.2 Applied Subgrid-Scale Models

Smagorinsky Model

The models that work in physical space are very often based on the eddy-viscosity
concept, which assumes that the energy transfer mechanism from the resolved
scales to the subgrid scales is analogous to the molecular mechanism represented
by the diffusion term. The subgrid-scale shear stress is written using the Boussi-
nesq approximation as

1 s
Tij — ngk@‘j = —2vrSiyj, (2.9)

where vr is the eddy viscosity and 5,-]- is the resolved shear-stress tensor

. 10w Ou;
Si=3 (axj + &EJ : (2.10)

Since the trace of Sij is zero, only the deviatoric part of the subgrid-scale stress
can by modelled using the eddy-viscosity concept. The trace of 7;; is included in
the pressure term as

1
H:]a—Fngk. (211)

Eddy-viscosity models can be based on resolved scales, on energy at the cutoff
wavenumber, which should be located in the area of intermediate scales in Fig-
ure 1.1, or on a reconstruction of the subgrid scales (Sagaut 2001). The first
alternative is the simplest one. The existence of the subgrid scales then follows
from the structure of the resolved field. Eddy viscosity is assumed to be a func-
tion of the characteristic length scale of the subgrid scales, Ag, and of the energy
flux through the cutoff, €:

Up = Ur (As, g) . (212)

If one makes an assumption of local equilibrium, i.e. the production of turbulent
kinetic energy, &, equals the energy transfer through the cutoff and further the
energy dissipated to heat, €, at the small scales as discussed in Chapter 1:

P=i=e (2.13)
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the following equation for the eddy viscosity can be obtained (Sagaut 2001):
vr = (CsAg)? |5, (2.14)

and Cj is the model parameter, which has to be fixed a priori. The Smagorinsky
model for SGS stress may now be written as

1 o
Tij - ngkéij = -2 (CSA5)2 ‘S‘ Sij (216)

where

This model was first proposed by Smagorinsky (1963) and it is the most commonly
used SGS model.

The usual choice for the length scale in the Smagorinsky model is to make it equal
to a representative grid spacing as

AS =A= (AxAyAz)1/3> (217)

where Az, Az and Ay refer to grid spacings in different coordinate directions.
There are also other possibilities like

1/2

Ag=A=(A2+A+A2)"". (2.18)

There is no universal value for the model parameter, but assuming isotropic tur-
bulence there are several ways to predict a value for it. These values are all close
to Cs ~ 0.2 (Sagaut 2001). Smagorinsky (1963) assumed the value of C's = 0.23.
However, in shear flows this value is usually adjusted. Deardorff (1970) used a
value of C's = 0.1 for channel flow and even smaller values have been applied.
Usually the values are between 0.08 and 0.11 (Najjar and Tafti 1996). However,
also the use of values close to Cs &~ 0.2 in the channel flow have been suggested
(Mason and Callen 1986). In the present study, the value Cs = 0.085 was used
because it was previously noticed that in the present code this value produces the
best results (Brethouwer 2002).

The product of the model coefficient and the model length scale, C'sAg, has been
shown to be the equivalent of the Kolmogorov dissipation length for the LES flow
generated by Equations (2.7) (Muschinski 1996) and thus, it controls the size of
the smallest resolved flow structures. Thus, actually varying either Cg or Ag
results in changing the dissipation or damping provided by the model. Increasing
the product C'sAg has also been called implicit filtering (e.g. Geurts and Frohlich
(2002)). In the present study, the model coefficient Cg is fixed and the model
length scale is varied.

In wall-bounded flows, the size of the smallest length scales of the flow field
reduces as the wall is approached, and thus it is necessary to reduce the model
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length scale and the length of the implicit filter provided by the model in the
near-wall region (Moin and Kim 1982). With the standard Smagorinsky model,
van Driest damping is usually applied to obtain

Cs = Cso (1 —exp (y*/25))°, (2.19)

where y* = Re,y is the distance from the wall in wall-coordinates and Cgq the
value of the model parameter in the bulk flow. However, there are other possibil-
ities. Ferziger and Peric (1999) suggests that by choosing a proper length scale,
the use of van Driest damping could be avoided. In the present study, the van
Driest damping is applied both in actual simulations and in a posteriori tests.

Besides the flow-dependent model coefficient, the Smagorinsky model has other
drawbacks. It predicts incorrect asymptotic behaviour in near-wall regions or in
laminar flows (Zang, Street and Koseff 1993). The use of wall functions improves
the behaviour near walls, but the model still yields non-zero SGS stresses in
laminar flows. It has also been found to overpredict dissipation in transitional
flows (Piomelli, Zang, Speziale and Hussaini 1990, Vreman, Geurts and Kuerten
1997). The Smagorinsky model is purely dissipative and it does not allow energy
backscatter from small scales to large scales. Because it is an eddy-viscosity
model, it assumes that SGS stresses are aligned with the strain-rate tensor. This
gave low correlations with the exact SGS stress in the a priori tests of Bardina,
Ferziger and Reynolds (1980) (see e.g. Ferziger (1996)).

Dynamic Smagorinsky Model

Germano et al. (1991) suggested a dynamic procedure for the calculation of the
parameter in the Smagorinsky model. A second filter, a test filter, that is wider
than the original filter applied to the governing equations, is used to define two
levels of stress tensors: subgrid scale and subtest scale. It is assumed that both
the SGS stress and subtest-scale stress can be modelled using the same functional
form of the Smagorinsky model.

Here, the test-filtered quantities are denoted by the overbar, w. This test filter-
ing is a different procedure from explicit filtering applied in deriving the LES
equations.

The dynamic procedure is described as follows. The SGS stress is defined as

Tij = u,-uj — ﬁﬂNL] (220)
and modelled using the Smagorinsky model as in Equation (2.16):

1 ~ ~ ~
Tij — ngk(Sz’j = —QVTSz'j = _20A2|S| Sij (2'21)
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The subtest-scale stress, .7;;, is defined as
Trj = witly — U; U (2.22)

and the Smagorinsky model is applied to it as

1 —~ T~
Zj - g%kém - _2CA%est S| Sij (223)
where A 18 the width of the test filter and
Sij = 3 (8:@ + 8@-) ) (2.24)

The subgrid-scale stress, 7;;, and subtest-scale stress, .7;;, can be related to each
other through the resolved turbulent stress and Germano identity (Germano
1992). The resolved turbulent stress, the Leonard stress, which represents the
energy scales between the grid filter and the test filter, is defined as

Lij = Uty — ; Uy (2.25)

and it can be written in the form (Germano identity)

L;; contains only the resolved scales and it can thus be evaluated from the resolved
flow field. If we substitute Equations (2.21) and (2.23) into Equation (2.26), we
obtain an equation where the only unknown is the parameter of the Smagorinsky

model C" 1 o
Li; — ngk(st = —2CAZ%_|S| Sy +2CA2|S| S (2.27)

If it is assumed that C' varies slowly enough to be removed from the filtering
operation, it could, in principle, be solved from Equation (2.27), but in the a priori
tests of Germano et al. (1991), it turned out that the right-hand side can be zero.
In addition, there are five independent equations in (2.27), and C' is thus over-
determined.

In the channel flow case, C' can be assumed to be a function of time and the wall-
normal direction only (C' = C'(t,y)), and it can be extracted from the filtering
operator. Germano et al. (1991) contracted Equation (2.27) with S;; and obtained
the equation

_1 <(Lml - %ka) 5ijgml>xz
2 A%ost<|§| gugm>xz - A2<|§| 5(mgivq):r:z

C = (2.28)

where (u),. denotes averaging over the planes parallel to the walls. Averaging is
performed to avoid the situations when the denominator becomes small or zero.
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Without averaging, there would also be some mathematical inconsistency in the
model. To remove C' from the filtering operator, one has to assume that it varies
slowly in the directions where filtering is performed. Without the averages in
Equation (2.28) C' would, however, vary strongly in space. Zang et al. (1993)
note that these fluctuations might be due to putting too much burden on the
parameter. The parameter is forced to be a scalar, although it actually is a
tensor.

Lilly (1992) criticised the contracting procedure leading to Equation (2.28) since
it ignores many other possible projections of Equation (2.27). In addition, the
physical meaning of the procedure is not obvious. Lilly (1992) suggested solving
Equation (2.27) in the least squares sense, which leads to (it is assumed C' =

C(t,y))

—_ W 2.2
S S VA VA (2.29)
where _ _
My = A2 |S]Spm — A?S|Sm. (2.30)

Equation (2.29) allows negative values for the constant C' and thus also the eddy
viscosity vr may obtain negative values. Negative eddy viscosity is usually in-
terpreted as energy backscatter from the subgrid scales to the resolved scales.
However, Sagaut (2001) notes that the backward energy transfer obtained using
this type of model is not based on the physical description of the process and it
should be taken with caution.

It has turned out that the eddy viscosity obtained by the dynamic Smagorinsky
model can have large negative values, which makes the simulation unstable. Usu-
ally, eddy viscosity is limited by the molecular viscosity, and values smaller than
v < —v are set equal to —v (Sagaut 2001). However, even if limitation is applied,
the dynamic Smagorinsky model has turned out to be unstable in some complex
flows, while the standard Smagorinsky model still provides enough dissipation to
keep the computation stable (Majander and Siikonen 2004).

In cases where there are homogeneous directions, as in the channel flow, the
numerator and denominator of Equation (2.29) are usually averaged over these
directions to obtain

_ 1 <LijMij>xz
which leads to the subgrid model
1 3O <L M, >:Ez =&
Tij — ngkéij = —2CA2|S| Sz'j = _—<M:;]\£fm mz A2|S| Sij =
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In Equation (2.32), only the ratio Ayt /A is required and thus, there is no problem
in determining the model length scale. A very typical choice is to use the value of
Atest /A = 2. However, the exact form of the discrete test filter affects the filter
width, and this should be taken into account (Lund 1997). The a priori study
and simulations of Piomelli, Moin and Ferziger (1988) with the standard version
of the model suggested that the spectral cutoff filter should be preferred to other
filters with the Smagorinsky model, and this was confirmed in simulations with
the dynamic model by Gullbrand (2001). In both studies, the channel flow was
used as the test case. Lund (1997) demonstrated that the choice of the test filter
does not affect the decay of turbulent kinetic energy. However, Meyers, Geurts
and Baelmans (2005) noticed that the width of the test filter affects the total
simulation error, and with the trapezoidal filter the total error diminished when
the ratio A /A was increased.

Usually, with the dynamic model, filtering is performed only in the homogeneous
directions. However, in most practical application of LES, these directions do not
exist. Gullbrand (2004) studied the use of three-dimensional test filtering in the
channel, and found that, when a smooth test filter is applied, test filtering in the
wall-normal direction improves the simulation results. However, the best results
with the dynamic Smagorinsky model were produced when the sharp spectral
cutoff filter was applied in the homogeneous directions.

The dynamic evaluation of the model parameter removes some of the problems
that have arisen with the standard Smagorinsky model. The bulk flow value of
the constant is automatically suitable and needs no tuning. Also, damping near
the solid walls becomes unnecessary. However, the dynamic Smagorinsky model
is still an eddy-viscosity model, and the deficiencies of this formulation remain.
For example, Bogey and Bailly (2005) noticed in a compressible turbulent jet
flow that the use of eddy-viscosity-type models decreases the effective Reynolds
number of the resolved flow field, and in Visbal and Rizzetta’s (2002) simulations
of isotropic turbulence, Smagorinsky models dissipated energy over a wide range
of scales, including the resolved scales. In addition, the application of the dy-
namic model in complex flow geometries is not straightforward. To improve the
behaviour of the dynamic models in these situations, localised models have been
proposed. In a general flow case, there are no homogeneous directions and aver-
aging is thus not always a feasible approach. Gullbrand (2004) studied the use of
three-dimensional local averaging which improved the prediction of the turbulent
channel flow. Sagaut (2001) provides a review on other types of localised models.
Some of the models are computationally quite expensive.

Scale-Similarity Model and Mixed Models

The scale-similarity model (SSM) models the SGS stresses rather than their effect
on the large scales. When explicit filtering is applied, SSM provides a first-
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order reconstruction of the subfilter-scale stresses. The model is based on the so-
called scale similarity hypothesis, which states that the largest unresolved scales
are similar to the smallest resolved scales (Sagaut 2001). The starting point in
deriving the model is the Leonard decomposition of the SGS stress (Leonard
1974). When the velocity field is written as the sum of the resolved component
and SGS component as

w; = U; + u, (2.33)

we may write for the SGS stress

S ~ ! 1= Iy

= yluj ulu£+ (A + w;uj + w; = (2‘34)
vV v~ o '
=Lij =Cij =Ry

where L;; is the Leonard stress that describes the interaction between the resolved
scales, Cj; is the cross-stress tensor that represents the interaction between the
resolved and SGS motions, and R;; is the Reynolds stress tensor that describes
the interaction between the SGS motions. The Leonard stress involves only the
resolved velocities and needs no modelling. In the scale-similarity model, the
assumption of the scale-similarity is applied and an additional filtering is applied
to the resolved flow field to separate the smallest and largest resolved scales. The
subgrid scales are approximated by the largest subgrid scales, which are further
approximated by the smallest resolved scales as (Ferziger 1996)

/N N~

s\
1

(2.35)

where the overbar refers to an additional filtering that has to be applied explicitly
to the resolved field. Additionally, it is assumed in Cj; and R;; that uv ~ a9.
The following approximations are then obtained for the cross-stress and Reynolds
stress tensors:

_ _ _ (2.36)

Rij ~ u; u; =~ (ﬂl — 112) (ﬂ] — ﬂ]) .
Once these approximations are combined with the Leonard stress tensor, one
obtains the scale-similarity model for the SGS stress:

;. (2.37)

Tij = Uin —

=

The model was proposed by Bardina et al. (1980), and their form of the model
required that two identical filter functions were applied to the flow quantities. Liu,
Meneveau and Katz (1994) generalized the model to be used with two different
filters.
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Germano (1986) noted that the Leonard and cross-stresses defined in Equa-
tion (2.34) are not Galilean invariant. When the Leonard stress is evaluated
explicitly, this forms a problem, since the model for cross and Reynolds stresses
should also not be Galilean invariant. Germano (1986) suggested modified defi-
nitions for these stresses as

Lij = uin — Uin

|
i

Ci' = U;u Uj - ?:Lid/j — ﬁ/iﬁj (238)

_ 1l
Rij = U;U: —uiuj.

In terms of these definitions, the scale-similarity model evaluates only the Leonard
stress and involves no model for the cross-stress or for the Reynolds stress.

In practice, it has turned out that the SSM model dissipates hardly at all (see
e.g. Ferziger (1996)). A class of models called mixed models combines a scale-
similarity type model and an eddy-viscosity model. Owing to the eddy-viscosity
part, they include more dissipation than the scale-similarity model. Both the
original scale-similarity model and the first mixed model were proposed by Bar-
dina et al. (1980) (see e.g. Sagaut, (2001)). They combined the scale-similarity
model with the Smagorinsky model as

1 ~ —~ = 1/ —~ =+ =
Tij — ngkéij = -2 (CSA)2 ‘S| Sij —+ <112?~Lj — aﬂlj) — g <ﬂkﬂk — ﬂkﬂk> 51) (239)
Also other choices than the Smagorinsky model are possible, and dynamic versions

of the mixed model have been proposed, e.g. by Zang et al. (1993) and Vreman,
Geurts and Kuerten (1994b).

2.2 Explicit Filtering in LES

When low-order finite-difference-type schemes are applied, the use of explicit fil-
tering is usually justified by damping of the high-frequency components and thus
the reduction of the numerical error and the expected improved simulation re-
sults. This has been supported by a priori tests (Ghosal 1996, Kravchenko and
Moin 1997) and some actual simulations using finite-differences and explicit filter-
ing (Lund and Kaltenbach 1995, Gullbrand 2001). In addition, explicit filtering is
a tool in a posteriori testing of LES (Clark, Ferziger and Reynolds 1979, Vreman
et al. 1996, Gullbrand 2002). In this section, we discuss the continuous filter
functions and the different approaches to explicit filtering applied in this thesis.

2.2.1 No Filtering in LES?

Usually in LES applying finite-volume-type schemes, no explicit filtering is ap-
plied, and formally, the difference between the equations being solved (2.7) and



2.2 Explicit Filtering in LES 37

the Navier-Stokes equations (2.2) is the SGS term or SGS model. Even though
the filter is not necessarily explicitly present in the simulation, there is a built-in
filter associated with the chosen SGS model (Mason and Callen 1986, Magnient
and Sagaut 2001), and with dissipative models, the built-in filter damps down
the high-frequency components.

In finite-volume-type approximations, reduction on a discrete grid is often inter-
preted as filtering over a small control volume. Thus, the computational grid
and SGS modelling are tied together. This approach was originally presented by
Schumann (1975) and it is widely applied. However, as discussed in Chapter 1,
there have been suggestions that, owing to the large truncation errors in finite-
difference-type schemes, grid filtering is not sufficient from the point of view of
the numerical error.

It has also been proposed that, in finite-difference calculations, discrete approxi-
mations of derivatives introduce a sort of implicit filter (Rogallo and Moin 1984).
The discrete differentiation operator applied in finite-difference schemes can be
written for the streamwise velocity component at grid point i as

Au Ujt1 — Uj d Tit1 du

= — 2-4
udz e (2.40)

Ax|, Az dx o
where the subscripts refer to positions in space. However, Lund (1997) criticises
this interpretation. While the filter applied to Navier—Stokes equations should be
an average over a small volume in space, the interpretation in Equation (2.40)
is a one-dimensional operator and the direction of filtering is determined by the
differentiation. Navier—Stokes equations involve derivatives with respect to all
three spatial coordinates, and thus, all the terms in the equations will be filtered
with a different filter. Lund (1997) concludes that although there is an implicit
filtering operation related to a finite-difference approximation, owing to multi-
dimensionality, this is not a well-defined three-dimensional filter.

)
%

2.2.2 Different Approaches to Explicit Filtering

The idea in explicit filtering is to insure that the frequency content of all the
terms in the equations is the same and to explicitly remove the high frequencies
that are badly described by the discrete grid. The explicitly filtered equations
are often written as

o 0 —- | (o oF
ot &cﬁa_xj( it TZJ+ReT<8:cj+8xi)>’ (2.41)

where tilde refers to the implicit filtering induced by the reduction of the flow
quantities on the discrete grid and the overbar to the explicit filter and the SGS
term is

Tij = UUj; — iaj- (2-42)

=
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The most straightforward approach to implement explicit filtering would be to
filter the velocity field at the end of each timestep as done by Lund and Kaltenbach
(1995), where the spectral cutoff filter was applied in the homogeneous directions
of the turbulent channel flow. However, when finite-difference-type methods are
applied, filtering is usually performed in physical space and the filter function is
not a projection like the spectral cutoff filter, i.e. filtering a quantity twice further
damps down the high frequencies. This is a problem especially when an explicit
time-integration method is applied (Lund 1997). One timestep of an explicit
time-integration method for the resolved velocity field u; may be written as:

A= @ A (e AT+ AT (2.43)

where the superscript n refers to time levels, At is the timestep, ¢; and ¢y are the
coefficients of the method and A, is the change of the velocity at one timestep.
If 4" is filtered at the end of each timestep, the resulting equation will look like

11?“ = TTL_;L + At (clAﬂf + CQA@?_I) =
(2.44)

=0 4+ At ( AT+ AT + At (e Adp + A,

where the overbar refers to explicit filtering. It is noticed that if the filter is
not a projection, i.e. u; # u;, the results from the previous time levels will be
multiply filtered and damped further as the time integration proceeds. This is
the case with all the filters defined in the physical space. However, the high-order
commutative filters, which are discussed in Section 2.2.3, have a shape close to
the spectral cutoff filter, and thus the damping is reduced.

In the implementation of an explicit time-integration method, the change of the
velocity field Au; is usually stored in its own variable. One way to avoid the
excessive filtering is to filter Aa; as it is stored. In this case, each At is filtered
only once, and all the terms of Equation (2.43) will have the same frequency
content. One timestep of an explicit time-integration method is then written as

Gt = @+ A (cl_Aa? + @Az’l?‘l)
I . (2.45)
=@ AT (AT 4 AT ) + A (BT + AT )

and we see that each term is now filtered only once.

Since the non-linear convection term of the Navier-Stokes equations is the term
that generates frequencies beyond the characteristic frequency that defines the
resolved flow field, it is sufficient to filter only this term (Lund 1997). In these
approaches, the momentum equations being solved are written as

ou, 0 —— _ op 0 (1 [ou Ou
ot Oz, (@i +73) Ox; i 0z (ReT <8:Ej i 093,-))’ (2.46)
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where the overbar again means explicit filtering. In this approach, the definition
of the SGS term is written as

Tij = Uuj — Uty (2.47)

which differs from the definition of Equation (2.8). If only the non-linear convec-
tion term is filtered, the Leonard stress (Eq. 2.34) is included implicitly in the
convective term (Gullbrand 2001). Filtering of the non-linear convection term was
successfully applied in the channel flow by Gullbrand (2001), Gullbrand (2002)
and Amiri et al. (2005) with fourth-order finite-difference schemes. This approach
is studied in the present work a priori, in actual simulations with a second-order
scheme and a posteriori. In this type of filtering approach, a subfilter-scale model
is often applied to reconstruct the scales that are smaller than the filter width
but larger than the grid resolution (Gullbrand and Chow 2003).

In Equation (2.46), notation @; is used for the resolved velocity field. No overbar
is visible since this term is not explicitly filtered. However, the resolved velocity
field is affected by the filtering and it is not the same as the resolved velocity of
Equation (2.7) where no explicit filtering is applied.

