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Abstract

We study the complex Riccati tensor equation

DċG + GCG − R = 0

on a geodesic c on a Riemannian 3-manifold. This non-linear equation appears in
the study of Gaussian beams. Gaussian beams are asymptotic solutions to hyperbolic
equations that at each time instant are concentrated around one point in space. When
time moves forward, Gaussian beams move along geodesics, and the Riccati equation
determines the Hessian of the phase function for the Gaussian beam. The imaginary
part of a solution G describes how a Gaussian beam decays in different directions of
space. The main result of the present work is that the real part of G is the shape
operator of the phase front for the Gaussian beam. This result generalizes a known
result for the Riccati equation in R

3. The idea of the proof is to express the Riccati
equation in Fermi coordinates adapted to the underlying geodesic. In Euclidean ge-
ometry we also study when the phase front is contained in the area of influence, or
light cone.

1 Introduction

We shall study the following equation:

Suppose c is a geodesic parametrized with respect to pathlength in a Riemannian
manifold. The complex tensor Riccati equation for tensor G = Gij(t)dxi ⊗ dxj |c(t)
on c is the equation

DċG + GCG − R = 0, (1.1)

G(0) = G0,

where tensors C = Cij ∂
∂xi ⊗ ∂

∂xj and R = Rijdxi ⊗ dxj on c are defined as

Cij(t) = (gij − ċiċj)(t),

Rij(t) = (Rm
ijk ċ

kgmlċ
l)(t),

and G0 is a symmetric complex initial value with positive definite imaginary part.
(Precise terminology is given below.)

Copyright c© 2007 by M F Dahl
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This non-linear equation arises in the study of Gaussian beams. These are asymptotic
solutions to Maxwell’s equations [5, 9, 10, 11] (or wave equation [12, 13, 16, 17]) or elas-
tic equation [14]) that have a very characteristic feature. Namely, at each time instant
the whole energy of the solution is concentrated around one point in space. When time
moves forward, the energy concentration traverses a curve in space, but its envelope is
always a Gaussian bell curve. Gaussian beams are named after this property. Electro-
magnetic Gaussian beams are also known as quasi-photons [10]. A historical account on
the development of Gaussian beams can be found in [1, 16, 17].

The motivation for studying Gaussian beams is that their propagation is completely
determined by a set of ordinary differential equations. This means that it is much more
easier to propagate a Gaussian beam than to solve the original equations (say, Maxwell’s
equations in the time domain). In view of this property they have been used to study
the traveltime problem: how long does it take for a signal to travel between two points in
a possibly inhomogeneous anisotropic media [12, 13]. In this setting, the physical media
determines the Riemannian metric, and Gaussian beams propagate along geodesics of this
metric. What is more, the complex tensor Riccati equation determines the Hessian of the
phase function for a Gaussian beam (see Section 2.1).

It is well known that the imaginary part of a solution to the complex Riccati equation
describes how the Gaussian beam decays in different directions of space (see Section 2.1).
The main result of the present work is Theorem 4.5. It shows that the real part of a
solution is essentially the shape operator of the phase front for the Gaussian beam (see
Section 2.2). This provides a geometric interpretation of solutions to the complex tensor
Riccati equation. Even if the equation is non-linear and the real and complex parts are
coupled, both parts have a geometric interpretation. A similar result holds for the real
Riccati equation in differential geometry. The shape operator for a family of surfaces
determined by a distance function satisfy the real Riccati equation [7, 18].

In Euclidean space, the geometric character of the real part of a solution to equation
(1.1) is known [4]. However, in this case, the Riccati equation is not a tensor equation,
and the shape operator is calculated with respect to the Euclidean geometry and not
with respect to the geometry induced by the physical media. The main tool for proving
Theorem 4.5 are explicit expressions for Fermi coordinates around a geodesic. These are
presented in Section 3, and in Section 4 we study the Riccati equation in these coordinates.

In this work we also study properties of the shape operator for solutions in the Euclidean
geometry corresponding to homogeneous media (Section 5). In particular, we study when
the phase front is contained in the area of influence (or the light cone) and give a sufficient
condition on the initial values for this to hold for large t.

Basic definitions

We shall work in a differential geometric setting and assume that all objects are smooth.
By a manifold M we mean a Hausdorff, second countable, topological manifold that has
smooth transition maps. The tangent and cotangent bundles of M (over R) are denoted
by TM and T ∗M , respectively. By I we mean either an open interval containing 0 or the
identity matrix. We assume that M is equipped with a Riemannian metric tensor g and
locally g = gij dxi ⊗ dxj . The Einstein’s summation convention is employed throughout.
By gij we mean the ij:th entry of the inverse of (gij). Christoffel symbols Γijk, Γi

jk are
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defined as

Γijk =
1

2

(

∂gik

∂xj
+

∂gij

∂xk
− ∂gjk

∂xi

)

,

Γi
jk = giaΓajk.