There are also alternative approaches to explicit filtering which stress the role
of modelling. When explicit filtering is applied, in addition to subgrid-scale
(SGS) stresses there are subfilter-scale (SFS) stresses which also require mod-
elling. Carati et al. (2001) proposed an alternative formulation for explicit filter-
ing where filtering and discretization processes are distinguished, and the SGS
and SF'S stresses are modelled separately. In this formulation, the actual filtering
operation is performed only in the SF'S model. They write the filtered Navier—
Stokes equations as

5 = gy, (el + ) = 5+ %(R (axj * m)) (2.48)

where tilde refers to reduction to the discrete grid and the notation 1, stresses
the indirect effect of explicit filtering on the resolved velocity field. T;; represents
both SGS and SFS stresses and it is defined as

(2.49)

where the first term is the SGS stress and the second one the SF'S stress. If this
decomposition is substituted in Equation (2.48), an equation similar to Equa-
tion (2.46) is obtained. However, the velocity field @; is being solved in the
simulation, not u; which represents the resolved velocity field when no filtering is
applied. Despite the formal similarity of the equations, a clear difference of the
two approaches is that in the approach of Carati et al. (2001), the actual explicit
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filtering appears only in the SFS model. The simplest possible SF'S model for
the last term of Equation (2.49) would be to approximate @; by ;, which means
using the scale-similarity model. The approach of Carati et al. (2001) was applied
by Winckelmans, Wray, Vasilyev and Jeanmart (2001) with a tensor-diffusivity
model and by Gullbrand and Chow (2003) with dynamic mixed model and with
dynamic reconstruction model. Winckelmans et al. (2001) noticed that in the
turbulent channel flow, the results were similar to the ones obtained with no fil-
tering and Gullbrand and Chow (2003) that the simulation results were improved
when compared to a case with no filtering when a high-order reconstruction was
applied to the SFS stresses. In both studies, the results with explicit filtering
were compared to a simulation with the dynamic Smagorinsky model with the
spectral cutoff as the test filter.

Stolz, Adams and Kleiser (2001) presented an approximative deconvolution model
(ADM) for the description of the scales that are smaller than the applied filter
width. The use of this model can be interpreted as explicit filtering, and it has
also been applied in compressible flows together with high-order filters which are
very close to the spectral cutoff filter (Mathew, Lechner, Foysi, Sesterhenn and
Friedrich 2003, Mathew, Foysi and Friedrich 2006).

In addition, there are groups who do not apply any SGS modelling and let high-
order filters eliminate the high-order modes from the resolved flow field. Visbal
and Rizzetta (2002) applied compact schemes and high-order filters, and Bo-
gey and Bailly (2006) low-dissipative schemes and selective explicit filtering. In
both studies, it was concluded that using the high-order filtering instead of eddy-
viscosity-type SGS modelling avoided the damping of the low frequencies and
the reduction of the effective Reynolds number, which occur with eddy viscosity
models.

2.2.3 Properties of Some Filter Functions

In this section, we interpret the resolved flow field u; as being obtained from
a numerical simulation where the reduction on a discrete grid acts as a filter
and no explicit filtering is applied. This is the commonly applied interpretation
in simulations applying finite-difference-type approaches. An explicitly filtered
velocity field is obtained by explicitly applying the filtering operation Eq. (2.5)
during the simulation:

T (z) = / Gz — & A x) i (x) de. (2.50)

The idea of filtering is to damp the high frequencies in the resolved flow field,
and thus the filter function is often studied in the spectral space. There filtering
is performed as a product of the filtered function and the filter transfer function
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as

— ~

where hat refers to the Fourier transform and the filter transfer function, @, is
the Fourier transform of the filter function

é(@:iK:G@gaW%% (2.52)

where k refers to the wavenumber.

In this thesis, basically two types of filters are applied. In the first category, there
are the filters that are discrete approximations to the so-called top-hat filter, and
in the second category, the filters that are discrete approximations of the spectral
cutoff filter. The top-hat filter is depicted in Figure 2.1, and it is sharp in the
physical space. Its filter function is written as

1 J—
G@_&Aﬂ:{m,mrm €< Ap/2 2.5

0, otherwise

and the corresponding transfer function as

G (k) M (2.54)

kA /2
As seen in the lower part of Figure 2.1, the top-hat filter is non-local in spectral
space, and the frequencies close to the grid cutoff frequency k. = m/Ay are

damped but they are still included in the filtered field. The spectral cutoff filter,
see Figure 2.2, has the opposite behaviour to the top-hat. Its filter transfer

function is sharp:
~ 1, f k| < ke
G (k) _ )L for K (2.55)
0, otherwise

and the filter function is written as

. (x—g) . sin (ﬁ%)
Ay m(z =& /A
where the filter width and the cutoff wavenumber are related via Ay = 7/ ke

There are also other possible filter functions and a thorough review on filters
commonly applied in LES has been provided, e.g. by Sagaut (2001).

(2.56)

There are several ways to determine the width of a filter (Lund 1997), and in
this thesis two of them are applied. For a positive-definite filter function G, the
effective filter width is usually described by the standard deviation (Lund 1997):

Ay = \/12 /OO 22G (z) de, (2.57)
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Figure 2.1: Filter function, G, (upper) and filter transfer function, G, (lower) of
top-hat filter.
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Figure 2.2: Filter function, G, (upper) and filter transfer function, G, (lower) of
spectral cutoff filter.
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where factor 12 assures that the filter width of the top-hat filter equals the length
of the interval over which the filter function is non-zero. For some filters the sec-
ond moment is zero, and this definition is then not valid. An alternative approach,
which is natural for the spectral cutoff filter, is to interpret the wavenumber at
which the filter transfer function obtains the value 0.5 as the effective cutoff fre-
quency (Lund 1997, Vasilyev, Lund and Moin 1998). The filter width in the
physical space is then related to this effective cutoff frequency via Ay = 7 /k..

In numerical simulations, all the flow quantities are known only at discrete points
in space, and a discrete counterpart is required for the continuous filtering oper-
ator (2.5). This is obtained by applying a numerical integration scheme to Equa-
tion (2.5). The Simpson and trapezoidal filters, commonly applied in LES using
finite-difference schemes, are discrete counterparts of the top-hat filter (2.53) with
the width of two grid spacings. The Simpson filter is obtained by assuming that
the filter function is of Equation (2.53) form with Ay = 2A and then approximat-
ing the integrand in Equation (2.5) by a Lagrange polynomial on each two adja-
cent subintervals. The resulting scheme is second-order accurate (Kreyszig 1993).
The trapezoidal filter is obtained when the integrand is approximated by a piece-
wise linear function. In addition to Simpson and trapezoidal rules, also higher-
order methods have been applied (Najjar and Tafti 1996). The resulting discrete
filtering operation may be written as

i () = > aw; (4), (2.58)

where subscript j refers to a point in space and the coefficients a; and the number
of applied nodal points 2K 41 are determined by the chosen numerical integration
method and the assumed form of the filter function. The one-dimensional filter
function corresponding to the discrete filtering operator may be written as (Lund

1997)
K

Gz)= Y ad(x—I1A), (2.59)

I=—K

where 0 is the Dirac delta function and A the grid spacing. A multidimensional
discrete filter is obtained by applying the one-dimensional filter sequentially to
each coordinate direction. The filter transfer function corresponding to the dis-
crete filter is written as

K K
G= Z al/5(:£+lA) e dy = Z aeA (2.60)
=K =K

If the filter is symmetrical, the imaginary part of the filter transfer function
vanishes.
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Figure 2.3: Transfer function G of Simpson, trapezoidal and two commutative filters.

The coefficients of the one-dimensional Simpson and trapezoidal filters are given
in Table 2.1, and the filter transfer functions are depicted in Figure 2.3. Two-
or three-dimensional filters can be obtained by applying filtering sequentially to
each coordinate direction. We notice that the Simpson filter does not obtain the
value zero at the grid cutoff. The two other filters appearing in the figure, the
commutative filters, are discussed later in this section.

Table 2.1: Coefficients of discrete filter with Ay = 2A. S = Simpson, T = Trapezoidal,
C1 = 4th order commutative filter, C2 = 6th order commutative filter.

Qo a+q Q49 a+3 Aty Q+p
S 2/3 1/6
T 1/2 1/4

c1 1/2 9/32 0 —1/32
C2 1/2 75/256 0 —25/512 0  3/256

Since the chosen numerical method determines the exact form of the discrete filter
function (Eq. 2.59), it also affects the properties of the discrete filter like the filter
width. The discrete counterpart of the standard-deviation-based definition of the
filter width (Eq. 2.57) is written as (Lund 1997)

(2.61)
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The Simpson rule yields the intended filter width Ay = 2A, but with the trape-
zoidal rule, a larger effective filter width, Ay = 2.45A, is obtained.

The LES equations were derived from the Navier—Stokes equations assuming that
the filtering operator commutes with differentiation. This is true for all filters if
the grid is equally spaced. On a stretched grid, the discussed filters will introduce
additional terms in the equations, which result from the lack of commutation.
In the channel flow, this happens in the wall-normal direction where the grid
is usually stretched. For example, a straightforward application of the top-hat
filter (2.53) to an inhomogeneous direction

7 (2) ! / T L d (2.62)
ulx) = u\y) ay, .
A () + Ap- (2) Joen, ()

where Ay, () + Ay_ (2) is the effective filter width at location z, introduces a
commutation error which is not necessarily small in comparison to the discretiza-
tion error (Ghosal and Moin 1995).

Ghosal and Moin (1995) presented an approach to filtering that is based on map-
ping the non-uniform domain to an equally spaced one. The filtering operation
for function w (x) on the non-uniform grid is written as

1w =y [ 6T g,

T A A dy
1f o f (2.63)
fJ—a

where G is the filter function on the uniform grid and £ = f (x) is the mapping
from the non-uniform grid, where the spatial coordinate is labelled as z, into
the uniform grid, where the spatial coordinate is labelled as £. Interval [—a, b]
defines the area over which the filtering is applied in the physical space. This
generalisation of the filter function to a non-uniform grid can be performed for
any filter function. Since the grid becomes finer near solid boundaries, the support
of the new filter function G automatically contracts when a wall is approached.
In addition, owing to df /dy, the filter function becomes asymmetrical near walls
and gives more weight to those points that are close to the walls (Ghosal and
Moin 1995).

Vasilyev et al. (1998) applied the approach of Ghosal and Moin (1995) to construct
discrete higher-order commutative filters that avoid the inclusion of extra terms
in the governing equations. They showed that, if a filter has vanishing moments
for k = 1,...,n — 1, the commutation error is of the order A™. The kth-order
filter moment is defined as

M* (€)= / CFG (€,0) dC. (2.64)
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and Vasilyev et al. (1998) thus discuss a class of filters that satisfy

M°(€) = 1 for &elf(=a),f(b)]
ME(E) = 0 for k=1,...,n—1 and €€ [f(—a),f(b)] (2.65)
M* (&) exist for k>n

The first requirement actually states that if a constant is filtered its value does
not change. This is common to all filters.

In the approach of Vasilyev et al. (1998), the constructed filters are discrete filters
defined in the computational space. This is convenient since the computational
space, where the filters are actually applied in the implementation, is always
uniformly distributed, and from the construction it then follows that the error
owing to commutation is automatically of the desired order in the physical space.

A possibly asymmetrical discrete filtering operation on a uniform grid may be
written as

Lj
ﬂj = Z CL?U]'_H, (266)
I=—K;
where the index j refers to a point in space. The corresponding discrete filter

function is written as
L;

Glxj)= Y ald(x;—m), (2.67)

I=—K,

and the discrete filter transfer function as
G (k;) = 3 afetab, (2.68)

The index j stresses the possibility that the number of used nodal points and filter
coefficients may vary in space. Thus, a symmetrical filter could be applied in the
middle of the domain and an asymmetrical one near the walls. For the discrete

filter function to satisfy properties (2.65), the coefficients a] should satisfy the

equations

/G(:c) dx = Z a =1 (2.69)

I=—1L;
/ka(x) dz = Z o] = 0, k=1,....,n—1. (2.70)

The larger the number of vanishing moments, the closer the filter transfer function
G is to the spectral cutoff filter at the low wavenumbers.



48 Applied Models and Numerical Methods

To obtain a reasonable filter, one has to state some additional requirements in-
volving the shape of the filter transfer function. Vasilyev et al. (1998) set the
value of G to zero at the grid cutoff wavenumber, k. = = /A, to remove the
high-frequency components. As we saw in Figure (2.3), there are filters like the
Simpson filter which do not satisfy this requirement. Thus, just damping the
high frequencies might be sufficient. The filter should also have the desired ef-
fective filter width for which Vasilyev et al. (1998) apply the definition based on
the effective cutoff wavenumber. If in addition, a number of derivatives of G is
fixed to zero at the grid cutoff, its shape at the high frequencies becomes closer
to the spectral cutoff. The wider the desired filter, the more derivatives one has
to fix at the grid cutoff. Otherwise, the filter transfer function can obtain large
negative or positive values at high frequencies. As equations, these requirements
are written as:

K; K;
~ /T e .
G(Z) =Y de™ =3 (-1 = 0 (2.71)
I=—L; I=—1L;
( ) Z e I Algl — 05 (2.72)
l=—L;
™ =75 _ m _“ m L i _
G () lizya = (~12) l;jz (-1)'al = 0 (2.73)

where m has values from 1 to the maximum number of derivatives set to zero.
If the filter is symmetrical, i.e. L; = K; and a_; = a;, the equations the dis-
crete filter needs to satisfy simplify further since for a symmetrical filter, the
odd moments in Equation (2.70), the imaginary part of Equation (2.72) and odd
derivatives at the grid cutoff (Eq. 2.73) vanish automatically.

In this thesis, several filters were constructed following the method of Vasilyev
et al. (1998). In Table 2.1, labels C1 and C2 refer to 4th and 6th-order commu-
tative filters which both have two vanishing derivatives at the grid cutoff and the
width of Ay = 2A. These filters are depicted in Figure 2.3, and we notice that
they are closer to the spectral cutoff than the Simpson and trapezoidal filters.
Thus, besides the small commutation error, the benefit of these commutative fil-
ters is their shape. Actually, the trapezoidal filter is an example of a second-order
commutative filter. In addition, filters with the widths of three, four and six grid
spacings were constructed. Their coefficients are given in Table 2.2, and the filter
transfer functions are depicted in Figure 2.4. The properties of all the applied
filters are collected in Table 2.3. As the filter width was increased to avoid large
negative and positive values of the filter transfer function, more derivatives had
to be fixed to zero at the grid cutoff. In order to keep the number of nodal points
the filter applies and thus the computational cost reasonable, the number of zero
moments and the order of the commutation error had to be decreased.
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Table 2.2: Coeflicients of wider discrete filters.

Af/A Qo a+q E5) a+3 Aty Q45 Q16

3 373/1152 911/3456 203/1728 -11/2304 -203/6912 -61/6912
4 0.2606 0.2134 0.1146 0.0370 0.0053 -0.0004  -0.0002
6 0.1564 0.1539 0.1332 0.0866 0.0375 0.0095  0.0011
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Figure 2.4: Transfer functions G of commutative filters with different widths.

The approaches for filtering on non-uniform grids discussed by Ghosal and Moin
(1995) and Vasilyev et al. (1998) can be extended to three dimensions. Also,
the corresponding error estimates hold in the three-dimensional case. The three-
dimensional discrete filter is obtained by sequential application of the one-dimen-
sional discrete filter to all coordinate directions. The filters discussed above apply
quite many grid points, and this constitutes a problem in the near-wall region
when the filter is applied in the wall-normal direction. Thus, in the points near
solid walls, filters with fewer zero moments that also apply fewer grid points, or
asymmetrical versions of the filters were applied.

Besides high-order filtering, there are also other approaches to deal with the com-
mutation error related to filtering on non-uniform grids. van der Bos and Geurts
(2005) show that the commutation error can be associated with the apparent local
creation or destruction of resolved turbulent flow scales. Based on a priori stud-
ies, they propose Lagrangian modelling for the effect of non-uniform filter width
on the kinetic energy. The model is written in terms of the material derivate of
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the filter width.

Table 2.3: Properties of filter and filter transfer functions of the applied filters. S =
Simpson, T = Trapezoidal, C = Commutative.

filter width commut error zero derivatives at k.

As/A O (A N
S 2 2 1
T 2 2 1
C 2 4 3
C 2 6 3
C 3 1 3
C 4 2 9
C 6 2 9

2.3 Applied Numerical Methods

2.3.1 Spatial Grid System and Discretization

In the simulations presented in this thesis, the second-order central-difference
scheme was applied on a staggered grid system. This grid system was first pro-
posed by Harlow and Welch (1965). On a staggered grid, the pressure point is
located in the middle of a computational cell and the velocity points on the bound-
aries. The streamwise velocity point is on the boundary normal to the streamwise
component, etc. The staggered grid system is illustrated in Figure 2.5, where u
refers to the streamwise velocity component and v to the wall-normal one. The
spanwise velocity component is denoted with w. The pressure points are marked
with black squares and the streamwise and wall-normal velocity points with ar-
rows. Also the numbering of the p, u and v points is marked.

The staggered grid system has two advantages over the collocated system where
all flow quantities are located in the middle of the computational cell. Firstly,
there is a strong coupling between velocity and pressure and thus, oscillating
pressure modes are readily avoided (Ferziger and Peric 1999). Secondly, when
the non-linear convection term of the Navier-Stokes equations (2.2) is written in
the divergence form as in Equation (2.2), the central-difference scheme conserves
kinetic energy only on the staggered system (Morinishi, Lund, Vasilyev and Moin
1998). At high Reynolds numbers, SGS models do not usually dissipate enough
energy to stabilise the simulation, and schemes that do not conserve kinetic energy
may be unstable (Mahesh, Constantinescu and Moin 2004). When the resolution
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Figure 2.5: p, u and v points on a staggered grid.

is fine enough to resolve the viscous dissipation, as in DNS, it is not as crucial
that the numerical scheme conserves kinetic energy (Mahesh et al. 2004).

The applied grid was equally spaced in the streamwise and spanwise directions.
We label the grid resolution in these directions as Az and Az. In the wall-normal
direction, the applied grid was stretched using the hyperbolic tangent function:

tanh (’y (142 (Jmax — J) /Jmax) )
tanh () ’

1+ (2.74)

&
Il

where j is the index of each grid point in the wall-normal direction and values 2
and 2.2 were applied for the parameter v which controls the grid stretching. The
wall-normal grid spacing is defined as Ay; = y; — y;_1.

The details of the applied discretization method, the classical analysis of the
involved truncation error and the conservation properties were discussed in the
author’s licentiate thesis (Brandt 2004).

2.3.2 Pressure Correction Method

In the Navier—Stokes equations (2.1) and (2.2), there is no independent equation
for pressure. A usual choice for incompressible flows is to interpret the pressure
gradient as a parameter that is used to force the continuity condition (2.1).

When an explicit time-integration method is applied, the temporally discretized
form of the momentum equation may by written as

N . op 0 . 1 [/ou; Ou,;
ﬂ+1 —on Atn - - — Wl — Ty o 7 J 2.
) ay + ( 0:Bi+8xj< oy TJ+ReT<0xj+8xi)>>’ (2.75)
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where At" is the timestep and the superindices refer to time levels. The inte-
gration of the momentum equation is performed in two steps. First, only the
convective and diffusive terms are integrated, and the resulting field is called the
predicted velocity field w:

0 1 [0u; Ou,
i =+ A o | =iy Tt =— (52 ) ] ] 2
i = a4 At < axj( i, T’]+ReT<axj+ {m-))) (2.76)

The final velocity field is obtained from the predicted field by including the pres-
sure gradient term using the explicit Euler method:

ourt our &*p
i — i n ) 2.

When it is required that the final field is divergence-free, a Poisson equation is
obtained for pressure as

ou} . 0*p 0p 1 Ou}

The final velocity is obtained by correcting the predicted velocity field by pressure
gradient as

dp
ox;
One interpretation of this method is that the convective and diffusive terms are
integrated using a chosen time-integration method and the pressure gradient is
integrated using the explicit Euler method. When a multi-step method, like the
Runge-Kutta, is applied, the Poisson equation for pressure is solved and the
continuity equation is forced on each intermediate timestep.

ultt = uf — At

(2.79)

In the channel flow, periodic boundary conditions are applied to pressure in the
streamwise and spanwise directions, and thus only the fluctuating pressure, which
has a zero mean value, is solved from Equation (2.78). In the channel flow, there
is a mean-pressure gradient only in the streamwise direction, and in the non-
dimensional form applied here, this non-dimensional mean-pressure gradient has
the value 2. Thus, after the pressure correction step (2.79), the velocity field is
once more corrected by the mean-pressure gradient as

u=u"" — At or (2.80)

ox

=2
In this correction, only a constant (constant in space) is added to the streamwise
velocity component. Thus, after this second pressure correction step, the velocity
field is still divergence-free.
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Solving the discrete counterpart of the Poisson equation (2.78) for pressure is
time consuming. When this equation is discretized with the second-order central-
difference scheme, pressure will be connected with its six neighbouring values.
We can, however, decouple the derivatives by transforming the homogeneous
directions into Fourier space, and thus speed up the computation. This method
for easing the integration of the Poisson equation was first applied by Orszag
(1969). After the transformation, the Poisson equation may be written as

N 1 Ou;
(k2 —R2)p+ 57 = (Kt aa:i) , (2.81)

where p denotes the Fourier-transform of p, k, and k, the modified wavenum-
bers corresponding to the second-order central-difference scheme in the x and
z-directions respectively, and F the Fourier-transform operator.

Periodic boundary conditions for pressure are applied in the streamwise and span-
wise directions. Velocity is fixed at the solid walls, and as noted by Moin and
Kim (1980), no boundary conditions are required there for pressure.

This type of pressure-correction approach is very typical in channel flow simu-
lations, and it has been applied, e.g. in Moin and Kim (1982), Eggels, Unger,
Weiss, Westerweel, Adrian, Friedrich and Nieuwstadt (1994) and Gullbrand and
Chow (2003).

2.3.3 Time Integration

In this thesis, a low-storage third-order three-stage explicit Runge-Kutta method
is applied to time integration. In Runge-Kutta methods, the increased accuracy
is gained by taking intermediate timesteps inside physical ones. Runge-Kutta
methods thus require information only from one previous time level and main-
tain their accuracy even when the timestep varies. The cost is extra computa-
tional effort. The equations have to be integrated several times in one physical
timestep. However, the large Courant number 1.7 allowed by the applied method
(Lundbladh, Berlin, Skote, Hildings, Choi, Kim and Henningson 1999) com-
pensated for the extra effort when compared to a third-order Adams—Bashforth
method (Brandt 2004). Also a four-stage version of this Runge-Kutta method
is available, and in DNS, it was found to be more efficient than the three-stage
version (Brandt 2004). However, in some parts of the the present work, explicit
filtering is applied on each intermediate timestep, and then the four-stage method
became too heavy.
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The applied Runge-Kutta method may be written as

nt18 A S A

ul u’l + 15 u’l

n42/3 _ ntl/3 | oam (O A /3 HA n

u; u; AL (12 u; G0 (2.82)

Wt = 2 A (éAuﬁ”/g 5

—A 7'l+1/3
i g 12t

where the superscripts refer to time levels, At is the timestep, U?H/ 3, u?H/ % and
u?™ to resolved flow fields on the first, second and third intermediate timestep,
respectively, and Aw; is the change of wu;, which includes the space-discretized
convection, diffusion and SGS terms from Equation (2.7). This Runge-Kutta
method has the advantage that between the intermediate timesteps, we have to
store only the result from the previous intermediate timestep. The Poisson equa-
tion (2.78) is solved at each intermediate timestep, and the pressure correction
steps (2.79) and (2.80) are applied to each intermediate velocity field. When

explicit filtering is applied, also filtering is performed on each intermediate step.

In the simulations, the timestep varied in time and the maximum Courant number
was fixed to the value 1.2 or below to assure that the error owing to temporal
discretization remains small. The timestep was determined from the condition

. 1 \ !
At = min (CFL (Luj + VA—xz) ) ) (2.83)

where CFL is the Courant number, |u;| is the absolute value of ith velocity com-
ponent and Az; the grid spacing in the ith coordinate direction.

2.3.4 Performing the Actual Simulations

The channel flow code used in the simulations is based on a DNS code written
by Dr. Bendiks Jan Boersma from TU Delft. In the present work, Runge-Kutta
schemes for time integration, subgrid-scale models and explicit filtering were im-
plemented to the code. The numerical methods, models and filters included in
the present version of the code were described in the previous sections.

The initial condition for the present simulations was obtained using a random
field or by interpolating the velocity field of another simulation. The simulations
were first run for 30 — 40 non-dimensional time units to let the initial distur-
bances edge away, and no statistics were collected during this time. After the
first 30 — 40 time units, the simulations were continued for about 60 time units,
and during this time the statistics were updated after each 0.1 or 0.2 time units.
One indication of converged statistics is the coincidence of the profiles evaluated



2.4 Code Validation in DNS of Channel Flow 55

from top and bottom walls. Usually, once the profiles of the root mean squares
of the fluctuating velocity components matched on both walls, the statistics were
converged. In some simulations with large explicit filter widths, some asymmetry
remained between the top and bottom walls. In these cases, the studied Reynolds
stress profile is the average between the two walls. Most of the simulations were
run as serial jobs in CSC’s (Scientific Computing Ltd) computer “sepeli” which is
a cluster of 2.2 GHz AMD Opteron-processors.

2.4 Code Validation in DNS of Channel Flow

In this section, DNS results for the fully developed turbulent channel flow between
two infinite parallel walls are presented at two Reynolds numbers, Re, = 180 and
Re, = 395. The aim is to verify the performance of the code and the actual order
of the numerical methods. We first study the mean flow quantities at the highest
applied resolutions for both Reynolds numbers, and then the behaviour of the
total error at the Re, = 395 case.

2.4.1 Flow Statistics

The dimensions of the channel and the highest applied grid resolution in DNS
for the Re, = 180 case are given in Table 2.4 and for the Re, = 395 case in
Table 2.5. For both cases, the grid convergence was studied in the author’s
licentiate’s thesis (Brandt 2004). For the Re, = 180 case, good grid convergence
was obtained there, and thus the study is not repeated here and only the results
with the highest resolution are presented. In the present work, the simulations
at Re, = 395 were repeated using higher resolutions, and the grid-convergence
study is presented here.

Table 2.4: Dimensions of the channel and grid resolution in the DNS at Re, = 180.

streamwise spanwise wall-normal
extent of the domain / channel height 4.0 2.0 1.0
extent in wall units 1440 720 360
number of grid points 120 150 100
size of grid cells in wall units 12 5 6 (max) 0.5 (min)

wall units: 27 = Re,x, where x is scaled by the channel half-width.

The mean-velocity profile and the diagonal Reynolds stress components scaled by
the friction velocity from the simulation at Re, = 180 are given in Figures 2.6 and
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Table 2.5: Dimensions of the channel and grid resolution in the DNS at Re, = 395.

streamwise spanwise wall-normal
extent of the domain / channel height 3.0 1.6 1.0
extent in wall units 2370 1264 790
number of grid points 216 216 216
size of grid cells in wall units 11 6 8 (max) 0.5 (min)

wall units: 2™ = Re,x, where z is scaled by the channel half-height.

20 : :

Figure 2.6: Mean-velocity profile. Re,; = 180.

2.7, respectively, and the turbulent, viscous and total stresses in Figure 2.8. The
reference data is from the simulations of Moser et al. (1999) (MKM). The one-
dimensional energy spectra of the streamwise velocity component in streamwise
and spanwise directions are plotted in Figure 2.9. The spectra were obtained
as Fourier transforms of the streamwise and spanwise two-point self-correlation
functions of the velocity component. The streamwise one-dimensional spectrum
is plotted in the middle of the channel and the spanwise in the near-wall region.
These are the restricting areas for the spectra. In addition, spectra from y* ~ 36
are included. They are required in the next chapter. We see that the spectra drop
off several orders of magnitude, and thus the grid resolution seems adequate.

In Figure 2.10, the mean-velocity profile is plotted from the Re, = 395 case. To
study the grid convergence, three coarser grid results obtained on grids with 1263,
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Figure 2.8: Turbulent, viscous and total stresses. Re, = 180.
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Figure 2.9: One-dimensional energy spectra in streamwise and spanwise directions.
Re; = 180.
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1503 and 1802 grid points and the same computational domain as in the 2163 case
are included. The mean velocity is underpredicted compared to the reference data.
The diagonal Reynolds stress components are given in Figures 2.11-2.12. Here,
all the stress components remain slightly underpredicted. The turbulent shear
stress is depicted in Figure 2.14, and there we see good grid convergence. The
total, viscous and turbulent stresses for the highest resolution case are depicted
in Figure 2.15. The one-dimensional energy spectrum of the streamwise velocity
component in the streamwise direction is plotted in Figure 2.16 in the middle of
the channel, and the spanwise spectrum in the near-wall region (27 ~ 5). The
spectra drop off, but in the spanwise direction, the resolution could be further
improved. At this larger Reynolds number, the simulation is thus not as well
resolved as at the lower Reynolds number.
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Wall-normal Reynolds stress component (v'v'). Re, = 395.
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2.4.2 Order of the Applied Code

Nominally, the applied numerical methods are of second order in space, as dis-
cussed in Section 2.3. Here, we verify this by inspecting the decrement of numer-
ical error as the grid resolution is increased. By the use of the Taylor series one
obtains the following formula for the numerical error of a pth-order scheme:

U — UDNS — cA? + O (Ap+l) s (284)

where @ is the numerical solution, ¢ is a constant which depends on the exact
solution and A is grid spacing. Here, upns is a grid-converged DNS result that
represents the exact solution. In the so-called asymptotic range, the first term in
the expansion should dominate.

Four simulations of the channel flow at Re, = 395 were run using grids of 1262,
1503, 180% and 2163 cells. The actual numerical error was evaluated for each
case using the DNS data of Moser et al. (1999) (upns). The flow statistics from
these cases have already been presented in the previous section, and the obtained
error for the mean-velocity profile is depicted as a function of the wall distance in
Figure 2.17. Also, theoretical error for the three finer grid cases, which is obtained
by scaling the error of the coarsest grid by the square of the grid refinement
factor, is included in the figure. We notice that the convergence is not completely
monotonic. In the middle of the channel, the error first decreases faster than the
theoretical one, but at the largest resolution it starts to increase. In the viscous
sublayer, the error first decreases and then increases. This makes the use of the
Richardson extrapolation difficult (Celik, Li, Hu and Shaffer 2005). However, the
numerical error decreases faster than the theoretical one for each case, and we
can claim that the code is second-order accurate.

For the error in the streamwise, spanwise and wall-normal Reynolds stress compo-
nents, the corresponding plot is given in Figures 2.18, 2.19 and 2.20, respectively.
In the middle of the channel, the obtained error decreases first slightly slower
than the the theoretical one, while in the near-wall region, the grid-convergence
rate is clearly slower than the theoretical one.
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Chapter 3

A Priori Testing of Numerical
Error and Explicit Filtering

The results of this chapter were presented in Brandt (20006a,).

In this chapter, the numerical error involved in LES and the possibilities to affect
it via explicit filtering are studied a priori using filtered DNS data. Here, we focus
only on the numerical error involved with the non-linear convection term. The
error is evaluated using several instantaneous velocity fields obtained on different
timesteps and then averaged over time. Thus, the situation is studied on average
on one timestep. The tests are performed for two Reynolds numbers, Re, = 180
and Re, = 395. In Section 3.1, the applied DNS data is briefly reviewed. In
Section 3.2, the traditional approach, where the whole velocity field is filtered, is
applied, and in Section 3.3, only the non-linear convection term of the Navier—
Stokes equations is filtered explicitly. In Section 3.4, we discuss the differences
between the two approaches, and finally in Section 3.5, three-dimensional filtering
is discussed.

3.1 DNS Data

DNS results obtained using the numerical methods discussed in the previous
chapter were presented in Section 2.4. For the Reynolds number Re, = 180, the
same DNS data is used here for a priori testing and the resolution of the DNS
was given in Table 2.4. For the Re, = 395 case, the resolution of the applied DNS
data, shown in Table 3.1, is lower than that discussed in the previous chapter.
The DNS data at this resolution was discussed in the author’s licentiate thesis
(Brandt 2004) and in Brandt (2006a). When the grid resolution was varied, the
conclusions of the a priori tests were not sensitive to it and thus, the resolution
of the DNS is considered adequate for these a priori tests.
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Table 3.1: Dimensions of the channel and grid resolution in the DNS at Re, = 395.

streamwise spanwise wall-normal
length / channel height 3.0 1.6 1.0
length in wall units 2370 1264 790
number of grid points 160 160 120
size of grid cells in wall units 15 8 15 (max) 0.7 (min)

wall units: 27 = Re,x, where x is scaled by the channel half-width.

3.2 Explicit Filtering of the Whole Velocity Field

In the a priori tests, we follow the approach suggested by Vreman et al. (1994a).
The explicitly filtered LES equations that are being solved in the incompressible
case are written as

ot ' dr; O * 0—:)5] (ReT <8xj + 0:)3,)) €8GSis (3.1)

where tilde refers to the implicit grid filter, overbar to the explicit filter and egqg;
is the ith component of the SGS term that requires modelling, i.e. the divergence
of the SGS stress 7;; in Equation (2.42). The relation between the exact filtered
non-linear term and its discrete counterpart may be written as
ou;u, _ At n ou;u; _ Ouuy . dugu; Aill-ilj’ (3.2)
827]- AZIZ’j Oxj 827]- Oxj AZIZ’j

=E€SGSi =Enumi

where the product @1, can be evaluated from the resolved flow field, A/Az; is
the difference approximation to the first derivative with respect to variable z;
and £,.m; represents the numerical error related to the spatial discretization of
the non-linear convection term of the ith momentum equation. The numerical
error related to the viscous dissipation term is assumed to be small in comparison
with that of the convection term. In addition, the numerical error related to
time integration is assumed to be small owing to the small timestep applied in
the explicit time-integration method. This choice to study only the numerical
error related to the convection term was also made by Vreman et al. (1994a) and
Majander and Siikonen (2002).

The exact SGS term and the numerical error can be estimated from DNS data
using Equation (3.2). One assumes that the DNS velocity field u; is a good
approximation to the exact solution. The DNS field is filtered using a filter with
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the width, Ay, equal to the assumed LES grid spacing, Apgs, to obtain the field u;
corresponding to the LES velocity field. In this study, a fourth-order commutative
filter with the width of three grid spacings (see Table 2.2) was applied as the grid
filter. When explicit filtering is studied, u; is filtered again applying a wider filter
to obtain the explicitly filtered field ;. In this study, the trapezoidal filter was
applied as the explicit filter. If the filter width of the trapezoidal filter is based
on the standard deviation, it is slightly wider than the region over which the
quantity being filtered is integrated (Lund 1997).

Both terms appearing in the definition of the SGS term, esgs;, and the first term
in the definition of the numerical error, €,,,;, are evaluated on the DNS grid,
and a fourth-order central-difference scheme is applied. The fourth-order scheme
is used to make the numerical error related to these terms as small as possible.
Since the DNS result was obtained using a second-order scheme, the accuracy of
the prediction of these terms is, however, not of fourth order.

The second term in the definition of the numerical error ,,,; is evaluated on the
LES grid. The grid-filtered velocity field u; is restricted to the LES grid, it is
filtered explicitly on the LES grid, products @;a; are evaluated on the cell bound-
aries using a second-order interpolation and finally, the second-order central-
difference scheme is applied on this coarser grid. The points of the LES grid
match the DNS grid, and thus no interpolation is applied when the filtered field
is restricted to the DNS grid. Explicit filtering is performed here on the LES
grid because this term represents the derivative evaluated in LES, and in actual
LES, the velocity field is filtered on the LES grid. This differs somewhat from the
choice made by Vreman et al. (1994a) and Majander and Siikonen (2002), but
this approach was considered more consistent. In the present work, the different
approaches were compared, but this had no effect on the conclusions.

The resolutions of the studied LES grids at the two Reynolds numbers are given in
Tables 3.2 and 3.3. The finer wall-normal resolution in Table 3.2 is applied in this
section, and the coarser one is used later when the three-dimensional filtering is
studied. The grid spacing of the studied LES grid in the streamwise and spanwise
direction, Apgs, was three times the grid spacing of the corresponding DNS grid.
Actual channel flow simulations applying similar resolutions have been performed
by Piomelli et al. (1988), Majander and Siikonen (2002) and Gullbrand (2001). In
the first set of the a priori tests, both filters are applied only in the homogeneous
directions, and the LES grid has the same resolution in the wall-normal direction
as the original DNS grid does. This approach was applied in the a priori tests of
Majander and Siikonen (2002).

Only the SGS term and the numerical error of the streamwise momentum equa-
tion are studied here. The spanwise and wall-normal momentum equations were
studied by Majander and Siikonen (2002), and the behaviour was similar to the
streamwise equation.
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Table 3.2: Dimensions of the channel and resolution of the studied LES grid in the
a priori tests at Re, = 180.

streamwise spanwise wall-normal
extent of the domain / channel height 4.0 2.0 1.0 1.0
number of grid points 40 50 100 32
resolution in wall units 36 14 0.5 (min) 1.8 (min)

wall units: 27 = Re,z, where z is scaled by the channel half-width.

Table 3.3: Dimensions of the channel and resolution of the studied LES grid in the
a priori tests at Re, = 395.

streamwise spanwise wall-normal
extent of the domain / channel height 3.0 1.6 1.0
number of grid points 53 53 120
resolution in wall units 45 24 15 (max) 0.7 (min)

wall units: 27 = Re,z, where z is scaled by the channel half-width.

The Lo-norms of the numerical error, £,,m,, and of the exact SGS term, egqs,
of the streamwise momentum equation from the a priori tests at Re, = 180 are
depicted in Figure 3.1 across the channel half-height. Ls-norm of a function u on

a domain €2 is defined as
lullz, = 1// u? dQ). (3.3)
0

The Ls-norms were first evaluated over the homogeneous directions. To insure
that the results are not due to statistical variation, the norms were averaged
also over time. The Ly-norm was evaluated after each 0.2 non-dimensional time-
units during a period of 30 non-dimensional time-units. Thus, we are studying
the average situation on one timestep. In Figure 3.1, we see that in the cases
where explicit filtering is not applied, the Lo-norms ||epum||2 and ||esgsl|2 are of
the same magnitude only in the near-wall region. For the most part, ||€pum||2
is much larger than |leggs|le. As the explicit filter of the width of two LES
grid spacings (Ay = 2Apgs) is applied, the magnitude of the numerical error
diminishes. However, the SGS term eggs does not grow as fast as the numerical
error &n,m diminishes, and the numerical error still dominates the SGS term
in most part of the channel. The same type of behaviour was also noticed by
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Figure 3.1: Ls-norms of the SGS term, eggs, and numerical error, e ym. The whole
velocity field is filtered. Re, = 180.

Majander and Siikonen (2002).

In principle, increasing the filter width further would lead to a situation where
||€num||2 is smaller than ||esgs||2. However, on a fixed grid resolution, this situation
would not be physically meaningful and in addition, it would be computationally
inefficient. In Figure 3.2, we see the behaviour of ||esgsz||2 from the cases where
larger filter widths are applied. We notice that when the filter width is large
enough, the growth of the SGS term stops and it actually begins to diminish.
This happens first only in a small area, but later in the whole channel. This
behaviour is in contradiction with the idea of explicit filtering. However, it is
to be expected by studying the energy spectra and the cutoff wavenumber. The
minimum wavelength that the grid is able to describe is two times the grid spacing,
A. Thus, the maximum wavenumber scaled by the channel half-height, 9, is

N 2

kmax(s - m (34)

In the current DNS, the maximum wavenumbers in the streamwise and spanwise
directions were k8 ~ 47 and kY, 6 ~ 118, respectively. On the studied LES
grid with no explicit filtering, these wavenumbers are 12 and 30, respectively.
When the spectra in Figure 2.9 are considered, these cutoff wavenumbers seem
to be reasonable. When explicit filtering is applied, the effective resolution is de-

termined by the filter width A;. Thus, also the cutoff wavenumber is determined
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Figure 3.2: Ls-norm of the SGS term using filters of different widths. The whole
velocity field is filtered. Re, = 180.

by A;. When the explicit filter of the width of Ay = 4Aps = 12Apns was
applied, the cutoff wavenumber in the streamwise direction was approximately
ke .0 ~ 3 and in the spanwise direction k%, 8 ~ 10. The energy spectra from
the area where the undesired behaviour of the SGS term began (y/h ~ 0.05,
yT & 36) are also included in Figure 2.9. We notice that, as the explicit filter is
applied, both the streamwise and spanwise cutoff wavenumbers are quite low. As
the filter width is increased further, the cutoff wavenumbers become even smaller.
Therefore, one reason for the unphysical behaviour of the SGS term is that the
filter width had become too large and also the large energy-bearing scales were
affected by the filter. This means that the assumptions made in the derivation of

the LES equations were contradicted.

When the SGS term is considered, there are two alternatives for the interpretation
of the results. First, the obtained SGS term can be seen as the SGS term of a sim-
ulation on a reasonable LES grid applying explicit filtering. The other possibility
is to interpret it as the SGS term of an LES performed on a grid with spacing
equal to the filter width A; and with no explicit filtering. Similar interpretation
cannot be made for the numerical error. The resolution at which the magnitude
of the SGS term started to diminish also gives a limit for the minimum resolu-
tion necessary in LES simulation of the channel flow at this Reynolds number.
At a lower resolution, the grid-filtered momentum equations would no longer be



3.2 Explicit Filtering of the Whole Velocity Field 73

200 T T T T T T T T T
L,—norms
180

o €sgg NO epr|C|t filtering
160

A=20 g oo
a0 Enum D2 pg

€quny NO eXp?Clt flltermg ............. 1

120
v 100/ ]
60 1
40 |f/ ™
20 |

0 ‘t 1 1 1 1 1 1 1 T T
O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05

y/h
Figure 3.3: Ls-norms of the SGS term, eggs, and numerical error, e ym. The whole
velocity field is filtered. Re, = 395.

meaningful. At this Reynolds number (Re, = 180), the behaviour started when
the grid spacing was eight times our DNS grid spacing. Thus, the LES grid would
have the nominal resolution of Ax™ = 144 and Ay™ = 56. This would be quite a
coarse LES grid.

In Figure 3.3, we see the behaviour of the Ly-norms of the SGS term and of
the numerical error from the a priori tests performed at Re, = 395. Here, the
results were averaged over the homogeneous directions and 20 non-dimensional
time units. As expected, in this case the magnitude of the SGS term is larger in
the near-wall region than at the lower Reynolds number. However, the numerical
error still dominates the SGS term. Explicit filtering diminishes the numerical
error, and in the near-wall region, ||esasll2 and ||enum||2 are about the same size.
However, the applied LES grid is quite coarse for explicit filtering and thus, the
SGS term does not grow with the filter width. In Figure 3.4, we have the Lo-
norms of the SGS term from tests where also wider filters were applied. In this
case, the Lo-norm of the SGS term starts to diminish already when the filter
width is Ay = 2Args = 6Apns. Thus, the LES results on this grid could not be
improved using explicit filtering because the nominal resolution becomes too low.