A curve c : I → M is a geodesic parametrized with respect to pathlength if

d2ci

dt2
+ Γi

jk(t)ċ
j ċk = 0,

gij(t)ċ
iċj = 1.

As above, we will frequently use notation gij(t), Γi
jk(t), etc., which simply means that

gij and Γi
jk are evaluated at c(t). The components of the Riemann curvature tensor

R = Rm
ijkdxi ⊗ dxj ⊗ dxk ⊗ ∂

∂xm are

Rm
ijk =

∂Γm
ik

∂xj
−

∂Γm
ij

∂xk
+ Γs

ikΓ
m
js − Γs

ijΓ
m
ks. (1.2)

If (xi, yi) are local coordinates for TM induced by xi-coordinates for M , we define

N i
j(x, y) = Γi

jk(x)yk.

Let us also introduce notation

pi(t) = gij(t)ċ
j(t). (1.3)

A complex tensor on a curve c is a mapping that map a point t ∈ I into a tensor on M at
c(t) with possibly complex coefficients (see e.g. [5]). Locally such a tensor α is determined
by suitable functions αk1···km

i1···in
: I → C, such that

α(t) = αk1···km

i1···in
(t) dxi1 ⊗ · · · ⊗ dxin ⊗ ∂

∂xk1

⊗ · · · ⊗ ∂

∂xkm

∣

∣

∣

c(t)
.

For a tensor α = αi(t)dxi, its covariant derivatives along the curve c is defined as

Dċα =

(

dαi

dt
− αkN

k
i ◦ ċ

)

dxi
∣

∣

∣

c(t)
,

and for higher tensors D(u ⊗ v) = D(u) ⊗ v + u ⊗ D(v). By X (M) we denote the set of
smooth vector fields on M . Suppose X = Xi ∂

∂xi ∈ X (M), and α = αidxi is a 1-form on

M . Then for a vector v = vi ∂
∂xi ∈ TM we define covariant derivatives

DvX = vk

(

∂Xi

∂xk
+ XjΓi

jk

)

∂

∂xi
,

Dvα = vk

(

∂αi

∂xk
− αjΓ

j
ik

)

dxi.

By Re L, ImL we mean the real and imaginary parts of a tensor or matrix L, and δij , δj
i

are Kronecker delta symbols. By A we mean the closure of a set A.
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Shape operator

Suppose S is a orientable hypersurface of a manifold M , and suppose that n : S → TM is
a unit normal to S. Let p ∈ S, and let U ⊂ M be a neighbourhood of p. By shrinking U ,
we can extend n into a vector field n̂ : U → TU . We may also assume that g(n̂, n̂) = 1 on
U . For v ∈ TpS, let

L(v) = (Dvn̂)(p).

Then one can prove that L(v) does not depend on the extension of n, and furthermore,
L(v) ∈ TpS. The mapping L : TS → TS is the shape operator (or Weingarten map) of
hypersurface S. It is determined up to a sign with respect to n. Let us also point out
that sometimes the shape operator is defined as −Dv(n̂)p [20]. One can show that the
eigenvalues of L are real. On a 3-manifold, L has 2 eigenvalues κ1, κ2 called principal
curvatures. The Gaussian curvature is defined as K = κ1κ2, and the mean curvature is
defined as S = 1

2(κ1 + κ2).

2 Riccati equation for Gaussian beams

2.1 Physical background

Let us briefly describe Gaussian beams and their relation to the complex tensor Riccati
equation. Detailed expositions on this topic are [5, 10, 11, 12, 17]. Let us start with the
source-less Maxwell’s equations for differential forms

dE = −∂B

∂t
,

dH =
∂D

∂t
,

and let us consider an electric field of the form

E(x, t) = Re {E0(x, t) exp (iPθ(x, t))} , (x, t) ∈ M × I.

Here P > 0 is a large constant, I is an open interval representing time, E0 is a complex
1-form, and the function θ : M × I → C is the phase function for E. The advantage
of representing the electric field as above is that qualitatively E0 and θ contain different
type of information. The 1-form E0 completely determines how E is polarized. For the
phase function, Re θ describes high frequency oscillations of E, that is, information about
propagation, while Im θ influences the amplitude of E. In order for E to be stable in the
limit P → ∞, we assume that Im θ ≥ 0.

Suppose c : I → M is a smooth curve. Furthermore, suppose c is covered with local
coordinates xi, and suppose that

φ : I → C, p : I → C
3, H : I → C

3×3

are the first three coefficients in the Taylor expansion of θ evaluated on c(t). That is,

φ(t) = θ(c(t), t), pj(t) =
∂θ

∂xj
(c(t), t), Hjk(t) =

∂2θ

∂xj ∂xk
(c(t), t).

Then E is a Gaussian beam on c provided that for all t ∈ I,
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1. p(t) = (pi(t))i is non-zero,

2. φ(t) and p(t) are real,

3. the imaginary part of H(t) = (Hij(t))ij is positive definite.