Based on the results of this section, we can say that if one applies explicit filtering
to the whole velocity field, one has to increase the grid resolution. Otherwise,
the nominal resolution becomes too low and the SGS term starts to behave in
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an unphysical manner. However, in large eddy simulation, the computational
capacity usually sets limits on the grid resolution. Thus, it seems that on a
reasonable LES grid, explicit filtering of the whole velocity field is not a reasonable
approach to reducing the numerical and total errors.

3.3 Explicit Filtering of Only the Non-Linear
Term

Next, we consider the approach to explicit filtering where the explicit filter is
applied only to the non-linear convection term. This approach was suggested by
Lund (1997). The equations being solved are written as

at " ax] B 61’7, + aflfj (RGT <85L’] + axz)> E€SGSis (35)

where the overbar again refers to the explicit filter and the tilde to the implicit
filter. The difference from Equation (3.1) is that the explicit filter is applied only
on the left side, and the other terms are affected only by the implicit filter. The
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SGS term eggg; in Equation (3.5) is defined as

dugu;  Ougy
€sGsi = B - )
Lj Lj

(3.6)

and the numerical error €,,,; related to the spatial discretization of the convection

term as _ _

_ Ouguy  Auguy

Ernumi = or; Az,

Both definitions differ from Equation (3.2). We will see that the differences in
the definition of the SGS term eggg; are crucial.

(3.7)

Explicit filtering of only the non-linear term was tested using the same methods
as discussed in the previous section. The essential difference is that the explicit
filter is applied only to the product of the velocity components and not to the
individual velocity components.

In Figure 3.5, we depict the Lo-norms of esgs and e, of the streamwise momen-
tum equation from the case at Re, = 180 and in Figures 3.6 from the Re, = 395
case. We notice that this filtering approach has indeed the desired effect on both
the numerical error and the SGS term. The numerical error rapidly diminishes
and, in addition, the magnitude of the SGS term grows fast with the filter width.
The SGS term is everywhere clearly larger than the numerical error. The unde-
sired diminishing of the SGS term as the filter width grows is not noticed in this
approach.

3.4 Difference between the Two Approaches

In this section, we further discuss some of the differences between the two applied
approaches to explicit filtering. Firstly, we discuss the sum of the numerical error
and the SGS term, and secondly the two definitions of the SGS term.

The sum of the SGS term and the numerical error can be interpreted as the
difference between a sufficiently resolved and a coarse-grid DNS solution, i.e. an
LES without an SGS model. For the case, where the whole velocity field is filtered,
the sum is written as

s - Emms = ou;u; _ Oui n du;u;  Au,u, _ ou;u; Ay ﬁj_ (3.8)
8I'j 8xj 81']‘ ALIZ‘j 8xj Al’j

If only the non-linear term is filtered explicitly, the sum of egqg; and eum; i
written as

0uiuj _ au,-uj 4 au,-uj _ Au,-uj _ 0uiuj _ Au,-uj

€sasi + € =
‘ e Oxj (927]- (927]- A[L’j Oxj A[L’j

(3.9)
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This sum for both approaches at Reynolds number Re, = 180 is plotted in Fig-
ures 3.7. We notice that in the first approach, the difference between the suf-
ficiently resolved and the coarse-grid DNS appears to diminish when explicit
filtering is applied. This suggests, somehow misleadingly, that the results of a
coarse-grid DNS could be improved simply by applying an explicit filter to the
whole velocity field. In this case, the numerical error is effectively diminished,
which leads to the apparent decreased difference between the sufficiently resolved
and the coarse-grid DNS. Applying an SGS model could not improve these coarse-
grid results, since the effect of the SGS term also diminishes. The upper part of
Figure 3.7 thus demonstrates the fact that when the whole velocity field is filtered,
some information is lost, and we cannot recover it by modelling.

The lower part of Figure 3.7 is from the case where only the non-linear term is
filtered. In this case, the behaviour of the difference is the opposite. Increasing
the filter width increases the difference between the sufficiently resolved and the
coarse-grid DNS results. This indicates that, at the same time as the numerical
error decreases, the scales filtered out are shifted to the SGS term, and using
an SGS model could improve the results. This supports the conclusion that the
latter method may lead to improved large eddy simulation results.

Depending on whether the explicit filter was applied to the whole velocity field
or only to the non-linear term, the behaviour of the SGS term eggg; was clearly
different. We next consider more carefully the origin of this difference. We label
the SGS term of the first approach, where the whole velocity field is filtered
explicitly, with the superscript 1

81 . 8uiuj . 8u2 U,
SGSi — )
8:@ 8:@

(3.10)

and the SGS term of the second approach, where explicit filtering is applied only
to the non-linear term, with the superscript 2

82 o 8uiuj _ 0uiuj
SGS: T :
(9:17]- Oxj

(3.11)

In both definitions for the SGS term egqg;, tilde refers to the grid filter and overbar
to the explicit filter. The first term of eggg; represents the non-linear term that
appears in the filtered Navier—Stokes equations. The second term represents
the quantity that is evaluated using only the resolved field. There are differences
between the two definitions in both of these terms, and e, and g, are related
to each other via the equation

, L Oww duw | 0nE; O,
sos = Sses T o T oy | 0wy o

(3.12)
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The difference between el and eng; consists of two parts: the difference in
the resolved non-linear term in the filtered Navier-Stokes equations (DIFF1) and
the quantity being evaluated from the resolved field (DIFF2). DIFF1 represents
the sub-filter part of du;u;/0x;, and DIFF2 is the divergence of the sub-filter
scale stress or Leonard stress. The Lo-norms of these two terms are depicted in
Figure 3.8 with varying explicit filter widths. Both of these terms increase in
magnitude with increasing filter width, but the difference in the resolved non-
linear term (DIFF1) forms the major part of the difference between the two
definitions of £gaqg;. It seems that, in the behaviour of the SGS term, the crucial
point is the interpretation of the non-linear term of the filtered Navier—Stokes
equations.

3.5 Three-Dimensional Filtering

In the a priori tests discussed in the previous sections, filtering was applied only
in the homogeneous directions, and the wall-normal resolution of the LES grid
was the same as the resolution of the DNS grid. In this section, we discuss
a priori tests in which filtering is applied also in the wall-normal direction, and
the resolution in this direction corresponds to a resolution of a normal LES grid
(see Table 3.2). Both filtering of the whole velocity field and filtering of the non-
linear term only are studied here at the Reynolds number Re, = 180. Filtering
in inhomogeneous directions is an important issue, since in real applications of
LES, homogeneous directions are rather an exception. The aim of these tests is
to verify that the results of the previous sections are not restricted to cases with
only homogeneous directions.

Applying filtering in the wall-normal direction is not as straightforward as in the
homogeneous directions, because the grid spacing varies and changing the order of
the derivative and the filter tends to introduce commutation errors. Commutative
filters have been proposed (Vasilyev et al. 1998) and applied in actual simulations
(Gullbrand 2001), and they can also be applied in the a priori tests. The same
symmetrical fourth-order commutative filter as applied in the homogeneous di-
rections was used in the wall-normal direction in the middle of the domain. In
the near-wall region, asymmetrical commutative filters were constructed follow-
ing the method discussed in Section 2.2.3. Since these filters are applied as grid
filters, they should have the effective filter width of three DNS grid spacings. In
addition, they should have as low a commutation error as possible, since the com-
mutation error adds to the error in evaluation of the SGS term eggg; and of the
numerical error €,,,,; on the DNS grid. However, in order to avoid large negative
and positive values of the filter function in the near-wall region, the order of the
filter was reduced at the three points of the DNS grid that were closest to the
walls.
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The last term of the numerical error e,,m; (Eq. 3.7) is evaluated on the LES
grid, and also the explicit filtering is performed there. The trapezoidal filter
has the commutation error of second order, and since the second-order central-
difference scheme is applied on the LES grid, it is a suitable choice also for the
three-dimensional filtering.

The other three terms in e5gs; and ey, are evaluated on the DNS grid (Egs. (3.2),
(3.6) and (3.7)). Thus, the velocity field is filtered, but it is not restricted to the
LES grid, and also the explicit filter has to be applied on the DNS grid. The
explicit filter applied on the DNS grid has to have a filter width of six DNS grid
spacings. The derivatives on the DNS grid were evaluated using the fourth-order
central-difference scheme and the grid filter was of fourth order. Therefore, we
would also like to have a fourth-order explicit filter. This makes the construction
of the explicit filter somewhat problematic on the DNS grid. To obtain a filter
transfer function that has that long a filter width and behaves well, i.e. does not
have large negative or positive values, one has to fix at least four derivatives of
the filter transfer function at the grid cutoff frequency. This is why a filter that
is only of second order was applied as the explicit filter on the DNS grid. This
introduces a commutation error of the order A2\ to the corresponding terms of
£sasi and e,um;. However, the error on the LES grid is of the order AfES, and the
numerical error on the DNS grid is still too small to affect the conclusions of the
a priori tests.

The results from the a priori tests applying three-dimensional filtering to the
whole velocity field are given in the upper part of Figure 3.9. Here, the Lo-
norms were evaluated on a single timestep. In the case with label “2D”; only the
grid filter is three-dimensional and the explicit filter is two-dimensional, and in
case “3D”, both the grid and the explicit filters are three-dimensional. Applying
the three-dimensional explicit filter reduces further the numerical error, which
is natural, since the LES velocity field becomes somewhat smoother owing to
the filtering performed in the wall-normal direction. When the three-dimensional
explicit filter is applied, the SGS term diminishes slightly. This again is undesired
behaviour, and it is a result of the damping of the large-scale eddies.

The numerical error and the SGS term from the tests where only the non-linear
term is filtered are depicted in the lower part of Figure 3.9. We notice the same
behaviour of the numerical error as in the previous case, while here the SGS term
grows when the three-dimensional explicit filter is applied. In addition, the SGS
term is everywhere much larger than the numerical error. Thus, also explicit
three-dimensional filtering of only the non-linear term leads to the desired result.

The results presented in this section verify that applying filtering only in ho-
mogeneous directions in the a priori testing did not affect the overall conclusion
of Sections 3.2-3.4. When three-dimensional filtering was applied, filtering of
the whole velocity field seemed to lead to an unphysical situation. The desired
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behaviour of filtering only the non-linear term was further reinforced when the
three-dimensional filter was applied.

3.6 Conclusions of the a Priori Tests

In this chapter, the aim was to clarify how well explicit filtering is suited to poten-
tially improving the simulation results by reducing numerical errors in a practical
large eddy simulation, where low-order finite-difference schemes are applied, and
where the grid resolution is not increased as the explicit filter is applied.

When the whole velocity field was filtered while the grid resolution was kept
constant, filtering did not increase the SGS term and finally, when the filter
width was increased further, the SGS term started to diminish. One reason for
this unphysical behaviour is that the large energy-bearing eddies were affected by
the filter. This began already when a filter width of four grid spacings was applied.
This filter width combined with the second-order central-difference scheme has
been previously suggested by some groups (Vreman et al. 1994a, Ghosal 1996).
Based on the results presented in this chapter, it seems that to increase the effect
of the SGS model using this approach, one would have to increase also the grid
resolution. Usually, this is not possible because of the increased computational
demands.

When only the non-linear term was filtered, the desired behaviour was obtained.
As the filter width was increased, the Lo-norm of the numerical error diminished
and that of the SGS term increased. The numerical error was clearly smaller than
the SGS term. The increased SGS term indicates that in an actual simulation,
the role of the chosen SGS model is pronounced, and the responsibility for scales
being filtered out is shifted to the model. Thus, an SGS model can improve the
simulation results. By studying the sum of the numerical error and the SGS term,
it was further demonstrated that while filtering of the whole velocity field leads
to loss of information, subfilter-scale motions are effectively shifted to the SGS
term if the non-linear convection term in filtered.

The main difference between the two discussed approaches to explicit filtering is
the interpretation of the resolved non-linear term in the filtered Navier—Stokes
equations. In the first approach, where the whole velocity field is filtered, one
tries to approximate the non-linear term that has been explicitly filtered. In the
second approach, where the explicit filter has been applied only to the non-linear
terms, one tries to approximate the grid-filtered term.

In the previously published a priori studies of the channel flow, filtering has been
applied only in the homogeneous directions. However, in many applications, there
are no homogeneous directions. In this thesis, a priori tests applying filtering in
the wall-normal direction were presented. We noticed that including this filtering



3.6 Conclusions of the a Priori Tests 85

reinforced the overall conclusion. The unphysical behaviour of the SGS term in
the case, where the whole velocity field was filtered explicitly, remained. The
desired behaviour when only the non-linear term was filtered was even stronger
with the three-dimensional filtering. Thus, the conclusions from the tests with
filtering in homogeneous directions can be extended to cases with inhomogeneous
directions. This suggests that explicit filtering is an effective method for reducing
numerical errors also in practical applications with inhomogeneous directions.

In cases where there are homogeneous directions, there is the possibility to apply
the filtering only in these directions. Based on the present results, it seems that
filtering also in inhomogeneous directions further increases the difference between
the numerical error and the SGS term. On the other hand, filtering in inhomoge-
neous directions further increases the computational cost, while improved results
can be obtained with filtering applied only in the homogeneous directions.

Based on these a priori tests, it seems that explicit filtering of the non-linear
term could be an efficient way to control the level of numerical errors in large
eddy simulation. In this approach, the responsibility for the subfilter scales is
effectively shifted to the SGS model, and in simulations applying explicit filtering,
advanced SGS models are probably required.
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Chapter 4

Explicit filtering in LES

The results of Sections 4.1-4.4 were published in Brandt (2006b) and the results
of Sections 4.5 and 4.6 in Brandt (2006d).

In this chapter, explicit filtering is applied in actual LES of the turbulent chan-
nel flow at Re, = 395. In Section 4.1, we discuss some different approaches
to explicit filtering. In Section 4.2, the effect of the filter function is studied.
In Section 4.3, the effect of explicit filtering is separated from the effect of SGS
modelling, and in Section 4.4 explicit filtering is compared to the implicit filtering
provided by the Smagorinsky model. In Section 4.5, also the dynamic Smagorin-
sky and scale-similarity models are applied together with explicit filtering, and
finally in Section 4.6, explicit filtering of the convection term is compared to
filtering via subfilter-scale modelling.

4.1 Comparison between Two Approaches to Ex-
plicit Filtering

In Section 2.2, we discussed different approaches to explicit filtering in LES, in
Chapter 3 these approaches were studied a priori, and in this section, they are
applied in actual LES. The equations being solved in the case where the non-linear
convection term is filtered are Equations (2.46) and the term that needs modelling
is given in Equation (2.47). When the change of the velocity field is filtered,
Equations (2.41) are solved and the SGS term is defined in Equation (2.42). In
this section, the same SGS models are used in both cases, and no reconstruction
is applied to the SFS stresses. The effect of this choice is studied in Section 4.5.

The applied grid resolution is given in Table 4.1, and the applied filter function
is the 4th-order commutative filter C1 with the width of two grid spacings (see
Table 2.1 and Figure 2.3), which was applied in all three coordinate directions.
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The grid resolution is almost the same as in the a priori tests of the previous
chapter (see Table 3.3), but the extent of the computational domain is doubled in
the homogeneous directions. Filtering connects the neighbouring points explicitly
to each other, and by increasing the domain it was assured that the domain did not
restrict the largest flow structures in the homogeneous flow directions. However,
it turned out that the obtained flow statistics would have been the same also in
a smaller domain.

Table 4.1: Applied resolution and domain size.

streamwise spanwise wall-normal
extent of the domain (scaled by h) 6.0 3.2 1.0
number of grid points 108 108 90
resolution in wall units (A™) 44 23 min 1.0, max 20

wall units: 7 = Re,x, where x is scaled by the channel half-height.

There are several differences between an actual LES and a priori testing. In ac-
tual simulations, the effect of the applied SGS model, the modelling error and the
dynamical behaviour of the solution are included, while they were not visible in
a priori testing. In the previous section, the situation was studied in one average
timestep. However, if in an actual simulation the whole velocity field is filtered in
the end of each timestep, the damping of the results from the previous timesteps
becomes worse in each timestep as the simulation proceeds, and this makes the
approach impossible to apply. In the present work, this approach was tested in a
simulation, and the mean velocity and Reynolds stress components were overpre-
dicted by more than 100 per cent. In the a priori test of the previous section, the
case where the whole velocity field was filtered probably corresponds better to an
actual simulation where the change of the velocity field is filtered in the end of a
timestep, since in this approach, all the terms of the LES equations are filtered
and the effect of time-integration is avoided. This approach corresponding to
Equation (2.45) was discussed in Section 2.2.2. In both cases, all the components
affecting the flow field are filtered. In this section, we discuss the filtering of the
non-linear convection term and the filtering of the change of the velocity field.

In this section, we compare the results from simulations with explicit filtering to
results of LES performed using the same code without explicit filtering and to the
DNS of Moser et al. (1999). The standard Smagorinsky model (see Section 2.1.2)
was applied to SGS modelling. The value Cs = 0.085 was used for the model
coefficient, and in the cases with no explicit filtering, the model length scale, Ag,
was equal to the grid spacing, as in Equation (2.17). Explicit filtering reduces
the effective resolution of the grid, and it is necessary to model the effect of the
length scales that are smaller than the filter width instead of scales smaller than
the grid spacing. In the standard Smagorinsky model, the size of the largest
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modelled scales is controlled via the model length scale. Thus, in the cases with
explicit filtering, the model length scale was set equal to the explicit filter width.

The computational cost of explicit filtering was studied in simulations where
filtering was performed only in the homogeneous directions. Here, filtering in-
creased the CPU-time consumed during one timestep by a factor of 2.6. In the
simulations presented in this section, filtering was applied in all three coordinate
directions and therefore the cost was even larger. However, the efficiency of the
implementation could probably be improved.

The mean-velocity profiles from the cases with no filter and with filtering of the
non-linear convection term and of the change of the velocity field are plotted in
Figure 4.1. When no filtering is applied, the slope of the velocity profile is too low,
and the mean bulk velocity is underpredicted. When the non-linear convection
term u,;u; is filtered, the viscous sublayer becomes thicker, and the mean bulk
velocity is overpredicted. When Adt; is filtered, the velocity profile changes only
slightly. In both cases with explicit filtering, the slope of the profile decreases.
The deviatoric diagonal streamwise Reynolds stress component

(') = (') —1/3 ((u'u'> + (V") + <w'w')), (4.1)

where the brackets refer to the average over homogeneous directions and time, are
given in Figure 4.2. The corresponding Reynolds stress components in the span-
wise and wall-normal directions are presented in Figure 4.3 and 4.4, respectively.
Only the deviatoric part is studied as suggested by Winckelmans, Jeanmart and
Carati (2002) since the Smagorinsky model is traceless. In Figures 4.2-4.4, we
see that the filtering further increases the overprediction of the Reynolds stress —
filtering of u,1; slightly more than filtering of Au,. The results are similar for all
the stress components.

In Figures 4.5, 4.6 and 4.7, we have the one-dimensional energy spectra evaluated
in the streamwise direction for the streamwise, spanwise and wall-normal velocity
components respectively, from the near-wall region (y* = 5). The reference
results are DNS and not filtered DNS and thus in the reference results, there are
high-frequency components which cannot in any case be present in LES where the
frequency content of the resolved flow field is always limited. In cases with explicit
filtering, the high frequency motions are efficiently damped down, when compared
to simulation with no explicit filtering, as they should, and this suggests that the
numerical error decreases. However, also the low frequencies, which the grid is
able to describe accurately, are damped. The energy spectra in the spanwise
direction for the streamwise velocity component are depicted in Figure 4.8, where
explicit filtering has only a small effect on the low frequencies. The situation
is similar for the other velocity components. In Figure 4.9, we see that in the
middle of the channel, explicit filtering does not have that large an effect on the
energy spectra. The situation is similar for the other velocity components and in
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the spanwise direction.

The SGS shear stress 715 is depicted in Figure 4.10. When explicit filtering is
applied, the SGS shear stress increases. Probably this is mainly owing to the
increased model length scale which directly controls the level of eddy viscosity
and the SGS stress. Also in the other presented flow quantities, the results
obtained with explicit filtering are affected by both filtering and modelling.

Although there were only small differences between the two studied filtering ap-
proaches at the filter width applied here, their differences became more evident
when the filter width was increased: filtering of the change of the velocity became
unstable. This is why, for the rest of the thesis, only filtering of the non-linear
convection term is considered.

Since filtering damped down the badly described high frequencies and an increase
of the model length scale adds more dissipation in the solution, the numerical error
in the present simulations should be effectively diminished when compared to the
case with no filtering. However, in cases where explicit filtering was applied, the
total simulation error was increased. In the next sections, we discuss in more
detail the factors behind this.
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4.2 Effect of Filter Shape

In this section, we study the effect of the shape of the chosen explicit filter function
on LES. Here, the non-linear convection term ,t; is filtered explicitly using
the Simpson, trapezoidal and fourth- and sixth-order commutative filters, which
were discussed in Section 2.2.3. The filter transfer functions of these filters were
depicted in Figure 2.3 and the coefficients were given in Table 2.1. There are three
main differences between these filters: the commutation error, the shapes of the
filter functions, and the effective filter widths. The commutation error related
to changing the order of differentiation and filtering is the smallest with the 6th-
order filter and largest with the trapezoidal and Simpson filters (2nd order). The
shape of the filter transfer function affects the error in the conservation of kinetic
energy and in the Galilean invariance, which are broken in this formulation of
explicit filtering (Lund 1997). The 6th-order commutative filter is closest to the
spectral cutoff filter, and thus these errors should be the smallest with this filter.
In the high-frequency part, the Simpson filter and in the low-frequency area,
the trapezoidal filter are furthest away from the spectral cutoff. As discussed in
Section 2.2.3, the effective filter widths of the commutative and Simpson filters are
two grid spacings, but the width of the trapezoidal filter is 2.45. In this section,
we study the effect of these differences between the filters on the obtained flow
statistics.

The mean-velocity profiles obtained using different discrete filters are plotted in
Figure 4.11 and the streamwise deviatoric Reynolds stress in Figure 4.12. All the
filters produce the same slope in the logarithmic layer, but the trapezoidal and
Simpson filters overpredict the mean bulk velocity more than the commutative
filters. Also, the Reynolds stress is most overpredicted with these filters. The total
error obtained as a difference to the DNS data is smaller with the Simpson filter
than with the trapezoidal filter, whereas there are no essential differences between
the two commutative filters. The situation is similar for the other Reynolds stress
components.

The one-dimensional energy spectra FE,, for the streamwise velocity component
from the near-wall region (y* &~ 5) are evaluated in the streamwise direction in
Figure 4.13. The commutative filters follow the DNS curve slightly closer than
the others and damp down the high frequencies most efficiently. The trapezoidal
filter affects the lower frequencies most, which could also be expected based on
the shape of the filter. The Simpson filter transfer function obtains quite large
values near the grid cutoff (see Figure 2.3), but still it damps the high frequencies
as efficiently as the other filters. The situation is similar for the other velocity
components. In Figure 4.14, the spectra are evaluated in the spanwise direc-
tion, and here the Simpson filter does not damp down the high frequencies very
efficiently.
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Figure 4.11: Comparison between filter functions. Mean-velocity profile.

As noticed in the previous subsection, the SGS shear stress increases in the present
simulations via the model length scale. In Figure 4.15, we see that the filter
function has only a small effect on this quantity.

Based on the results of this section, there are no essential differences in the
behaviour of the two commutative filters, and these filters produce results closer
to the DNS data than the Simpson and trapezoidal filters. The 6th-order filter
requires slightly more computational effort than the 4th-order filter, and thus,
for the rest of thesis, the 4th-order filter is applied as the explicit filter. The first
mentioned difference between the filters was the order of the commutation error.
However, this probably does not explain the differences between the simulation
results, since they remain also in cases where there is no filtering in the wall-
normal direction (not shown here) and thus no commutation error. The second
difference was the shape of the filter transfer functions. Since the Simpson filter
produces results closer to the DNS data than the trapezoidal, the shape in the
low-frequency area is probably crucial. The third difference was the filter width,
which explains some of the behaviour of the trapezoidal filter. Owing to the
larger filter width, this filter affects a larger range of wavelengths and damps the
simulation results most.
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4.3 Effect of Filtering versus Effect of SGS Mod-
elling

In the previous section, the Smagorinsky length scale, Ag, was kept equal to the
filter width, Ay, i.e. two grid spacings, in all cases with explicit filtering, and
it was equal to the grid spacing in the cases with no filtering. Thus, in cases
with explicit filtering, the quality of the results was a combination of filtering and
modelling. Here, we compare cases with and without filtering using no model,
and using the model length scale equal to grid spacing, and length scale equal
to filter width. Firstly, the aim is to describe the effect of mere filtering on the
simulation results. Secondly, we wish to compare the effect of modelling in cases
with and without explicit filtering. Thirdly, the interaction between modelling
and filtering is demonstrated. In this section, when explicit filtering is applied,
we filter the non-linear convection term using the 4th-order commutative filter.

In the upper part of Figure 4.16, we have the mean-velocity profiles from sim-
ulations with explicit filtering, and in the lower part, from simulations without
explicit filtering. In both cases, the simulations were repeated with different val-
ues of the model length scale. If we compare the two figures, we notice that, when
explicit filtering is applied, the effect of modelling is reduced. In the lower part of
Figure 4.16, where no explicit filtering is applied, the increase of the model length
scale rapidly increases the mean bulk velocity and the thickness of the viscous
sublayer. In the upper part of the figure, this influence of modelling is clearly
diminished. In addition, we notice that most of the changes obtained in the pre-
vious section when explicit filtering was applied are already present in the case
with no model in the upper part of the figure. Thus, the changes were mainly the
result of filtering itself. However, we further see in the same figure that, when the
Smagorinsky length scale is increased, the prediction of the mean-velocity profile
slightly improves. The viscous sublayer becomes better captured and the slope
of the profile improves slightly. Thus, the model is able to compensate somewhat
for the effect of filtering.

In Figure 4.17, corresponding plots are given for the streamwise deviatoric Reynolds
stress. Most of the overprediction of the Reynolds stress that was noticed in the
previous section is actually the result of filtering and the model again has a rather
small effect on the results. When the model length scale is increased, the peak
value reduces and moves towards the middle of the channel. As seen in the lower
part of the figure, this is owing to modelling, and in the upper part, the use of
explicit filtering prevents the profile from widening too much. The results are
similar for the other Reynolds stress components. Thus, a similar conclusion as
drawn for the mean-velocity profile can be stated here: most of the overprediction
of the Reynolds stress noticed in the previous sections was owing to filtering itself,
and increasing the model length scale again slightly improves the results.
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The one-dimensional energy spectra in the streamwise direction are depicted in
the near-wall region (at y* & 5) in Figure 4.18. We notice that the main difference
between explicit filtering and the damping provided by the model is their effect on
the high frequencies. The model affects the low and high frequencies in a similar
manner, whereas explicit filtering damps the high frequencies much stronger than
the low frequencies. Also Visbal and Rizzetta (2002) and Bogey and Bailly (2006)
noticed that eddy-viscosity-type models can affect a wider range of scales than
explicit filtering. In Figure 4.18, in the case with explicit filtering and the large
model length scale, the low frequencies are damped in a similar manner as with
only modelling, but the high frequencies are damped more. However, in the
spectra evaluated in the spanwise direction, the effect of modelling is not that
strong (not shown here).

In the previous sections, we noticed that the total error, obtained as the difference
to DNS data, increased when explicit filtering was applied, and the choice of
the filter function did not have a large effect on this. Based on the results of
this subsection, there seem to be two factors behind this behaviour: the effect of
filtering itself and the behaviour of the applied SGS model with filtering. With the
current numerical methods, explicit filtering alone had a large affect on the flow
statistics, and it was the major factor behind the large total error. This new error
introduced by explicit filtering overshadows the possible positive effect filtering
might have on the numerical error. When SGS modelling was applied, filtering
decreased the effect of modelling, but as the model length scale was increased,
the model was able to improve the prediction of the flow statistics compared to
the case with no model. In addition, in cases with the large model length scale,
the results with explicit filtering were better than the results without explicit
filtering. Thus, despite the large effect of filtering itself on the total simulation
error, there was some desirable interaction between filtering and SGS modelling.
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4.4 Explicit and Implicit Filtering

The use of explicit filtering was suggested as a method to reduce the numerical
error in LES via damping the badly described low-frequency components of the
resolved flow field. This is not the only possible way to smooth out the flow
field. The standard Smagorinsky model is a purely dissipative model, and adding
dissipation to the simulation should also make the resolved flow field smoother
and reduce the numerical error. Usually, the model length scale is set equal to
the grid spacing, but at the same time the model coefficient is varied. Here, we
fix the model coefficient and interpret varying the product C'sAg as varying the
model length scale Ag. This type of approach has been applied by Muschinski
(1996).

In this section, we study the differences between explicit filtering of the non-
linear convection term and the implicit filtering provided by the SGS model.
The differences are emphasised by the use of wider explicit filter widths in cases
with explicit filtering and wider model length scales, i.e. implicit filter widths, in
cases with implicit filtering. In cases with explicit filtering, the filter widths of
1.5A, 2A, 3A and 4A are applied, and to separate the effect of explicit filtering
from modelling, the model length scale is kept equal to the grid spacing. These
results are compared to cases with no explicit filtering and larger model length
scales. It is actually not physically correct to increase the explicit filter width
and not to increase the effect of the SGS model, because when the resolved field
is filtered explicitly, SGS or SFS modelling should be used to model the scales
affected by filtering. However, this comparison is done to study the differences
and similarities between the explicit and implicit procedures, and to complete the
study of the previous section.

In Figure 4.19, we have the mean-velocity profiles from cases with increasing
explicit filter widths. To compare this to the case where implicit filter width is
increased, two curves from the lower part of Figure 4.16 are included. We notice
that in the mean bulk velocity, the effects of implicit and explicit filtering are
similar to each other. However, explicit filtering does not increase the mean bulk
velocity as rapidly as implicit filtering. The main difference is in the viscous
sublayer. When explicit filtering is applied, the velocity near the end of the layer
increases, but the thickness of the logarithmic layer remains constant. Increased
velocity near the end of the viscous sublayer makes the slope in the logarithmic
layer incorrect. With implicit filtering, the viscous sublayer thickens.

The deviatoric streamwise Reynolds stresses from the different cases are plotted
in Figure 4.20, and two curves from the lower part of Figure 4.17 are included. As
the explicit filter width is increased, the peak of the Reynolds stresses becomes
more overpredicted, and the distribution widens. When only implicit filtering
is applied, the peak of the Reynolds stress becomes less overpredicted, but the
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Figure 4.19: Explicit filter width is increased. Mean-velocity profile.

distribution widens more rapidly than with explicit filtering. These differences
between the filtering approaches were also visible in the previous section, where
explicit filtering increased the peak value and prevented the profile from widening.

As seen in Figure 4.21, increasing the width of the explicit filter affects the be-
haviour of the Smagorinsky model. The peak value of the SGS shear stress is
increased with the filter width although the model length scale was not varied
between the simulations, and thus the effect of the SGS model on the turbulent
shear stress increases in the near-wall region. However, in the middle of the chan-
nel, the level of the SGS shear stress decreases. The SGS shear stress is increased
in comparison to the case with no filtering only when large explicit filter widths
are applied. This supports the conclusion of the previous section, where we no-
ticed that, when the explicit filter width equals two grid spacings, the effect of
the model decreases compared to the case with no explicit filtering. Since the
product CsAg is kept constant, the changes in the SGS shear stress are caused
by the changes in the strain-rate tensor (see Equation 2.16).

The one-dimensional energy spectra evaluated in the near-wall region (y =~ 5)

from cases with explicit filtering are depicted in the streamwise direction in Fig-
ure 4.22. Two curves where no filtering is applied and the model length scale is
varied are included from the lower part of Figure 4.18. We see that as the explicit
filter width is increased, also the lower frequencies are damped down. Since the
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applied filters are not sharp, the use of wide filters affects the whole spectrum.
This is similar to the behaviour of the cases with implicit filtering. However,
all the explicit filters damp down the high frequencies more efficiently than im-
plicit filtering, which affects all frequencies in a similar manner even if the model
length scale is increased. Damping of the high frequencies can be considered as
a desirable feature, because it reduces the numerical error.

In the previous section, the effect of filtering with a smooth filter was separated
from the effect of SGS modelling. In this section, these differences where further
emphasized by comparing results with explicit and implicit filtering with larger
filter widths. We saw that wide smooth filters have some similar effects on the
flow quantities as implicit filtering provided by the Smagorinsky model. These
wide explicit filters damp also the low-frequency components of the resolved flow
field, and thus the effect is similar to the effect of extra dissipation introduced by
implicit filtering.
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4.5 Effect of SFS Modelling with Explicit Fil-
tering

The results of the previous subsections were obtained using the standard Smagorin-
sky model, which is one of the simplest subgrid-scale models. It is a dissipative
model which is usually used to model SGS stresses. In the previous sections, no
separate modelling or reconstruction was applied to the subfilter-scale stresses,
which are related to scales smaller than filter width but larger than grid spac-
ing. To verify that the results were not caused by poor SGS or SFS modelling,
these simulations are repeated here using the dynamic version of the Smagorin-
sky model (DSM) for the SGS stresses, the scale-similarity model (SSM) for the
SFS stresses and a mixed model (MM), where the Smagorinsky model is used
to model subgrid-scale stresses and SSM to model subfilter-scale stresses. These
models were discussed in Section 2.1.2. They are selected for use here because
they are still rather simple to implement and the extra computation time is not
too large. As noticed in Section 4.1, explicit filtering increases the computa-
tion time, and it is not realistic to assume that it could be applied in complex
applications together with a complex SGS model.

In the simulations of this section, the grid resolution is the same as given in
Table 4.1. The fourth-order commutative filter with the width of two grid spacings
is applied as the explicit filter as well as the filter of the scale-similarity model.
In simulations with explicit filtering, the test filter of the dynamic model is the
commutative filter with the width of four grid spacings, and in simulations with
no explicit filtering the test filter is the commutative filter with the width of two
grid spacings. These filters were discussed in Section 2.2.3 and the filter transfer
functions were depicted in Figure 2.4. In simulations with explicit filtering and
the standard Smagorinsky model, the length scale of the Smagorinsky models
is set equal to the filter width as in Sections 4.1 and 4.2. In simulations with
the mixed model, the length scale of the Smagorinsky model was equal to grid
spacing, because the scale-similarity part models the subfilter-scales.

The mean-velocity profiles from simulations with different models with and with-
out explicit filtering are given in Figure 4.23. In the upper part of the figure, no
explicit filtering is applied, and in the lower part, the non-linear convection term
and the SGS and SF'S models are filtered explicitly using the filter width of two
grid spacings. When no explicit filtering is applied, there are clear differences be-
tween the mean bulk velocities obtained using different models, and the dynamic
Smagorinsky model (DSM) produces the value closest to the reference data of the
DNS of Moser et al. (1999). With both Smagorinsky models, the viscous sublayer
is slightly too thick. When compared to the case with no model, SSM has almost
no effect on the mean-velocity profile. The mixed model (MM) falls in between
the SSM and Smagorinsky models.



110 Explicit filtering in LES

In the lower part of Figure 4.23, we notice that explicit filtering reduces the
differences between the models and the curves are closer to the case with no
modelling, meaning that the effect of modelling is decreased. As noticed in the
previous section with the standard Smagorinsky model, filtering changes the slope
of the profile, which becomes too low. Here, we notice that despite the use of
somewhat better models and inclusion of the first-order reconstruction for the SF'S
stresses, the slope still changes by the same amount. With DSM, the decreased
slope decreases the mean bulk velocity. In the case with the standard Smagorinsky
model, SSM and MM, filtering improves the prediction of the mean bulk velocity.
In the standard Smagorinsky model, the coupling between the model and filtering
is forced via the model length scale, which is here equal to the explicit filter width.
The increased model length scale is visible in the increased thickness of the viscous
sublayer. With the two other models, the thickness of the viscous sublayer slightly
improves compared to the case with no filtering.

The resolved deviatoric streamwise Reynolds stress obtained using no explicit
filtering is plotted in the upper part of Figure 4.24. The ones obtained with
SSM and MM are underpredicted, whereas the ones produced by the Smagorin-
sky models are overpredicted. When we compare the results to the case with no
modelling, we see that the effect of modelling is largest with SSM. The corre-
sponding results for cases where explicit filtering was applied to the non-linear
convection term and to the SGS and SF'S stresses, are shown in the lower part
of Figure 4.24. Here, we first notice that filtering increases the overprediction
of the Reynolds stress with all models. In the previous section, it was noticed
that this results from filtering itself, and here the trend continues also with DSM,
SSM and MM. With DSM, SSM and MM, filtering slightly decreases the effect of
modelling, whereas with the standard Smagorinsky model, the effect of modelling
is increased because it is directly controlled via the model length scale.

The SGS or SFS shear stresses, 712, obtained with and without explicit filtering
are plotted in the upper and lower parts of Figure 4.25, respectively. We notice
that with DSM, SSM and MM, 7115 clearly decreases when filtering is applied,
which is in agreement with the results obtained for the mean-velocity profile and
for the Reynolds stress. With the standard Smagorinsky model, 715 increases
because of the increased model length scale.

The one-dimensional energy spectra from the near-wall region (y* ~ 5) are eval-
uated in the streamwise direction in Figure 4.26. In the upper part of the figure
where no explicit filtering is applied, the differences between the models are rather
small, whereas in the lower part, the standard Smagorinsky model damps down
the spectrum most. It was noticed in the previous section that damping of the
low frequencies mainly results from the implicit filtering provided by the model.
Here, we see that with SSM, which introduces no extra dissipation to the sim-
ulation, the low frequencies are least affected. The benefit of using a model or
reconstruction for subfilter-scales is also demonstrated here: when an SF'S model
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is used as in SSM or MM, the damping of the low frequencies is diminished. When
explicit filtering is applied, the high frequencies are efficiently damped with all
the models, which suggests that although the total error was not decreased, the
numerical error is probably smaller.

Based on the results of this subsection, it seems that although in SSM and MM
a simple reconstruction is used to model the subfilter scales, the same deficiency
as noticed with the Smagorinsky models is seen with these models when the non-
linear convection term is filtered. In SSM, there is no direct interaction between
the model and explicit filtering. In DSM, modelling and explicit filtering are
coupled via the increased test-filter width. It has been noticed that as long as
the width of the explicit filter is correctly treated, the results are not sensitive
to the choice of the test filter (Lund 1997). Since, in addition, explicit filtering
reduces the effect of the model, it is understandable that the effect of the model
did not increase. With the standard Smagorinsky model, the coupling between
the model and filtering is easily set via the model length scale, but the modelling
error limits the accuracy of the results.
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4.6 SFS Filtering versus Filtering of Convection
Term

In the previous sections, we saw that explicit filtering of the non-linear convection
term can have a large negative effect on the simulation results. In this section,
we apply the approach of Carati et al. (2001) where filtering is performed via
subfilter-scale (SF'S) modelling (see Section 2.2.2, Equations (2.48)—(2.49)). The
same models as applied in the previous section are applied here, and the aim is
to compare filtering of the non-linear convection term to filtering via SF'S mod-
elling. As was discussed in Section 2.2, the equations being solved are different in
different approaches to explicit filtering, and the definition of exact SGS or SFS
tensor changes. Thus, the terms that the SGS and SFS models represent are also
different in different approaches.

Here, modelling is first applied only to the SGS component of the shear stress
using the Smagorinsky models, then only the SF'S component is modelled using
the scale-similarity model (SSM), and finally, both SFS and SGS stresses are
modelled using SSM and a Smagorinsky model as a mixed model. Gullbrand
and Chow (2003) showed that the modelling of the SF'S stress is necessary, and
to obtain improved results compared to the traditional approach, the dynamic
reconstruction model of Stolz et al. (2001) had to be applied. Here, much simpler
models are applied because the main goal is to compare the two approaches. In
this section, the fourth-order commutative filters with the widths of two and four
grid spacings are applied.

In the upper part of Figure 4.27, the mean-velocity profiles from the cases using
a Smagorinsky model for the SGS stress are depicted. First, no extra filtering
is provided via the model. The model length scale in the standard Smagorinsky
model, Ag, is equal to the grid spacing, and the test filter in DSM, A, has
the width of two grid spacings. Then, the model length scale in the standard
Smagorinsky model is increased to two grid spacings and in DSM, the width of the
test filter is increased to four grid spacings. This corresponds to a situation where
the explicit filter has the width of two grid spacings. In the standard Smagorinsky
model, the filtering provided by the model is actually implicit filtering since no
filtering operation is made explicitly. In Figure 4.27, the larger model length scale
in the standard Smagorinsky model increases the thickness of the viscous sublayer
and makes the mean bulk velocity overpredicted. In the dynamic Smagorinsky
model, increasing the test filter width has only a small effect on the velocity
profile. The small effect of varying the test filter width was noticed previously by
Lund (1997).

In the lower part of Figure 4.27, we have the velocity profiles from cases where
SSM is used alone as an SF'S model and as a mixed model together with Smagorin-
sky models to model both SGS and SFS stresses. The filter in SSM has the width
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of two grid spacings, and when the mixed model is applied, the model parameter
in the standard Smagorinsky model is proportional to the grid spacing, and the
test-filter width in DSM is four grid spacings. As seen in Figure 4.27, the use of
the mixed model improves the prediction of the viscous sublayer, which is too thin
when only SSM is applied. DSM together with SSM produces the best profile.
When compared to the cases with only an SGS model in the upper part of the
figure, the mean bulk velocity is a bit low, but the thickness of the logarithmic
layer is better predicted.

In Figure 4.27, the filtering provided by modelling does not change the slope of
the velocity profile in the way that explicit filtering of the convection term did in
Figure 4.23. In addition, the behaviour in the viscous sublayer improves, which
does not happen in Figure 4.23.

The resolved deviatoric streamwise Reynolds stress from the different cases is
plotted in Figure 4.28. In the upper part of the figure, we notice the typical be-
haviour of the standard Smagorinsky model as the model length scale is increased.
The Reynolds stress becomes overpredicted and the distribution widens. When
the dynamic model is applied, the increased test filter width has only a small
effect on the Reynolds stress, and it becomes slightly more overpredicted. In the
lower part of the figure, the use of SSM together with the standard Smagorinsky
model produces the best Reynolds stress. However, the differences between the
cases are small. By comparison of the upper and lower figures, we see that the use
of SSM as an SF'S model clearly improved the prediction of the Reynolds stress,
as was found already by Gullbrand and Chow (2003). The results are similar for
the other diagonal stress components. When compared to the case with explicit
filtering of the non-linear convection term in Figure 4.24, the clear overprediction
produced by the filtering is not visible in any of the cases in Figure 4.28.