One can also show that these conditions do not depend on local coordinates [5, 12]. Using
the chain rule, it follows that [5]

θ(x, t) = φ0(t) + pi(t)z
i +

1

2
Hij(t)z

izj + O(|z|3),

where zi = zi(x, t) = xi − ci(t). In consequence, | exp (iPθ(x, t)) | ≈ exp
(

−P
2 zi Im Hijz

j
)

.
In other words, at time t, the energy of E is completely concentrated around c(t), and
Im H describes the shape of the field.

Plugging E(x, t) into Maxwell’s equation (see [5, 9, 10, 11] for details) yields the follow-
ing conditions on θ: φ0 is constant, c is a geodesic with respect to a suitable Riemannian
geometry depending on the media, and pi(t) are given by equation (1.3). Furthermore, if
Λ(t) = (Γm

ij pm)ij , then

G(t) = Gij(t)dxi ⊗ dxj
∣

∣

c(t)
, Gij = (H − Λ)ij

is a solution to the complex tensor Riccati equation [5, 12]. Thus Im G = Im H determines
how a Gaussian beam decays in different directions from c(t). If we are in isotropic media
with permittivity ε and permeability µ, then Gaussian beams propagate along geodesics
of the scaled Euclidean metric [5] g = 1

εµδijdxi ⊗ dxj . One can also derive equations for
the vector part E0 in E, and these are studied in [10].

2.2 Phase front surface

For a fixed t ∈ I, let us define the phase front surface,

Ft = {x ∈ M : Re θ(x, t) = Re θ(c(t), t)}.

(In the proof of Proposition 2.2 we show that Ft is a surface.) On Ft, Re θ is constant,
that is, exp(iPθ) does not oscillate. Thus all oscillations happen through Ft. For example,
for a plane wave, Ft would be sheets orthogonal to the direction of propagation. The next
two propositions give some geometric information about Ft. Proposition 2.1 is proved in
[3] for real phase functions.

Proposition 2.1. Phase front surface Ft is orthogonal to ċ(t) with respect to g.

Proof. Let u ∈ Tc(t)Ft. It follows that u = dγi

ds (0) ∂
∂xi

∣

∣

∣

c(t)
for some curve γ : (−ε, ε) →

M such that γ(0) = c(t) and s 7→ Re θ(γ(s), t) is constant. Since pi(t) = ∂θ
∂xi (c(t), t),

equation (1.3) implies that g(u, ċ) = dθ(γ(s),t)
ds

∣

∣

∣

s=0
, and the proposition follows since g(u, ċ)

is real. �
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Proposition 2.2. Let F̂t be the representation of the phase front in local coordinates
equipped with the Euclidean inner product. Then the Gaussian curvature K and the mean
curvature S of F̂t at c(t) are

K =
p · adj(ReH) · pT

‖p‖4
0

,

S = −p · Re(H − trace(H)I) · pT

2‖p‖3
0

,

where p is the Euclidean vector p = (p1, p2, p3), ‖ · ‖0 is the Euclidean norm, and adj is
the adjugate of a matrix. Furthermore, p is a unit normal to F̂t at c(t), and K and S are
calculated with respect to this orientation for Ft.

Proof. Let us first calculate the principal curvatures κ1, κ2 of F̂t at c(t). Let f(x) =
Re θ(x, t) − Re θ(c(t), t). Then (∇f)(c(t)) = p(t), and (Hess f)(c(t)) = Re H(t). Since
p(t) 6= 0, Ft is a surface. Next, we employ a result from [20, p. 204]: If s1, s2 are the two
roots to the 4 × 4 determinant equation

det

(

Re H − sI pT

p 0

)

= 0,

then κi = ‖p‖−1
0 si. (Here we have taken into account that in [20], the shape operator

is defined with opposite sign.) Using computer algebra, we find that si are solutions to
As2 + Bs + C = 0, where

A = −‖p‖2
0,

B = −p · Re(H − trace(H)I) · pT ,

C = −p · adj(ReH) · pT .

The result follows from Viete’s formulas; s1s2 = C/A and s1 + s2 = −B/A. �

2.3 Solving the Riccati equation

Assuming that G0 is symmetric and has positive definite imaginary part, one can show
that equation (1.1) is well posed. A solution G(t) exists for all t where c is defined, and
such a solution is unique. In addition, if G is a Gaussian beam at one t, it will be a
Gaussian beam for all t [5, 12].