In Figure 4.29, we have the SGS and SFS stresses from the different cases. As the
model length scale is increased, the SGS shear stress of the standard Smagorinsky
model is increased strongly. When the larger test filter of the width of four
grid spacings is applied in DSM, the SGS shear stress inconsistently decreases.
Thus, the improved results obtained using this test filter were probably due to the
decreased effect of the model. In the lower part of figure, the SF'S stress produced
by SSM is much larger than the SGS stress produced by the Smagorinsky models.
Thus, using the SF'S model increases the effect of modelling.

The one-dimensional energy spectra are depicted in the streamwise direction in
Figure 4.30. As can be expected, increasing the length scale of the Smagorinsky
model damps down the whole spectrum. In the lower part of the figure, the mixed
models affect the low frequencies less, and damp down the high frequencies better
than the Smagorinsky models alone in the upper figure. However, the differences
are rather small, and compared to the case with explicit filtering of the convection
term in Figure 4.26, the damping of high frequencies is clearly not as efficient.
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4.7 Conclusions of Application of Explicit Fil-
tering

In this chapter, explicit and implicit filtering has been applied in actual LES. The
main new contributions are the comparisons between different filtering approaches
and the demonstration of the rather large negative effect of explicit filtering with
smooth filter functions. Despite the promising results of the a priori tests of the
previous chapter, we have seen that explicit filtering of the non-linear convection
term, or the change of the velocity field, does not improve the simulation results
with the present grid resolution, SGS and SF'S models and numerical methods.
On the contrary, the total simulation error clearly increased when explicit filtering
with a smooth filter was applied.

Some of the simulations were repeated using a finer grid to see if the applied grid
resolution was too coarse for explicit filtering (not shown here), but it did not
affect the conclusion — explicit filtering still increased the total error. Gullbrand
and Chow (2003) applied both second- and fourth-order methods in their study,
and when the grid resolutions were properly chosen, there were only small dif-
ferences between the results. Since here increasing the grid resolution did not
remove the negative effect of filtering, it can be assumed that it would remain
also if a higher-order numerical scheme were applied.

In the majority of the chapter, only the Smagorinsky model, which actually pro-
vides no reconstruction for the subfilter scales, was applied. In Section 4.5, also
the scale-similarity model and a mixed model, where a first-order reconstruction
of SF'S is provided, were applied. The main deficiencies noticed in the other parts
of the chapter were also visible in these results. Thus, it seems difficult to com-
pensate for the effect of explicit filtering of the convection term performed with
a smooth filter via improved SGS or SFS modelling.

We also studied the use of different filter functions, and the commutative filters
produced slightly better results than the trapezoidal and Simpson filters. It was
concluded that the shape of the filter in the low-frequency area and the damping
of the small frequencies is the important feature of the explicit filter function.
However, the negative effect of filtering remained also with the commutative
filters.

By comparing the simulation results with and without filtering to simulations
with no SGS model, we saw that when explicit filtering was applied, modelling
had a rather small effect on the simulation results, and the main part of the
increased total error was caused by explicit filtering itself. When the results with
SGS modelling and filtering were compared to the simulation with filtering but no
model, we also saw some improvement in the simulation results when the model
length scale was increased. Thus, there was some beneficial interaction of filtering
and modelling although the total simulation error still remained large.
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In Section 4.4, explicit filtering was compared to the implicit filtering provided
by the standard Smagorinsky model. When large explicit filter widths were ap-
plied, some similarities in the behaviour of the mean-velocity profile and the
Reynolds stress components were noticed. The main difference was that, while
the Smagorinsky model affects all frequencies in a similar manner, explicit filter-
ing damps down the high frequencies more than the low ones.

Finally, we applied the approach of Carati et al. (2001) to explicit filtering, and
noticed that filtering via the SFS model does not have negative effect on the
total error. Gullbrand and Chow (2003) already noticed that the use of the SF'S
model is necessary, and also here better results were obtained when SSM was
used as an SFS model. However, we noticed that when filtering was provided
by the SFS and SGS models, the small scales were not damped as strongly as
when the convection term was filtered, and thus the filtering provided by the
applied models is not the same as explicit limiting of the high frequencies. The
use of mixed models improved the prediction of the spectra compared to using
Smagorinsky models or SSM alone. If one considers the total simulation error
and the computing time, this latter approach seems to be better than filtering
of the non-linear convection term. However, the original reason for using explicit
filtering was the large numerical error, and in the latter approach, it is not clear
if this error was decreased.

In this chapter, only the total error in LES was studied, and thus we cannot
state what the role of numerical error was in the present results. In the next
chapter, the channel flow test case is studied a posteriori and both numerical
and modelling error are evaluated. In addition, their role in the simulations with
explicit filtering is studied.
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Chapter 5

A Posteriori Tests on Numerical
and Modelling Error in LES

The results of Section 5.1 were published in Brandt (2007), the results of Sec-
tion 5.2 in Brandt (2006e), and the results of Section 5.3 in Brandt (2006c).

In this chapter, the numerical and modelling error in actual LES of the channel
flow at Re, = 395 are separated from the total error. The aim is to explain
the behaviour of the total error in LES via the error components. Different
approaches are applied to a posteriori testing, and in addition to the clarification
of the roles of the error components, the aim is to describe the differences between
the approaches. In Section 5.1, the error components are studied using so-called
implicit filtering, and we focus on cases with no explicit filtering. In Section 5.2,
an approach using the Richardson extrapolation is studied. Finally, in Section 5.3,
an approach using explicit filtering is applied in a posteriori testing, and the error
components are compared to the effect of filtering.

In this chapter, the study is performed with the standard Smagorinsky model
because two of the approaches applied to a posteriori testing are developed mainly
for this model. In addition, in the previous chapter we saw that applying DSM,
SSM or MM did not improve the results with explicit filtering.

5.1 A Posteriori Tests Using Implicit Filtering

In this section, we study LES of the channel flow using the standard Smagorinsky
model and no explicit filtering. The aim is to evaluate a posteriori the numerical
and modelling error in this case and to clarify the effect of the model parameters of
the standard Smagorinsky model and the grid resolution on the error components.
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5.1.1 Grid-independent LES Using Implicit Filtering

As suggested by Vreman et al. (1996), the numerical error involved in LES is
defined here as the difference between the so-called grid-independent or fine-grid
LES and the LES results, and modelling error as the difference between DNS and
the grid-independent LES:
€numerical error — 2} - agrid—indep. LES (51)
€modelling error — Ugrid-indep. LES — UDNS,
where @ refers to an LES solution and u to a DNS solution. The total error is
the sum of these two: i« = @ — upns. Here, the error is averaged over time
and homogeneous flow directions. Since in the Smagorinsky model the built-in
filter involved is not explicitly defined, the DNS solution instead of filtered DNS
is applied in the definition of the modelling error. This choice was applied by
Meyers et al. (2003).

The grid-independent LES means a solution of the LES equations where the grid
resolution is increased to a level where the effect of numerical error is negligible
while the effect of the model is preserved. When the effect of the model is kept
constant as the grid is refined, the solution does not approach DNS as normally
in LES. The effect of the model can be preserved either by applying an explicit
low-pass filter to remove the high-frequency components as done by Vreman et al.
(1996) and Gullbrand (2002), or by fixing the parameter in the SGS model which
controls the size of the smallest resolved flow scales as done by Geurts and Frohlich
(2002) and Meyers et al. (2003). It is not suggested that grid-independent LES
would be a way to perform practical LES. It is only a tool for error analysis.

In this section, the approach of Geurts and Frohlich (2002) to obtaining the
grid-independent LES is applied. Here, explicit filtering is not considered, and
the equations being solved are those of implicit LES (Eq. 2.7). The approach
is based on implicit filtering, which means that the smoothing provided by the
SGS model is interpreted as filtering. For the standard Smagorinsky model,
the grid-independent LES is approached by keeping the product of the model
coefficient and model length scale CsAg in Equation (2.16) constant as the grid
is refined. This relies on the interpretation of the LES equations as a set of
differential equations with one externally defined parameter C'sAg. Traditionally,
this parameter is fixed to grid resolution. When the Smagorinsky model is applied,
the grid-independent solution has also been referred to as the grid-independent
solution for the “Smagorinsky fluid”, which means the smooth grid-independent
solution of the LES equations and the Smagorinsky model (Muschinski 1996,
Geurts and Frohlich 2002).

Geurts and Frohlich (2002) applied parameters called the SGS resolution and SGS
activity parameter to describe the different combinations of the model length scale
or width of the built-in filter and the grid resolution. The SGS resolution, r, is
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defined as the ratio of the model length scale to the grid spacing r = Ag/A.
When r is large, the numerical error has only a small effect on the solution and
the solution approaches the grid-independent case. The SGS activity parameter,
s, describes the amount of modelling in LES compared to DNS. It is defined as
the ratio of the turbulent dissipation to the total dissipation as

(€r)
- , 5.2
(el + (&) 2
where the brackets refer to average over homogeneous directions and time and
the turbulent dissipation and the molecular dissipation are defined as
o ~ 0u; 1 -~ Ouy
=T — = up2S;— 7 =5, —, 5.3
“ Tjﬁxj Hr ]8%» “u Re, ]8%- (5.3)

respectively. In DNS, the value of s is zero, and the value of unity is approached
in LES as the Reynolds number grows towards infinity. The value of s is related
to the effective filter width, and it is almost independent of the grid resolu-
tion (Geurts and Frohlich 2002). This was also noticed in the present simulations
in the channel flow.

This approach using implicit filtering has been previously applied in a turbulent
mixing layer (Geurts and Frohlich 2002) and in homogeneous turbulence (Meyers
et al. 2003). In this thesis, the fully developed turbulent channel flow is studied
using the approach.

5.1.2 Applied Grid Resolutions

Four LES grids, which are labelled as grid 1, grid 2, grid 3 and grid 4 (see
Table 5.1), are applied in this section. Grid 1 is a very coarse LES grid, and it is
used only to study the effect of increasing grid resolution on the error components.
Grid 2 has nearly the same resolution as the LES grids studied in the previous
sections, and it is the base test case of this section. Grids 3 and 4 are applied to
approach the grid-independent situation. The numerical error involved in DNS
performed on grid 4 was studied in Section 2.4.2. Since using the SGS model
further smooths the resolved flow field and thus decreases the numerical error,
this resolution was considered as an adequate approximation for grid-independent
LES. The DNS data applied in this section are that of Moser et al. (1999).

5.1.3 Effect of Varying Grid Resolution on Numerical and
Modelling Error

In this section, we study LES results and the involved numerical and modelling
error from the two coarsest grid resolutions — grid 1 and grid 2. Here, the subgrid-
scale resolution is fixed to value 1, i.e. the model length scale Ag is set equal to
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Table 5.1: Domain size and resolution of the applied LES grids. (z=streamwise,
z=spanwise, y=wall-normal direction).

grid 1 grid 2
x z Y x z Yy

extent of the domain / channel height 3.0 1.6 1.0 3.0 1.6 1.0
number of grid points 36 36 40 54 54 60
resolution in wall units (A™) 70 37 3,...41 44 23 2...27

grid 3 grid 4
extent of the domain / channel height 3.0 1.6 1.0 3.0 1.6 1.0
number of grid points 108 108 120 180 180 180
resolution in wall units (A™) 22 12 1,..,14 13 7 07...9

wall units: 7 = Re,x, where z is scaled by the channel half-height.

the grid spacing A (Eq. 2.17). The SGS activity parameter from the two cases is
plotted in Figure 5.1. As the grid resolution is increased, the model length scale
decreases, and also the SGS activity decreases.

The mean-velocity profiles from grid 1 and grid 2 cases are plotted in Figure 5.2.
As the resolution is increased, the non-dimensional mean bulk velocity becomes
less overpredicted and the prediction of the thickness of the viscous sublayer im-
proves. If the grid resolution is increased further with » = 1, also the slope of the
profile improves and the profile approaches the DNS result. The deviatoric diag-
onal streamwise Reynolds stress is plotted in Figure 5.3. As the grid resolution is
increased, the total error in this quantity diminishes. The situation is similar for
the spanwise and wall-normal Reynolds stresses. The SGS shear stress, 719, for
the two cases is plotted in Figure 5.4. Since SGS resolution r = Ag/A remains
constant, the increase in grid resolution decreases the contribution of the SGS
model.

Next, the model length scale is fixed and the grid resolution is increased for both
grid 1 and grid 2 cases. The aim is to approach the grid-independent situation
and to evaluate the numerical and modelling error involved with the two cases.
The effect of increasing the grid resolution with a fixed model length scale on the
SGS shear stress and energy spectra is studied in the next subsection, and here
we concentrate only on the error components.

The mean-velocity profile from the grid 1 case and the corresponding results from
the higher resolution cases with the model length scale of Ag = Agiq 1 are plotted
in the upper part of Figure 5.5, where the difference between the DNS curve and
the LES case with the highest resolution (grid 4) approaches the modelling error,
and the difference between grid 4 and grid 1 approaches the numerical error. The
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Figure 5.1: Subgrid-scale activity parameter. Grid resolution is varied and r =
Ag/A =1.

error components are plotted in the lower part of the figure. Also the numerical
error from the simulation on grid 2 and Ag = Agyq1 is included. We will use it
in the next subsection. In the grid 1 case, the viscous sublayer is too long and
thus, the slope of the profile is not correct. Neither one of the error components
is constant in the logarithmic layer and thus, they both affect the error in the
slope. Both the numerical and modelling error also affect the mean bulk velocity.
The numerical and modelling error in the mean bulk velocity have different signs,
and the modelling error is, by absolute value, actually larger than the total error.
This type of counteraction of the error components was also noticed in the study
of Geurts and Frohlich (2002) in a turbulent mixing layer.

The mean-velocity profile from the grid 2 case together with the results from
the higher-resolution cases with Ag = Agq2 are plotted in the upper part of
Figure 5.6 and the numerical and modelling errors in the lower part of the figure.
Here, the modelling error is clearly smaller than in the grid 1 case in Figure 5.5.
However, the numerical error is not that much affected by the grid resolution,
and it is almost the same here as it is in the grid 1 case in Figure 5.5. Because of
the decreased modelling error, the total error changes its sign. Thus, the better
prediction of the shape of the mean-velocity profile and the mean bulk velocity
in the grid 2 case mainly results from the diminished effect of the SGS model.

The deviatoric streamwise Reynolds stress and the error components from the
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Figure 5.2: Mean-velocity profile. The grid resolution is varied and the SGS resolution
is kept constant: Ag = A.
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Figure 5.3: Deviatoric diagonal Reynolds stress. The grid resolution is varied and the
SGS resolution is kept constant: Ag = A.
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Figure 5.4: SGS shear stress. The grid resolution is varied and the SGS resolution is
kept constant: Ag = A.

grid 1 case are plotted in Figure 5.7. Here, the modelling error dominates the
numerical error in most parts of the channel. Numerical error is larger than the
modelling error only in the near-wall region and in the middle of the channel. In
the grid 1 case, the counteraction of the two error components occurs only in the
area very close to the wall. In Figure 5.8, the deviatoric streamwise Reynolds
stress is plotted from the grid 2 case with the model length scale set to Ag =
Agiiq 2. Here, the modelling error is clearly decreased compared to the grid 1
results in Figure 5.7. However, as seen by comparing Figures 5.8 and 5.7, the
numerical error is only slightly affected when the grid resolution is varied and the
SGS resolution is kept constant. The situation is similar for the other Reynolds
stress components.

Based on the above findings, the improved results in Figures 5.2 and 5.3 that
were obtained when the resolution was increased from grid 1 to grid 2 keeping
the SGS resolution constant were mainly owing to the decreased modelling error.
As the SGS resolution was kept constant, the model length scale and SGS activ-
ity decreased with increased grid resolution. Thus, the effect of the model was
also decreased, which makes the decreasing of the modelling error natural. One
would have assumed that increasing the resolution would also have decreased the
numerical error. However, it had very little effect on the numerical error. This is
probably owing to the SGS motions that became badly described resolved scales
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as the grid resolution was increased. In addition, we saw that actually the numer-
ical and modelling error were of the same size in the mean-velocity profile, and
in the Reynolds stresses the modelling error even dominated the numerical one.
Thus, the results of the a priori tests of Chapter 3 were too pessimistic regarding
the role of the numerical error.
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Figure 5.5: Upper: Mean-velocity profile in the wall coordinates. Model length scale
is kept constant and the grid resolution increased. Ag = Agiq 1 = 1.5A4iq 2. Lower:
Numerical and modelling errors involved in grid 1 and grid 2 cases.
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5.1.4 Effect of Varying Model Length Scale on Numerical
and Modelling Error

In the previous chapter, we saw some examples of the effect of varying the model
length scale or the width of the built-in filter of the standard Smagorinsky model.
Here, we explain this behaviour by the error components.

The effect of the built-in filter width of the standard Smagorinsky model on the
error components is studied using grid 2. The model length scales Ag = 0 (no
model), 0.5A, A and 1.5A are applied, and the corresponding SGS resolutions are
r =0, 0.5, 1 and 1.5, respectively. In the previous chapter, we also studied a case
with the model length scale of 2A, but since the results with no explicit filtering
were quite bad, the model length scale is not increased as much here. The SGS
activity parameter s (Eq. 5.2) from these cases is depicted in Figure 5.9. The
largest values (s = 0.5) are found in the case with the largest model length scale,
and in the case with no model, s has the value of zero. The case with the largest
model length scale 1.5Ag4q 2 in grid 2 has the same SGS activity as the grid 1
case with » = 1 in Figure 5.1. These cases also have the same model length
scales, and thus s seems to be rather independent of the grid resolution as has
been previously noticed in the turbulent mixing layer (Geurts and Frohlich 2002).
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Figure 5.9: Subgrid-scale activity parameter. Grid resolution is constant (grid 2) and
r is varied via the model length scale Ag.

The mean-velocity profiles from cases with different model length scales on grid 2
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are plotted in Figure 5.10. If no SGS model is applied, i.e. Ag = 0, the mean
velocity is underpredicted. As the model length scale is increased, the situation
first improves, but finally the mean velocity becomes overpredicted. In addition,
as the model length scale is increased, the thickness of the viscous sublayer in-
creases. In all cases, the slope of the velocity profile in the log-layer is too low,
and applying the SGS model does not improve this. In Figure 5.11, we have
the deviatoric diagonal streamwise Reynolds stress. The SGS model does not
improve the prediction. When the model length scale is increased, the Reynolds
stress becomes more overpredicted and the peak value starts to move towards
the middle of the channel. The other Reynolds stress components show the same
behaviour.
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Figure 5.10: Mean-velocity profile in the wall coordinates. The grid resolution is
constant (grid 2) and SGS resolution is varied via the model length scale Ag.

Next, the grid-independent situation corresponding to each Ag is approached by
increasing the grid resolution for each case while keeping the model length scale
constant. Before presenting the error components, the effect of increasing the
grid resolution on the SGS shear stress and energy spectra is studied to see how
well the different cases with different resolutions correspond to each other.

The SGS shear stresses for each case with different Ag is depicted in Figure 5.12
together with the plots from the corresponding higher-resolution cases. We notice
that there is some variation in 715 = —2 (CsAg)? |S] S12 (see Equation (2.16)) in
each sub-figure. Since the product C'sAg is a constant in each sub-figure, this
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0.25

Figure 5.11: Deviatoric part of the streamwise Reynolds stress. The grid resolution
is constant (grid 2) and SGS resolution is varied via the model length scale Ag.

variation is owing to changes in the strain rate tensor S;;, and it appears because
of the effect of numerics on the resolved velocity field. However, the variation
between the subfigures, which is caused by varying the model length scale, is
clearly larger than the effect of numerics. This verifies that the effect of the SGS
model remains nearly constant when the grid resolution is varied independently
of the model length scale. Thus, this approach to obtaining grid-independent
LES is valid.

The one-dimensional energy spectra of the streamwise velocity component from
the near-wall region are evaluated in the streamwise direction in Figure 5.13.
The spectra from simulations with different grid resolutions and the same model
length scale are quite close to each other but not exactly the same even at the
low frequencies. Due to the resolution of the coarsest grid, the spectra from
different grids are not evaluated exactly at the same points, which causes some
of the variation. However, the variation with the grid resolution is weaker than
the variation with the model length scale, which is seen by comparing the three
figures. Thus, the shapes of the spectra are mainly determined by SGS modelling.

The corresponding spectra evaluated in the middle of the channel are depicted in
Figure 5.14. Here we notice that increasing the grid resolution has a clear effect
on the spectra. Smaller length scales are present in the simulations with the finest
grid than with the coarser grids. Variation of the model length scale has only a
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small effect on the spectra here. This suggests that, in the middle of the channel,
the high frequencies are mainly damped down by the numerical error, whereas in
the near-wall region modelling has a larger effect on the high frequencies. In the
spanwise spectra (not shown here), neither the changing grid resolution nor the
model length scale has a large effect on the spectra.

Next, the error components related to the mean-velocity profile and the Reynolds
stress are evaluated. The mean-velocity profiles from cases with the model length
scales equal to Ag = Agig2 and Ag = 1.5A44q 2 have already been presented in
Figures 5.6 and 5.5, respectively. Since the modelling error of the grid 2 case with
the model length scale of Ag = 1.5Aiq 2 is the same as the modelling error of
the grid 1 case with model length scale Ag = Agiq 1, the same discussion applies
here for the differences between the modelling errors as in the previous subsection
for the grid 1 and grid 2 cases with Ag = A. The modelling error decreases as
the filter width is decreased. This error affects the shape of the profile and the
value of the mean bulk velocity. The mean-velocity profile together with the
error components from the case Ag = 0.5Aq 2 are plotted in Figure 5.15, and
we notice that the same trend continues.