Let us next outline the standard way to solve equation (1.1). Namely, how to reduce it
into a linear system. For simplicity, let us assume that we can cover geodesic c with some
local coordinates, whence we can define matrices C = (Cij)ij , G = (Gij)ij , R = (Rij)ij ,

N = (N j
i ◦ ċ)ij all depending on t. Let us point out that matrices C, G, R are symmetric

(see Section 3.1 or [5]). Equation (1.1) is then equivalent to the matrix equation [5, 12]

G′ − NG − GNT + GCG − R = 0. (2.1)

Let Y, Z be the solution to the linear system
(

Y
Z

)′

=

(

0 I
−I 0

)(

−R −N
−NT C

)(

Y
Z

)

, (2.2)

Y (0) = I, Z(0) = G0.
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Using the assumptions on G0, one can show that Y is invertible for all t. Furthermore,
G = ZY −1 is the unique solution to equation (2.1), and so G, interpreted as a 2-tensor is
a solution to equation (1.1). The next lemma shows that G and Z are invertible for all t.

Lemma 2.3. A symmetric complex matrix with positive definite imaginary part is invert-
ible.

Proof. Let A, B be real symmetric matrices, such that B is positive definite. If det(A +
iB) = 0, then −i ∈ σ(B−1A) (the spectrum of B−1A). Since B−1 is positive definite,
it has a symmetric square root, whence −i ∈ σ(B−1A) = σ(

√
B−1A

√
B−1). This is a

contradiction since
√

B−1A
√

B−1 is symmetric. �

In the lemma below, the first equation states that ImG is determined by Y alone.

Proposition 2.4. Suppose Y, Z are solutions to equation (2.2). Then

Im G = (Y −1)∗ Im(G0)Y −1,

Im(G−1) = −(Z−1)∗ Im(G0)Z−1,

where A∗ is the conjugate transpose of a matrix A.

Proof. As R and C are symmetric, equation (2.1) implies that

d

dt

((

Y
Z

)∗ (

0 I
−I 0

)(

Y
Z

))

= 0,

so Y ∗Z − Z∗Y = G0 − G∗

0. Since G is symmetric,

Im G =
1

2i
(G − G∗)

=
1

2i
(Y −1)∗(Y ∗Z − Z∗Y )Y −1

=
1

2i
(Y −1)∗(G0 − G∗

0)Y
−1.

In particular, ImG0 = 1
2i(G0 − G∗

0), and the first claim follows. The second claim follows
similarly since G−1 is symmetric. �

3 Fermi coordinates

Next we construct coordinates around a geodesic such that on the geodesic, the metric
tensor is Euclidean and all Christoffel symbols vanish. More generally, one can find local
coordinates around any curve such that the Christoffel symbols vanish. Original references
to this result by Fermi (1922) and Levi-Civita (1925 − 26) are given in [6, p. 92].

In Section 3.1 we show that in Fermi coordinates, N = 0, and C is constant. This will
considerably simplify equation (2.1) [2].

Theorem 3.1 (Fermi coordinates). Suppose M is a Riemannian n-manifold, n ≥ 2, and
c : J → M is a geodesic parametrized with respect to pathlength that does not intersect
itself. Furthermore, suppose c(J) is contained in one coordinate chart, and I is an open
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bounded interval satisfying I ⊂ J . Then there exist local coordinates (x̃1, x̃2, . . . , x̃n) =
(t, µ1, . . . , µn−1) that cover c(I), and for t ∈ I,

(t, µ = 0) represents c(t), (3.1)

ċ(t) =
∂

∂t

∣

∣

∣

c(t)
, (3.2)

g̃ij(t) = δij , (3.3)

∂g̃ij

∂x̃k
(t) = 0, (3.4)

Γ̃i
jk(t) = 0. (3.5)

Coordinates t, µi as in Proposition 3.1 are called Fermi coordinates. Since the first
Fermi coordinate is in a special position, we shall use an adapted Einstein summation
convention: for Roman letters the summation range is 1, . . . , n, and for Greek letters the
range is 2, . . . , n.

One way to prove Theorem 3.1 is to construct coordinates (t, µ) such that for constant
(t, µ), curves s 7→ (t, sµ) represent geodesics [15]. The disadvantage, however, with this
construction is that it gives the coordinates in a rather implicit form. The proof below is
less geometric, but the coordinates are given explicitly by equation (3.6). This expression
will be needed in Section 4 and in the proof of Theorem 4.5. Let us also emphasize that
the below Fermi coordinates are global (up the the endpoints).

Proof of Theorem 3.1. Let xi be coordinates that cover c(J). For some t0 ∈ I, let
vectors P2(t0), . . . , Pn(t0) be such that {ċ(t0), P2(t0), . . . , Pn(t0)} form an orthonormal
basis. For a general t ∈ J , let Pα(t) be the the parallel transport of Pα(t0) along c to c(t).
In other words,

Pα(t) = P i
α(t)

∂

∂xi

∣

∣

∣

c(t)
, α = 2, . . . , n,

where coefficients P i
α(t) are solutions to ordinary differential equations Ṗ i

α + N i
s(t)P

s
α = 0.

For x̃i = (t, µ2, . . . , µn) ∈ J × R
n−1, let us define a map x̃ 7→ x(x̃) by

xi(x̃) = ci(t) − P i
α(t)µα − 1

2
Qi

αβ(t)µαµβ , (3.6)

Qi
αβ = Γi

abP
a
αP b

β .

Let Br be the Euclidean open ball in R
n−1 with center 0 and radius r > 0. For some

r > 0, x(I × Br) is completely contained in xi-coordinates. (Proof: Let U be the chart
for the xi coordinates. Suppose that for each l = 1, 2, . . ., there exists an yl ∈ x(I × B1/l)

such that yl /∈ U . On a subsequence, yl → c(a) for some a ∈ I. This contradicts yl /∈ U
since c(a) ∈ c(I) ⊂ c(J) ⊂ U , and U is open.)

The rest of the proof is divided into two steps. First we show that x̃i-coordinates are
coordinates. Thereafter we show that the coordinates satisfy the sought conditions.
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Step 1. Since the parallel transport preserves the inner product, {ċ(t), P2(t), . . . , Pn(t)}
are orthonormal for all t ∈ J and, in particular, linearly independent. Since

∂xi

∂t
(t, µ) = ċi + N i

s(t)P
s
αµα − 1

2
Q̇i

αβµαµβ ,

∂xi

∂µα
(t, µ) = −P i

α − Qi
αβµβ , (3.7)

the Jacobian of x̃ 7→ x(x̃) is pointwise invertible on I ×{0}. It follows that there exists an
open set X ⊂ J ×Br such that x : X → x(X) is locally a diffeomorphism. Lemma 9.19 in
[19] implies that for some r > 0, x : I × Br → x(I × Br) is a diffeomorphism.

Step 2. Equations (3.1) and (3.2) follow from equation (3.6). Also, by orthogonality,
gij(t)P

i
αP j

β = δαβ, gij(t)P
i
αċj = 0, gij(t)ċ

iċj = 1. Equation (3.3) now follows from g̃ij =
∂xa

∂x̃i
∂xb

∂x̃j gab, and equation (3.5) follows from

Γ̃ijk =
∂xa

∂x̃i

(

∂2xb

∂x̃j ∂x̃k
gab +

∂xb

∂x̃j

∂xc

∂x̃k
Γabc

)

.

Here it suffices to show that the parenthesis vanishes for all j, k. Equation (3.4) follows

from the identity
∂gij

∂xk = Γijk + Γjik. �

3.1 Curvature

In Fermi coordinates, the Riemann curvature tensor takes the form

R̃m
ijk(t, µ) =

1

2

(

∂2g̃mk

∂x̃i ∂x̃j
− ∂2g̃ik

∂x̃m ∂x̃j
+

∂2g̃ij

∂x̃m ∂x̃k
− ∂2g̃mj

∂x̃i ∂x̃k

)

. (3.8)

This follows by inserting Γ̃m
ik = g̃msΓ̃sik into equation (1.2), differentiating, using g̃ij = δij ,

Γ̃i
jk = 0, and the definition of Γijk. (At the expansion point in normal coordinates, the

Riemann curvature tensor satisfies the same formula. See [8, p. 130])
In Fermi coordinates, tensors C and R have matrix representations

C̃ = diag(0, 1, 1), (3.9)

R̃ = diag(0, R), (3.10)

where R : I → R
2×2 is a 2 × 2 symmetric matrix. The latter claim follows since R̃1i =

R̃i1 = 0 and R̃ij = R̃1
ij1, as can be seen from equation (3.8). Furthermore, as Γ̃i

jk = 0 we

have Ñ i
j = 0.

4 Gaussian beams in Fermi coordinates

Definition 1 (Surface St). For a fixed t, let St be the Fermi coordinate surface t =
constant passing through c(t).

On St, a second order approximation of θ is

θ(x(t, µ), t) ≈ φ0 +
1

2
GjkP

j
αµαP k

β µβ

= φ0 +
1

2
G̃αβ(t)µαµβ .

This shows that on St a Gaussian beam decays approximately as exp(−P
2 Im G̃αβµαµβ).
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4.1 Decomposition of the Riccati equation

For matrices G̃, C̃, R̃ representing tensors G, C, R in Fermi coordinates, equation (2.1)
reads

G̃′ + G̃C̃G̃ − R̃ = 0. (4.1)

In other words, when we formulate the Riccati equation in Fermi coordinates, two terms
vanish, and C̃ becomes a constant matrix. In addition, since matrices C̃, R̃ are non-zero
only in their lower 2 × 2 blocks, it turns out that equation (4.1) is only a 2 × 2 Riccati
equation (equation (4.4)). Let us next make this precise.

In view of equations (3.9)-(3.10), let us also partition G̃ and G̃0 as

G̃ =

(

λ uT

u G

)

, G̃0 =

(

λ0 uT
0

u0 G0,

)

,

where λ : I → C, u : I → C
2×1, and G : I → C

2×2 are functions, and λ0 ∈ C, u0 ∈
C

2×1, G0 ∈ C
2×2 are initial values. That Im G̃0 is positive definite means in terms of

λ0, u0, G that

Im λ0 > Im uT
0 (Im G0)

−1 Im u0, Im G0 positive definite.