The numerical error mainly affects the mean bulk velocity. It first remains al-
most constant when the model length scale is increased from Agig 2 to 1.5Ag4q 2
(Figs. 5.6 and 5.5), and it seems to decrease slightly when the length scale
0.5A4yid 2 is applied (Fig. 5.15). This is not the behaviour one expects, since de-
creasing the model length scale should decrease the dissipation and there should
thus be more badly described details in the resolved flow field. Since the grid-
convergence rate seems to vary with the model length scale, this behaviour of the
numerical error can arise from non-grid-converged mean bulk velocity. From the
results of the grid-convergence study for the case with no model in Figure 2.17,
we see that the numerical error in the mean bulk velocity on grid 4 in the case
with no model was approximately 0.3. Since the error is probably of this size also
when the low value of the model constant, 0.5Ag, is applied, the numerical error
on grid 4 can explain the behaviour of the obtained numerical error on grid 2. It
seems that varying the model length scale has only a small effect on the obtained
numerical error.

The effect of the numerical error on the slope of the mean-velocity profile is
the opposite to its effect on mean bulk velocity. The numerical error in the
slope increases with decreasing model length scale as one would expect, and the
incorrect slope in the 0.5Aq 2 case is thus caused by numerics.

The deviatoric streamwise Reynolds stress obtained using model length scales
Ag = Agig2 and Ag = 1.5A,42 have already been depicted in Figures 5.8
and 5.7, respectively. The modelling error clearly increases as the model length
scale is increased. In the near-wall region, the numerical error decreases as the
model length scale is increased. However, around y/h = 0.05 it increases with
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Figure 5.13: The streamwise one-dimensional spectra evaluated at y™ ~ 3. The
model length scale is varied between the sub-figures.
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increasing model length scale. Again, this is not the behaviour one expects. The
Reynolds stress and the error components from the case with the model length
scale Ag = 0.5Ag4q2 are plotted in Figure 5.16, and there the overall trend
continues, but the inconsistent behaviour of the numerical error is not visible.
When the model length scale is decreased from Ag = Agig2 to Ag = 0.5A44 2,
the numerical error increases everywhere in the channel.

In the mean bulk velocity, the grid-convergence became slower when the model
length scale was decreased. In the Reynolds stress, the behaviour is the opposite:
The grid-convergence becomes faster as the model length scale decreases. The
grid-convergence study was presented for the case with no model in Figure 2.18,
and there we saw that the numerical error at the resolution of grid 4 was at
its maximum of 0.8 slightly below y/h = 0.05, and approximately 0.3 further
away from the wall. Thus, the incomplete grid convergence can still change the
conclusion about the numerical error on grid 2, especially in the Ag = 1.5A
case. The obtained inconsistency around y/h ~ 0.05 is probably caused by the
incomplete grid convergence, and varying Ag has a larger effect on the modelling
error than on the numerical error. The modelling error is clearly larger by absolute
value, and the uncertainty on grid 4 is too small to affect the conclusion of this
error component.

Based on the present results, one can say that the situation in Figure 5.11, where
increasing the model length scale while keeping the grid resolution constant did
not improve the prediction of the Reynolds stress, is caused by both numerical
and modelling error. As the model length scale is increased, the numerical error
is diminished, but at the same time the modelling error increases quite rapidly
and the total error increases.
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5.1.5 Conclusions of Implicit a Posteriori Tests

In this section, the numerical and modelling errors in LES using the standard
Smagorinsky model were studied applying the approach presented by Geurts and
Frohlich (2002). The aims of the section were to evaluate the error components,
to clarify the reasoning behind the choice of the model constant C'sAg of the
standard Smagorinsky model in the channel flow by means of numerical and
modelling error, and to describe the effect of the model length scale on the two
error components.

In the a priori tests of Chapter 3, the numerical error in a simulation with no
explicit filtering seemed to be larger than the effect of the SGS model. This
behaviour was also noticed by, e.g. Ghosal (1996). However, based on the present
a posteriori tests, the modelling error was at least of the same magnitude as the
numerical error, and in the Reynolds stress components it even dominated the
numerical error. The magnitudes of the error components were similar in the
studies of Geurts and Frohlich (2002) and Meyers et al. (2003) in a turbulent
mixing layer and in homogeneous turbulence. This contradiction of the results of
the a priori tests is probably caused by the effect of the SGS model on the flow
field, which is not taken into account in the a priori testing.

We noticed that, when the grid resolution was increased from grid 1 to grid 2
while keeping the SGS resolution constant, the improvement of the results was
almost entirely caused by the decreased modelling error, and increasing the grid
resolution did not decrease the numerical error very efficiently. As the model
length scale was varied in the grid 2 case, again the modelling error determined
the greater part of the total error. Although increasing the model length scale
decreased the numerical error, it increased the modelling error rapidly. Thus,
controlling the numerical error via the built-in filter of the Smagorinsky model
does not seem to be a very promising approach. The case with the smallest
total error was a compromise between the two error components, and they were
approximately of the same magnitude.

It has been previously noticed that the two error components can have different
signs and they can partially cancel out each other (Geurts and Frohlich 2002,
Meyers et al. 2003). In the present study, this was noticed in the mean velocity in
all the studied cases and in the Reynolds stress when a large value of the model
coefficient was applied. This behaviour makes it difficult to draw conclusions
from the total simulation error alone.

In the present study, the results on the finest grid were not totally grid-converged,
and obtaining grid-converged results seems to require simulations with very large
grids. When the model length scale was varied, there was some inconsistency
in the behaviour of the numerical error, which was probably caused by the in-
complete grid-convergence. The other option is that, since in this approach the
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modelling error is not allowed to be affected by numerics, some of the effect of
the SGS model is included in the numerical error. However, the uncertainty in
grid-convergence can especially affect the obtained numerical error of the stream-
wise Reynolds stress on grid 2 because the numerical error on the finest grid with
no model was about the same size as the obtained error on grid 2. Although this
makes the quantitative comparison of the numerical errors of the different cases
difficult, it does not change the overall conclusion. The modelling error is still
clearly larger than the numerical one, and varying the model length scale or the
grid resolution affects the model more than the numerical error.

If one considers the choice of the model length scale from the point of view of
the two error components, the model length scale becomes dependent also on the
chosen numerical method. Thus, from the point of view of this study, modelling
and numerics are not two separate issues. If the numerical error is controlled
via the implicit filtering of the model, the numerical scheme has to be taken into
account when the model parameters are chosen.

Geurts and Frohlich (2002) proposed two parameters, SGS activity, s, and SGS
resolution, r = Ag/A, to quantify the different combinations of grid resolution
and model length scale. The SGS activity turned out to be nearly independent
of grid resolution and it characterised the effect of the SGS model. In the present
test case, the modelling error was quite large already at values s = 0.5. Both SGS
activity and SGS resolution characterised the numerical error. As r is increased,
the numerical error diminishes, but as we saw, e.g. in Figures 5.16, 5.8 and 5.7,
the grid-convergence rate depends on s.
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5.2 Approach Using Richardson Extrapolation

In practical applications of LES, DNS data or fine-grid LES results are not usually
available. To asses the quality of LES in these situations, Klein (2005) suggests a
method based on the Richardson extrapolation. In the Richardson extrapolation,
it is assumed that the grid resolution is fine enough for the numerical method to
actually achieve its formal order. In this section, this approach is applied to the
LES of the channel flow with no explicit filtering and we study the justification
of the use of the method. In addition, we compare the obtained numerical and
modelling error to the results of the previous sections.

5.2.1 Numerical and Modelling Error Using Richardson
Extrapolation

Klein (2005) strongly objects to using the grid-independent LES in a posteri-
ori testing because in LES the grid resolution is usually related to the effective
filter width, and the main difference between Reynolds-averaged Navier—Stokes
(RANS) calculations and LES is the coupling between the model and the fil-
ter width. Thus, Klein (2005) does not see it reasonable to interpret the model
length scale of the standard Smagorinsky model as an external parameter that
could be varied independently of the grid resolution. He proposes an alternative
approach to a posteriori testing, where the difference between the exact solution,
u, and a numerical LES solution, u, obtained on a grid with resolution A, is
approximated using the Taylor polynomial like in the Richardson extrapolation
as

un —u = c, A" + ¢, AT + O (A"+1, A’S“H) (5.4)

where n is the order of the numerical method, m the order of modelling error,
¢, and ¢,, are constants, A is the grid spacing and Ag the model length scale
or filter width. For the numerical error, e,,, = ¢,A", the approach is equal to
the Richardson extrapolation, and in Klein’s (2005) approach, the same type of
expansion is applied also to the effect of the SGS model, €04 = ¢, AY. Since
there are no cross terms, it is assumed that numerics and modelling are totally
independent of each other.

Klein (2005) uses the approach with a second-order code, which has similar nu-
merical methods as the code applied in this study and the standard Smagorinsky
model. He assumes that both the obtained order of the numerical method in
an actual simulation and the effect of the SGS model are of second order, i.e.
n = m = 2. If the values for n and m are known, three simulations are required
to evaluate the error components. If the model length scale is first varied by the
factor o while keeping the grid resolution constant, and then the grid resolution
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is varied by the factor § while keeping the model length scale equal to the grid
spacing, the following equations can be written:

{LA,AS —u = CnAn + Cm ? + O (An+1, A?—H)
Unang — U = A" + ¢y (@Ag)" + O (A"H, A?“) (5.5)
ﬂBA,ﬁAS —U=Cp (ﬁA)n +Cm (ﬂAS)m +0 (An+1, A?+1>

where u is the DNS solution, 4 denotes an LES solution, A is the grid spacing of
the original LES grid, Ag the model length scale of the original grid and subscripts
of u refer to simulations performed with different resolutions and different model
length scales. Klein (2005) sets the model length scale equal to the grid spacing,
Ag = A, and directly varies the effect of the SGS model and not the model
length scale. However, in Equations (5.5), we allow the possibility of Ag # A
and thus Ag is visible in the equations. The difference is only in the power of
a. If the high-order terms are assumed to be negligible as is usually done in the
Richardson extrapolation, the error components of the studied case, e um = ¢, A"
and €meqa = ¢, AY, can be solved from Equations (5.5).

Klein (2005) recommends decreasing the effect of the SGS model by a factor of
two and reducing the grid resolution by a factor of two to approximate the error
components and to report statistics from all three simulations in addition to the
error components. In the present study, the approach is applied to the grid 2
case of Table 5.1 with the model length scale equal to the grid spacing. This is
the same test case as applied in the study with implicit filtering in Section 5.1.
To apply Equations (5.5), the model length scale is first varied by the factor of
a = 0.5 and then the grid resolution is decreased by the factor of 3 = 1.5, which
corresponds to the grid 1 case of Table 5.1 with the model length scale equal to
grid spacing. The grid resolution was not decreased by a factor of two because
the obtained grid would have been too coarse for a reasonable LES.

The mean-velocity profiles from the present simulations are given in the upper
part of Figure 5.17, and the obtained error components, ¢, A" and ¢,,, A, for the
grid 2 case are depicted in the lower part of the figure. In addition, the true total
error obtained as the difference of the grid 2 result from the DNS of Moser et al.
(1999) is included. We notice that the sum of the modelling and numerical error
is not even close to the true total error. This suggests that the resolution is not
in the asymptotic range, and either one or both of the error components cannot
be approximated with the first term of the Taylor series.

To study the effect of the grid resolution on the behaviour of the Richardson
extrapolation, the study was repeated for grid 3 of Table 5.1 using grid 2 as the
coarser grid, # = 2, and reducing the model length scale by 2, « = 0.5. The
mean-velocity profiles and the error components are depicted in Figure 5.18. On
this finer grid, the prediction for the total error is somewhat better, but the
difference from the true total error is still large. In addition, the estimates for
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the total error do not behave in the same way as the true total errors when the
grid resolution is varied. We notice that, somewhat surprisingly, the true total
error increases when the grid is refined from grid 2 to grid 3. This can be caused
by some interaction of the error components, but the error components predicted
using the Taylor expansion do not explain this. The estimate for the modelling
error diminishes as the grid is refined, which is consistent since the effect of the
modelling is decreased. The estimate for the numerical error increases with the
grid refinement. In principle, this could also be true. However, the sum of the
two is not correct.

Klein (2005) applied the approach to the channel flow at the same Reynolds
number as here and to a turbulent jet flow. There was some deviation from the
true total error, but the results were not as bad as here. The resolution of the
channel flow was finer than that of the present test case in the homogeneous
directions but coarser in the wall-normal direction. Based on the results of this
section, it seems that the total error obtained by the Richardson extrapolation
does not necessarily behave in a similar manner as the true total error, and the
success of the method can be very sensitive to the grid resolution. One possible
explanation for this is that the simulation results are not in the asymptotic range.
We will study this in the next subsection.
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Figure 5.17: Evaluation of numerical and modelling error using Richardson extrap-
olation. Grid 2. Upper: Mean-velocity profiles. Lower: Obtained error components
for the grid 2 case.



5.2 Approach Using Richardson Extrapolation 153

20 r
15
+
)
10 |
5 -
_ ?I’IdS -----------
grid 3, smalleng -
DNS -
10 N 100
y
modelling —— '
Iy numerical --------- 1
total +

exact total x

10 100

+

y

Figure 5.18: Evaluation of numerical and modelling error using Richardson extrapo-
lation. Grid 3. Upper: Mean-velocity profiles. Lower: Obtained error components.
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5.2.2 Order of Numerical and Modelling Error in Present
LES

In the previous subsection, we assumed that both the numerical error involved
in the simulations and the effect of modelling were in the asymptotic range, and
that they are both of the second order, i.e. n = m = 2. In this section, we test
the assumption.

The order of the modelling error, m, can be evaluated if three simulations are
performed with the same grid resolution and by varying model length scale. These
simulations were done on grids 2 and 3 with the model length scales of Ag =
0.5A, A, 2A. Using the Taylor expansion, the following equations can be written
for the total error

Upnpsag — U = A" + ¢, 0.5™AY
{LA,AS —u=c, A" + CmA? (56)

ﬁAQAS —u=c, A" + CQOAgb

where u again refers to the DNS solution and @ to the numerical LES solution.
Both the order of the numerical error m and the constant ¢, can be solved from
these equations. The order of the modelling error for the mean-velocity profile is
depicted for both grid resolutions in Figure 5.19. In the logarithmic region, the
order of the error is close to the value m = 2, which was applied in the previous
subsection. However, in the viscous sublayer, where the total error is almost zero,
the modelling error is not in the asymptotic range, and m obtains even negative
values. The area where the use of the Taylor expansion is possible is thicker for
the resolution of grid 3. Since the order of the modelling error is quite close to
the theoretical one in the logarithmic layer, the reason for the bad results for the
total error obtained in the previous subsection has to be the numerical error.

The order of the numerical error can be evaluated in the same way as the order
of the modelling error. It can be estimated using three simulations with the same
absolute width of the model length scale. For this purpose, two simulations,
grid 2b and grid 2c with grid resolutions of 1.5 and 1.5% times the resolution of
grid 2 were performed. In these simulations, the model length scale was kept the
same as in the grid 2 case. First, the model length scale was equal to the grid
spacing of grid 2 and then it was increased to 1.5 times the grid spacing. This
was done to see if the dissipation provided by the model had an effect on the
obtained order of the numerical scheme. Using the three simulations results, the
following equations can be written for the total error:

'aA,As —u=c, A" + CmA?
aA/l.S,AS — U = Cy (A/15)n + CmAgL (57)
ﬂA/1.527AS — U= Cy (A/152)n —l— CmA?
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Figure 5.19: Order of SGS modelling by means of Richardson extrapolation.

Here A is the grid spacing of grid 2 and Ag is the model length scale that has
the same absolute width in all three cases. The obtained order of numerical
error, n, is plotted in Figure 5.20 for both cases. n has only negative values,
which indicates that the applied resolutions are not in the asymptotic range, i.e.
the method does not obtain its nominal order at this resolution, and thus the
numerical error cannot be described by the first term of the Taylor expansion.
The negative values are obtained for n because the difference between the two
coarsest resolutions is smaller than the difference between the finer resolutions,
and in the asymptotic range this should by the other way around. With the larger
model length scale, the situation is somewhat better: the order of the numerical
scheme remains constant through the logarithmic sublayer. However, it is still
negative.

Since the numerical error cannot be described by the Richardson extrapolation,
comparing Figures 5.17 and 5.18 to the results of the a posteriori tests of the
previous section is not reasonable. However, since the modelling error can be
described via the Taylor expansion in the logarithmic layer and we have the true
total error, we can evaluate the numerical error as the difference between the true
total error and the estimate for the modelling error.

The modelling, numerical and total errors obtained in the grid 2 cases with dif-
ferent model length scales are plotted in Figure 5.21, and the corresponding plots
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Figure 5.20: The order of the numerical error obtained using the Taylor expansion.
Grid 2.

for the grid 3 cases are given in Figure 5.22. We can now compare the error
components of the case Ag = A to the ones of Figures 5.17 and 5.18 where con-
stant values were applied for n and m. We notice that, for both grid resolutions,
the obtained modelling error is nearly the same as the one obtained with con-
stant m. This supports the conclusion that for the modelling error, the use of
the Richardson extrapolation is reasonable at least in the logarithmic layer. The
numerical error obtained here as the difference between the true total error and
the modelling error is by absolute value larger than the one obtained with the
Richardson extrapolation. By the applied definition, the numerical error is not
dependent on the effect of modelling. We see this for grid 2 and grid 3 cases in
Figures 5.21 and 5.22, respectively. Here, the change of the total error with the
model length scale is caused entirely by the modelling error.

When the study of the applicability of Klein’s (2005) approach was repeated
for the diagonal Reynolds stress components, the results were more pessimistic
than for the mean-velocity profile. Neither numerical nor modelling error could
be evaluated using the Richardson extrapolation. The obtained order for the
effect of modelling varied strongly as a function of the wall distance and it ob-
tained both large positive and negative values. Thus, it seems that while the
Richardson extrapolation produces reasonable results for the modelling error of
the mean-velocity profile, the modelling error in the Reynolds stresses at the
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applied resolutions cannot be explained using only the first term of the Taylor
expansion of the truncation error. Celik, Cehreli and Yavuz (2005) proposed an
approach for error assessment, which is based on approximating the resolved tur-
bulent kinetic energy with the Richardson extrapolation. The problems in the
applicability of the Richardson extrapolation are also visible in the turbulent ki-
netic energy, and this makes also the applicability of Celik, Cehreli and Yavuz’s
(2005) approach questionable.
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Figure 5.21: Modelling, numerical and total error of mean velocity in grid 2 cases
with different model length scales.
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5.2.3 Comparison to Tests with Implicit Filtering

One of the clear differences between the approaches of Geurts and Frohlich (2002)
and Klein (2005) is that in Klein’s (2005) approach, the numerical error is by
definition independent of modelling. In Geurts and Frohlich’s (2002) approach,
the definition of the error components allows the control of the numerical error
via the model parameters. However, in both the approaches, the modelling error
is defined to be independent of numerics.

If we compare the error components obtained with different values of the model
length scale using Klein’s (2005) approach in Figure 5.21 or in Figure 5.22, we
notice that the numerical error is indeed a constant although it was evaluated
using the true total error. This indicates that Klein’s (2005) definition for the
modelling error actually describes the entire effect of the SGS modelling. In
Geurts and Frohlich’s (2002) approach, the numerical error was allowed to vary
with the model parameters, but the obtained variation in the previous section
was rather small.

Similarly, as the numerical error seems to be independent of modelling in Klein’s
(2005) approach, the modelling error should be independent of numerics, and
thus two simulations with different grid resolutions and the same model length
scales should have the same modelling error. This, however, does not happen.
The cases of grid 2 with Ag = Agiq2 and grid 3 with Ag = 2A444 3 have the
same model length scales, but the modelling error is larger in the grid 3 case.
This is a clear difference to the approach of Geurts and Frohlich (2002), where
the modelling error was defined using the grid-independent LES and it was thus
independent of grid resolution.

In the previous section in Figure 5.6, we had the error components from the
grid 2 case with the model length scale equal to the grid spacing obtained using
implicit filtering. If we compare these curves to the ones in the middle sub-figure
of Figure 5.21 (Ag = Agid 2), We notice that, despite the differences between the
approaches to evaluating the error components, the obtained results for the mod-
elling error are surprisingly close to each other. The modelling error predicted by
implicit filtering is only slightly larger than the error predicted by the approach of
Klein (2005). Making comparison between the numerical errors is not reasonable,
since the numerical error in Figure 5.21 was obtained just as the difference be-
tween the true total error and the modelling error. The error components for the
grid 2 case with Ag = 0.5A obtained using implicit filtering have been presented
in Figure 5.15. When this is compared to the upper sub-figure of Figure 5.21,
the modelling errors obtained using the two approaches are again similar. Here,
the error obtained using implicit filtering is slightly smaller. This difference is
necessary, since the approach using implicit filtering allows the numerical error
to change as the model length scale is varied.
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5.2.4 Conclusions of Using the Richardson Extrapolation

Klein (2005) proposed the method discussed in this section be used for quality
assessment in practical simulations where DNS data or measurements are not
necessarily available. In addition, the aim was probably to propose a method
that avoids the use of the concept of grid-independent LES. In this section, the
method was applied in the same test case as the a posteriori tests using implicit
filtering in the previous section. The main new findings were the similarity in the
obtained modelling error with the approach of Klein (2005) and with the approach
using grid-independent LES and the deficiency of the Richardson extrapolation
in predicting the numerical error of LES.