This follows using a Shur complement on Im G̃ and the fact: if S is invertible, then A is
positive definite if and only if ST AS is positive definite.

With above notation, equation (4.1) decomposes into three differential equations

λ′ = −uT u, (4.2)

u′ = −G u, (4.3)

G
′ + G

2 − R = 0, (4.4)

with initial values λ(0) = λ0, u(0) = u0, G (0) = G0. If we write G = Gr + iGi, where Gr, Gi

are real, then equation (4.4) reads

G
′

r + G
2
r − R = G

2
i ,

G
′

i + GrGi + GiGr = 0.

Physically, Imλ describes how rapidly the Gaussian beam decays in the direction of
propagation, and ImG describes its decay in the transversal plane. If Imu = 0, the decay
of the Gaussian beam is determined by an ellipsoid aligned with one axis along ċ. Equation
(4.4) shows that we can solve G , that is G̃αβ , without solving u or λ.

Proposition 4.1. Let G̃ be a solution to equation (4.1) decomposed as above.

1. Pointwise u = 0 if and only if ċ = (1, 0, 0) is an eigenvector for G̃. In this case, λ
is the eigenvalue corresponding to ċ.

2. If u0 = 0, then u is zero for all t, and λ(t) = λ0 is constant.

Proof. Claim (i) is elementary. Claim (ii) follows by solution formula for equations
(4.3). �
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Let us next give a coordinate invariant formulation of projection G 7→ G . For this
purpose, let Π = Πi

j
∂

∂xi ⊗ dxj be the tensor determined by coefficients

Πj
i = giaC

aj

= δj
i − piċ

j .

Then generally Π ◦ Π = Π,

v = Π(v) + g(ċ, v)ċ, v ∈ Tc(t)M,

and ker Π = span(ċ). Thus Π is the projection operator mapping Tc(t)M onto the orthog-

onal complement of ċ(t). For a 2-tensor B = Bijdxi⊗dxj , let ΠBΠT = Πa
i BabΠ

b
jdxi⊗dxj

whence the matrix representing ΠBΠT in Fermi coordinates is Π̃B̃Π̃T , where Π̃ = (Π̃j
i )ij =

(C̃ij)ij . For example, the matrix representing ΠGΠT in Fermi coordinates is

Π̃G̃Π̃T = diag(0, G ).

Proposition 4.2 (Riccati equation in transversal plane). Let G0 be a symmetric initial
value with positive definite imaginary part. If tensor G is a solution to equation (1.1) with
initial value G0, then

F = ΠGΠT

is also a solution to equation (1.1), but with initial value ΠG0Π
T . Conversely, if G and

F are solutions from initial values G0 and ΠG0Π
T , respectively, then F = ΠGΠT .

Proof. Since equation (1.1) is a tensor equation, it suffices to prove the claim in Fermi
coordinates. Thus, by assumption G̃ solves equation (4.1) with G̃(0) = G̃0. Then G

satisfies equation (4.4) with G (0) = G0. If F = ΠGΠT , then F0 = ΠG0Π
T , and F̃ =

diag(0, G ) satisfies equation (4.1). For the second claim, let us first note that in Fermi
coordinates, F̃ = diag(0, F ) for some 2 × 2 matrix F . This follows from equations (4.2)-
(4.3), and their solution formulas. Let C̃G̃C̃ = diag(0, G ). Then F and G share the
same initial value, which is symmetric and has positive definite imaginary part. Since,
in addition, F and G both solve equation (4.4), we have F = G . This gives F̃ =
diag(0, F ) = diag(0, G ) = C̃G̃C̃. �

4.2 Shape operator of surfaces Ft and St

Next we calculate shape operators of surfaces Ft and St. This will be done using Lemma
4.3 and Lemma 4.4. To formulate these lemmas, we need the Legendre transformation
♯ : T ∗M → TM defined as ♯ : αidxi 7→ gijαi

∂
∂xj . Let us also write α♯ = ♯(α).

Lemma 4.3 (Shape operator for an equipotential surface). Let p ∈ M . Suppose f : M →
R is a smooth function with dfp 6= 0, whence

S = {x ∈ M : f(x) = f(p)}

is a hypersurface passing trough p. Suppose further that g((df)♯, (df)♯) = 1 at p, and S is
oriented with a unit normal n such that n = df ♯ at p. Then the shape operator of S at p
equals

L(v) = π ◦ ♯ ◦ Dv(df), v ∈ TpS,

where π : TpM → TpS is the projection π(v) = v − g(v, n)n for v ∈ TpM .
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Proof. Suppose E ∈ X (M) is vector field

E(x) = (df)♯(x), x ∈ M,

whence g(E, E) = 1 at p ∈ M , and n̂ = E/
√

g(E, E) is an extension of a correctly oriented
unit normal on S. Suppose v ∈ TpM . Then Dv(fX) = v(f)X + fDv(X) for X ∈ X (M),
and Dv(α

♯) = ♯ ◦ Dv(α) for α ∈ Ω1(M). These identities together with π ◦ L = L imply
the result. �

Lemma 4.4 (Shape operator in Fermi coordinates). Suppose f and S are as in the previ-
ous lemma, c is a geodesic parametrized with respect to pathlength such that ċ(t) = (df)♯(p),
and (s, µ) are Fermi coordinates around c. Then the shape operator of S at c(t) is

L(v) =

3
∑

α,β=2

ṽα ∂2f

∂µα ∂µβ
(p)

∂

∂µβ
, v ∈ Tp(S).

Theorem 4.5 (Shape operator of surface Ft). Let phase front Ft be oriented with unit
normal n such that nc(t) = ċ(t). Then the shape operator of Ft at c(t)

L : Tc(t)Ft → Tc(t)Ft

is given by

L(v) = vi(Π Re GΠT )ijg
jk ∂

∂xk
, v ∈ Tc(t)Ft,

or in Fermi coordinates,

L(v) =
3

∑

α,β=2

ṽα Re G̃αβ
∂

∂µβ
, v ∈ Tc(t)Ft.

Proof. We only need to prove the claim in Fermi coordinates. Let us fix t, whence
Ft = {x ∈ M : f(x) = f(c(t))} for f(x) = Re θ(x, t). Since (df)♯(c(t)) = ċ(t), Lemma 4.4
implies that

L(v) =
3

∑

α,β=2

ṽα ∂2f

∂µα ∂µβ

∂

∂µβ
, v ∈ Tc(t)Ft.

By the chain rule we have ∂2f
∂µα ∂µβ = ∂2f

∂xi ∂xj
∂xi

∂µα
∂xj

∂µβ + ∂f
∂xi

∂2xi

∂µα ∂µβ . Evaluating at µ = 0 and

using equation (3.7) yields ∂2f
∂µα ∂µβ (t, 0) = Re G̃αβ(t). �

In the Euclidean inner product, the shape operator vanishes on hyperplanes. Intuitively
this means that the Euclidean inner product sees no shape on a hyperplane. The next
proposition gives an analogous result for g and St.

Proposition 4.6 (Shape operator of surface St). The curve c is orthogonal to St, and the
shape operator on St (with respect to g) is identically zero at c(t).
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Proof. The first claim follows since Tc(t)St = span{ ∂
∂µ2 , ∂

∂µ3 }. The second claim follows

from Lemma 4.4 as St = {(s, µ) : s − t = 0}. �

Let us recall Gauss’ lemma in Riemannian geometry [3, 19]. It states that if B is a
geodesic ball around a point p, then geodesics from p will intersect the boundary of B
orthogonally. In the setting of Gaussian beams, a geodesic ball around a point represents
the area of influence. In time t, no Gaussian beam can propagate outside a geodesic ball
of radius t. Proposition 2.1 and 4.6 state that for small t, surfaces Ft and St are tangential
to the geodesic sphere of radius t.

5 Gaussian beams in Euclidean geometry

Let us consider the case when g is Euclidean, that is, g = δijdxi ⊗ dxj , and the geodesic is
t 7→ (t, 0, 0). Then Fermi coordinates (s, µ) coincide with Euclidean coordinates; s = x1,
µ2 = x2, and µ3 = x3.

5.1 Geometry of surface Ft

Let us study the shape of Ft for t = 0. For simplicity, let us assume that ReG1i = 0 for
all i, c(t) = 0, and θ is a second order polynomial in z. The equation for Ft then reads

s = −1

2
Re Gαβµαµβ .

If we assume that Re G11 is non-zero, then one obtains a second order equation for t.
Of the two solutions, one must be excluded as it does not pass through c(t), and if one
approximates

√
1 + x = 1 + x/2 in the other, it will coincide with the above solution.

Figure 1 shows how Ft depends on the definiteness of ReG .

Figure 1. Phase front Ft in cases Re G = 0, ReG positive definite, ReG semi-definite, and Re G

negative definite. The arrow shows direction of propagation.

5.2 Explicit solution to G

In Euclidean geometry, R = 0, and the solution to equation (4.1) is

G(t) = G0(I + tCG0)
−1, C = diag(0, 1, 1),
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or, in partitioned form,

λ(t) = uT
0 G

−1
0 (I + G0t)

−1u0 + k,

u(t) = (I + G0t)
−1u0,

G (t) = G0(I + G0t)
−1,

where

k = λ0 − uT
0 G

−1
0 u0 = det G

−1
0 det G0.