Despite the clear difference between the approaches based on Richardson ex-
trapolation and grid-independent LES, the modelling errors they predicted for
the mean-velocity profile were close each other. Thus, also the approach using
grid-independent LES gives a modelling error that is of the order A%. However,
the first term of the Taylor expansion did not describe the modelling error of
streamwise Reynolds stress and the Richardson extrapolation did not work for
this quantity.

Based on the present results in the channel flow, it seems that the use of the
Richardson extrapolation and Klein’s (2005) method for the numerical error are
not always justified on LES grids. In LES, the smallest resolved flow scales
are often of the same size as the grid resolution, and as also pointed out by
Klein (2005), practical LES is always grid-dependent. In this case, the numerical
method does not necessarily obtain its formal accuracy. Thus, before using this
method for error analysis, one should verify that the resolution is actually in the
asymptotic range.
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5.3 A Posteriori Tests Using Explicit Filtering

5.3.1 Grid-Independent LES Using Explicit Filtering

In Section 5.1, we studied the numerical and modelling error in an LES with no
explicit filtering, and in the a posteriori tests implicit filtering was applied to ap-
proach the grid-independent LES. In the derivation of the LES equations, there
appears a filter, and thus one could ask if the grid-independent LES obtained by
fixing the Smagorinsky length scale, as done in Section 5.1, actually approaches
an LES solution or something else (Moin 2005). In this section, a posteriori tests
are performed using explicit filtering. The aims are firstly to clarify the behaviour
noticed with the explicit filtering in Chapter 4, and secondly to study the dif-
ference between the approaches to a posteriori testing using implicit and explicit
filtering. Since explicit filtering of the non-linear convection term is applied here,
the equations being solved are Equations (2.46).

The approach used here for separating the error components uses the grid-independent
or fine-grid LES, as did the approach using implicit filtering. The difference is
that here explicit filtering, instead of implicit filtering, is applied to approach the
grid-independent situation. As the grid resolution is increased, the absolute width
of the explicit filter is kept constant, i.e. the ratio of the explicit filter width to
the grid spacing increases. A similar approach was also applied by Vreman et al.
(1996) and Gullbrand (2002). Since there is no direct connection between the
explicit filter and the standard Smagorinsky model, also the model length scale
is kept constant when the grid-independent situation is approached. Thus, the
only difference between the approaches of this section and Section 5.1 is the use
of the explicit filter.

In Chapter 4, we noticed that the explicit filtering itself had a large effect on the
simulation results. However, the role of numerical error on those results could
not be determined by comparing them to the DNS results. Here, we divide the
total simulation error into the numerical and modelling error and into the effect
of the filter using the grid-independent LES and so-called filtered DNS as follows:

€numerical error — U — Ugrid-indep. LES
€modelling error — Ugrid-indep. LES — Ufiltered DNS (58)

Efiltering — Ufiltered DNS — UDNS

Here, @ refers to an LES solution and u to a DNS solution. By filtered DNS,
we mean here a simulation performed at the same resolution as grid-independent
LES but with no SGS modelling. Thus, in filtered DNS, the explicit filtering of
the non-linear convection term is included in the simulation while SGS modelling
is not.
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5.3.2 Applied Grid Resolutions

The applied grid resolutions of the base test case (grid 1) and the two finer grids
(grid 2, grid 3), which are applied to approximate the grid-independent LES and
filtered DNS, are given in Table 5.2. The finest applied grid is somewhat coarser
in the streamwise and spanwise directions than the finest grid applied in the study
with implicit filtering. However, here the use of explicit filtering makes the grid
convergence faster, and the remaining numerical error is thus smaller. As the
grid resolution was increased, the extent of the computational domain had to be
reduced because the simulations became too heavy. However, at least at smaller
resolutions, the flow statistics were not sensitive to the domain lengths.

Table 5.2: Domain size and resolution of the applied LES grids. (x=streamwise,
z=spanwise, y=wall-normal direction).

X z y
grid 1

extent of the domain / channel height 6.0 3.2 1.0
number of grid points 108 108 90

size of the grid cell in wall units (A*) 44 23  1,...,20
grid 2

extent of the domain / channel height 6.0 1.6 1.0
number of grid points 216 108 180
size of the grid cell in wall units (A*) 22 12 0.5,..., 10
grid 3

extent of the domain / channel height 3.0 1.6 1.0
number of grid points 162 162 180

size of the grid cell in wall units (A*) 15 8 0.5,...,10

wall units: 7 = Re,x, where z is scaled by the channel half-height.

In the grid 1 case, the applied explicit filter is the same three-dimensional fourth-
order commutative filter with the width of two grid spacings which was applied
in Chapter 4. On the finer grids, the absolute filter width is kept the same as
that of grid 1, which means that the ratio of filter width to the grid spacing,
Ay/A, is larger than in the grid 1 case. On grid 2, the explicit filter width was
four grid spacings and on grid 3 six grid spacings in the homogeneous directions
and four grid spacings in the wall-normal direction. These filters were discussed
in Section 2.2.3, and the transfer functions were depicted in Figure 2.4. Filtering
is applied to the non-linear convection term.

To verify that the grid-independent LES actually corresponds to the studied LES
on grid 1, the effect of the SGS model on the turbulent shear stress and the energy
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spectra were studied. The modelled turbulent shear stress from the different grid
resolutions is plotted in Figure 5.23. Here we notice a small difference in the peak
value of the stress. Since the product C'sAg has the same value in each case, this
difference must be due to variation in the strain rate tensor (see Equation (2.16)).
The definition for the error components, Equation (5.8), allows the numerics to
affect the SGS model, and thus we can have numerical error in the SGS model.
The difference between the simulations with different resolutions is sufficiently
small to be caused by the numerical error. The one-dimensional energy spectra
for the streamwise velocity component evaluated in the streamwise direction from
the simulations with different resolutions are depicted in Figure 5.24. Here we see
that the spectra from the different resolutions coincide. This indicates that the
SGS model produces similar damping in all cases. The shape of the spectra at
the low frequencies is actually mainly determined by the shape of the filter and
the numerics has only a small effect on it. The situation is similar in the middle
of the channel and for the spanwise spectra.

0.07 . .

"LES, grid 1 ——
fine—grid LES, grid 2-----------

0.06 fine—grid LES, grid 3 .

0.05

0.1 0.15 0.2 0.25

Figure 5.23: Turbulent shear stress from LES with different resolutions.

5.3.3 Error Components and Effect of Filtering

In the upper part of Figure 5.25, we have the mean-velocity profile obtained from
simulation on grid 1 and the corresponding finer-grid cases. In addition, the DNS
of Moser et al. (1999) and the grid 3 case with filtering but no SGS model, which
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Figure 5.24: One-dimensional streamwise energy spectra of the streamwise velocity
component from the near-wall region y ~ 5.

approximates a filtered DNS, are included. The difference between grid 2 and
grid 3 results is small, and thus the grid 3 result is a fair approximation to grid-
independent LES. The error components (5.8) evaluated using these results are
depicted in the lower part of the figure. In all the simulations with filtering, the
shape of the velocity profile is almost the same, and it differs from the DNS result.
Since the change is visible already in the filtered DNS, the shape of the profile
is caused by filtering and not by the modelling or numerics. The large effect of
filtering is also visible in the lower part of the figure where the effect of filtering
is larger than the total simulation error. The difference between the grid 3 case
and the filtered DNS is small, which indicates that the effect of SGS modelling
is small and this is visible also in the small modelling error. Both the modelling
and numerical errors are visible mainly in the mean bulk velocity, and the error
components are thus nearly constants in the logarithmic layer. In addition, the
numerical and modelling errors are of the opposite sign and they partially cancel
out each other.

In Section 5.1 in the study using implicit filtering, similar interaction of the nu-
merical and modelling errors was noticed, and there the numerical and modelling
errors were approximately of the same magnitude. In the present results, both
the error components are smaller, which is probably partly owing to explicit fil-
tering, since it reduces the effect of the Smagorinsky model, as we saw earlier in
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Section 4.3, and partly owing to different resolutions in the wall-normal direction.

In Figure 5.26, the corresponding plots are given for the deviatoric streamwise
Reynolds stress. Here, the effect of modelling is even smaller than in the mean-
velocity profile, and the greater part of the error is caused by explicit filtering.
The numerical error is again of the opposite sign to the modelling error and
thus, they partially cancel out each other. The error components are similar for
the other diagonal Reynolds stresses. In the study with implicit filtering, the
obtained modelling error was larger than here, the distribution of the numerical
error somewhat different, and the interaction of the error components was not
visible there.

In Section 4.3, it was noticed that as the length scale of the Smagorinsky model
is increased, the results with explicit filtering slightly improve. Here, the a pos-
teriori tests are repeated using a model length scale which was set proportional
to the filter width, i.e. it has twice the value compared to the first test case dis-
cussed above. The plots depicting the mean-velocity profile and the involved error
components are given in Figure 5.27. Increasing the model constant naturally in-
creases the effect of modelling compared to the curves of Figure 5.25. In the
mean-velocity profile, this is visible in the increased mean bulk velocity and in-
creased thickness of the viscous sublayer. The change in the viscous sublayer also
slightly improves the slope of the profile. As the model length scale is increased,
the total error in the mean-velocity profile decreases in the middle of channel and
in the end of the viscous sublayer. However, in the lower part of the logarithmic
layer, it increases. In the lower part of Figure 5.27, we see that this is caused
by the interaction of numerical and modelling error. The increased model length
scale affects mainly the modelling error. Since the two error components are of
the different sign, this leads to decreased total error in some parts of the channel.
The effect of the increased model length scale on the numerical error is small, and
in some parts of the channel the numerical error even appears to increase slightly
when compared to Figure 5.25 although the SGS model should smooth out the
resolved flow field. Similar behaviour was also visible in the previous section with
implicit filtering.

The corresponding plots for the streamwise deviatoric Reynolds stress are given
in Figure 5.28. Here, the grid convergence is not as fast as with the lower model
length scale in Figure 5.26. Increasing the model length scale improves the pre-
diction of the peak value of the Reynolds stress, but at the same time, it widens
the distribution. This is also visible in the total error which decreases in the
near-wall region but increases after the peak of the Reynolds stress compared to
the case with the lower model constant in Figure 5.26. However, changes in the
total error are mainly caused by the interaction of the numerical and modelling
error. Increasing the model length scale increases the effect of modelling and the
modelling error, and now, the modelling error is larger than the numerical error,
but they are still of different sign. Compared to the case with the smaller model
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length scale, the numerical error clearly increases, and the increase is stronger
than in the mean-velocity profile. Similar behaviour was noticed in the study
with implicit filtering. However, there the numerical error of the Reynolds stress
increased, as it should, also when the model length scale was reduced to 0.5A.
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Figure 5.28: Upper: Deviatoric Reynolds stress, Ag = Ay = 24,

0.2

components related to grid 1 case.

0.25

I LES,grid 1 —— |
i fine—grid LES, grid 2-----------
I fine—grid LES, grid 3--
filtered DNS -
1 | PNS ©
0 0.05 0.1 0.15
y/h
_':: ................................... X ............ X ............. >< 1 ............... -
1% ¢ x X ¥ P - + .....................
[ e |
e total -
- filter  x
- modelling - |
) . . numeri9a| ..........................
0 0.05 0.1 0.15 0.2
y/h

Lower: Error



172 A Posteriori Tests on Numerical and Modelling Error in LES

5.3.4 Conclusions of a Posteriori Studies with Explicit Fil-
tering

In this section, the a posteriori tests were performed using explicit filtering. The
main new findings were the large effect of explicit filtering of the non-linear con-
vection term in grid-independent LES, and the similarity between the results of
a posteriori tests performed with explicit and implicit filtering. The first finding
removes the uncertainty of the effect of numerics in the results of Section 4.3
where this effect was noticed on a normal-resolution LES grid. The second find-
ing verifies that the missing explicit filter in the approach to a posteriori testing
using implicit filtering does not make the results unphysical.

The numerical error related to the second-order scheme and the modelling error
of the standard Smagorinsky model were approximately of the same size and of
different sign. When compared to results obtained with implicit filtering, the
results were similar except for the effect of explicit filtering itself. In addition,
filtering reduced both error components.

The a posteriori tests were repeated with a larger model length scale. This showed
that the slight improvement of simulation results with this model length scale that
was noticed in Section 4.3 was caused by the interaction of error components. The
increased modelling error cancelled out the numerical error.

In the study with implicit filtering, some increase of numerical error with in-
creasing model length scale was visible in the mean-velocity profile and in the
Reynolds stresses, and this trend was noticed also here. This behaviour suggests
that in these a posteriori studies, part of the effect of modelling is included in the
numerical error as the model length scale is increased.



Chapter 6

Summary and Conclusions

In this thesis, the numerical and modelling error were studied using both a priori
and a posteriori testing. These studies were performed using the second-order
central-difference scheme and mainly with the standard Smagorinsky model. In
addition, the use of explicit filtering and some factors affecting its behaviour, like
filter function, model length scale and filtering approach, were studied a priori,
in actual simulations and a posteriori. The main results of this thesis can be
divided into two groups: differences of the applied error assessment methods, and
the applicability of explicit filtering in practical LES and the reasons behind the
bad behaviour of filtering.

As noticed also in a priori tests of other authors (Vreman et al. 1994a, Ghosal
1996, Chow and Moin 2003), in Chapter 3 we saw that with the second-order
discretization, the numerical error appears to be larger than the effect of the SGS
terms, and explicit filtering seems a promising approach to decreasing it. The
new results in a priori testing of this thesis were related to explicit filtering of the
non-linear convection term of the Navier—Stokes equations, and to comparison
of this approach to the traditional filtering of the whole velocity field. In the
present a priori tests, this approach reduced the numerical error efficiently and it
did not lead to unphysical diminishing of the exact SGS term like filtering of the
whole velocity field did. Thus, it seemed a promising approach to controlling the
numerical error in LES.

In Chapter 4, explicit filtering was applied in an actual LES simulation using the
second-order central-difference scheme. The new contributions of this chapter
were the demonstration of the large effect of explicit filtering and comparison
between different filtering approaches. In contrast to the promising results of the
a priori studies, it was noticed that the total error in simulations with explicit
filtering was much larger than in simulations without filtering, and increasing
the filter width only increased the total error. This behaviour occurred also
with the dynamic Smagorinsky model and with the scale-similarity and mixed
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models which include a reconstruction for the subfilter-scale stresses. It has been
suggested that a filter with the width of four grid spacings should be used together
with a second-order scheme (Vreman et al. 1994a, Chow and Moin 2003), but in
the present simulations, even using the filter with a width of two grid spacings
leads to bad simulation results. Gullbrand and Chow (2003) also noticed some
difficulties in improving results using explicit filtering, but the results were not
as clearly affected by the explicit filtering as the present results.

The simulations with explicit filtering were repeated using no SGS modelling,
and it was noticed that the negative effect of filtering was already present in
these simulations and the SGS models had a very small effect on the simulation
results. Filtering also decreased the effect of SGS modelling. Increasing the model
length scale of the Smagorinsky model slightly improved the simulation results
compared to the cases with smaller model length scales, but the large negative
effect of filtering remained. Even including an SSM model to reconstruct the
subfilter scales did not remove the negative effect. In addition, the effect of the
chosen filter function was studied, and we saw that the closer the filter was to
the spectral cutoff at the low frequencies, the smaller the negative effect was.
However, with all the applied filters, the negative effect of filtering was large.

The large effect of explicit filtering was verified in the a posteriori tests of Sec-
tion 5.3 of Chapter 5. There, the total error was divided into the effect of the
filter, numerical error and modelling error. The effect of the filter was clearly
larger than the error components also in the grid-independent case, which verifies
that the large effect of filtering is not caused by numerics. The effect of increas-
ing the model length scale was also studied a posteriori, and it turned out that
the improved results stemmed from the interaction between the two error com-
ponents. They were of different sign, and when increasing the model length scale
increased the modelling error, the total error was diminished. This demonstrates
the difficulty of validating the simulation results based on the total error.

The difference between explicit and implicit filtering was studied in Sections 4.3,
4.4 and 4.6. It was noticed that there are some similarities between the effect
of a smooth explicit filter and a Smagorinsky model on the large resolved scales.
However, explicit filtering damps the high-frequency components more effectively
than implicit filtering via a Smagorinsky model. When implicit filtering was
included via an SF'S model, the simulation results improved. However, also with
these models the high-frequency components were not damped, and thus the effect
on the numerical error is probably not very large.

The numerical and modelling errors were studied in Chapter 5 using altogether
three approaches, two of which were based on using the so-called grid-independent
LES and one on the Richardson extrapolation. The main new contributions
were the clarification of the differences between these approaches and further
explanation of the results of the previous chapter in terms of the error components.
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None of the performed a posteriori studies supported the conclusion on the large
numerical error predicted by the a priori tests. With all the approaches, the
numerical error related to the second-order scheme and the modelling error related
to the standard Smagorinsky model were approximately of the same magnitude.

Based on the present results of the a priori and a posteriori tests, one can say that
the results of the a priori tests regarding the numerical error are too pessimistic
compared to the behaviour of actual simulations or the error components obtained
in the a posteriori tests. This same type of overly pessimistic results has been
noticed in a priori testing of the SGS stress predicted by different SGS models
(Ferziger 1996). In the a priori tests, the interaction of the SGS model and
numerics is not included, and probably, to obtain more realistic results with
a priori tests, one should approximate the length and the shape of the implicit
filter involved with the applied model instead of filtering the DNS data with the
filter with a width equal to the LES grid spacing. Clearly, e.g. in the present
a priori tests, the resolved flow field predicted from the DNS data was not as
smooth as in the actual simulations. However, in many models, such as the
standard Smagorinsky, the built-in filter involved with the model is not explicitly
defined and thus, predicting its shape or width is not straightforward.

In addition to the pessimistic results for the numerical error, the behaviour of
explicit filtering in the a priori tests is too optimistic. The negative effect of fil-
tering with smooth filters is not shown in the a priori tests, and although filtering
decreases the numerical error, it also decreases the effect of SGS modelling. This
is probably caused by the dynamics of the simulation that cannot be described
a priori.

The first applied approach in the a posteriori tests is based on implicit filtering
(Geurts and Frohlich 2002, Meyers et al. 2003). In this approach, the grid res-
olution is increased while keeping the model length scale constant. It was first
verified that the SGS shear stress remains almost constant in this process, and
thus the cases with different resolutions and the same model length scale actually
correspond to each other and the method is valid.

Besides quantifying the error components in the channel flow, the aim in the
present study was to clarify the effect of grid refinement and the model parame-
ters of the standard Smagorinsky model on the error components in the channel
flow. Because the smallest resolved scales in LES are of the same size as the grid
resolution, increasing the grid resolution does not necessarily decrease the numer-
ical error of all the resolved scales. In addition, it has been noticed that applying
an SGS model does not necessarily improve the simulation results (Majander and
Siikonen 2002), and the same behaviour was noticed here in the Reynolds stress
components. In the a posteriori tests, it was noticed that both varying the grid
resolution and model length scale mainly affected the modelling error, which in-
creased rapidly with increasing model length scale. The increasing model length
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scale makes the filtering via the model not a feasible approach to control the nu-
merical error. It was also noticed that the combination of the model parameters,
which was previously noticed to give good results in the present code, can be
interpreted as a compromise between the error components. In situations where
applying modelling does not improve the simulation results, the modelling error
increases rapidly.

In the second applied approach to a posteriori testing, filtering was applied also
explicitly. Including this filtering makes the approach more compatible with the
LES equations, where the filter is present, and one aim here was to compare the
approaches using implicit and explicit filtering. However, including filtering in the
physical space also includes the negative effect of filtering. In the present study,
the effect of filtering was separated from the modelling error, and after this the
results for numerical and modelling error were similar to the ones obtained with
implicit filtering. In both studies, some uncertainty remained in the prediction
of the numerical error because of the slow grid convergence of the results. The
inconsistent decrease of the numerical error obtained when the model length scale
was increased was either owing to this or to definitions of the error components,
which does not allow the modelling error to vary with grid resolution.

Klein (2005) criticised the use of the concept of grid-independent LES and pro-
posed a method based on the Richardson extrapolation. However, when this
approach was applied to the modelling error of the mean-velocity profile in Sec-
tion 5.2, similar results as in the a posteriori tests using implicit filtering were
obtained and the effect of modelling was approximately of the order of A% in
both approaches. Nevertheless, the first term of the Taylor expansion did not
explain the behaviour of the modelling error of the streamwise Reynolds stress
component. In addition, the use of the Richardson extrapolation was not jus-
tified for the numerical error, since the applied grid resolutions were not in the
asymptotic range where the numerical method obtains its formal accuracy. Thus,
before applying this approach to error assessment of LES, one should verify that
the applied grid resolution is sufficient for this approach. The possibilities for
obtaining LES results from the asymptotic range does not seem straightforward,
since the smallest resolved scales are always of the same size as the grid resolu-
tion, and practical LES is always grid-dependent. In Section 2.4, we saw that even
obtaining DNS results from the asymptotic range requires rather high resolution.

Based on the present study, the most reliable approaches to error assessment in
LES are a posteriori tests where grid-independent LES is applied. These ap-
proaches are only applicable when DNS results and fine-grid LES are available,
and thus they cannot be applied directly to error assessment in complex geome-
tries or at high Reynolds numbers. However, results of tests performed in simpler
test cases can be used to interpret the behaviour of total error in a more complex
application.
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