The expressions for G and G can be derived using the standard solution method for a
matrix Riccati equation as outlined in Section 2.3. However, it is maybe easiest to just
verify these by direct substitution using matrix identity dA−1

dt = −A−1 dA
dt A−1, and the fact

that A and (I+A)−1 commute. Inverse (I+G0t)
−1 exists by Lemma 2.3, and (I+tCG0)

−1

exists since det(I + tCG0) = det(I + G0t). Let J =

(

0 1
−1 0

)

. If B is an invertible 2 × 2

symmetric matrix, then B−1 = −1
det B JBJ . Thus

(I + G0t)
−1 =

I − JG0Jt

det(I − JG0Jt)
.

From this expression it follows that λ(t), u(t), and G (t) decay as 1/t. Thus, if I = R, then

lim
t→∞

λ(t) = detG
−1
0 detG0, lim

t→∞

u(t) = 0, lim
t→∞

G (t) = 0,

In particular, at infinity the Gaussian beam is infinitely wide (G = 0)

Example 5.1 (Eigenvalues of ReG and ImG ). Let us study solutions from initial values
of the form

G0 = diag(a + i, c + i), (5.1)

where a, c are real eigenvalues of Re G . In this case, the Riccati equation decouples into
two scalar equations. Figure 2 shows the eigenvalues of Re G and ImG for six values for
a and c. The signum-type function in the plots will be studied in Section 5.3.

In the plots we can see three phenomena. First, in all plots the magnitudes of the
eigenvalues tend to zero. In other words, for large t, the phase front will resemble more
and more a plane. Secondly, even if initial value ReG0 is semi-definite or zero, the solution
Re G always tends to a positive definite matrix. This suggests that the solution is unstable
if Re G is not positive definite. This is also physically reasonable. In free space, the phase
surface should look like a sphere, not as a hyperbola (see Figure 1). Lastly, eigenvalues of
Re G and ImG are coupled.

5.3 When is the phase front within the area of influence?

Let us write the general initial value G0 as

G0 =

(

A B
B C

)

=

(

a b
b c

)

+ i

(

α β
β γ

)

,
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Figure 2. Eigenvalues of ReG (solid lines) and ImG (dashed lines) for t = 0, . . . , 5 from initial

value (5.1). The signum-type functions is described in Section 5.3.

where A, B, C are complex numbers, and a, b, c, α, β, γ are real. Computer algebra gives
the following expressions for K and S,

K(t) =
C4t

2 + 1
2C3t + C0

C4t4 + C3t3 + C2t2 + C1t + 1
,

S(t) =
1

2

2C4t
3 + 3

2C3t
2 + C2t + 1

2C1

C4t4 + C3t3 + C2t2 + C1t + 1
,

where

C0 = det Re G0,

C1 = 2 trace Re G0,

C2 = (trace (Re G0))
2 + 2 det Re G0 + (trace (ImG0))

2 − 2 det Im G0,

C3 = 2
(

c|A|2 + a|C|2 − Re
(

B2 trace(G ∗

0 )
))

,

C4 = |detG0|2,

and M∗ is the complex conjugate of a matrix M . These expressions can be derived either
using Proposition 2.2, or from the eigenvalues of G and using Theorem 4.5. It follows that
K decays as 1/t2, and S decays as 1/t. Thus for large t the Gaussian curvature of Ft

(at c(t)) approaches 1/t2 which is the curvature for a sphere of radius t. The sphere with
center c(0) and radius t represents the area of influence; in time t, a signal can propagate
at most a distance of t units. As the phase front describes how the field propagates, it
would be natural to assume that near c(t), phase front Ft is contained inside this sphere.
Suppose that ReG1i = 0 for all i. Then the above condition translates into

κ1(t) >
1

t
, κ2(t) >

1

t
. (5.2)

for principal curvatures κ1, κ2. These inequalities are only reasonable for large t. The
signum-type function plotted in Figure 2 indicates when condition (5.2) holds. When the
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function is positive the condition holds and when negative the condition does not hold.
Let us point out that G(t) in a = c = 1 is identical to G(t + 1) in a = c = −1. However,
condition (5.2) is not translationally invariant, so the signum functions do not coincide.
Schematically condition (5.2) is illustrated in Figure 3. In the left figure, the condition
holds. In other words, phase fronts are contained within the area of influence. The right
figure shows phase fronts where Re G are positive definite, but the condition does not hold.

Figure 3. A 2D illustration of phase fronts in cases K(t) > 1/t2 (left) and K(t) < 1/t2 (right).

Suppose B = 0. Then matrix Riccati equation (4.4) decomposes into two scalar equa-
tions, and in this case we have

κ1(t) =
a + (a2 + α2)t

(1 + at)2 + (tα)2
, κ2(t) =

c + (c2 + γ2)t

(1 + ct)2 + (tγ)2
,

and condition (5.2) takes the simple form: −1 > at,−1 > ct. Thus, for large t, condition
(5.2) holds if and only if a, c < 0. It follows that in Figure 2, condition (5.2) will only be
satisfied for a = c = −1. In addition, by slightly perturbing initial values (0, 0), (−1, 0),
and (0,−1) these too satisfy the condition.
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